US1798902A - Surgical instrument - Google Patents
Surgical instrument Download PDFInfo
- Publication number
- US1798902A US1798902A US317333A US31733328A US1798902A US 1798902 A US1798902 A US 1798902A US 317333 A US317333 A US 317333A US 31733328 A US31733328 A US 31733328A US 1798902 A US1798902 A US 1798902A
- Authority
- US
- United States
- Prior art keywords
- exciding
- frame
- shiftable
- aperture
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000002741 palatine tonsil Anatomy 0.000 description 14
- 239000004020 conductor Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 101100001677 Emericella variicolor andL gene Proteins 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002969 morbid Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/24—Surgical instruments, devices or methods for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
- A61B17/26—Tonsillotomes, with or without means for stopping bleeding
Definitions
- a hemorrhage concoini ⁇ tant with the excision generally occurs when using an ordinary tonsillotonie having the form of a. pair of blunt edged shears, the ap io plication of a suitable astringent in the forni preferably of a styptic'medicine being re- ⁇ quired to contract the soft the flow of blood.
- Ordinary tonsillotomes perform the eXcitissues and check between the blunt edges of the shears to masticate the tissue along the line of cleavage and thus leave the root of the tonsil in a condition favorable to the rapid coagulation of the blood and to the suppression of the hemorrhage.
- the flow of blood may not altogether be permanently sup@ pressed, especially in patients suffering from hemorraghicdiathesis or the like, so that the *operation may be, andL often is, followed by a lesion difficult to correct.
- hemorrhage may be suppressed and morbid conditions averted by a form of diatherinic tonsillotome having its exciding members each connected to one of the opposite terminals of a source of elec ⁇ trical energy preferably furnishing an alternating current of ⁇ a frequency of not less than five hundred liilocycles per second, coininonly referred to as aliigh frequency current.
- My present invention has hence for its prime object the provision of a tonsillotome 4,0 for diathermically eifecting ⁇ separation and removal of the. tonsil.
- My present invention has for further objects the provision of a tonsillotome ofthe type stated which may be readily manufactured, which may be conveniently manipusion of the tonsil by compressing the same L y 5, 192s. seriai n lated, and which is eiicient in ance of its int the performended functions.
- Figure 1 is a sectional view of the pharyni geal region of sented therein a human being, illustrating a tonsillotome ⁇ of my invention orally ⁇ pre- .for a tonsillar operation;
- FIG. 1 isa longitudinally sectional view through the tonsillotome, ⁇
- Figure 3 is lotome
- FIG 4 is a sectional view, of the tonsillotome, along t
- the instrument a top ⁇ plan view of the tonsilhe line 4-4, Figure 2.
- etail and by refer- Wing which illusincludes a suitably elongated, relatively strip-like rigid member or so-called frame A of at l,at its forward end iiected or conj end, is a prete lation handle spatulate contour, as ,and suitably conoinedto frame A ⁇ at its rear rably obliquelydisposed insu- 2.
- the frame A is approxi ⁇ mately flat and smooth upon its upper face
- the members A and B are'preferably of reduced sectional area through t heir middle or oral portion,as
- the frame A being provided longitudinally upon its opposite side margins at and adjacent its rear end with undercut or passing downwardly through and Yout of handle 2, is one lead 9 of a conducting cable 1() for electrically connecting .
- the frame A with a source (not shown) of alternating electrical energy having a frequency of at least five hundred kilocycles per second, a conveniently operable switch or other suitable make-and-break device, as at 1 1, being incorporated in the lead 9, as seen in Figure .1.
- the stationary excidingmember 7 is connected or included' electrically in, and may be described ⁇ as the terminal of one side of, the circuit.
- the other lead 12 of the conducting-cable passesfthrough a tube V13 forming substantially apart of frame A and depending therefrom through the handle 2,- the latter being .2 preferablysplit in the plane of the rtube 13 p and secured therearound by suitable fasten-r ing elements 14, as seen in Figure 2.
- an insulating member 16 Disposed in a recess 15 in the upper farce of the frame A preferably intermediate the guide-walls 6, is an insulating member 16 having a cup-like chamber 17 depending into the upper end of the tube 13'.
- the member B is likewise constructed of' suitable metallic material, and disposed in and along the kcenter line of member B and extending from adjacent the rear end thereof to and through its head-end v5, is a strip of insulating material 21, which is laterally extended over themargin'of the head-end 5 in an arcuate or horn-like shape to form an eX- ciding member-support 22. Mounted on,
- shiftable member B is'the shiftable metallic exciding member 23, whose exciding edge is formed complementary to, and adapted to engage the groove of, the stationary metallic exciding member 7.
- a conductor'24 is embedded in the insulating strip 21 and leads from the exciding member 23 to a contactbutton 25 disposed in the rear end portion of the member B and terminating flush with the under face thereof for exposure to and contact with the plunger 19 on predetermined movement of the shiftable member B in operating direction, that is to say, in a direction to move the shiftableV eXciding member 23 over the tonsillar aperture 3, both of the eXciding members being electrically energized in opposition when the button 25 engages with the contact plunger 19.
- the shiftable eXciding member 23 is adapted for inclusion in, and to provide terminal of the opposite side of, the circuit.
- a trigger 26 is pivotally supported, as at 27, upon the frame A in gripping relation with the handle 2, the latter being preferably provided with finger notches 28 in the usual manner.
- the dog On the trigger 26 being actuated away from the handle 2, the dog may be entirely disengaged from the shiftable member slot 31,
- member B land the member B then shifted rearwardly upon the frame-A until the end portion thereof is disengaged from the guide-walls 6 and the head-end 5 disengaged from the guidewall 4, whereupon, since the intermediate por,- tion of member B is narrower than the dis'- tance between vthe walls'6,'the member B may be lifted from ⁇ the frame A.
- the diathermic effect increases as the distance between the exciding members is decreased, hence it is not necessary that the current be supplied during the entire travel of the exciding member 23 across the aperture 3.
- the'dimensions of the contact-button 25 are chosen to insure the passage of the current'through thetonsil tissue where wanted and'cut off the 'supply of current before the completion of the ezciding movement of the member B,as well as also to prevent a short circuit when the movable exciding member 23 touches the stationary eX- ciding member 7
- the tonsillotome is orally presented into the pharynx of the patient and manipulated to pass the lobe of the tonsil through the tonsillary aperture 3.
- the operator grasps the tonsil between the exciding members 7 and 23 and proceeds with the ⁇ operation as hereinbefore set forth, whereupon the operation is completed, the eect of the high frequency current being to close the Wound, through coagulation of the tissues, after the diathermy, thereby preventing hemorrhagic lesions, the result of the operation being to effect a neat and complete and substantially bloodless severance of the tonsil.
- my new tonsillotome When used in combination With a source of highfrequency alternating current, is an eiiicient instrument for the surgical purposes intended; it is of simple construction, light in Weight, relatively inexpensive to manufacture, and effective in operation.
- a tonsillotome the combination with a. source of high frequency alternating electrical current having a frequency not less than live hundred kilocycles per second, of a frame adapted for oral presentation, the tonsillar end of the frame having an aperture for the reception of the lobe of the tonsil, the end Wall of the aperture forming a stationary exciding member, a co-operating exciding member shiftable on the frame across said aperture, said stationary eXciding member being connected With one terminal of said source of current, and means for connecting the other terminal of said source of current to ⁇ the shiftable exciding member on movement thereof to a predetermined position.
- a tonsillotome the combination with a source of high frequency alternating electrical current having ay frequency not less than-five hundred kilocycles per'second, of a frame adapted for oral presentatiomithe tonsillar endy of the frame having an aperture ing member shiftable on the framefacross said aperture, said stationaryexciding member being connected with one terminal of said source of currentyand means for con- ⁇ necting theother terminal of "said source of current to the shiftable exciding member on movement thereof to a predetermined position. said last mentioned means also disconnecting said source of current from the shiftable exciding member prior to the termination of the exciding movement thereof.
- a tonsillotome a frame adapted for oral presentation, the tonsillar end of the frame having an aperture for the reception ofthe lobe of the tonsil, a metallic stationary exciding member mounted on the end Wall of the aperture, a shiftable member mounted on the frame for movement relatively to said aperture, a metallic eXciding member insulatably mounted on said shiftable member for passage across said aperture, a contact-member insulatably mounted on the frame for slidably contacting the shiftable member, a conductor mounted on said shiftable member ⁇ for engagement with said contact-member on movement of the shiftable member to a predetermined position, ⁇ said conductor having electrical connection With the movablel eXciding member, means for connecting the contact-member with one terminal of va source of electrical energy, ⁇ and means for connecting the other terminal of said source with the stationary exciding member.
- a metallic frame adapted for oral presentation, ⁇ the tonsillar end of the frame having an aperture for the reception of the lobe of the tonsil, ⁇ the end Wall of the aperture forming a stationary exciding member, ashiftable'member slidably mounted on the frame for movement relatively to said aperture, an insulating' strip longitudinallymounted ⁇ in the shiftable member and slidably contacting a surface of the frame, a spring set ⁇ contact-member normally bearing against said insulating strip, a conductor embedded in said insulating strip having one terminal exposed for selective engagement With said contactmember, a movable exciding member mounted on said insulating strip for carried movement across said aperture, the other terminal of said conductor being connected to the movable exciding member, means for connecting said contact-member With one terminal of a source of electrical energy, and means for connecting the other terminal of said source of energy With said frame.
- means comprising Veo-operating excidmg members, one of which 1s slidably sliiftable .relatively to the other,A for holding the Vtonsil in operative position, means operable conjointly'by and with said first mentioned means for passing a Current of electricity from one to the other of said members through the interposed tonsil tissue,
- Vand lmeans in connection With said last-mentioned means for automatically regulating the duration of the passage of the current.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Otolaryngology (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dentistry (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Description
March 31, 1931. E. M. RANEY 1,798,902
SURGICAL INSTRUMENT Filed Nov. 5, 1928 50g/ij@- I .ZYJ'fi/fffflffi-Yqqef{9L-merecen PRG P12/E TOR Patented Mar. 31, 1931 EDWIN ivi. nanny, or sT. Louis, Missonnr SURGICAL INSTRUMENT Application led November This invention relates generally to surgical instruments and, more particularly, to`
a certain new and useful improvement in surgical instruments of the type known as s tonsillotomes.
In tonsillotomy, a hemorrhage concoini` tant with the excision generally occurs when using an ordinary tonsillotonie having the form of a. pair of blunt edged shears, the ap io plication of a suitable astringent in the forni preferably of a styptic'medicine being re-` quired to contract the soft the flow of blood. i Ordinary tonsillotomes perform the eXcitissues and check between the blunt edges of the shears to masticate the tissue along the line of cleavage and thus leave the root of the tonsil in a condition favorable to the rapid coagulation of the blood and to the suppression of the hemorrhage. Nevertheless, the flow of blood may not altogether be permanently sup@ pressed, especially in patients suffering from hemorraghicdiathesis or the like, so that the *operation may be, andL often is, followed by a lesion difficult to correct.
I have found" that the hemorrhage may be suppressed and morbid conditions averted by a form of diatherinic tonsillotome having its exciding members each connected to one of the opposite terminals of a source of elec` trical energy preferably furnishing an alternating current of `a frequency of not less than five hundred liilocycles per second, coininonly referred to as aliigh frequency current.
My present invention has hence for its prime object the provision of a tonsillotome 4,0 for diathermically eifecting `separation and removal of the. tonsil.
My present invention has for further objects the provision of a tonsillotome ofthe type stated which may be readily manufactured, which may be conveniently manipusion of the tonsil by compressing the same L y 5, 192s. seriai n lated, and which is eiicient in ance of its int the performended functions.
And with the above and other objects in view, my invention resides in the novel features -of form and combination of parts `hereinafterdescribed and po construction, arrangement,
inted out in the claims.
In the accompanying drawing,-`-
Figure 1 is a sectional view of the pharyni geal region of sented therein a human being, illustrating a tonsillotome `of my invention orally `pre- .for a tonsillar operation;
Figure 2 isa longitudinally sectional view through the tonsillotome,`
Figure 3 is lotome; and
Figure 4 is a sectional view, of the tonsillotome, along t Referring now more in d ence characters to the dra trates a preferred embodiment of my invention,` the instrument a top `plan view of the tonsilhe line 4-4, Figure 2.
etail and by refer- Wing,`which illusincludes a suitably elongated, relatively strip-like rigid member or so-called frame A of at l,at its forward end iiected or conj end, is a prete lation handle spatulate contour, as ,and suitably conoinedto frame A` at its rear rably obliquelydisposed insu- 2. The frame A is approxi` mately flat and smooth upon its upper face,
, forpurposes presently appearing, and in its spatulate or head-end 1 is provided with a tonsillar fenestra or aperture l 3.
Integrally or otherwise xed upon `and extending continuously along` the margin of the spatulate or head-end l of frame A ure 3, is anundercut or as best seen in Fig-` recessed wall 4 providing a guide-way for the correspondingly spatulate head rigid co-operati fully described,` flat face and at sai for slidable `or relatively to th -endi of a likewise elongated ng member B, presently more y and smooth on its under d face disposed longitudinally shiftable` movement upon and e frame A. The members A and B are'preferably of reduced sectional area through t heir middle or oral portion,as
best seen in Figure 3, for both reducing the weight of the instrument and facilitating its use, the frame A being provided longitudinally upon its opposite side margins at and adjacent its rear end with undercut or passing downwardly through and Yout of handle 2, is one lead 9 of a conducting cable 1() for electrically connecting .the frame A with a source (not shown) of alternating electrical energy having a frequency of at least five hundred kilocycles per second, a conveniently operable switch or other suitable make-and-break device, as at 1 1, being incorporated in the lead 9, as seen in Figure .1. In such manner, the stationary excidingmember 7 is connected or included' electrically in, and may be described` as the terminal of one side of, the circuit.
The other lead 12 of the conducting-cable passesfthrough a tube V13 forming substantially apart of frame A and depending therefrom through the handle 2,- the latter being .2 preferablysplit in the plane of the rtube 13 p and secured therearound by suitable fasten-r ing elements 14, as seen in Figure 2.
Disposed in a recess 15 in the upper farce of the frame A preferably intermediate the guide-walls 6, is an insulating member 16 having a cup-like chamber 17 depending into the upper end of the tube 13'. Springset by a spring 18 for normal endwise presentation through the insulation 16 for yielding engagement with the shiftable member B, is a reciprocable contact-plunger 19Y flexibly connected electrically with the lead. 12 through a suitable aperture as at 20, lin the bottom wall of the chamber 17, as best seen in Figure 2.
The member B is likewise constructed of' suitable metallic material, and disposed in and along the kcenter line of member B and extending from adjacent the rear end thereof to and through its head-end v5, is a strip of insulating material 21, which is laterally extended over themargin'of the head-end 5 in an arcuate or horn-like shape to form an eX- ciding member-support 22. Mounted on,
^ and insulated by the support 22 from, the
shiftable member B, is'the shiftable metallic exciding member 23, whose exciding edge is formed complementary to, and adapted to engage the groove of, the stationary metallic exciding member 7. A conductor'24 is embedded in the insulating strip 21 and leads from the exciding member 23 to a contactbutton 25 disposed in the rear end portion of the member B and terminating flush with the under face thereof for exposure to and contact with the plunger 19 on predetermined movement of the shiftable member B in operating direction, that is to say, in a direction to move the shiftableV eXciding member 23 over the tonsillar aperture 3, both of the eXciding members being electrically energized in opposition when the button 25 engages with the contact plunger 19. In such manner also, the shiftable eXciding member 23 is adapted for inclusion in, and to provide terminal of the opposite side of, the circuit.
v A trigger 26 is pivotally supported, as at 27, upon the frame A in gripping relation with the handle 2, the latter being preferably provided with finger notches 28 in the usual manner. Extending from the trigger 26 into a slot 29 in the frame A, is a dog 30 adapted to swingably pass into and out of a slot 31 in the shiftable member B for engagement with an end wall thereof to move the member B in operating direction on the trigger 26 being pressed or pulled towards the handle 2. On the trigger 26 being actuated away from the handle 2, the dog may be entirely disengaged from the shiftable member slot 31,
land the member B then shifted rearwardly upon the frame-A until the end portion thereof is disengaged from the guide-walls 6 and the head-end 5 disengaged from the guidewall 4, whereupon, since the intermediate por,- tion of member B is narrower than the dis'- tance between vthe walls'6,'the member B may be lifted from `the frame A.
The point at which the button 25 contacts 'f the plunger 19 is selected, so that the tonsil tissue willbe firmly grasped between the exciding members 7 and 23 whenA the current is kapplied therebetween. This position is most easily attained by the operator pressing the shiftable member B with his thumb while grasping the handle 2, a thumb-piece 32 being provided on the member B for the purpose. Thereafter the movable eXciding member 23 is gently and firmly moved by means of the trigger 26V kerf-like through the tonsil tissue as it isseparated by the diathermic action of the high-frequency current 'occurring concomitantly. The diathermic effect increases as the distance between the exciding members is decreased, hence it is not necessary that the current be supplied during the entire travel of the exciding member 23 across the aperture 3. For this reason, the'dimensions of the contact-button 25 are chosen to insure the passage of the current'through thetonsil tissue where wanted and'cut off the 'supply of current before the completion of the ezciding movement of the member B,as well as also to prevent a short circuit when the movable exciding member 23 touches the stationary eX- ciding member 7 In prac-tice, asshoivn in Figure l, the tonsillotome is orally presented into the pharynx of the patient and manipulated to pass the lobe of the tonsil through the tonsillary aperture 3. The location of the excision having been determined, the operator grasps the tonsil between the exciding members 7 and 23 and proceeds with the `operation as hereinbefore set forth, whereupon the operation is completed, the eect of the high frequency current being to close the Wound, through coagulation of the tissues, after the diathermy, thereby preventing hemorrhagic lesions, the result of the operation being to effect a neat and complete and substantially bloodless severance of the tonsil.
Thus the excision is performed by my tonsillotome Without incising or masticating the tissue of the tonsil, the separation being effected by diathermy and hemorrhage prevented by the coagulation produced by the high frequency of the current in passing' from one exciding member of the tonsillotome to the other through the tissue of the tonsil along the desired line of separation. Hence it Will be seen that my new tonsillotome, When used in combination With a source of highfrequency alternating current, is an eiiicient instrument for the surgical purposes intended; it is of simple construction, light in Weight, relatively inexpensive to manufacture, and effective in operation.
While I have shown and described herein the preferred form of my invention, it Will be understood that changes and modifications in the form, construction, arrangement, and combination of the several parts of the instrument may be made and substituted for those herein shown and described Without departing from the nature and principle of my invention.
Having thus described my invention, what I claim and desire to secure by Letters :Patent is:
l. In a tonsillotome, the combination with a. source of high frequency alternating electrical current having a frequency not less than live hundred kilocycles per second, of a frame adapted for oral presentation, the tonsillar end of the frame having an aperture for the reception of the lobe of the tonsil, the end Wall of the aperture forming a stationary exciding member, a co-operating exciding member shiftable on the frame across said aperture, said stationary eXciding member being connected With one terminal of said source of current, and means for connecting the other terminal of said source of current to `the shiftable exciding member on movement thereof to a predetermined position.
2. In a tonsillotome, the combination with a source of high frequency alternating electrical current having ay frequency not less than-five hundred kilocycles per'second, of a frame adapted for oral presentatiomithe tonsillar endy of the frame having an aperture ing member shiftable on the framefacross said aperture, said stationaryexciding member being connected with one terminal of said source of currentyand means for con-` necting theother terminal of "said source of current to the shiftable exciding member on movement thereof to a predetermined position. said last mentioned means also disconnecting said source of current from the shiftable exciding member prior to the termination of the exciding movement thereof.
3. In a tonsillotome, a frame adapted for oral presentation, the tonsillar end of the frame having an aperture for the reception ofthe lobe of the tonsil, a metallic stationary exciding member mounted on the end Wall of the aperture, a shiftable member mounted on the frame for movement relatively to said aperture, a metallic eXciding member insulatably mounted on said shiftable member for passage across said aperture, a contact-member insulatably mounted on the frame for slidably contacting the shiftable member, a conductor mounted on said shiftable member `for engagement with said contact-member on movement of the shiftable member to a predetermined position,`said conductor having electrical connection With the movablel eXciding member, means for connecting the contact-member with one terminal of va source of electrical energy,`and means for connecting the other terminal of said source with the stationary exciding member. y
4. In a tonsillotome, a metallic frame adapted for oral presentation, `the tonsillar end of the frame having an aperture for the reception of the lobe of the tonsil,` the end Wall of the aperture forming a stationary exciding member, ashiftable'member slidably mounted on the frame for movement relatively to said aperture, an insulating' strip longitudinallymounted `in the shiftable member and slidably contacting a surface of the frame, a spring set `contact-member normally bearing against said insulating strip, a conductor embedded in said insulating strip having one terminal exposed for selective engagement With said contactmember, a movable exciding member mounted on said insulating strip for carried movement across said aperture, the other terminal of said conductor being connected to the movable exciding member, means for connecting said contact-member With one terminal of a source of electrical energy, and means for connecting the other terminal of said source of energy With said frame.
ico
5. In a surgical instrument for diathermie tonsillotomy, means comprising Veo-operating excidmg members, one of which 1s slidably sliiftable .relatively to the other,A for holding the Vtonsil in operative position, means operable conjointly'by and with said first mentioned means for passing a Current of electricity from one to the other of said members through the interposed tonsil tissue,
Vand lmeans in connection With said last-mentioned means for automatically regulating the duration of the passage of the current.
VIn testimony whereof, I have signed my name to this specification.
Y EDWIN M.- RANEY.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US317333A US1798902A (en) | 1928-11-05 | 1928-11-05 | Surgical instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US317333A US1798902A (en) | 1928-11-05 | 1928-11-05 | Surgical instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
US1798902A true US1798902A (en) | 1931-03-31 |
Family
ID=23233195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US317333A Expired - Lifetime US1798902A (en) | 1928-11-05 | 1928-11-05 | Surgical instrument |
Country Status (1)
Country | Link |
---|---|
US (1) | US1798902A (en) |
Cited By (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2448741A (en) * | 1945-04-25 | 1948-09-07 | American Cystoscope Makers Inc | Endoscopic surgical instrument |
EP0235489A1 (en) * | 1985-02-08 | 1987-09-09 | The Perry Group, Ltd. | Biopsy device |
WO1992013494A1 (en) * | 1991-02-06 | 1992-08-20 | Laparomed Corporation | Electrosurgical device |
US5197964A (en) * | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5324289A (en) * | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5391166A (en) * | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5599350A (en) * | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
US5624439A (en) * | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US5766166A (en) * | 1995-03-07 | 1998-06-16 | Enable Medical Corporation | Bipolar Electrosurgical scissors |
US5797941A (en) * | 1995-02-01 | 1998-08-25 | Ethicon Endo-Surgery, Inc. | Surgical instrument with expandable cutting element |
US5833690A (en) * | 1993-07-22 | 1998-11-10 | Ethicon, Inc. | Electrosurgical device and method |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US6056744A (en) * | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6092528A (en) * | 1994-06-24 | 2000-07-25 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US6126657A (en) * | 1996-02-23 | 2000-10-03 | Somnus Medical Technologies, Inc. | Apparatus for treatment of air way obstructions |
US6152143A (en) * | 1994-05-09 | 2000-11-28 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
US6179803B1 (en) | 1994-05-09 | 2001-01-30 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US6179837B1 (en) | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6193716B1 (en) | 1997-05-13 | 2001-02-27 | Malcolm L. Shannon, Jr. | Electrosurgical device for uvulopalatoplasty |
US6258087B1 (en) | 1998-02-19 | 2001-07-10 | Curon Medical, Inc. | Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6273886B1 (en) | 1998-02-19 | 2001-08-14 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
US6309386B1 (en) | 1997-10-06 | 2001-10-30 | Somnus Medical Technologies, Inc. | Linear power control with PSK regulation |
US6325798B1 (en) | 1998-02-19 | 2001-12-04 | Curon Medical, Inc. | Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions |
US6355031B1 (en) | 1998-02-19 | 2002-03-12 | Curon Medical, Inc. | Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter |
US6358245B1 (en) | 1998-02-19 | 2002-03-19 | Curon Medical, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US6371926B1 (en) | 1998-04-21 | 2002-04-16 | Somnus Medical Technologies, Inc. | Wire based temperature sensing electrodes |
US6391029B1 (en) | 1995-03-07 | 2002-05-21 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6402744B2 (en) | 1998-02-19 | 2002-06-11 | Curon Medical, Inc. | Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6423058B1 (en) | 1998-02-19 | 2002-07-23 | Curon Medical, Inc. | Assemblies to visualize and treat sphincters and adjoining tissue regions |
US6440128B1 (en) | 1998-01-14 | 2002-08-27 | Curon Medical, Inc. | Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US20020143324A1 (en) * | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US6464697B1 (en) | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
US6464701B1 (en) | 1995-03-07 | 2002-10-15 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US20020165541A1 (en) * | 2001-04-20 | 2002-11-07 | Whitman Michael P. | Bipolar or ultrasonic surgical device |
US20020169392A1 (en) * | 2001-05-01 | 2002-11-14 | Csaba Truckai | Electrosurgical working end and method for obtaining tissue samples for biopsy |
US20030009165A1 (en) * | 1998-01-14 | 2003-01-09 | Curon Medical, Inc. | GERD treatment apparatus and method |
US6517535B2 (en) | 1994-06-24 | 2003-02-11 | Gyrus Ent L.L.C. | Apparatus for ablating turbinates |
US20030069579A1 (en) * | 2001-09-13 | 2003-04-10 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6547776B1 (en) | 2000-01-03 | 2003-04-15 | Curon Medical, Inc. | Systems and methods for treating tissue in the crura |
US20030125717A1 (en) * | 2001-12-04 | 2003-07-03 | Whitman Michael P. | System and method for calibrating a surgical instrument |
US6589238B2 (en) | 1998-01-14 | 2003-07-08 | Curon Medical, Inc. | Sphincter treatment device |
US20030130677A1 (en) * | 2002-01-08 | 2003-07-10 | Whitman Michael P. | Surgical device |
US20030144652A1 (en) * | 2001-11-09 | 2003-07-31 | Baker James A. | Electrosurgical instrument |
US6613047B2 (en) | 1994-06-24 | 2003-09-02 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US20030171748A1 (en) * | 2001-10-22 | 2003-09-11 | Sciogen Llc | Electrosurgical instrument and method of use |
US20030199870A1 (en) * | 2001-10-22 | 2003-10-23 | Csaba Truckai | Jaw structure for electrosurgical instrument |
US20030216732A1 (en) * | 2002-05-20 | 2003-11-20 | Csaba Truckai | Medical instrument with thermochromic or piezochromic surface indicators |
US20030220637A1 (en) * | 2001-10-22 | 2003-11-27 | Csaba Truckai | Electrosurgical working end with replaceable cartridges |
US20040087936A1 (en) * | 2000-11-16 | 2004-05-06 | Barrx, Inc. | System and method for treating abnormal tissue in an organ having a layered tissue structure |
US20040094597A1 (en) * | 2002-06-14 | 2004-05-20 | Whitman Michael P. | Surgical device |
US20040111081A1 (en) * | 1999-06-02 | 2004-06-10 | Whitman Michael P. | Electro-mechanical surgical device |
US6749607B2 (en) | 1998-03-06 | 2004-06-15 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US20040116979A1 (en) * | 2002-10-01 | 2004-06-17 | Surgrx | Electrosurgical instrument and method of use |
US20040147921A1 (en) * | 1998-02-19 | 2004-07-29 | Curon Medical, Inc. | Sphincter treatment apparatus |
US20040153124A1 (en) * | 1999-06-02 | 2004-08-05 | Whitman Michael P. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US20040149802A1 (en) * | 1999-07-12 | 2004-08-05 | Whitman Michael P. | Expanding parallel jaw device for use with an electromechanical driver device |
US6773409B2 (en) | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US6783523B2 (en) | 1999-05-04 | 2004-08-31 | Curon Medical, Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US6790207B2 (en) | 1998-06-04 | 2004-09-14 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract |
US20040199161A1 (en) * | 2003-02-14 | 2004-10-07 | Surgrx, Inc., A Delaware Corporation | Electrosurgical probe and method of use |
US6802841B2 (en) | 1998-06-04 | 2004-10-12 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US20040215185A1 (en) * | 2001-10-18 | 2004-10-28 | Csaba Truckai | Electrosurgical working end for cotrolled energy delivery |
US20040243142A1 (en) * | 2001-09-07 | 2004-12-02 | Siepser Steven B. | Intraocular lens extracting device |
US6866663B2 (en) | 1998-02-27 | 2005-03-15 | Curon Medical, Inc. | Method for treating a sphincter |
US20050159745A1 (en) * | 2004-01-16 | 2005-07-21 | Surgrx, Inc. | Electrosurgical instrument with replaceable cartridge |
US20050171535A1 (en) * | 2001-10-22 | 2005-08-04 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US20050203507A1 (en) * | 2004-03-12 | 2005-09-15 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20050261678A1 (en) * | 2004-04-19 | 2005-11-24 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US20050267464A1 (en) * | 2001-10-18 | 2005-12-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20060000823A1 (en) * | 2003-11-19 | 2006-01-05 | Surgrx, Inc. | Polymer compositions exhibiting a PTC property and methods of fabrication |
US20060052660A1 (en) * | 1999-08-10 | 2006-03-09 | Chin Albert K | Apparatus and methods for cardiac restraint |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US20060069388A1 (en) * | 2002-04-30 | 2006-03-30 | Csaba Truckai | Electrosurgical instrument and method |
US20060095032A1 (en) * | 1999-11-16 | 2006-05-04 | Jerome Jackson | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US20060116746A1 (en) * | 2003-01-17 | 2006-06-01 | Chin Albert K | Cardiac electrode attachment procedure |
US7083619B2 (en) | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US20070066973A1 (en) * | 2004-01-09 | 2007-03-22 | Stern Roger A | Devices and methods for treatment of luminal tissue |
US20070112340A1 (en) * | 2000-10-02 | 2007-05-17 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US20070118106A1 (en) * | 2005-11-23 | 2007-05-24 | Utley David S | Precision ablating method |
US20080045942A1 (en) * | 2001-10-22 | 2008-02-21 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20080097422A1 (en) * | 1998-02-19 | 2008-04-24 | Curon Medical Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US7462179B2 (en) | 1998-01-14 | 2008-12-09 | Respiratory Diagnostic, Inc. | GERD treatment apparatus and method |
US20080306333A1 (en) * | 1999-08-10 | 2008-12-11 | Chin Albert K | Apparatus and Method for Endoscopic Surgical Procedures |
US20090024156A1 (en) * | 1995-07-13 | 2009-01-22 | Chin Albert K | Tissue Dissection Method |
US20090023986A1 (en) * | 1998-08-12 | 2009-01-22 | Stewart Michael C | Vessel Harvesting |
US20090125018A1 (en) * | 2005-08-26 | 2009-05-14 | Ams Research Corporation | Heat Treatment System For Pelvic Support Tissue |
US20090131747A1 (en) * | 1998-06-22 | 2009-05-21 | Maquet Cardiovascular Llc | Instrument And Method For Remotely Manipulating A Tissue Structure |
US20090131907A1 (en) * | 1999-08-10 | 2009-05-21 | Maquet Cardiovascular Llc | Endoscopic Cardiac Surgery |
US20100049186A1 (en) * | 1997-08-13 | 2010-02-25 | Ams Research Corporation | Noninvasive devices, methods, and systems for shrinking of tissues |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US20100114087A1 (en) * | 1998-02-19 | 2010-05-06 | Edwards Stuart D | Methods and devices for treating urinary incontinence |
US20110071468A1 (en) * | 1998-06-04 | 2011-03-24 | Mederi Therapeutics, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US7959627B2 (en) | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US7963433B2 (en) | 2007-09-21 | 2011-06-21 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US7972265B1 (en) | 1998-06-22 | 2011-07-05 | Maquet Cardiovascular, Llc | Device and method for remote vessel ligation |
US20110190759A1 (en) * | 2000-05-18 | 2011-08-04 | Mederi Therapeutics Inc. | Graphical user interface for monitoring and controlling use of medical devices |
US7993336B2 (en) | 1999-11-16 | 2011-08-09 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US8241210B2 (en) | 1998-06-22 | 2012-08-14 | Maquet Cardiovascular Llc | Vessel retractor |
US8273012B2 (en) | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US8403927B1 (en) | 2012-04-05 | 2013-03-26 | William Bruce Shingleton | Vasectomy devices and methods |
US8641711B2 (en) | 2007-05-04 | 2014-02-04 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8646460B2 (en) | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US8702695B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US8740846B2 (en) | 1996-09-20 | 2014-06-03 | Verathon, Inc. | Treatment of tissue in sphincters, sinuses, and orifices |
US8894646B2 (en) | 1998-02-19 | 2014-11-25 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US9113878B2 (en) | 2002-01-08 | 2015-08-25 | Covidien Lp | Pinion clip for right angle linear cutter |
US9155583B2 (en) | 1994-06-24 | 2015-10-13 | Mederi Therapeutics, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US9186223B2 (en) | 1999-09-08 | 2015-11-17 | Mederi Therapeutics, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US9292152B2 (en) | 2009-09-22 | 2016-03-22 | Mederi Therapeutics, Inc. | Systems and methods for controlling use and operation of a family of different treatment devices |
US9474565B2 (en) | 2009-09-22 | 2016-10-25 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US9750563B2 (en) | 2009-09-22 | 2017-09-05 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US9775664B2 (en) | 2009-09-22 | 2017-10-03 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US10299770B2 (en) | 2006-06-01 | 2019-05-28 | Maquet Cardiovascular Llc | Endoscopic vessel harvesting system components |
US10386990B2 (en) | 2009-09-22 | 2019-08-20 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US10507012B2 (en) | 2000-11-17 | 2019-12-17 | Maquet Cardiovascular Llc | Vein harvesting system and method |
-
1928
- 1928-11-05 US US317333A patent/US1798902A/en not_active Expired - Lifetime
Cited By (310)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2448741A (en) * | 1945-04-25 | 1948-09-07 | American Cystoscope Makers Inc | Endoscopic surgical instrument |
EP0235489A1 (en) * | 1985-02-08 | 1987-09-09 | The Perry Group, Ltd. | Biopsy device |
WO1992013494A1 (en) * | 1991-02-06 | 1992-08-20 | Laparomed Corporation | Electrosurgical device |
US5460629A (en) * | 1991-02-06 | 1995-10-24 | Advanced Surgical, Inc. | Electrosurgical device and method |
US5766170A (en) * | 1991-06-07 | 1998-06-16 | Hemostatic Surgery Corporation | Electrosurgical endoscopic instruments and methods of use |
US5810808A (en) * | 1991-06-07 | 1998-09-22 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5776128A (en) * | 1991-06-07 | 1998-07-07 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus |
US5324289A (en) * | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5330471A (en) * | 1991-06-07 | 1994-07-19 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments and methods of use |
US5391166A (en) * | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5769849A (en) * | 1991-06-07 | 1998-06-23 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments |
US5290286A (en) * | 1991-11-12 | 1994-03-01 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5197964A (en) * | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5833690A (en) * | 1993-07-22 | 1998-11-10 | Ethicon, Inc. | Electrosurgical device and method |
US6179803B1 (en) | 1994-05-09 | 2001-01-30 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US6416491B1 (en) | 1994-05-09 | 2002-07-09 | Stuart D. Edwards | Cell necrosis apparatus |
US6152143A (en) * | 1994-05-09 | 2000-11-28 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
US7125407B2 (en) | 1994-06-24 | 2006-10-24 | Curon Medical, Inc. | Sphincter treatment apparatus |
US6517535B2 (en) | 1994-06-24 | 2003-02-11 | Gyrus Ent L.L.C. | Apparatus for ablating turbinates |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US6056744A (en) * | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6092528A (en) * | 1994-06-24 | 2000-07-25 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6009877A (en) * | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
US9155583B2 (en) | 1994-06-24 | 2015-10-13 | Mederi Therapeutics, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US6613047B2 (en) | 1994-06-24 | 2003-09-02 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US6673070B2 (en) | 1994-06-24 | 2004-01-06 | Curon Medical, Inc. | Sphincter treatment apparatus |
US6254598B1 (en) | 1994-06-24 | 2001-07-03 | Curon Medical, Inc. | Sphincter treatment apparatus |
US5797941A (en) * | 1995-02-01 | 1998-08-25 | Ethicon Endo-Surgery, Inc. | Surgical instrument with expandable cutting element |
US6179837B1 (en) | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5766166A (en) * | 1995-03-07 | 1998-06-16 | Enable Medical Corporation | Bipolar Electrosurgical scissors |
US6350264B1 (en) | 1995-03-07 | 2002-02-26 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6464701B1 (en) | 1995-03-07 | 2002-10-15 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6391029B1 (en) | 1995-03-07 | 2002-05-21 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5599350A (en) * | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
US7981133B2 (en) | 1995-07-13 | 2011-07-19 | Maquet Cardiovascular, Llc | Tissue dissection method |
US20090024156A1 (en) * | 1995-07-13 | 2009-01-22 | Chin Albert K | Tissue Dissection Method |
US5624439A (en) * | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US6126657A (en) * | 1996-02-23 | 2000-10-03 | Somnus Medical Technologies, Inc. | Apparatus for treatment of air way obstructions |
US8740846B2 (en) | 1996-09-20 | 2014-06-03 | Verathon, Inc. | Treatment of tissue in sphincters, sinuses, and orifices |
US20060259028A1 (en) * | 1996-10-11 | 2006-11-16 | Utley David S | System for Tissue Ablation |
US7556628B2 (en) | 1996-10-11 | 2009-07-07 | BÂRRX Medical, Inc. | Method for tissue ablation |
US7632268B2 (en) | 1996-10-11 | 2009-12-15 | BÂRRX Medical, Inc. | System for tissue ablation |
US6193716B1 (en) | 1997-05-13 | 2001-02-27 | Malcolm L. Shannon, Jr. | Electrosurgical device for uvulopalatoplasty |
US9023031B2 (en) | 1997-08-13 | 2015-05-05 | Verathon Inc. | Noninvasive devices, methods, and systems for modifying tissues |
US20100049186A1 (en) * | 1997-08-13 | 2010-02-25 | Ams Research Corporation | Noninvasive devices, methods, and systems for shrinking of tissues |
US6309386B1 (en) | 1997-10-06 | 2001-10-30 | Somnus Medical Technologies, Inc. | Linear power control with PSK regulation |
US20030009165A1 (en) * | 1998-01-14 | 2003-01-09 | Curon Medical, Inc. | GERD treatment apparatus and method |
US8313484B2 (en) | 1998-01-14 | 2012-11-20 | Mederi Therapeutics Inc. | GERD treatment apparatus and method |
US6440128B1 (en) | 1998-01-14 | 2002-08-27 | Curon Medical, Inc. | Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US20090131928A1 (en) * | 1998-01-14 | 2009-05-21 | Respiratory Diagnostic, Inc. | GERD treatment apparatus and method |
US6846312B2 (en) | 1998-01-14 | 2005-01-25 | Curon Medical, Inc. | GERD treatment apparatus and method |
US6589238B2 (en) | 1998-01-14 | 2003-07-08 | Curon Medical, Inc. | Sphincter treatment device |
US20060041256A1 (en) * | 1998-01-14 | 2006-02-23 | Curon Medical, Inc. | GERD treatment apparatus and method |
US6971395B2 (en) | 1998-01-14 | 2005-12-06 | Curon Medical, Inc. | Sphincter treatment method |
US20030195509A1 (en) * | 1998-01-14 | 2003-10-16 | Curon Medical, Inc. | GERB treatment apparatus and method |
US7462179B2 (en) | 1998-01-14 | 2008-12-09 | Respiratory Diagnostic, Inc. | GERD treatment apparatus and method |
US20100087809A1 (en) * | 1998-02-19 | 2010-04-08 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US8906010B2 (en) | 1998-02-19 | 2014-12-09 | Mederi Therapeutics, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US6258087B1 (en) | 1998-02-19 | 2001-07-10 | Curon Medical, Inc. | Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US20060259030A1 (en) * | 1998-02-19 | 2006-11-16 | Utley David S | Method for Vacuum-Assisted Tissue Ablation |
US6273886B1 (en) | 1998-02-19 | 2001-08-14 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
US6712074B2 (en) | 1998-02-19 | 2004-03-30 | Curon Medical, Inc. | Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6712814B2 (en) | 1998-02-19 | 2004-03-30 | Curon Medical, Inc. | Method for treating a sphincter |
US20100114087A1 (en) * | 1998-02-19 | 2010-05-06 | Edwards Stuart D | Methods and devices for treating urinary incontinence |
US7648500B2 (en) | 1998-02-19 | 2010-01-19 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US8152803B2 (en) | 1998-02-19 | 2012-04-10 | Mederi Therapeutics, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US7122031B2 (en) | 1998-02-19 | 2006-10-17 | Curon Medical, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US20090254079A1 (en) * | 1998-02-19 | 2009-10-08 | Mederi Therapeutics, Inc. | Methods for treating the cardia of the stomach |
US20040147921A1 (en) * | 1998-02-19 | 2004-07-29 | Curon Medical, Inc. | Sphincter treatment apparatus |
US7585296B2 (en) | 1998-02-19 | 2009-09-08 | Mederi Therapeutics, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6325798B1 (en) | 1998-02-19 | 2001-12-04 | Curon Medical, Inc. | Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions |
US8790339B2 (en) | 1998-02-19 | 2014-07-29 | Mederi Therapeutics Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US20070112341A1 (en) * | 1998-02-19 | 2007-05-17 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US8894646B2 (en) | 1998-02-19 | 2014-11-25 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US8454595B2 (en) | 1998-02-19 | 2013-06-04 | Mederi Therapeutics, Inc | Sphincter treatment apparatus |
US7165551B2 (en) | 1998-02-19 | 2007-01-23 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US6355031B1 (en) | 1998-02-19 | 2002-03-12 | Curon Medical, Inc. | Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter |
US6358245B1 (en) | 1998-02-19 | 2002-03-19 | Curon Medical, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US9539052B2 (en) | 1998-02-19 | 2017-01-10 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US7507238B2 (en) | 1998-02-19 | 2009-03-24 | Barrx Medical, Inc | Method for vacuum-assisted tissue ablation |
US20060015162A1 (en) * | 1998-02-19 | 2006-01-19 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6974456B2 (en) | 1998-02-19 | 2005-12-13 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US6402744B2 (en) | 1998-02-19 | 2002-06-11 | Curon Medical, Inc. | Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions |
US20080097422A1 (en) * | 1998-02-19 | 2008-04-24 | Curon Medical Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US20050245926A1 (en) * | 1998-02-19 | 2005-11-03 | Curon Medical, Inc. | Sphincter treatment apparatus |
US9351787B2 (en) | 1998-02-19 | 2016-05-31 | Mederi Therapeutics, Inc. | Sphincter treatment apparatus |
US6423058B1 (en) | 1998-02-19 | 2002-07-23 | Curon Medical, Inc. | Assemblies to visualize and treat sphincters and adjoining tissue regions |
US6464697B1 (en) | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
US20020143324A1 (en) * | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US7449020B2 (en) | 1998-02-27 | 2008-11-11 | Curon Medical, Inc. | Method for treating a sphincter |
US6866663B2 (en) | 1998-02-27 | 2005-03-15 | Curon Medical, Inc. | Method for treating a sphincter |
US20090076438A1 (en) * | 1998-02-27 | 2009-03-19 | Respiratory Diagnostic, Inc. | Method for treating a sphincter |
US8518032B2 (en) | 1998-02-27 | 2013-08-27 | Mederi Therapeutics Inc. | Method for treating a sphincter |
US20040204708A1 (en) * | 1998-03-06 | 2004-10-14 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US6749607B2 (en) | 1998-03-06 | 2004-06-15 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US20070093809A1 (en) * | 1998-03-06 | 2007-04-26 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US20110098702A1 (en) * | 1998-03-06 | 2011-04-28 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US6371926B1 (en) | 1998-04-21 | 2002-04-16 | Somnus Medical Technologies, Inc. | Wire based temperature sensing electrodes |
US20110071468A1 (en) * | 1998-06-04 | 2011-03-24 | Mederi Therapeutics, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US20050010162A1 (en) * | 1998-06-04 | 2005-01-13 | Curon Medical, Inc. | Systems methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US20050010171A1 (en) * | 1998-06-04 | 2005-01-13 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract |
US7458378B2 (en) | 1998-06-04 | 2008-12-02 | Respiratory Diagnostics, Inc. | Systems methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US8161976B2 (en) | 1998-06-04 | 2012-04-24 | Mederi Therapeutics, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue |
US6802841B2 (en) | 1998-06-04 | 2004-10-12 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US20090082721A1 (en) * | 1998-06-04 | 2009-03-26 | Respiratory Diagnostics, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction |
US6790207B2 (en) | 1998-06-04 | 2004-09-14 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract |
US7293563B2 (en) | 1998-06-04 | 2007-11-13 | Curon Medical, Inc. | Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract |
US7972265B1 (en) | 1998-06-22 | 2011-07-05 | Maquet Cardiovascular, Llc | Device and method for remote vessel ligation |
US8241210B2 (en) | 1998-06-22 | 2012-08-14 | Maquet Cardiovascular Llc | Vessel retractor |
US20090131747A1 (en) * | 1998-06-22 | 2009-05-21 | Maquet Cardiovascular Llc | Instrument And Method For Remotely Manipulating A Tissue Structure |
US7867163B2 (en) | 1998-06-22 | 2011-01-11 | Maquet Cardiovascular Llc | Instrument and method for remotely manipulating a tissue structure |
US7938842B1 (en) | 1998-08-12 | 2011-05-10 | Maquet Cardiovascular Llc | Tissue dissector apparatus |
US8460331B2 (en) | 1998-08-12 | 2013-06-11 | Maquet Cardiovascular, Llc | Tissue dissector apparatus and method |
US20090023986A1 (en) * | 1998-08-12 | 2009-01-22 | Stewart Michael C | Vessel Harvesting |
US8986335B2 (en) | 1998-08-12 | 2015-03-24 | Maquet Cardiovascular Llc | Tissue dissector apparatus and method |
US9700398B2 (en) | 1998-08-12 | 2017-07-11 | Maquet Cardiovascular Llc | Vessel harvester |
US9730782B2 (en) | 1998-08-12 | 2017-08-15 | Maquet Cardiovascular Llc | Vessel harvester |
US20070294108A1 (en) * | 1999-05-04 | 2007-12-20 | Curon Medical, Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US8888774B2 (en) | 1999-05-04 | 2014-11-18 | Mederi Therapeutics, Inc. | Methods for treating the cardia of the stomach |
US6783523B2 (en) | 1999-05-04 | 2004-08-31 | Curon Medical, Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US9844406B2 (en) | 1999-05-04 | 2017-12-19 | Mederi Therapeutics, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
US20050033271A1 (en) * | 1999-05-04 | 2005-02-10 | Curon Medical, Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US9198705B2 (en) | 1999-05-04 | 2015-12-01 | Mederi Therapeutics, Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US8257346B2 (en) | 1999-05-04 | 2012-09-04 | Mederi Therapeutics Inc. | Unified systems and methods for controlling use and operation of a family of different treatment devices |
US20100276471A1 (en) * | 1999-06-02 | 2010-11-04 | Power Medical Interventions, Llc | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US10335143B2 (en) | 1999-06-02 | 2019-07-02 | Covidien Lp | Surgical cutting and stapling device |
US20040111081A1 (en) * | 1999-06-02 | 2004-06-10 | Whitman Michael P. | Electro-mechanical surgical device |
US7077856B2 (en) | 1999-06-02 | 2006-07-18 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9662109B2 (en) | 1999-06-02 | 2017-05-30 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US20040153124A1 (en) * | 1999-06-02 | 2004-08-05 | Whitman Michael P. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US8016858B2 (en) | 1999-06-02 | 2011-09-13 | Tyco Healthcare Group Ip | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9662514B2 (en) | 1999-06-02 | 2017-05-30 | Covidien Lp | Bipolar or ultrasonic surgical device |
US8690913B2 (en) | 1999-06-02 | 2014-04-08 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US9241716B2 (en) | 1999-06-02 | 2016-01-26 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US9782172B2 (en) | 1999-06-02 | 2017-10-10 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US20070055304A1 (en) * | 1999-06-02 | 2007-03-08 | Whitman Michael P | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US7758613B2 (en) | 1999-06-02 | 2010-07-20 | Power Medical Interventions, Llc | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9033868B2 (en) | 1999-06-02 | 2015-05-19 | Covidien Lp | Couplings for interconnecting components of an electro-mechanical surgical device |
US8628467B2 (en) | 1999-06-02 | 2014-01-14 | Covidien Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US9078654B2 (en) | 1999-06-02 | 2015-07-14 | Covidien Lp | Surgical device |
US9247940B2 (en) | 1999-06-02 | 2016-02-02 | Covidien Lp | Surgical cutting and stapling device |
US7951071B2 (en) | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US8118208B2 (en) | 1999-07-12 | 2012-02-21 | Tyco Healthcare Group Lp | Expanding parallel jaw device for use with an electromechanical driver device |
US8186559B1 (en) | 1999-07-12 | 2012-05-29 | Tyco Healthcare Group Lp | Expanding parallel jaw device for use with an electromechanical driver device |
US7845538B2 (en) | 1999-07-12 | 2010-12-07 | Power Medical Interventions, Llc | Expanding parallel jaw device for use with an electromechanical driver device |
US8459523B2 (en) | 1999-07-12 | 2013-06-11 | Covidien Lp | Expanding parallel jaw device for use with an electromechanical driver device |
US20070075116A1 (en) * | 1999-07-12 | 2007-04-05 | Whitman Michael P | Expanding parallel jaw device for use with an electromechanical driver device |
US20040149802A1 (en) * | 1999-07-12 | 2004-08-05 | Whitman Michael P. | Expanding parallel jaw device for use with an electromechanical driver device |
US7114642B2 (en) | 1999-07-12 | 2006-10-03 | Power Medical Interventions, Inc. | Expanding parallel jaw device for use with an electromechanical driver device |
US7537602B2 (en) | 1999-07-12 | 2009-05-26 | Power Medical Interventions, Inc. | Expanding parallel jaw device for use with an electromechanical driver device |
US8056791B2 (en) | 1999-07-12 | 2011-11-15 | Tyco Healthcare Group Lp | Expanding parallel jaw device for use with an electromechanical driver device |
US20110108606A1 (en) * | 1999-07-12 | 2011-05-12 | Whitman Michael P | Expanding parallel jaw device for use with an electromechanical driver device |
US20090131907A1 (en) * | 1999-08-10 | 2009-05-21 | Maquet Cardiovascular Llc | Endoscopic Cardiac Surgery |
US20080306333A1 (en) * | 1999-08-10 | 2008-12-11 | Chin Albert K | Apparatus and Method for Endoscopic Surgical Procedures |
US20060052660A1 (en) * | 1999-08-10 | 2006-03-09 | Chin Albert K | Apparatus and methods for cardiac restraint |
US9925000B2 (en) | 1999-09-08 | 2018-03-27 | Mederi Therapeutics, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US9750559B2 (en) | 1999-09-08 | 2017-09-05 | Mederi Therapeutics Inc | System and methods for monitoring and controlling use of medical devices |
US9186223B2 (en) | 1999-09-08 | 2015-11-17 | Mederi Therapeutics, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US8377055B2 (en) | 1999-11-16 | 2013-02-19 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US20060095032A1 (en) * | 1999-11-16 | 2006-05-04 | Jerome Jackson | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US9555222B2 (en) | 1999-11-16 | 2017-01-31 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US7993336B2 (en) | 1999-11-16 | 2011-08-09 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8876818B2 (en) | 1999-11-16 | 2014-11-04 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US6547776B1 (en) | 2000-01-03 | 2003-04-15 | Curon Medical, Inc. | Systems and methods for treating tissue in the crura |
US20110190759A1 (en) * | 2000-05-18 | 2011-08-04 | Mederi Therapeutics Inc. | Graphical user interface for monitoring and controlling use of medical devices |
US8845632B2 (en) | 2000-05-18 | 2014-09-30 | Mederi Therapeutics, Inc. | Graphical user interface for monitoring and controlling use of medical devices |
US9675403B2 (en) | 2000-05-18 | 2017-06-13 | Mederi Therapeutics, Inc. | Graphical user interface for monitoring and controlling use of medical devices |
US8465482B2 (en) | 2000-10-02 | 2013-06-18 | Verathon, Inc. | Apparatus and methods for treating female urinary incontinence |
US8968284B2 (en) | 2000-10-02 | 2015-03-03 | Verathon Inc. | Apparatus and methods for treating female urinary incontinence |
US20070112340A1 (en) * | 2000-10-02 | 2007-05-17 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US8177781B2 (en) | 2000-10-02 | 2012-05-15 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US20040087936A1 (en) * | 2000-11-16 | 2004-05-06 | Barrx, Inc. | System and method for treating abnormal tissue in an organ having a layered tissue structure |
US10507012B2 (en) | 2000-11-17 | 2019-12-17 | Maquet Cardiovascular Llc | Vein harvesting system and method |
US8292888B2 (en) | 2001-04-20 | 2012-10-23 | Tyco Healthcare Group Lp | Bipolar or ultrasonic surgical device |
US8845665B2 (en) | 2001-04-20 | 2014-09-30 | Covidien Lp | Bipolar or ultrasonic surgical device |
US8523890B2 (en) | 2001-04-20 | 2013-09-03 | Covidien Lp | Bipolar or ultrasonic surgical device |
US20020165541A1 (en) * | 2001-04-20 | 2002-11-07 | Whitman Michael P. | Bipolar or ultrasonic surgical device |
US6913579B2 (en) | 2001-05-01 | 2005-07-05 | Surgrx, Inc. | Electrosurgical working end and method for obtaining tissue samples for biopsy |
US20020169392A1 (en) * | 2001-05-01 | 2002-11-14 | Csaba Truckai | Electrosurgical working end and method for obtaining tissue samples for biopsy |
US20040243142A1 (en) * | 2001-09-07 | 2004-12-02 | Siepser Steven B. | Intraocular lens extracting device |
US6802843B2 (en) | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US20030069579A1 (en) * | 2001-09-13 | 2003-04-10 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6773409B2 (en) | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US20040215185A1 (en) * | 2001-10-18 | 2004-10-28 | Csaba Truckai | Electrosurgical working end for cotrolled energy delivery |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US20050267464A1 (en) * | 2001-10-18 | 2005-12-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7083619B2 (en) | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20030171748A1 (en) * | 2001-10-22 | 2003-09-11 | Sciogen Llc | Electrosurgical instrument and method of use |
US20030199870A1 (en) * | 2001-10-22 | 2003-10-23 | Csaba Truckai | Jaw structure for electrosurgical instrument |
US20070129728A1 (en) * | 2001-10-22 | 2007-06-07 | Surgrx, Inc. | Electrosurgical instrument |
US7186253B2 (en) | 2001-10-22 | 2007-03-06 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7041102B2 (en) | 2001-10-22 | 2006-05-09 | Surgrx, Inc. | Electrosurgical working end with replaceable cartridges |
US20080045942A1 (en) * | 2001-10-22 | 2008-02-21 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US20030220637A1 (en) * | 2001-10-22 | 2003-11-27 | Csaba Truckai | Electrosurgical working end with replaceable cartridges |
US6905497B2 (en) | 2001-10-22 | 2005-06-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US9149326B2 (en) | 2001-10-22 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method |
US7112201B2 (en) | 2001-10-22 | 2006-09-26 | Surgrx Inc. | Electrosurgical instrument and method of use |
US20050171535A1 (en) * | 2001-10-22 | 2005-08-04 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7981113B2 (en) | 2001-10-22 | 2011-07-19 | Surgrx, Inc. | Electrosurgical instrument |
US7381209B2 (en) | 2001-10-22 | 2008-06-03 | Surgrx, Inc. | Electrosurgical instrument |
US20080188851A1 (en) * | 2001-10-22 | 2008-08-07 | Surgrx, Inc. | Electrosurgical instrument |
US20050192568A1 (en) * | 2001-10-22 | 2005-09-01 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US6926716B2 (en) | 2001-11-09 | 2005-08-09 | Surgrx Inc. | Electrosurgical instrument |
US20030144652A1 (en) * | 2001-11-09 | 2003-07-31 | Baker James A. | Electrosurgical instrument |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US8512359B2 (en) | 2001-11-30 | 2013-08-20 | Covidien Lp | Surgical device |
US8740932B2 (en) | 2001-11-30 | 2014-06-03 | Covidien Lp | Surgical device |
US8021373B2 (en) | 2001-11-30 | 2011-09-20 | Tyco Healthcare Group Lp | Surgical device |
US20100249816A1 (en) * | 2001-11-30 | 2010-09-30 | Power Medical Interventions Llc | Surgical device |
US9743927B2 (en) | 2001-12-04 | 2017-08-29 | Covidien Lp | System and method for calibrating a surgical instrument |
US20030125717A1 (en) * | 2001-12-04 | 2003-07-03 | Whitman Michael P. | System and method for calibrating a surgical instrument |
US7803151B2 (en) | 2001-12-04 | 2010-09-28 | Power Medical Interventions, Llc | System and method for calibrating a surgical instrument |
US20100324541A1 (en) * | 2001-12-04 | 2010-12-23 | Power Medical Interventions, Llc | System and method for calibrating a surgical instrument |
US10758225B2 (en) | 2001-12-04 | 2020-09-01 | Covidien Lp | System and method for calibrating a surgical instrument |
US9113878B2 (en) | 2002-01-08 | 2015-08-25 | Covidien Lp | Pinion clip for right angle linear cutter |
US8518074B2 (en) | 2002-01-08 | 2013-08-27 | Covidien Lp | Surgical device |
US8858589B2 (en) | 2002-01-08 | 2014-10-14 | Covidien Lp | Surgical device |
US8016855B2 (en) | 2002-01-08 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical device |
US20030130677A1 (en) * | 2002-01-08 | 2003-07-10 | Whitman Michael P. | Surgical device |
US20060069388A1 (en) * | 2002-04-30 | 2006-03-30 | Csaba Truckai | Electrosurgical instrument and method |
US8460292B2 (en) | 2002-04-30 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method |
US8075558B2 (en) | 2002-04-30 | 2011-12-13 | Surgrx, Inc. | Electrosurgical instrument and method |
US20030216732A1 (en) * | 2002-05-20 | 2003-11-20 | Csaba Truckai | Medical instrument with thermochromic or piezochromic surface indicators |
US20040094597A1 (en) * | 2002-06-14 | 2004-05-20 | Whitman Michael P. | Surgical device |
US7743960B2 (en) | 2002-06-14 | 2010-06-29 | Power Medical Interventions, Llc | Surgical device |
US8540733B2 (en) | 2002-06-14 | 2013-09-24 | Covidien Lp | Surgical method and device having a first jaw and a second jaw in opposed correspondence for clamping, cutting, and stapling tissue |
US9861362B2 (en) | 2002-06-14 | 2018-01-09 | Covidien Lp | Surgical device |
US8056786B2 (en) | 2002-06-14 | 2011-11-15 | Tyco Healthcare Group Lp | Surgical device |
US20100219227A1 (en) * | 2002-06-14 | 2010-09-02 | Power Medical Interventions, Llc | Surgical device |
US7087054B2 (en) | 2002-10-01 | 2006-08-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US20040116979A1 (en) * | 2002-10-01 | 2004-06-17 | Surgrx | Electrosurgical instrument and method of use |
US20060116746A1 (en) * | 2003-01-17 | 2006-06-01 | Chin Albert K | Cardiac electrode attachment procedure |
US7169146B2 (en) | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
US20040199161A1 (en) * | 2003-02-14 | 2004-10-07 | Surgrx, Inc., A Delaware Corporation | Electrosurgical probe and method of use |
US7309849B2 (en) | 2003-11-19 | 2007-12-18 | Surgrx, Inc. | Polymer compositions exhibiting a PTC property and methods of fabrication |
US20060000823A1 (en) * | 2003-11-19 | 2006-01-05 | Surgrx, Inc. | Polymer compositions exhibiting a PTC property and methods of fabrication |
US10856939B2 (en) | 2004-01-09 | 2020-12-08 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US20070066973A1 (en) * | 2004-01-09 | 2007-03-22 | Stern Roger A | Devices and methods for treatment of luminal tissue |
US9393069B2 (en) | 2004-01-09 | 2016-07-19 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US8192426B2 (en) | 2004-01-09 | 2012-06-05 | Tyco Healthcare Group Lp | Devices and methods for treatment of luminal tissue |
US7344535B2 (en) | 2004-01-09 | 2008-03-18 | Barrx Medical, Inc. | Devices and methods for treatment of luminal tissue |
US10278776B2 (en) | 2004-01-09 | 2019-05-07 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US20050159745A1 (en) * | 2004-01-16 | 2005-07-21 | Surgrx, Inc. | Electrosurgical instrument with replaceable cartridge |
US7632269B2 (en) | 2004-01-16 | 2009-12-15 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with replaceable cartridge |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US11219452B2 (en) | 2004-02-23 | 2022-01-11 | Covidien Lp | Surgical cutting and stapling device |
US20050203507A1 (en) * | 2004-03-12 | 2005-09-15 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7955331B2 (en) | 2004-03-12 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method of use |
US20050261678A1 (en) * | 2004-04-19 | 2005-11-24 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US20070146113A1 (en) * | 2004-04-19 | 2007-06-28 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US8075555B2 (en) | 2004-04-19 | 2011-12-13 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US7220951B2 (en) * | 2004-04-19 | 2007-05-22 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
US20090125018A1 (en) * | 2005-08-26 | 2009-05-14 | Ams Research Corporation | Heat Treatment System For Pelvic Support Tissue |
US9918793B2 (en) | 2005-11-23 | 2018-03-20 | Covidien Lp | Auto-aligning ablating device and method of use |
US7959627B2 (en) | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US9918794B2 (en) | 2005-11-23 | 2018-03-20 | Covidien Lp | Auto-aligning ablating device and method of use |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US20070118106A1 (en) * | 2005-11-23 | 2007-05-24 | Utley David S | Precision ablating method |
US9179970B2 (en) | 2005-11-23 | 2015-11-10 | Covidien Lp | Precision ablating method |
US8702694B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US8702695B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US11134835B2 (en) | 2006-06-01 | 2021-10-05 | Maquet Cardiovascular Llc | Endoscopic vessel harvesting system components |
US10299770B2 (en) | 2006-06-01 | 2019-05-28 | Maquet Cardiovascular Llc | Endoscopic vessel harvesting system components |
US11141055B2 (en) | 2006-06-01 | 2021-10-12 | Maquet Cardiovascular Llc | Endoscopic vessel harvesting system components |
US9993281B2 (en) | 2007-05-04 | 2018-06-12 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8641711B2 (en) | 2007-05-04 | 2014-02-04 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US9314289B2 (en) | 2007-07-30 | 2016-04-19 | Covidien Lp | Cleaning device and methods |
US8646460B2 (en) | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US8273012B2 (en) | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US20110192884A1 (en) * | 2007-09-21 | 2011-08-11 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US20110132960A1 (en) * | 2007-09-21 | 2011-06-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US20110198385A1 (en) * | 2007-09-21 | 2011-08-18 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US11317909B2 (en) | 2007-09-21 | 2022-05-03 | Covidien Lp | Surgical device having multiple drivers |
US8752748B2 (en) | 2007-09-21 | 2014-06-17 | Covidien Lp | Surgical device having a rotatable jaw portion |
US10881397B2 (en) | 2007-09-21 | 2021-01-05 | Covidien Lp | Surgical device having a rotatable jaw portion |
US8353440B2 (en) | 2007-09-21 | 2013-01-15 | Covidien Lp | Surgical device having a rotatable jaw portion |
US7992758B2 (en) | 2007-09-21 | 2011-08-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US9017371B2 (en) | 2007-09-21 | 2015-04-28 | Covidien Lp | Surgical device having multiple drivers |
US8342379B2 (en) | 2007-09-21 | 2013-01-01 | Covidien Lp | Surgical device having multiple drivers |
US9282961B2 (en) | 2007-09-21 | 2016-03-15 | Covidien Lp | Surgical device having multiple drivers |
US9204877B2 (en) | 2007-09-21 | 2015-12-08 | Covidien Lp | Surgical device having a rotatable jaw portion |
US8272554B2 (en) | 2007-09-21 | 2012-09-25 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US7963433B2 (en) | 2007-09-21 | 2011-06-21 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US10117651B2 (en) | 2007-09-21 | 2018-11-06 | Covidien Lp | Surgical device having a rotatable jaw portion |
US10420548B2 (en) | 2007-09-21 | 2019-09-24 | Covidien Lp | Surgical device having multiple drivers |
US20110132961A1 (en) * | 2007-09-21 | 2011-06-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US10292756B2 (en) | 2009-09-22 | 2019-05-21 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US9775664B2 (en) | 2009-09-22 | 2017-10-03 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US10363089B2 (en) | 2009-09-22 | 2019-07-30 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US10386990B2 (en) | 2009-09-22 | 2019-08-20 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US9474565B2 (en) | 2009-09-22 | 2016-10-25 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US9448681B2 (en) | 2009-09-22 | 2016-09-20 | Mederi Therapeutics, Inc. | Systems and methods for controlling use and operation of a family of different treatment devices |
US10624690B2 (en) | 2009-09-22 | 2020-04-21 | Mederi Rf, Llc | Systems and methods for controlling use and operation of a family of different treatment devices |
US10639090B2 (en) | 2009-09-22 | 2020-05-05 | Mederi Rf, Llc | Systems and methods for controlling use and operation of a treatment device |
US9292152B2 (en) | 2009-09-22 | 2016-03-22 | Mederi Therapeutics, Inc. | Systems and methods for controlling use and operation of a family of different treatment devices |
US9675404B2 (en) | 2009-09-22 | 2017-06-13 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US9750563B2 (en) | 2009-09-22 | 2017-09-05 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US11507247B2 (en) | 2009-09-22 | 2022-11-22 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US9513761B2 (en) | 2009-09-22 | 2016-12-06 | Mederi Therapeutics, Inc. | Systems and methods for controlling use of treatment devices |
US9495059B2 (en) | 2009-09-22 | 2016-11-15 | Mederi Therapeutics, Inc. | Systems and methods for controlling use and operation of a family of different treatment devices |
US9310956B2 (en) | 2009-09-22 | 2016-04-12 | Mederi Therapeutics, Inc. | Systems and methods for controlling use and operation of a family of different treatment devices |
US11471214B2 (en) | 2009-09-22 | 2022-10-18 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US8403927B1 (en) | 2012-04-05 | 2013-03-26 | William Bruce Shingleton | Vasectomy devices and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1798902A (en) | Surgical instrument | |
US7033356B2 (en) | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue | |
US5197964A (en) | Bipolar instrument utilizing one stationary electrode and one movable electrode | |
US1881250A (en) | Electrosurgical instrument | |
US2275167A (en) | Electrosurgical instrument | |
US5891141A (en) | Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures | |
JP3857354B2 (en) | Electrosurgical hemostasis device with adaptive electrodes | |
US6485490B2 (en) | RF bipolar end effector for use in electrosurgical instruments | |
US2056377A (en) | Electrodic instrument | |
US2894512A (en) | Epilation device | |
US5125927A (en) | Breakaway electrode for surgical cutting and cauterizing tool | |
US20040006340A1 (en) | Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue | |
JPH05337130A (en) | Monopolar loop with solidification electrode for cutting polyp | |
US1731627A (en) | Electrotherapeutical instrument | |
US12226147B2 (en) | Medical device capable of injection, cutting and coagulation | |
US3982542A (en) | Electroresectroscope and method of laparoscopic tubal sterilization | |
CN108245236B (en) | Surgical instrument | |
US2012938A (en) | Electrical caponizing knife | |
US1945327A (en) | Combined tongue depressor and electrode for electrocoagulation of tonsils | |
WO2015017332A1 (en) | Surgical instrument | |
CN110897707A (en) | Novel open operation area deep illumination smoking measurement function mixed type tool bit monopole ablation electrode | |
CN207666689U (en) | A kind of multifunctional dual-head electric knife-pen | |
US2377540A (en) | Tonsillotome | |
US3752160A (en) | Disposable electrode switch | |
Cutler | A technique and apparatus for intrapleural pneumolysis |