US1585934A - Diagnostic needle - Google Patents
Diagnostic needle Download PDFInfo
- Publication number
- US1585934A US1585934A US683359A US68335923A US1585934A US 1585934 A US1585934 A US 1585934A US 683359 A US683359 A US 683359A US 68335923 A US68335923 A US 68335923A US 1585934 A US1585934 A US 1585934A
- Authority
- US
- United States
- Prior art keywords
- needle
- sheath
- specimen
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 208000033809 Suppuration Diseases 0.000 description 5
- 230000028327 secretion Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
Definitions
- JOSEPH mom or mew YORK, N. 1., assmnon TO ran mum miwnox conromrron, or new 2031:, N. Y.
- This invention relates to surgical instruments and more articularly to a diagnostic needle to be emp oyed in removing from the body, specimens to be examined.
- a diagnostic needle to be emp oyed in removing from the body, specimens to be examined.
- the present invention therefore has as its primary object to provide a diagnostic needle by the employment of which specimens may be obtained in an uncontaminated condition and directly from the seat of the disease and with minimum inconvenience and pain to the patient.
- Another object of the invention is to so construct the needle that in the use of the same the tissue or other specimen to be extracted may be cleanly severed or, if it be suppuration, may be removed and collected in the most satisfactory manner.
- Another object of the invention is to provide an instrument of this type which will be sanitary in that it may be readily sterilized and is devoid of cavities of such a character as would preclude thorough cleaning.
- Anotherobject of the invention is to so construct the needle that when manipulated in the manner intended, the portion of tissue or the accumulation of suppuration will be not only pocketed within the instrument but it will be so housed that as the instrument is withdrawn there will be no possibility of any other tissues or any other body secretions coming in contact with the collected specimen to contaminate the same.
- Another important object of the invention is to so construct the needle that the same may be inserted into the body with the least pain and inconvenience and will leave a puncture of minimum size, upon its withdrawal.
- Figure 1 is a view'in elevation of a diagnostic needle embodying the invention
- Fi re 2 is a vertical longitudinal sectiona view taken substantially on the line 2-2 of Figure 1;
- Figure 3 is a detail view in elevation of the lower or entering end of the needle proper removed from its sheath;
- Figure 4 is a detail horizontal sectional view on the line 4-4 of Figure 1 looking in the direction indicated by the arrows.
- the instrument comprises a needle proper which is indicated in general by the numeral 1, and a sheath which is indicated in general by the numeral 2.
- the needle 1 comprises a shank 3 which is of cylindrical form and at its entering end is tapered gradually, in conical form, as indicated by the numeral 4., and is provided with a hardened piercing point indicated b the numeral 5.
- the s 'ank 3 is provided with a finger knob comprising aportion 6 of substantially conical form and provided with a milled eriphery indicated by the numeral 7
- the nger knob or head is provided with an axially positioned polygonal stem 8 which may be grasped between the fingers for the purpose of rotating the needle 1 under conditions which willpresently be explained.
- the sheath 2 comprises a tubular body 9 which is internally of a diameter to snugly receive the shank of the needle 1, and the parts are thus assembled, the needle being received within the sheath and the sheath being rovided at its upper end with a head or en argement 10 having a substantially conical recess 11 which'is adapted to snugly receive the conical body portion 6 of the finger knob of the needle.
- the opposite end of the sheath 9 is of course open to permit of the projection of the tapered extremity 4 of the needle 1 therethrough.
- the piercing point of the instrument of the present invention is provided at the extremity of the needle 1 and the bore of the sheath 9 is of uniform diameter throughout its length, and inasmuch as the shank of the needle 1 fits more or less snugly within the bore of the sheath, there is no possibility of any tissues,,secretions, or other contaminating constituents of the body entering between the sheath and the needle.
- the piercing-point is a part of the needle and does not constitute a tapered extension of the sheath which, being hollow, would serve as a trap for pieces of tissue, secretions, or suppuration.
- the two parts of the instrument may be thoroughly cleansed and sterilized so as to avoid any risk of infection during subsequent use.
- the specimen to be collected is to be received. within a pocket which is formed in the shank of the needle 1 and which is indicated in general by the numeral 12.
- This pocket comprises a longitudinal recess which is formed in one side of the needle.
- the wall 13 of the recess defining the pocket is curved until it merges with the wall 14, as indicated by the numeral 15.
- the sheath 9 is formed in one side with a longitudinally extending slot which is indicated by the numeral 16, and this slot is of approximately the same length as the pocket 12 and is so located with relation to the entering end of the sheath, and the pocket 12 is so located with relation to the tapered entering extremity 4 of the needle, that in one position of rotative adjustment of the needle the pocket will be presented at the slot 16 and in another position of rotative adjustment the pocket will be closed by the portion of the wall of the tubular sheath 9 which is opposite the said slot 16.
- the pocket 12 By forming the pocket 12 in the manner illustrated in the drawings and as previously described, it is given a maximum capacity to receive the specimen to be extracted, and at the same time the instrument is provided with a cutting edge which, as it moves past one side wall of the slot 16, indicated by the numeral 18, has a shearing effect which insures of a complete severance of such particles of tissue as are to be rethe location of the a ected area and has determined that the slot 16 is substantially within the area, the needle 1 is rotated until the pocket 12 is exposed at the slot 16.
- the walls 13 and 14 of the pocket 12 are located in planes at less than right angles to each other and the line of juncture of the walls is located eccentric to the axis of the needle and it will be evident that not only is this true, but it is also true that the said line of juncture between the walls is located at that side of the axis of the needle substantially opposite the side at which the open side of the pocket is located, the wall 13 being substantially in a plane diametric to the needle, and the wall 14 in a plane substantially chordal thereto, when the needle is viewed in cross section as shown in Figure 4. 7
- a diagnostic instrument comprising a sheath havin an opening in its side and a needle rotate. 1y received within the sheath and having a pocket in its side to be presented at the opening in one position of rotation of the needle and closed by the wall of the sheath in another position of rotation of the needle, the pocket being defined by walls occupying planes at an acute angle to trically 0 the needle, and
- the other wall being substantially in a plane diametric to the axis of the needle.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
J. MUIR DIAGNOSTIC NEEDLE Filed Dec. 29, 1923 Patentbd May 25, 1926.
UNITED STATES PATENT, OFFICE.
JOSEPH mom, or mew YORK, N. 1., assmnon TO ran mum miwnox conromrron, or new 2031:, N. Y.
nmenos nc NEEDLE.
Application filed December 29, 1923. Serial No. 683,859.
This invention relates to surgical instruments and more articularly to a diagnostic needle to be emp oyed in removing from the body, specimens to be examined. Heretofore it has been a more or less tedious and diiiicult matter to extract from the body of a patient, a specimen of tissue or suppuration, for examination and diagnosis. It is, of course, desirable if not essential that the specimen be removed from the precise seat of the trouble but by the ordinary methods of procedure the specimens are frequently contaminated or mixed with other tissues with the result that they are not satisfactory for examination or may lead to an error in the diagnostication. The present invention therefore has as its primary object to provide a diagnostic needle by the employment of which specimens may be obtained in an uncontaminated condition and directly from the seat of the disease and with minimum inconvenience and pain to the patient.
Another object of the invention is to so construct the needle that in the use of the same the tissue or other specimen to be extracted may be cleanly severed or, if it be suppuration, may be removed and collected in the most satisfactory manner.
Another object of the invention is to provide an instrument of this type which will be sanitary in that it may be readily sterilized and is devoid of cavities of such a character as would preclude thorough cleaning.
Anotherobject of the invention is to so construct the needle that when manipulated in the manner intended, the portion of tissue or the accumulation of suppuration will be not only pocketed within the instrument but it will be so housed that as the instrument is withdrawn there will be no possibility of any other tissues or any other body secretions coming in contact with the collected specimen to contaminate the same.
Another important object of the invention is to so construct the needle that the same may be inserted into the body with the least pain and inconvenience and will leave a puncture of minimum size, upon its withdrawal.
In the accompanying drawings:
Figure 1 is a view'in elevation of a diagnostic needle embodying the invention, the
needle proper being rotated within its sheath to a position to uncover the pocket in which the specimen is to be collected;
Figure 3 is a detail view in elevation of the lower or entering end of the needle proper removed from its sheath;
Figure 4 is a detail horizontal sectional view on the line 4-4 of Figure 1 looking in the direction indicated by the arrows.
The instrument comprises a needle proper which is indicated in general by the numeral 1, anda sheath which is indicated in general by the numeral 2. The needle 1 comprises a shank 3 which is of cylindrical form and at its entering end is tapered gradually, in conical form, as indicated by the numeral 4., and is provided with a hardened piercing point indicated b the numeral 5. At its opposite end the s 'ank 3 is provided with a finger knob comprising aportion 6 of substantially conical form and provided with a milled eriphery indicated by the numeral 7 The nger knob or head is provided with an axially positioned polygonal stem 8 which may be grasped between the fingers for the purpose of rotating the needle 1 under conditions which willpresently be explained. v
The sheath 2 comprises a tubular body 9 which is internally of a diameter to snugly receive the shank of the needle 1, and the parts are thus assembled, the needle being received within the sheath and the sheath being rovided at its upper end with a head or en argement 10 having a substantially conical recess 11 which'is adapted to snugly receive the conical body portion 6 of the finger knob of the needle. The opposite end of the sheath 9 is of course open to permit of the projection of the tapered extremity 4 of the needle 1 therethrough. In this re spect, as well as in others which will presently be pointed out, 'the instrument of the present invention 'difiers from instruments which have been previously employed for somewhat similar. purposes. More specifically, the piercing point of the instrument of the present invention is provided at the extremity of the needle 1 and the bore of the sheath 9 is of uniform diameter throughout its length, and inasmuch as the shank of the needle 1 fits more or less snugly within the bore of the sheath, there is no possibility of any tissues,,secretions, or other contaminating constituents of the body entering between the sheath and the needle. Furthermore, the piercing-point is a part of the needle and does not constitute a tapered extension of the sheath which, being hollow, would serve as a trap for pieces of tissue, secretions, or suppuration. On the other hand, upon separation of the needle and sheath, the two parts of the instrument may be thoroughly cleansed and sterilized so as to avoid any risk of infection during subsequent use.
The specimen to be collected is to be received. within a pocket which is formed in the shank of the needle 1 and which is indicated in general by the numeral 12. This pocket comprises a longitudinal recess which is formed in one side of the needle.
and which is defined by walls indicated one by the numeral 13 and the other by the numeral 14. At the ends of the pocket 12, the wall 13 of the recess defining the pocket is curved until it merges with the wall 14, as indicated by the numeral 15. The sheath 9 is formed in one side with a longitudinally extending slot which is indicated by the numeral 16, and this slot is of approximately the same length as the pocket 12 and is so located with relation to the entering end of the sheath, and the pocket 12 is so located with relation to the tapered entering extremity 4 of the needle, that in one position of rotative adjustment of the needle the pocket will be presented at the slot 16 and in another position of rotative adjustment the pocket will be closed by the portion of the wall of the tubular sheath 9 which is opposite the said slot 16. By reference to Figure 4 of the drawings it will be observed that the line of juncture of the walls 13 and 14 is eccentric to the axis of the needle shank 3 and it will also be observed that the walls occupy planes defining approximately an angle of 60. In any event the walls will occupy planes at an angle of less than 90 so that the wall 14 will constitute a collecting wall, so to speak, the edge of this wall, indicated by the numeral 17, being more or less acute due to the location of the line of juncture of the walls eccentric to the axis of the said needle shank. By forming the pocket 12 in the manner illustrated in the drawings and as previously described, it is given a maximum capacity to receive the specimen to be extracted, and at the same time the instrument is provided with a cutting edge which, as it moves past one side wall of the slot 16, indicated by the numeral 18, has a shearing effect which insures of a complete severance of such particles of tissue as are to be rethe location of the a ected area and has determined that the slot 16 is substantially within the area, the needle 1 is rotated until the pocket 12 is exposed at the slot 16. Further rotation of the needle in a clockwise direction will result in the wall 14 of the pocket 12 accumulatin such tissues or other matter as may be in t e path of movement of the wall, and the cutting edge 17 will have shearing coaction with the wall 18 of the slot 16 to effect removal of the specimen. After the specimen has been collected, the instrument is withdrawn and the specimen may be dislodged from the pocket 12 by rotating the needle 1 into substantial registration with the slot 16, or the needle may be completely withdrawn from the sheath and the specimen then dislodged from the pocket. In any event it will be evident that there is no possibility of the specimen becoming contaminated or mixed with other particles of tissue or other secretions or suppuration so that if due skill is exercised in introducing the implement into the body and collecting the specimen, a perfect specimen may be obtained, whereas, as previously pointed out, under the ordinary modes of procedure, the specimen is extremely liable to be contaminated so that a correct diagnosis cannot be made. It will also be evident from the foregoing that by separation of the needle and sheath, the parts may be thorou hly cleansed and sterilized and therefore t e possibility of infection in subsequent use of the instrument is practically eliminated.
As previously pointed out the walls 13 and 14 of the pocket 12 are located in planes at less than right angles to each other and the line of juncture of the walls is located eccentric to the axis of the needle and it will be evident that not only is this true, but it is also true that the said line of juncture between the walls is located at that side of the axis of the needle substantially opposite the side at which the open side of the pocket is located, the wall 13 being substantially in a plane diametric to the needle, and the wall 14 in a plane substantially chordal thereto, when the needle is viewed in cross section as shown in Figure 4. 7
Having thus described the invention, what is claimed as new is:
A diagnostic instrument comprising a sheath havin an opening in its side and a needle rotate. 1y received within the sheath and having a pocket in its side to be presented at the opening in one position of rotation of the needle and closed by the wall of the sheath in another position of rotation of the needle, the pocket being defined by walls occupying planes at an acute angle to trically 0 the needle, and
set with relation to the axis of l.
the other wall being substantially in a plane diametric to the axis of the needle.
In testimony whereof I afiix my signature.
JOSEPH MUIB. 1. 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US683359A US1585934A (en) | 1923-12-29 | 1923-12-29 | Diagnostic needle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US683359A US1585934A (en) | 1923-12-29 | 1923-12-29 | Diagnostic needle |
Publications (1)
Publication Number | Publication Date |
---|---|
US1585934A true US1585934A (en) | 1926-05-25 |
Family
ID=24743697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US683359A Expired - Lifetime US1585934A (en) | 1923-12-29 | 1923-12-29 | Diagnostic needle |
Country Status (1)
Country | Link |
---|---|
US (1) | US1585934A (en) |
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2426535A (en) * | 1944-10-21 | 1947-08-26 | Turkel Henry | Infusion and biopsy needle |
US2541542A (en) * | 1946-02-13 | 1951-02-13 | Perez Guillermo Herrera | Trocar for biopsia |
US2571207A (en) * | 1949-06-01 | 1951-10-16 | Howard B Cox | Appliance for embalming |
US2583937A (en) * | 1952-01-29 | Surgical exploring and operating | ||
US2630803A (en) * | 1950-05-12 | 1953-03-10 | Eustachius O Baran | Double pneumothoracic needle |
US2725593A (en) * | 1950-06-06 | 1955-12-06 | Truffaut Robert Ernest | Method of recovering the hypophysis from the severed head of an animal |
US2850007A (en) * | 1956-05-31 | 1958-09-02 | American Cyanamid Co | Biopsy device |
US3007471A (en) * | 1959-04-27 | 1961-11-07 | Jr John N Mcclure | Biopsy instrument |
US3477423A (en) * | 1967-01-09 | 1969-11-11 | Baxter Laboratories Inc | Biopsy instrument |
US4020847A (en) * | 1975-11-05 | 1977-05-03 | Clark Iii William T | Rotating cutter catheter |
US4220155A (en) * | 1978-05-11 | 1980-09-02 | Colorado State University Research Foundation | Apparatus for spaying large animals |
US4314565A (en) * | 1978-03-03 | 1982-02-09 | Lee Peter F | Biopsy and aspiration needle unit |
US4340066A (en) * | 1980-02-01 | 1982-07-20 | Sherwood Medical Industries Inc. | Medical device for collecting a body sample |
US4513754A (en) * | 1978-03-03 | 1985-04-30 | Southland Instruments, Inc. | Biopsy and aspiration unit with a replaceable cannula |
US4530356A (en) * | 1983-02-08 | 1985-07-23 | Helfgott Maxwell A | Ophthalmic surgical instrument with beveled tip |
US4702260A (en) * | 1985-04-16 | 1987-10-27 | Ko Pen Wang | Flexible bronchoscopic needle assembly |
US4873991A (en) * | 1988-09-21 | 1989-10-17 | Skinner Bruce A J | Biopsy needle |
US4903709A (en) * | 1988-09-21 | 1990-02-27 | Skinner Bruce A J | Biopsy method |
US5084058A (en) * | 1990-04-25 | 1992-01-28 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5163946A (en) * | 1990-04-25 | 1992-11-17 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5224488A (en) * | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
US5250065A (en) * | 1990-09-11 | 1993-10-05 | Mectra Labs, Inc. | Disposable lavage tip assembly |
US5409013A (en) * | 1989-11-06 | 1995-04-25 | Mectra Labs, Inc. | Tissue removal assembly |
US5505210A (en) * | 1989-11-06 | 1996-04-09 | Mectra Labs, Inc. | Lavage with tissue cutting cannula |
US5527332A (en) * | 1994-11-02 | 1996-06-18 | Mectra Labs, Inc. | Tissue cutter for surgery |
US5797907A (en) * | 1989-11-06 | 1998-08-25 | Mectra Labs, Inc. | Electrocautery cutter |
US5989196A (en) * | 1994-10-31 | 1999-11-23 | Boston Scientific Corporation | Biopsy needle |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6193672B1 (en) | 1993-05-11 | 2001-02-27 | Mectra Labs, Inc. | Lavage |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US20030083684A1 (en) * | 2001-10-26 | 2003-05-01 | Cesarini Peter M. | Reciprocating rotary arthroscopic surgical instrument |
US6592588B1 (en) * | 1995-02-16 | 2003-07-15 | Arthrex, Inc. | Apparatus for osteochondral autograft transplantation |
US20030216667A1 (en) * | 2000-09-11 | 2003-11-20 | Frank Viola | Biopsy system |
US20040092980A1 (en) * | 2001-10-26 | 2004-05-13 | Cesarini Peter M. | Reciprocating rotary arthroscopic surgical instrument |
US20040225229A1 (en) * | 2000-11-27 | 2004-11-11 | Viola Frank J. | Tissue sampling and removal apparatus and method |
US20050165328A1 (en) * | 2002-03-19 | 2005-07-28 | Norbert Heske | Biopsy device and biopsy needle module that can be inserted into the biopsy device |
US20050203439A1 (en) * | 2002-03-19 | 2005-09-15 | Norbert Heske | Vacuum biopsy device |
US20080058673A1 (en) * | 2006-08-29 | 2008-03-06 | Lex Jansen | Tissue extraction device and method of using the same |
US20080058674A1 (en) * | 2006-08-29 | 2008-03-06 | Lex Jansen | Tissue extraction device and method of using the same |
US20080071193A1 (en) * | 2004-07-09 | 2008-03-20 | Claus Reuber | Length Detection System for Biopsy Device |
US20080306406A1 (en) * | 2005-08-10 | 2008-12-11 | C.R. Bard Inc. | Single-Insertion, Multiple Sampling Biopsy Device With Linear Drive |
US20080319341A1 (en) * | 2005-08-10 | 2008-12-25 | C.R. Bard Inc. | Single-Insertion, Multiple Sample Biopsy Device with Integrated Markers |
US20090149774A1 (en) * | 2007-12-06 | 2009-06-11 | Ebi, L.P. | bone marrow aspiration needle |
US20090227893A1 (en) * | 2005-08-10 | 2009-09-10 | C.R. Bard Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US20100030108A1 (en) * | 2006-10-24 | 2010-02-04 | C.R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
US20100106053A1 (en) * | 2006-10-06 | 2010-04-29 | Videbaek Karsten | Tissue handling system with reduced operator exposure |
US20100234760A1 (en) * | 2006-08-21 | 2010-09-16 | Dan Almazan | Self-contained Handheld Biopsy Needle |
US20110021946A1 (en) * | 2003-03-29 | 2011-01-27 | C.R. Bard, Inc. | Biopsy needle system having a pressure generating unit |
US20110054350A1 (en) * | 2009-09-01 | 2011-03-03 | Videbaek Karsten | Biopsy apparatus having a tissue sample retrieval mechanism |
US20110077551A1 (en) * | 2009-09-25 | 2011-03-31 | Videbaek Karsten | Charging station for battery powered biopsy apparatus |
US20110087131A1 (en) * | 2009-10-12 | 2011-04-14 | Videbaek Karsten | Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation |
US20110105946A1 (en) * | 2009-10-31 | 2011-05-05 | Sorensen Peter L | Biopsy system with infrared communications |
US20110105945A1 (en) * | 2009-10-29 | 2011-05-05 | Videbaek Karsten | Biopsy driver assembly having a control circuit for conserving battery power |
US20110208085A1 (en) * | 2005-01-31 | 2011-08-25 | C.R. Bard, Inc. | Quick cycle biopsy system |
US8454532B2 (en) | 2007-12-27 | 2013-06-04 | Devicor Medical Products, Inc. | Clutch and valving system for tetherless biopsy device |
US8597205B2 (en) | 2007-12-20 | 2013-12-03 | C. R. Bard, Inc. | Biopsy device |
US8690793B2 (en) | 2009-03-16 | 2014-04-08 | C. R. Bard, Inc. | Biopsy device having rotational cutting |
US8708929B2 (en) | 2009-04-15 | 2014-04-29 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
US8845548B2 (en) | 2009-06-12 | 2014-09-30 | Devicor Medical Products, Inc. | Cutter drive assembly for biopsy device |
US8893722B2 (en) | 1997-09-04 | 2014-11-25 | Smith & Nephew, Inc. | Surgical endoscopic cutting device and method for its use |
US9125550B2 (en) | 2004-08-27 | 2015-09-08 | Smith & Nephew, Inc. | Tissue resecting system |
US9155454B2 (en) | 2010-09-28 | 2015-10-13 | Smith & Nephew, Inc. | Hysteroscopic system |
US9173641B2 (en) | 2009-08-12 | 2015-11-03 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
US10285673B2 (en) | 2013-03-20 | 2019-05-14 | Bard Peripheral Vascular, Inc. | Biopsy device |
US10299819B2 (en) | 2016-07-28 | 2019-05-28 | Covidien Lp | Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use |
US10299803B2 (en) | 2016-08-04 | 2019-05-28 | Covidien Lp | Self-aligning drive coupler |
US10456120B2 (en) | 2013-11-05 | 2019-10-29 | C. R. Bard, Inc. | Biopsy device having integrated vacuum |
US10463350B2 (en) | 2015-05-01 | 2019-11-05 | C. R. Bard, Inc. | Biopsy device |
US10631889B2 (en) | 2014-12-16 | 2020-04-28 | Covidien Lp | Surgical device with incorporated tissue extraction |
US10750931B2 (en) | 2015-05-26 | 2020-08-25 | Covidien Lp | Systems and methods for generating a fluid bearing for an operative procedure |
US10772654B2 (en) | 2017-03-02 | 2020-09-15 | Covidien Lp | Fluid-driven tissue resecting instruments, systems, and methods |
US10772652B2 (en) | 2015-01-28 | 2020-09-15 | Covidien Lp | Tissue resection system |
US10804769B2 (en) | 2015-06-17 | 2020-10-13 | Covidien Lp | Surgical instrument with phase change cooling |
US10799264B2 (en) | 2015-06-18 | 2020-10-13 | Covidien Lp | Surgical instrument with suction control |
US10842350B2 (en) | 2015-06-17 | 2020-11-24 | Covidien Lp | Endoscopic device with drip flange and methods of use thereof for an operative procedure |
US10869684B2 (en) | 2018-02-13 | 2020-12-22 | Covidien Lp | Powered tissue resecting device |
US10898218B2 (en) | 2019-02-25 | 2021-01-26 | Covidien Lp | Tissue resecting device including a motor cooling assembly |
US10945752B2 (en) | 2019-03-20 | 2021-03-16 | Covidien Lp | Tissue resecting instrument including a rotation lock feature |
US11065147B2 (en) | 2018-10-18 | 2021-07-20 | Covidien Lp | Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure |
US11083481B2 (en) | 2019-02-22 | 2021-08-10 | Covidien Lp | Tissue resecting instrument including an outflow control seal |
US11116483B2 (en) | 2017-05-19 | 2021-09-14 | Merit Medical Systems, Inc. | Rotating biopsy needle |
US11154318B2 (en) | 2019-02-22 | 2021-10-26 | Covidien Lp | Tissue resecting instrument including an outflow control seal |
US11179172B2 (en) | 2019-12-05 | 2021-11-23 | Covidien Lp | Tissue resecting instrument |
US11197710B2 (en) | 2018-10-26 | 2021-12-14 | Covidien Lp | Tissue resecting device including a blade lock and release mechanism |
US11317947B2 (en) | 2020-02-18 | 2022-05-03 | Covidien Lp | Tissue resecting instrument |
US11376032B2 (en) | 2019-12-05 | 2022-07-05 | Covidien Lp | Tissue resecting instrument |
US11452806B2 (en) | 2019-10-04 | 2022-09-27 | Covidien Lp | Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures |
US11547782B2 (en) | 2020-01-31 | 2023-01-10 | Covidien Lp | Fluid collecting sheaths for endoscopic devices and systems |
US11547815B2 (en) | 2018-05-30 | 2023-01-10 | Covidien Lp | Systems and methods for measuring and controlling pressure within an internal body cavity |
US11553977B2 (en) | 2019-05-29 | 2023-01-17 | Covidien Lp | Hysteroscopy systems and methods for managing patient fluid |
US11571233B2 (en) | 2020-11-19 | 2023-02-07 | Covidien Lp | Tissue removal handpiece with integrated suction |
US11596429B2 (en) | 2020-04-20 | 2023-03-07 | Covidien Lp | Tissue resecting instrument |
US11737777B2 (en) | 2020-02-05 | 2023-08-29 | Covidien Lp | Tissue resecting instruments |
US11793498B2 (en) | 2017-05-19 | 2023-10-24 | Merit Medical Systems, Inc. | Biopsy needle devices and methods of use |
US11844500B2 (en) | 2017-05-19 | 2023-12-19 | Merit Medical Systems, Inc. | Semi-automatic biopsy needle device and methods of use |
US11864735B2 (en) | 2016-05-26 | 2024-01-09 | Covidien Lp | Continuous flow endoscope |
US11883058B2 (en) | 2019-03-26 | 2024-01-30 | Covidien Lp | Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same |
US11890237B2 (en) | 2019-10-04 | 2024-02-06 | Covidien Lp | Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures |
US12150627B2 (en) | 2019-12-11 | 2024-11-26 | Merit Medical Systems, Inc. | Bone biopsy device and related methods |
US12156673B2 (en) | 2020-10-07 | 2024-12-03 | Covidien Lp | Temperature measurement device for a handpiece of a surgical instrument |
-
1923
- 1923-12-29 US US683359A patent/US1585934A/en not_active Expired - Lifetime
Cited By (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2583937A (en) * | 1952-01-29 | Surgical exploring and operating | ||
US2426535A (en) * | 1944-10-21 | 1947-08-26 | Turkel Henry | Infusion and biopsy needle |
US2541542A (en) * | 1946-02-13 | 1951-02-13 | Perez Guillermo Herrera | Trocar for biopsia |
US2571207A (en) * | 1949-06-01 | 1951-10-16 | Howard B Cox | Appliance for embalming |
US2630803A (en) * | 1950-05-12 | 1953-03-10 | Eustachius O Baran | Double pneumothoracic needle |
US2725593A (en) * | 1950-06-06 | 1955-12-06 | Truffaut Robert Ernest | Method of recovering the hypophysis from the severed head of an animal |
US2850007A (en) * | 1956-05-31 | 1958-09-02 | American Cyanamid Co | Biopsy device |
US3007471A (en) * | 1959-04-27 | 1961-11-07 | Jr John N Mcclure | Biopsy instrument |
US3477423A (en) * | 1967-01-09 | 1969-11-11 | Baxter Laboratories Inc | Biopsy instrument |
US4020847A (en) * | 1975-11-05 | 1977-05-03 | Clark Iii William T | Rotating cutter catheter |
US4314565A (en) * | 1978-03-03 | 1982-02-09 | Lee Peter F | Biopsy and aspiration needle unit |
US4513754A (en) * | 1978-03-03 | 1985-04-30 | Southland Instruments, Inc. | Biopsy and aspiration unit with a replaceable cannula |
US4220155A (en) * | 1978-05-11 | 1980-09-02 | Colorado State University Research Foundation | Apparatus for spaying large animals |
US4340066A (en) * | 1980-02-01 | 1982-07-20 | Sherwood Medical Industries Inc. | Medical device for collecting a body sample |
US4530356A (en) * | 1983-02-08 | 1985-07-23 | Helfgott Maxwell A | Ophthalmic surgical instrument with beveled tip |
US4702260A (en) * | 1985-04-16 | 1987-10-27 | Ko Pen Wang | Flexible bronchoscopic needle assembly |
US4873991A (en) * | 1988-09-21 | 1989-10-17 | Skinner Bruce A J | Biopsy needle |
US4903709A (en) * | 1988-09-21 | 1990-02-27 | Skinner Bruce A J | Biopsy method |
US5797907A (en) * | 1989-11-06 | 1998-08-25 | Mectra Labs, Inc. | Electrocautery cutter |
US5409013A (en) * | 1989-11-06 | 1995-04-25 | Mectra Labs, Inc. | Tissue removal assembly |
US5505210A (en) * | 1989-11-06 | 1996-04-09 | Mectra Labs, Inc. | Lavage with tissue cutting cannula |
US5084058A (en) * | 1990-04-25 | 1992-01-28 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5163946A (en) * | 1990-04-25 | 1992-11-17 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5250065A (en) * | 1990-09-11 | 1993-10-05 | Mectra Labs, Inc. | Disposable lavage tip assembly |
US5224488A (en) * | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
US6193672B1 (en) | 1993-05-11 | 2001-02-27 | Mectra Labs, Inc. | Lavage |
US5989196A (en) * | 1994-10-31 | 1999-11-23 | Boston Scientific Corporation | Biopsy needle |
US5527332A (en) * | 1994-11-02 | 1996-06-18 | Mectra Labs, Inc. | Tissue cutter for surgery |
US6592588B1 (en) * | 1995-02-16 | 2003-07-15 | Arthrex, Inc. | Apparatus for osteochondral autograft transplantation |
US9750520B2 (en) | 1997-09-04 | 2017-09-05 | Covidien Lp | Surgical endoscopic cutting device and method for its use |
US9226765B2 (en) | 1997-09-04 | 2016-01-05 | Smith & Nephew, Inc. | Surgical cutting device and method for its use |
US9226650B2 (en) | 1997-09-04 | 2016-01-05 | Smith & Nephew, Inc. | Surgical cutting device and method for its use |
US9089358B2 (en) | 1997-09-04 | 2015-07-28 | Smith & Nephew, Inc. | Surgical cutting device and method for its use |
US9427247B2 (en) | 1997-09-04 | 2016-08-30 | Smith & Nephew, Inc. | Surgical cutting device and method for its use |
US8893722B2 (en) | 1997-09-04 | 2014-11-25 | Smith & Nephew, Inc. | Surgical endoscopic cutting device and method for its use |
US6488636B2 (en) | 1997-09-19 | 2002-12-03 | United States Surgical Corporation | Biopsy apparatus |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6554779B2 (en) | 1998-02-20 | 2003-04-29 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US8128577B2 (en) | 2000-09-11 | 2012-03-06 | Tyco Healthcare Group Lp | Biopsy system |
US7189207B2 (en) | 2000-09-11 | 2007-03-13 | Tyco Healthcare Group Lp | Biopsy system having a single use loading unit operable with a trocar driver, a knife driver and firing module |
US20070118049A1 (en) * | 2000-09-11 | 2007-05-24 | Tyco Healthcare Group Lp | Biopsy system |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
US20030216667A1 (en) * | 2000-09-11 | 2003-11-20 | Frank Viola | Biopsy system |
US6860860B2 (en) | 2000-11-27 | 2005-03-01 | Tyco Healthcare Group, Lp | Tissue sampling and removal apparatus and method |
US20040225229A1 (en) * | 2000-11-27 | 2004-11-11 | Viola Frank J. | Tissue sampling and removal apparatus and method |
US7513877B2 (en) | 2000-11-27 | 2009-04-07 | Tyco Healthcare Group Lp | Tissue sampling and removal apparatus and method |
US20110230904A1 (en) * | 2001-10-26 | 2011-09-22 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US7226459B2 (en) * | 2001-10-26 | 2007-06-05 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US8663264B2 (en) | 2001-10-26 | 2014-03-04 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US9636130B2 (en) | 2001-10-26 | 2017-05-02 | Covidien Lp | Reciprocating rotary arthroscopic surgical instrument |
US10441306B2 (en) | 2001-10-26 | 2019-10-15 | Covidien Lp | Reciprocating rotary arthroscopic surgical instrument |
US7510563B2 (en) * | 2001-10-26 | 2009-03-31 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US20030083684A1 (en) * | 2001-10-26 | 2003-05-01 | Cesarini Peter M. | Reciprocating rotary arthroscopic surgical instrument |
US20040092980A1 (en) * | 2001-10-26 | 2004-05-13 | Cesarini Peter M. | Reciprocating rotary arthroscopic surgical instrument |
US9060800B1 (en) | 2001-10-26 | 2015-06-23 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US9060801B1 (en) | 2001-10-26 | 2015-06-23 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US9066745B2 (en) | 2001-10-26 | 2015-06-30 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US7922737B1 (en) | 2001-10-26 | 2011-04-12 | Smith & Nephew, Inc. | Reciprocating rotary arthroscopic surgical instrument |
US8951209B2 (en) | 2002-03-19 | 2015-02-10 | C. R. Bard, Inc. | Biopsy device and insertable biopsy needle module |
US20050203439A1 (en) * | 2002-03-19 | 2005-09-15 | Norbert Heske | Vacuum biopsy device |
US20050165328A1 (en) * | 2002-03-19 | 2005-07-28 | Norbert Heske | Biopsy device and biopsy needle module that can be inserted into the biopsy device |
US20070149894A1 (en) * | 2002-03-19 | 2007-06-28 | C.R. Bard, Inc. | Biopsy device for removing tissue specimens using a vacuum |
US10271827B2 (en) | 2002-03-19 | 2019-04-30 | C. R. Bard, Inc. | Disposable biopsy unit |
US20100106055A1 (en) * | 2002-03-19 | 2010-04-29 | C.R. Bard, Inc. | Biopsy device having a vacuum pump |
US8109885B2 (en) | 2002-03-19 | 2012-02-07 | C. R. Bard, Inc. | Biopsy device for removing tissue specimens using a vacuum |
US11382608B2 (en) | 2002-03-19 | 2022-07-12 | C. R. Bard, Inc. | Disposable biopsy unit |
US9439631B2 (en) | 2002-03-19 | 2016-09-13 | C. R. Bard, Inc. | Biopsy device and insertable biopsy needle module |
US8052614B2 (en) | 2002-03-19 | 2011-11-08 | C. R. Bard, Inc. | Biopsy device having a vacuum pump |
US8002713B2 (en) | 2002-03-19 | 2011-08-23 | C. R. Bard, Inc. | Biopsy device and insertable biopsy needle module |
US9072502B2 (en) | 2002-03-19 | 2015-07-07 | C. R. Bard, Inc. | Disposable biopsy unit |
US9421002B2 (en) | 2002-03-19 | 2016-08-23 | C. R. Bard, Inc. | Disposable biopsy unit |
US8016772B2 (en) | 2002-03-19 | 2011-09-13 | C. R. Bard, Inc. | Biopsy device for removing tissue specimens using a vacuum |
US10335128B2 (en) | 2002-03-19 | 2019-07-02 | C. R. Bard, Inc. | Biopsy device and insertable biopsy needle module |
US8172773B2 (en) | 2002-03-19 | 2012-05-08 | C. R. Bard, Inc. | Biopsy device and biopsy needle module that can be inserted into the biopsy device |
US8162851B2 (en) | 2003-03-29 | 2012-04-24 | C. R. Bard, Inc. | Biopsy needle system having a pressure generating unit |
US8728004B2 (en) | 2003-03-29 | 2014-05-20 | C.R. Bard, Inc. | Biopsy needle system having a pressure generating unit |
US20110021946A1 (en) * | 2003-03-29 | 2011-01-27 | C.R. Bard, Inc. | Biopsy needle system having a pressure generating unit |
US8157744B2 (en) | 2004-07-09 | 2012-04-17 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
US8366636B2 (en) | 2004-07-09 | 2013-02-05 | Bard Peripheral Vascular, Inc. | Firing system for biopsy device |
US8052615B2 (en) | 2004-07-09 | 2011-11-08 | Bard Peripheral Vascular, Inc. | Length detection system for biopsy device |
US9872672B2 (en) | 2004-07-09 | 2018-01-23 | Bard Peripheral Vascular, Inc. | Length detection system for biopsy device |
US20100210966A1 (en) * | 2004-07-09 | 2010-08-19 | Bard Peripheral Vascular, Inc. | Firing System For Biopsy Device |
US8992440B2 (en) | 2004-07-09 | 2015-03-31 | Bard Peripheral Vascular, Inc. | Length detection system for biopsy device |
US20080183099A1 (en) * | 2004-07-09 | 2008-07-31 | Martin Bondo Jorgensen | Tissue Sample Flushing System for Biopsy Device |
US20080287826A1 (en) * | 2004-07-09 | 2008-11-20 | Bard Peripheral Vasular, Inc. | Transport System for Biopsy Device |
US8926527B2 (en) | 2004-07-09 | 2015-01-06 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
US9345458B2 (en) | 2004-07-09 | 2016-05-24 | Bard Peripheral Vascular, Inc. | Transport system for biopsy device |
US9456809B2 (en) | 2004-07-09 | 2016-10-04 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
US8864680B2 (en) | 2004-07-09 | 2014-10-21 | Bard Peripheral Vascular, Inc. | Transport system for biopsy device |
US20080071193A1 (en) * | 2004-07-09 | 2008-03-20 | Claus Reuber | Length Detection System for Biopsy Device |
US10499888B2 (en) | 2004-07-09 | 2019-12-10 | Bard Peripheral Vascular, Inc. | Tissue sample flushing system for biopsy device |
US10166011B2 (en) | 2004-07-09 | 2019-01-01 | Bard Peripheral Vascular, Inc. | Transport system for biopsy device |
US9936861B2 (en) | 2004-08-27 | 2018-04-10 | Covidien Lp | Tissue resecting system |
US10939810B2 (en) | 2004-08-27 | 2021-03-09 | Covidien Lp | Tissue resecting system |
US10076237B2 (en) | 2004-08-27 | 2018-09-18 | Covidien Lp | Tissue resecting system |
US9125550B2 (en) | 2004-08-27 | 2015-09-08 | Smith & Nephew, Inc. | Tissue resecting system |
US11166702B2 (en) | 2005-01-31 | 2021-11-09 | C.R. Bard, Inc. | Quick cycle biopsy system |
US8702622B2 (en) | 2005-01-31 | 2014-04-22 | C.R. Bard, Inc. | Quick cycle biopsy system |
US8702621B2 (en) | 2005-01-31 | 2014-04-22 | C.R. Bard, Inc. | Quick cycle biopsy system |
US20110208085A1 (en) * | 2005-01-31 | 2011-08-25 | C.R. Bard, Inc. | Quick cycle biopsy system |
US9161743B2 (en) | 2005-01-31 | 2015-10-20 | C. R. Bard, Inc. | Quick cycle biopsy system |
US10058308B2 (en) | 2005-01-31 | 2018-08-28 | C. R. Bard, Inc. | Method for operating a biopsy apparatus |
US8012102B2 (en) | 2005-01-31 | 2011-09-06 | C. R. Bard, Inc. | Quick cycle biopsy system |
US10010307B2 (en) | 2005-08-10 | 2018-07-03 | C. R. Bard, Inc. | Single-insertion, multiple sampling biopsy device with linear drive |
US8282574B2 (en) | 2005-08-10 | 2012-10-09 | C. R. Bard, Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US20090227893A1 (en) * | 2005-08-10 | 2009-09-10 | C.R. Bard Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US8771200B2 (en) | 2005-08-10 | 2014-07-08 | C.R. Bard, Inc. | Single insertion, multiple sampling biopsy device with linear drive |
US10368849B2 (en) | 2005-08-10 | 2019-08-06 | C. R. Bard, Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US11849928B2 (en) | 2005-08-10 | 2023-12-26 | C. R. Bard, Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US8728003B2 (en) | 2005-08-10 | 2014-05-20 | C.R. Bard Inc. | Single insertion, multiple sample biopsy device with integrated markers |
US20080319341A1 (en) * | 2005-08-10 | 2008-12-25 | C.R. Bard Inc. | Single-Insertion, Multiple Sample Biopsy Device with Integrated Markers |
US8721563B2 (en) | 2005-08-10 | 2014-05-13 | C. R. Bard, Inc. | Single-insertion, multiple sample biopsy device with integrated markers |
US8267868B2 (en) | 2005-08-10 | 2012-09-18 | C. R. Bard, Inc. | Single-insertion, multiple sample biopsy device with integrated markers |
US8961430B2 (en) | 2005-08-10 | 2015-02-24 | C.R. Bard, Inc. | Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers |
US8262585B2 (en) | 2005-08-10 | 2012-09-11 | C. R. Bard, Inc. | Single-insertion, multiple sampling biopsy device with linear drive |
US11219431B2 (en) | 2005-08-10 | 2022-01-11 | C.R. Bard, Inc. | Single-insertion, multiple sampling biopsy device with linear drive |
US20080306406A1 (en) * | 2005-08-10 | 2008-12-11 | C.R. Bard Inc. | Single-Insertion, Multiple Sampling Biopsy Device With Linear Drive |
US20100234760A1 (en) * | 2006-08-21 | 2010-09-16 | Dan Almazan | Self-contained Handheld Biopsy Needle |
US10617399B2 (en) | 2006-08-21 | 2020-04-14 | C.R. Bard, Inc. | Self-contained handheld biopsy needle |
US8251917B2 (en) | 2006-08-21 | 2012-08-28 | C. R. Bard, Inc. | Self-contained handheld biopsy needle |
US8951208B2 (en) | 2006-08-21 | 2015-02-10 | C. R. Bard, Inc. | Self-contained handheld biopsy needle |
US20080058673A1 (en) * | 2006-08-29 | 2008-03-06 | Lex Jansen | Tissue extraction device and method of using the same |
US20080058674A1 (en) * | 2006-08-29 | 2008-03-06 | Lex Jansen | Tissue extraction device and method of using the same |
US8485987B2 (en) | 2006-10-06 | 2013-07-16 | Bard Peripheral Vascular, Inc. | Tissue handling system with reduced operator exposure |
US20100106053A1 (en) * | 2006-10-06 | 2010-04-29 | Videbaek Karsten | Tissue handling system with reduced operator exposure |
US10172594B2 (en) | 2006-10-06 | 2019-01-08 | Bard Peripheral Vascular, Inc. | Tissue handling system with reduced operator exposure |
US11559289B2 (en) | 2006-10-06 | 2023-01-24 | Bard Peripheral Vascular, Inc. | Tissue handling system with reduced operator exposure |
US9566045B2 (en) | 2006-10-06 | 2017-02-14 | Bard Peripheral Vascular, Inc. | Tissue handling system with reduced operator exposure |
US10149664B2 (en) | 2006-10-24 | 2018-12-11 | C. R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
US20100030108A1 (en) * | 2006-10-24 | 2010-02-04 | C.R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
US11583261B2 (en) | 2006-10-24 | 2023-02-21 | C. R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
US8262586B2 (en) | 2006-10-24 | 2012-09-11 | C. R. Bard, Inc. | Large sample low aspect ratio biopsy needle |
US20090149774A1 (en) * | 2007-12-06 | 2009-06-11 | Ebi, L.P. | bone marrow aspiration needle |
US8597205B2 (en) | 2007-12-20 | 2013-12-03 | C. R. Bard, Inc. | Biopsy device |
US8858463B2 (en) | 2007-12-20 | 2014-10-14 | C. R. Bard, Inc. | Biopsy device |
US10687791B2 (en) | 2007-12-20 | 2020-06-23 | C. R. Bard, Inc. | Biopsy device |
US9775588B2 (en) | 2007-12-20 | 2017-10-03 | C. R. Bard, Inc. | Biopsy device |
US8864682B2 (en) | 2007-12-27 | 2014-10-21 | Devicor Medical Products, Inc. | Clutch and valving system for tetherless biopsy device |
US8454532B2 (en) | 2007-12-27 | 2013-06-04 | Devicor Medical Products, Inc. | Clutch and valving system for tetherless biopsy device |
US8690793B2 (en) | 2009-03-16 | 2014-04-08 | C. R. Bard, Inc. | Biopsy device having rotational cutting |
US8708930B2 (en) | 2009-04-15 | 2014-04-29 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
US8708929B2 (en) | 2009-04-15 | 2014-04-29 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
US8708928B2 (en) | 2009-04-15 | 2014-04-29 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having integrated fluid management |
US9468424B2 (en) | 2009-06-12 | 2016-10-18 | Devicor Medical Products, Inc. | Cutter drive assembly for biopsy device |
US8845548B2 (en) | 2009-06-12 | 2014-09-30 | Devicor Medical Products, Inc. | Cutter drive assembly for biopsy device |
US10575833B2 (en) | 2009-08-12 | 2020-03-03 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
US9655599B2 (en) | 2009-08-12 | 2017-05-23 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
US9173641B2 (en) | 2009-08-12 | 2015-11-03 | C. R. Bard, Inc. | Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
US8485989B2 (en) | 2009-09-01 | 2013-07-16 | Bard Peripheral Vascular, Inc. | Biopsy apparatus having a tissue sample retrieval mechanism |
US20110054350A1 (en) * | 2009-09-01 | 2011-03-03 | Videbaek Karsten | Biopsy apparatus having a tissue sample retrieval mechanism |
US9282949B2 (en) | 2009-09-01 | 2016-03-15 | Bard Peripheral Vascular, Inc. | Charging station for battery powered biopsy apparatus |
US9949726B2 (en) | 2009-09-01 | 2018-04-24 | Bard Peripheral Vscular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
USD640977S1 (en) | 2009-09-25 | 2011-07-05 | C. R. Bard, Inc. | Charging station for a battery operated biopsy device |
US20110077551A1 (en) * | 2009-09-25 | 2011-03-31 | Videbaek Karsten | Charging station for battery powered biopsy apparatus |
US8283890B2 (en) | 2009-09-25 | 2012-10-09 | Bard Peripheral Vascular, Inc. | Charging station for battery powered biopsy apparatus |
US8597206B2 (en) | 2009-10-12 | 2013-12-03 | Bard Peripheral Vascular, Inc. | Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation |
US20110087131A1 (en) * | 2009-10-12 | 2011-04-14 | Videbaek Karsten | Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation |
US20110105945A1 (en) * | 2009-10-29 | 2011-05-05 | Videbaek Karsten | Biopsy driver assembly having a control circuit for conserving battery power |
US8808197B2 (en) | 2009-10-29 | 2014-08-19 | Bard Peripheral Vascular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
US8430824B2 (en) | 2009-10-29 | 2013-04-30 | Bard Peripheral Vascular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
US20110105946A1 (en) * | 2009-10-31 | 2011-05-05 | Sorensen Peter L | Biopsy system with infrared communications |
US11889993B2 (en) | 2010-09-28 | 2024-02-06 | Covidien Lp | Hysteroscopic system |
US11229354B2 (en) | 2010-09-28 | 2022-01-25 | Covidien Lp | Hysteroscopic system |
US10251539B2 (en) | 2010-09-28 | 2019-04-09 | Covidien Lp | Hysteroscopic system |
US9155454B2 (en) | 2010-09-28 | 2015-10-13 | Smith & Nephew, Inc. | Hysteroscopic system |
US11779316B2 (en) | 2013-03-20 | 2023-10-10 | Bard Peripheral Vascular, Inc. | Biopsy device |
US10285673B2 (en) | 2013-03-20 | 2019-05-14 | Bard Peripheral Vascular, Inc. | Biopsy device |
US10456120B2 (en) | 2013-11-05 | 2019-10-29 | C. R. Bard, Inc. | Biopsy device having integrated vacuum |
US11534148B2 (en) | 2013-11-05 | 2022-12-27 | C. R. Bard, Inc. | Biopsy device having integrated vacuum |
US11871952B2 (en) | 2014-12-16 | 2024-01-16 | Covidien Lp | Surgical device with incorporated tissue extraction |
US10631889B2 (en) | 2014-12-16 | 2020-04-28 | Covidien Lp | Surgical device with incorporated tissue extraction |
US10772652B2 (en) | 2015-01-28 | 2020-09-15 | Covidien Lp | Tissue resection system |
US11666354B2 (en) | 2015-01-28 | 2023-06-06 | Covidien Lp | Tissue resection system |
US10463350B2 (en) | 2015-05-01 | 2019-11-05 | C. R. Bard, Inc. | Biopsy device |
US11179142B2 (en) | 2015-05-01 | 2021-11-23 | C.R. Bard, Inc. | Biopsy device |
US10750931B2 (en) | 2015-05-26 | 2020-08-25 | Covidien Lp | Systems and methods for generating a fluid bearing for an operative procedure |
US11659977B2 (en) | 2015-06-17 | 2023-05-30 | Covidien Lp | Endoscopic device with drip flange and methods of use thereof for an operative procedure |
US10804769B2 (en) | 2015-06-17 | 2020-10-13 | Covidien Lp | Surgical instrument with phase change cooling |
US10842350B2 (en) | 2015-06-17 | 2020-11-24 | Covidien Lp | Endoscopic device with drip flange and methods of use thereof for an operative procedure |
US11712262B2 (en) | 2015-06-18 | 2023-08-01 | Covidien Lp | Surgical instrument with suction control |
US10799264B2 (en) | 2015-06-18 | 2020-10-13 | Covidien Lp | Surgical instrument with suction control |
US11864735B2 (en) | 2016-05-26 | 2024-01-09 | Covidien Lp | Continuous flow endoscope |
US12076041B2 (en) | 2016-07-28 | 2024-09-03 | Covidien Lp | Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use |
US11172954B2 (en) | 2016-07-28 | 2021-11-16 | Covidien Lp | Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use |
US10299819B2 (en) | 2016-07-28 | 2019-05-28 | Covidien Lp | Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use |
US10299803B2 (en) | 2016-08-04 | 2019-05-28 | Covidien Lp | Self-aligning drive coupler |
US11622787B2 (en) | 2017-03-02 | 2023-04-11 | Covidien Lp | Fluid-driven tissue resecting instruments, systems, and methods |
US10772654B2 (en) | 2017-03-02 | 2020-09-15 | Covidien Lp | Fluid-driven tissue resecting instruments, systems, and methods |
US11116483B2 (en) | 2017-05-19 | 2021-09-14 | Merit Medical Systems, Inc. | Rotating biopsy needle |
US11844500B2 (en) | 2017-05-19 | 2023-12-19 | Merit Medical Systems, Inc. | Semi-automatic biopsy needle device and methods of use |
US11793498B2 (en) | 2017-05-19 | 2023-10-24 | Merit Medical Systems, Inc. | Biopsy needle devices and methods of use |
US10869684B2 (en) | 2018-02-13 | 2020-12-22 | Covidien Lp | Powered tissue resecting device |
US11806036B2 (en) | 2018-02-13 | 2023-11-07 | Covidien Lp | Powered tissue resecting device |
US11547815B2 (en) | 2018-05-30 | 2023-01-10 | Covidien Lp | Systems and methods for measuring and controlling pressure within an internal body cavity |
US11065147B2 (en) | 2018-10-18 | 2021-07-20 | Covidien Lp | Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure |
US11197710B2 (en) | 2018-10-26 | 2021-12-14 | Covidien Lp | Tissue resecting device including a blade lock and release mechanism |
US11083481B2 (en) | 2019-02-22 | 2021-08-10 | Covidien Lp | Tissue resecting instrument including an outflow control seal |
US11154318B2 (en) | 2019-02-22 | 2021-10-26 | Covidien Lp | Tissue resecting instrument including an outflow control seal |
US11744606B2 (en) | 2019-02-22 | 2023-09-05 | Covidien Lp | Tissue resecting instrument including an outflow control seal |
US11871950B2 (en) | 2019-02-25 | 2024-01-16 | Covidien Lp | Tissue resecting device including a motor cooling assembly |
US10898218B2 (en) | 2019-02-25 | 2021-01-26 | Covidien Lp | Tissue resecting device including a motor cooling assembly |
US11819234B2 (en) | 2019-03-20 | 2023-11-21 | Covidien Lp | Tissue resecting instrument including a rotation lock feature |
US10945752B2 (en) | 2019-03-20 | 2021-03-16 | Covidien Lp | Tissue resecting instrument including a rotation lock feature |
US11883058B2 (en) | 2019-03-26 | 2024-01-30 | Covidien Lp | Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same |
US11553977B2 (en) | 2019-05-29 | 2023-01-17 | Covidien Lp | Hysteroscopy systems and methods for managing patient fluid |
US11452806B2 (en) | 2019-10-04 | 2022-09-27 | Covidien Lp | Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures |
US11890237B2 (en) | 2019-10-04 | 2024-02-06 | Covidien Lp | Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures |
US11376032B2 (en) | 2019-12-05 | 2022-07-05 | Covidien Lp | Tissue resecting instrument |
US11980382B2 (en) | 2019-12-05 | 2024-05-14 | Covidien Lp | Tissue resecting instrument |
US11179172B2 (en) | 2019-12-05 | 2021-11-23 | Covidien Lp | Tissue resecting instrument |
US12150627B2 (en) | 2019-12-11 | 2024-11-26 | Merit Medical Systems, Inc. | Bone biopsy device and related methods |
US11547782B2 (en) | 2020-01-31 | 2023-01-10 | Covidien Lp | Fluid collecting sheaths for endoscopic devices and systems |
US11737777B2 (en) | 2020-02-05 | 2023-08-29 | Covidien Lp | Tissue resecting instruments |
US11317947B2 (en) | 2020-02-18 | 2022-05-03 | Covidien Lp | Tissue resecting instrument |
US12076049B2 (en) | 2020-02-18 | 2024-09-03 | Covidien Lp | Tissue resecting instrument |
US11596429B2 (en) | 2020-04-20 | 2023-03-07 | Covidien Lp | Tissue resecting instrument |
US12226115B2 (en) | 2020-04-20 | 2025-02-18 | Covidien Lp | Tissue resecting instrument |
US12156673B2 (en) | 2020-10-07 | 2024-12-03 | Covidien Lp | Temperature measurement device for a handpiece of a surgical instrument |
US11571233B2 (en) | 2020-11-19 | 2023-02-07 | Covidien Lp | Tissue removal handpiece with integrated suction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1585934A (en) | Diagnostic needle | |
US5522398A (en) | Bone marrow biopsy needle | |
US5341816A (en) | Biopsy device | |
US7608049B2 (en) | Biopsy needle | |
CA2376989C (en) | Bone marrow aspiration needle | |
US3628524A (en) | Biopsy needle | |
US7338456B2 (en) | Bone marrow biopsy needle | |
US4838280A (en) | Hemostatic sheath for a biopsy needle and method of use | |
US5928162A (en) | Tissue core biopsy cannula | |
US3007471A (en) | Biopsy instrument | |
DE60314109T2 (en) | UNIT FOR MULTIPLE SAMPLING | |
US2919692A (en) | Vertebral trephine biopsy instruments | |
US3606878A (en) | Needle instrument for extracting biopsy sections | |
US5005585A (en) | Biopsy needle construction | |
US6443910B1 (en) | Bone marrow biopsy needle | |
US4900300A (en) | Surgical instrument | |
US7384400B2 (en) | Bone marrow biopsy needle | |
US7731667B2 (en) | Bone marrow biopsy needle | |
US7455645B2 (en) | Bone marrow biopsy needle | |
DE69531818T2 (en) | NEEDLE DEVICE WITH IMPROVED HANDLE | |
DE3829259A1 (en) | BIOPSY CANNULA | |
DE3816477A1 (en) | DEVICE FOR TAKING BIOLOGICAL MATERIAL | |
CN106333711A (en) | Living kidney tissue puncturing sampling needle | |
CN207136869U (en) | A kind of Vivo of Renal tissue penetration sampling probe | |
RU2119304C1 (en) | Method of puncture biopsy and needle for its embodiment |