US12176511B2 - Method for manufacturing anode for lithium secondary battery - Google Patents
Method for manufacturing anode for lithium secondary battery Download PDFInfo
- Publication number
- US12176511B2 US12176511B2 US18/498,797 US202318498797A US12176511B2 US 12176511 B2 US12176511 B2 US 12176511B2 US 202318498797 A US202318498797 A US 202318498797A US 12176511 B2 US12176511 B2 US 12176511B2
- Authority
- US
- United States
- Prior art keywords
- lithium
- secondary battery
- substrate layer
- negative electrode
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 194
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 44
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000002207 thermal evaporation Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910000796 S alloy Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000000427 thin-film deposition Methods 0.000 claims 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 210000001787 dendrite Anatomy 0.000 abstract description 10
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 68
- 238000007599 discharging Methods 0.000 description 16
- -1 aluminum-cadmium Chemical compound 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 238000000059 patterning Methods 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000005676 cyclic carbonates Chemical class 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 238000007736 thin film deposition technique Methods 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910032387 LiCoO2 Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- NVJUHMXYKCUMQA-UHFFFAOYSA-N 1-ethoxypropane Chemical compound CCCOCC NVJUHMXYKCUMQA-UHFFFAOYSA-N 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- LSUWCXHZPFTZSF-UHFFFAOYSA-N 4-ethyl-5-methyl-1,3-dioxolan-2-one Chemical compound CCC1OC(=O)OC1C LSUWCXHZPFTZSF-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- AUXJVUDWWLIGRU-UHFFFAOYSA-N 4-propyl-1,3-dioxolan-2-one Chemical compound CCCC1COC(=O)O1 AUXJVUDWWLIGRU-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910004170 Li(NiaCObMnc)O2 Inorganic materials 0.000 description 1
- 229910004176 Li(NiaCObMnc)O4 Inorganic materials 0.000 description 1
- 229910003003 Li-S Inorganic materials 0.000 description 1
- 229910012715 LiCo1-y Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910014376 LiMn2-zCozO4 Inorganic materials 0.000 description 1
- 229910014370 LiMn2-zNizO4 Inorganic materials 0.000 description 1
- 229910014554 LiMn2−zCozO4 Inorganic materials 0.000 description 1
- 229910014552 LiMn2−zNizO4 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910014167 LiNi1-YCOYO2 Inorganic materials 0.000 description 1
- 229910014380 LiNi1-yMnyO2 Inorganic materials 0.000 description 1
- 229910014940 LiNi1−yCoyO2 Inorganic materials 0.000 description 1
- 229910014946 LiNi1−yMnyO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- SMBGWMJTOOLQHN-UHFFFAOYSA-N lead;sulfuric acid Chemical compound [Pb].OS(O)(=O)=O SMBGWMJTOOLQHN-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- VNKYTQGIUYNRMY-UHFFFAOYSA-N methoxypropane Chemical compound CCCOC VNKYTQGIUYNRMY-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/32—Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
- H01M4/0426—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for manufacturing a negative electrode for a lithium secondary battery comprising a patterned lithium metal.
- Electrochemical devices are the most noteworthy area in this respect, and among them, the development of a secondary battery capable of charging/discharging is the focus of attention. Recently, in developing these batteries, research and development on the design of new electrodes and batteries have been conducted in order to improve capacity density and energy efficiency.
- the lithium secondary batteries developed in the early 1990s are attracting much attention as there is an advantage in that it has much higher operating voltage and energy density than conventional batteries such as Ni-MH, Ni—Cd, and sulfuric acid-lead batteries using an electrolyte solution in the form of an aqueous solution.
- the lithium secondary battery is constructed by embedding an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode into the battery case as a lamination or winding structure and injecting a non-aqueous electrolyte solution into the battery.
- a lithium electrode as a negative electrode is formed by attaching a lithium foil on a planar current collector. In this case, as the charging/discharging is repeated, the formation and removal of lithium are irregular, thereby forming lithium dendrites, which lead to a continuous capacity drop.
- the lithium metal which is a negative electrode of the lithium secondary battery
- the lithium metal needs to be dispersed so that the current density is not concentrated in one place.
- the present inventors confirmed that if the lithium metal is patterned and deposited, the reversibility is improved, and thus completed the present invention.
- it is an object of the present invention is to provide a method of manufacturing a negative electrode for a lithium secondary battery with improved cell performance by improving the reversibility of the lithium metal through the modification of the shape and structure of the electrode and furthermore, solving the problem of the volumetric expansion of the cell due to the lithium dendrites.
- the present invention provides a method for manufacturing a negative electrode for a lithium secondary battery comprising the steps of i) forming a lithium substrate layer on one or both sides of a current collector; ii) placing a shadow mask having at least one opening on the lithium substrate layer and forming a lithium pattern layer on the lithium substrate layer through the at least one opening of the shadow mask; and iii) removing the shadow mask to expose the lithium pattern layer formed on the lithium substrate layer.
- the negative electrode for the lithium secondary battery according to the present invention can improve the safety of the lithium secondary battery by homogenizing the electron distribution in the lithium electrode and thus preventing the growth of the lithium dendrites when driving the lithium secondary battery.
- the volumetric expansion of the battery can be prevented by inducing the formation of the lithium dendrites into the void formed by the patterning of the lithium metal.
- FIG. 1 is a conceptual diagram illustrating a method of manufacturing a negative electrode for a lithium secondary battery according to the present invention.
- FIG. 2 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 3 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 4 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 5 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 6 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 7 is an example of a pattern applicable to a negative electrode for a lithium secondary battery of the present invention.
- FIG. 1 is a conceptual diagram illustrating a method of manufacturing a negative electrode for a lithium secondary battery according to the present invention.
- the present invention provides a method for manufacturing a negative electrode for a lithium secondary battery comprising the steps of i) forming a lithium substrate layer 21 on one or both sides of a current collector 10 ; ii) forming a lithium pattern layer 22 on the lithium substrate layer 21 using a shadow mask 30 ; and iii) removing the shadow mask 30 .
- the lithium electrode 20 having a predetermined pattern can be formed using the shadow mask 30 having a plurality of openings 31 , and the shape and size of the pattern can be determined depending on the shape and size of the opening 31 .
- a method of patterning the lithium electrode 20 more specifically, a method of forming the lithium pattern layer 22 by depositing lithium on the lithium substrate layer 21 using the shadow mask can freely form the patterning of various shapes and sizes as compared with the method of forming an engrave by the pressing. If the lithium electrode 20 is thus patterned, the diffusion path of the lithium ion is improved so that the electrons in the lithium electrode 20 can be uniformly distributed. Also, by homogenizing the local reactions occurring on the surface of the lithium metal to lower the surface unevenness, it has the effect of inhibiting the growth of lithium dendrites and improving the efficiency of the lithium electrode 20 . That is, the current distribution in the electrode becomes uniform, and at the same time, the current density can be reduced and thus the growth of the lithium dendrites can be suppressed.
- the lithium substrate layer may be formed on one or both sides of the current collector.
- the current collector 10 is prepared.
- the current collector 10 is not particularly limited as long as it has high electrical conductivity without causing chemical change in the battery.
- the current collector 10 may be selected from the group consisting of copper, aluminum, stainless steel, zinc, titanium, silver, palladium, nickel, iron, chromium, alloys thereof and combinations thereof.
- the stainless steel may be surface-treated with carbon, nickel, titanium or silver, the alloy may be an aluminum-cadmium alloy, and additionally, a nonconductive polymer, which was surface-treated with a sintered carbon or a conductive material, or a conductive polymer may be used.
- the thin plate of copper can be used as a negative electrode current collector.
- the current collector 10 generally has a thickness in the range of 3 ⁇ m to 500 ⁇ m. If the thickness of the current collector 10 is less than 3 ⁇ m, the current collecting effect is lowered. On the other hand, if the thickness exceeds 500 ⁇ m, when the cells are folded and then assembled, there is a problem that the processability is lowered.
- the lithium substrate layer 21 is formed on the entire surface of the current collector 10 .
- the lithium substrate layer 21 comprises lithium and may specifically be a lithium containing metal compound comprising a metal selected from the group consisting of S, P, O, Cl, Se, F, Br, I, and combinations thereof. In addition, it may further comprise an element selected from the group consisting of Ni, Co, Cu, Zn, Ga, Ge, Si, Al, Fe, V, Mn, Ti, Mo, Cr, Nb, Pt, and combinations thereof.
- the sum of the amounts of the remaining elements other than lithium in the lithium-containing metal compound is combined in the range of about 5 wt. % to about 20 wt. % based on the total weight of the negative electrode active material.
- the combination method it is possible to apply the alloy in a suitable ratio or also to form a film on the current collector 10 in the form of a metal powder.
- Such a lithium-containing metal compound is added to compensate for the irreversible capacity of the lithium metal and may be added in an amount corresponding to the theoretical capacity of the positive electrode active material described later, or may be added in excess of that, wherein these excess lithium-containing metal compounds can prevent the lithium dendrites from precipitating on the surface of the lithium electrode.
- the lithium substrate layer 21 is preferably formed over the entire surface of the current collector 10 .
- the method of forming the lithium substrate layer can be preferably performed by a thin film deposition method.
- the thin-film deposition method may be a method selected from the group consisting of Chemical Vapor Deposition (CVD), Plasma-Enhanced Chemical Vapor Deposition (PECVD), Sputtering, E-beam evaporation, Thermal evaporation, Laser Molecular Beam Epitaxy (L-MBE), Pulsed Laser Deposition (PLD), and Atomic layer deposition.
- the thickness of the lithium substrate layer 21 is 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 60 ⁇ m, and more preferably 20 ⁇ m to 40 ⁇ m. If the thickness is less than 5 ⁇ m, the amount of lithium metal is too small to compensate for long-term cycle reversibility. If the thickness exceeds 100 ⁇ m, the energy density becomes too low.
- the lithium pattern layer 22 may be formed on the lithium substrate layer 21 using the shadow mask 30 .
- the shadow mask 30 includes an opening 31 for transferring the lithium metal and a frame for supporting the shape of the opening 31 .
- the shape of the opening 31 is not limited, and may include various shapes such as a rectangular shape, a rhombus shape, a circular shape, a stripe shape, a honeycomb shape, and the like. Since the shape of the opening 31 directly matches the shape of the lithium pattern layer 22 , the lithium pattern layer 22 has various pattern parts in the shapes of a rectangular shape, a rhombus shape, a circular shape, a stripe shape, a honeycomb shape, and the like.
- FIGS. 2 to 7 are examples of the patterns applicable to the negative electrode for the lithium secondary battery of the present invention.
- the ratio of the area occupied by the opening 31 in the shadow mask 30 can be expressed as a ratio of the openings. It is preferable that the ratio of the openings, which is the ratio of the area occupied by the opening 31 , is 20% to 80% based on 100% of the total area of the current collector 10 . If the ratio of the opening is less than 20%, the formed lithium pattern layer 22 is not enough to disperse the current density as the transfer passage of lithium. If the ratio of the openings exceeds 80%, since the space occupied by the lithium pattern layer 22 is large and the void for trapping the lithium dendrites is relatively reduced, it is apprehended that the performance of the battery may be deteriorated.
- the thickness of the lithium pattern layer 22 is 5 ⁇ m to 50 ⁇ m, preferably 10 ⁇ m to 40 ⁇ m, more preferably 20 ⁇ m to 30 ⁇ m. If the thickness exceeds 50 It, not only the energy density is lowered but also t is difficult to maintain the shape of the pattern due to the pressing at the time of manufacturing the cell. If the thickness is less than 5 ⁇ m, it may be insufficient to ensure the effect of current dispersion according to the patterning.
- the thickness ratio of the lithium substrate layer 21 and the lithium pattern layer 22 is preferably 1:3 to 3:1, more preferably 1:2 to 2:1.
- the lithium electrode having the thickness ratio of the above range maximizes the patterning effect of the lithium metal and is also advantageous in terms of the energy density. Specifically, if the thickness ratio of the lithium substrate layer 21 to the lithium pattern layer 22 is less than 1 or more than 3, since the shape of the patterned lithium is not maintained well during the charging/discharging, the patterned effect cannot be obtained.
- the lithium pattern layer 22 may preferably be formed by a thin film deposition method.
- the thin film deposition method may be a method selected from the group consisting of Chemical Vapor Deposition (CVD), Plasma-Enhanced Chemical Vapor Deposition (PECVD), Sputtering, E-beam evaporation, Thermal evaporation, Laser Molecular Beam Epitaxy (L-MBE), Pulsed Laser Deposition (PLD), and Atomic layer deposition, and the lithium pattern layer 22 may be deposited in the same manner as in the lithium substrate layer 21 .
- CVD Chemical Vapor Deposition
- PECVD Plasma-Enhanced Chemical Vapor Deposition
- Sputtering a method selected from the group consisting of Chemical Vapor Deposition (CVD), Plasma-Enhanced Chemical Vapor Deposition (PECVD), Sputtering, E-beam evaporation, Thermal evaporation, Laser Molecular Beam Epitaxy (L-MBE), Pulsed Laser Deposition (PLD), and Atomic layer deposition
- the lithium pattern layer 22 may
- the current collector 10 on which the lithium substrate layer 21 is formed in advance is placed on the supporting means of the chamber, and then the shadow mask 30 is loaded into the chamber. After the current collector 10 and the shadow mask 30 are aligned, the shadow mask 30 is fixed on the lithium substrate layer 21 of the current collector 10 . At this time, the partial region of the lithium substrate layer 21 is exposed by the opening 31 of the shadow mask 130 .
- the lithium pattern layer 22 can be formed by depositing a lithium source at 30 W for 3 minutes to 10 minutes in a vacuum state (10 torr to 3 torr) at room temperature in the chamber.
- step iii) the shadow mask 130 may be removed.
- the positive electrode according to the present invention may be formed in the form of a positive electrode by forming a film on a positive electrode current collector using a composition including a positive electrode active material, a conductive material, and a binder.
- the conductive material is a component for further improving the electrical conductivity of the positive electrode active material, and non-limiting examples thereof may be graphites such as natural graphite or artificial graphite; carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fiber and metal fiber; metal powders such as carbon fluoride, aluminum and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives and the like
- the binder is a component that maintains a positive electrode active material on a positive electrode current collector and has the function of organically connecting between positive electrode active materials, and the examples thereof may include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof
- PVDF polyvinylidene fluoride
- PVA polyvinyl alcohol
- CMC carboxymethylcellulose
- EPDM ethylene-propylene-diene polymer
- sulfonated-EPDM styrene-butadiene rubber
- fluorine rubber and various copolymers thereof
- the positive electrode current collector is the same as described above with respect to the negative electrode current collector, and generally the positive electrode current collector may be an aluminum foil.
- the positive electrode composition can be coated on a positive electrode current collector using conventional methods known in the art, and for example, various methods such as dipping method, spraying method, roll court method, gravure printing method, bar court method, die coating method, comma coating method or combinations thereof can be used.
- drying is carried out according to a conventional method and is not particularly limited.
- the separator according to the present invention is not particularly limited in its material and is not particularly limited as long as it is commonly used as a separator in an electrochemical device, which physically separates a negative electrode and a positive electrode from each other and has electrolyte and ion permeability.
- the separator is a porous, nonconductive or insulating material, particularly a material with an excellent moisture-containing ability for the electrolyte solution along with a low resistance to the movement of ions in the electrolyte solution.
- a polyolefin-based porous membrane or nonwoven fabric may be used, but it is not particularly limited thereto.
- polystyrene-based porous membrane may include a membrane formed by each of polyethylenes such as high density polyethylene, linear low density polyethylene, low density polyethylene and ultrahigh molecular weight polyethylene, and polyolefin-based polymer such as polypropylene, polybutylene and polypentene, etc. or a mixture of these polymers.
- polyethylenes such as high density polyethylene, linear low density polyethylene, low density polyethylene and ultrahigh molecular weight polyethylene
- polyolefin-based polymer such as polypropylene, polybutylene and polypentene, etc. or a mixture of these polymers.
- the nonwoven fabric may be a nonwoven fabric formed by each of, for example, polyphenylene oxide, polyimide, polyamide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyphenylene sulfide, polyacetal, polyether sulfone, polyetheretherketone, polyester, etc., or a mixture of these polymers, in addition to the polyolefin-based nonwoven fabric described above, and these nonwoven fabric includes spunbond or meltblown form consisting of long fibers which is in the form of fibers forming a porous web.
- the thickness of the separator is not particularly limited, but is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 5 to 50 ⁇ m. When the thickness of the separator is less than 1 ⁇ m, the mechanical properties cannot be maintained, and when the thickness of the separator exceeds 100 ⁇ m, the separator acts as a resistance layer, thereby deteriorating the performance of the battery.
- the pore size and porosity of the separator are not particularly limited, but it is preferable that the pore size is 0.1 to 50 ⁇ m and the porosity is 10 to 95%. When the pore size of the separator is less than 0.1 ⁇ m or the porosity is less than 10%, the separator acts as a resistive layer. When the pore size of the separator exceeds 50 ⁇ m or the porosity exceeds 95%, the mechanical properties cannot be maintained.
- the electrolyte applicable to the present invention may be a non-aqueous electrolyte solution, which does not react with lithium metal, or a solid electrolyte, but preferably a non-aqueous electrolyte, and the electrolyte includes an electrolyte salt and an organic solvent.
- the electrolyte salt contained in the non-aqueous electrolyte solution is a lithium salt.
- the lithium salt can be used without limitation as long as it is commonly used in an electrolyte solution for a lithium secondary battery.
- the anion of the lithium salt may include any one selected from the group consisting of —F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ NO 3 ⁇ , N(CN) 2 ⁇ , BF 4 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , (CF 3 ) 2 PF 4 ⁇ , (CF 3 ) 3 PF 3 ⁇ , (CF 3 ) 4 PF 2 ⁇ , (CF 3 ) 5 PF ⁇ , (CF 3 ) 6 P ⁇ , CF 3 SO 3 ⁇ , CF 3 CF 2 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (FSO 2 ) 2 N ⁇ , CF 3 CF 2 (CF 3 ) 2 CO
- the organic solvent contained in the non-aqueous electrolyte solution can be used without limitation as long as it is commonly used in an electrolyte solution for a lithium secondary battery, and for example, ether, esters, amide, linear carbonate, cyclic carbonate and the like may be used alone or in combination of two or more thereof. Among them, carbonate compounds which are typically cyclic carbonate, linear carbonate, or a mixture thereof may be included.
- cyclic carbonate compound includes any one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and their halide, or a mixture of two or more thereof.
- Example of such halides includes, but is not limited to, fluoroethylene carbonate (FEC) and the like.
- FEC fluoroethylene carbonate
- linear carbonate compound may typically include, but are not limited to, any one selected from the group consisting of dimethyl carbonate (LMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate, or a mixture of two or more thereof.
- LMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethylmethyl carbonate
- methylpropyl carbonate and ethylpropyl carbonate or a mixture of two or more thereof.
- cyclic carbonates such as ethylene carbonate and propylene carbonate among the carbonate-based organic solvents are highly viscous organic solvents and have a high dielectric constant, and thus can dissociate lithium salts in the electrolyte much better.
- linear carbonates with a low viscosity and a low dielectric constant, such as dimethyl carbonate and diethyl carbonate at a suitable ratio, an electrolyte solution having the higher electrical conductivity can be prepared.
- the ether among the above organic solvents may be, but is not limited to, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof.
- ester among the above organic solvents may be, but is not limited to, any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone, or a mixture of two or more thereof.
- the injection of the non-aqueous electrolyte solution can be performed at an appropriate stage during the manufacturing process of the electrochemical device, depending on the manufacturing process and required physical properties of the final product. That is, such injection can be carried out before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
- the lithium secondary battery according to the present invention it is possible to perform laminating or stacking and folding processes of the separator and the electrode, in addition to the winding process which is a general process.
- case of the battery may be cylindrical, square, pouch type, coin type, or the like.
- the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, it is useful in the fields of portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicle (HEV).
- portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicle (HEV).
- HEV hybrid electric vehicle
- a battery module including the lithium secondary battery as a unit cell, and a battery pack including the same are provided.
- the battery module or the battery pack may be used as a power source for any one or more medium and large-sized devices of a power tool; an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system, etc.
- a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system, etc.
- EV electric vehicle
- PHEV plug-in hybrid electric vehicle
- a lithium substrate layer was formed by depositing the lithium metal on the Cu foil current collector through a physical vapor deposition (PVD).
- the lithium substrate layer with a thickness of 10 ⁇ m was formed by placing the lithium metal, which is a raw material for the deposition, in a thermal evaporator and evaporating it at 200° C. for 7 hours through thermal evaporation.
- a lithium pattern layer with a thickness of 10 ⁇ m was formed by placing a micro-patterned shadow mask with a width of 100 ⁇ m, a length of 100 ⁇ m and a thickness of 30 ⁇ m on the lithium substrate layer thus obtained, and evaporating at 200° C. for 7 hours. After deposition, the shadow mask was removed. In this way, a lithium electrode including the micro-patterned lithium pattern layer with a thickness of 10 ⁇ m, a width of 100 ⁇ m and a length of 100 ⁇ m was manufactured on the lithium substrate layer with a thickness of 10 ⁇ m.
- a coin-type half-cell were prepared by using the patterned lithium electrode obtained above as a counter electrode, interposing the polyolefin separator between the positive electrode and the counter electrode, and then injecting the electrolyte solution which was prepared by dissolving 1 M LiPF 6 in the mixed solvent of fluorinated ethylene carbonate (FEC) and dimethyl carbonate (DMC) in a volume ratio of 70:30.
- FEC fluorinated ethylene carbonate
- DMC dimethyl carbonate
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium substrate layer was formed to have a thickness of 5 ⁇ m and the lithium pattern layer to have a thickness of 15 ⁇ m.
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium substrate layer was formed to have a thickness of 15 ⁇ m and the lithium pattern layer to have a thickness of 5 ⁇ m.
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that at the time of forming the lithium substrate layer, the substrate layer containing lithium-S alloy layer was formed by evaporating S at 150° C. for 20 minutes to form a 1 ⁇ m thick S layer first.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that an untreated lithium foil instead of the patterned lithium electrode of Example 1 was used as a counter electrode.
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium substrate layer was formed to have a thickness of 2 ⁇ m and the lithium pattern layer to have a thickness of 18 ⁇ m.
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium substrate layer was formed to have a thickness of 18 ⁇ m and the lithium pattern layer to have a thickness of 2 ⁇ m.
- a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that instead of using the shadow mask at the time of patterning, a polymer film having the same pattern is placed on the lithium metal and pressed through a nip pressure roll press machine to form a lithium pattern layer.
- the coin-type half-cell manufactured in Example 1 and Comparative Example 1 was charged and discharged using an electrochemical charge/discharge controller.
- the charging was performed up to the voltage of 4.4V vs. Li/Li +
- the discharging was performed up to the voltage of 3.0V vs. Li/Li +
- the current density was applied at 0.5 C-rate.
- Example 1 The discharge capacity and the charging/discharging efficiency in the 50th cycle in the charging/discharging process of Example 1 and Comparative Example 0.1 are shown in Table 1.
- Example 1 the discharge capacity after 50 cycles in Example 1 was improved by 20% or more as compared with that of Comparative Example 1. Also, it can be seen that the charging/discharging efficiency after 50 cycles in Example 1 is also improved by about 10% as compared with that of the Comparative Example 1.
- the reason why the performance of the patterned lithium electrode through the shadow mask is improved is as follows. As the surface area of patterned lithium metal becomes wider than that of the untreated lithium metal foil, since the current density per unit area is relatively lowered even though the charging/discharging is performed at the same current density, the relatively stable charging/discharging would have been occurred.
- the lithium metal secondary battery which is charging/discharging along with deposition/desorption of lithium on the surface of lithium metal, is charging/discharging at a high current density, as the lithium metal grows and falls off abnormally, the reversibility of the cell is deteriorated and the safety of the cell is seriously affected.
- the surface area of the lithium metal is increased by the patterning as in the present invention, even when charging/discharging at the same current density, the current density per unit area applied to the surface of the lithium metal may be reduced, thereby suppressing the abnormal growth of lithium metal.
- the cycle performance would have been improved due to these effects.
- Example 4 when a material such as S that can be alloyed with lithium is first formed, a Li—S alloy is formed between the Cu current collector and the lithium metal substrate layer to further improve adhesion to the current collector. As a result, it can be seen that the discharge capacity after 50 cycles and the charging/discharging efficiency after 50 cycles are slightly improved as compared with those of Example 1.
- Comparative Example 4 since the lithium metal pattern made by pressing a micro-patterned polymer film on the lithium metal through a roll press machine is not uniform in shape, the uniform dispersion of the current density can be suppressed. Accordingly, it can be seen that the discharge capacity after 50 cycles and the charging/discharging efficiency after 50 cycles are reduced more than those in Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
-
- (Patent Document 1) Korean Patent Laid-Open Publication No. 2017-0014216, “Patterning Lithium Electrode and Method for Manufacturing thereof and Lithium Secondary Battery using the same.”
TABLE 1 | |||||||
Thickness ratio | |||||||
of lithium | Charging/ | ||||||
Thickness of | Thickness of | substrate layer | Discharge | discharging | |||
the lithium | the lithium | and lithium | capacity | efficiency | |||
substrate | pattern | pattern | after 50 | after 50 | |||
layer (μm) (A) | layer (μm) (B) | layer(A:B) | Note | cycles (%) | cycles (%) | ||
Example 1 | 10 | 10 | 1:1 | — | 87 | 93 |
Example 2 | 5 | 15 | 1:3 | — | 85 | 92 |
Example 3 | 15 | 5 | 3:1 | — | 84 | 93 |
Example 4 | 10 | 10 | 1:1 | The lithium | 89 | 94 |
substrate layer | ||||||
is a lithium-S | ||||||
alloy layer. | ||||||
Comparative | 10 | — | — | The lithium | 64 | 83 |
Example 1 | pattern layer | |||||
was not formed. | ||||||
Comparative | 2 | 18 | 1:9 | — | 77 | 87 |
Example 2 | ||||||
Comparative | 18 | 2 | 9:1 | — | 76 | 85 |
Example 3 | ||||||
|
10 | 10 | 1:1 | The patterning is | 69 | 84 |
Example 4 | performed through | |||||
pressing instead | ||||||
of shadow mask. | ||||||
-
- 10: Current collector
- 20: Lithium electrode
- 21: Lithium substrate layer
- 22: Lithium pattern layer
- 30: Shadow mask
- 31: Opening
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/498,797 US12176511B2 (en) | 2017-05-18 | 2023-10-31 | Method for manufacturing anode for lithium secondary battery |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0061657 | 2017-05-18 | ||
KR20170061657 | 2017-05-18 | ||
KR1020180047880A KR102420592B1 (en) | 2017-05-18 | 2018-04-25 | Method for preparing negative electrode for lithium secondary battery |
KR10-2018-0047880 | 2018-04-25 | ||
PCT/KR2018/004884 WO2018212481A1 (en) | 2017-05-18 | 2018-04-26 | Method for manufacturing anode for lithium secondary battery |
US201916464564A | 2019-05-28 | 2019-05-28 | |
US18/498,797 US12176511B2 (en) | 2017-05-18 | 2023-10-31 | Method for manufacturing anode for lithium secondary battery |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/004884 Continuation WO2018212481A1 (en) | 2017-05-18 | 2018-04-26 | Method for manufacturing anode for lithium secondary battery |
US16/464,564 Continuation US11843104B2 (en) | 2017-05-18 | 2018-04-26 | Method for manufacturing anode for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
US20240063363A1 US20240063363A1 (en) | 2024-02-22 |
US12176511B2 true US12176511B2 (en) | 2024-12-24 |
Family
ID=64561783
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/464,564 Active 2040-01-06 US11843104B2 (en) | 2017-05-18 | 2018-04-26 | Method for manufacturing anode for lithium secondary battery |
US18/498,797 Active US12176511B2 (en) | 2017-05-18 | 2023-10-31 | Method for manufacturing anode for lithium secondary battery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/464,564 Active 2040-01-06 US11843104B2 (en) | 2017-05-18 | 2018-04-26 | Method for manufacturing anode for lithium secondary battery |
Country Status (5)
Country | Link |
---|---|
US (2) | US11843104B2 (en) |
EP (1) | EP3537520A4 (en) |
KR (1) | KR102420592B1 (en) |
CN (1) | CN110268558B (en) |
WO (1) | WO2018212481A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109686918A (en) * | 2018-12-25 | 2019-04-26 | 遵化市清吉电池科技有限公司 | A kind of electrodes of lithium-ion batteries and preparation method thereof |
KR102030675B1 (en) | 2019-07-30 | 2019-10-10 | (주)세광하이테크 | Manufacturing apparatus and method of electrolytic copper foil for battery of electric vehicle |
EP4174984A1 (en) * | 2019-12-20 | 2023-05-03 | Sion Power Corporation | Lithium metal electrodes |
DE102021203235A1 (en) * | 2020-04-22 | 2021-10-28 | Volkswagen Aktiengesellschaft | Solid-state battery |
CN112071542B (en) * | 2020-08-20 | 2022-03-29 | 苏州达晶半导体有限公司 | Manufacturing method of PPTC surface electrode |
US11688843B2 (en) * | 2020-08-31 | 2023-06-27 | GM Global Technology Operations LLC | Calendered electrode and method of making same |
CN112768636B (en) * | 2020-12-31 | 2022-02-15 | 华中科技大学 | A composite lithium metal negative electrode and its preparation method and application |
CN116888754A (en) * | 2021-02-26 | 2023-10-13 | 松下知识产权经营株式会社 | Lithium secondary battery |
US20230335753A1 (en) * | 2022-04-14 | 2023-10-19 | GM Global Technology Operations LLC | Patterned current collector for anodeless electrochemical battery cells |
CN116103614B (en) * | 2022-11-24 | 2023-09-15 | 广东金晟新能源股份有限公司 | Zinc fluoride modified porous lithium metal composite anode material and preparation method and application thereof |
KR102710317B1 (en) * | 2023-11-30 | 2024-09-26 | 주식회사 시리에너지 | Lithium electrode including lithium powder, and lithium secondaty battery including the same |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223820A (en) | 1995-02-13 | 1996-08-30 | Toshiba Eng & Constr Co Ltd | Redundant uninterruptible power-supply system |
US6210836B1 (en) | 1998-04-14 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary battery |
US20020187398A1 (en) | 2000-12-21 | 2002-12-12 | Yuriy V. Mikhaylik | Lithium anodes for electrochemical cells |
US20050008778A1 (en) | 2001-11-27 | 2005-01-13 | Koji Utsugi | Device and method for vacuum film formation |
US20050037916A1 (en) | 2003-08-15 | 2005-02-17 | Yong Chen | Imprinting nanoscale patterns for catalysis and fuel cells |
US20050079418A1 (en) | 2003-10-14 | 2005-04-14 | 3M Innovative Properties Company | In-line deposition processes for thin film battery fabrication |
KR100582557B1 (en) | 2004-11-25 | 2006-05-22 | 한국전자통신연구원 | A negative electrode for a lithium metal polymer secondary battery comprising a surface-patterned negative electrode current collector and a manufacturing method thereof |
US20080020271A1 (en) | 2004-10-21 | 2008-01-24 | Toshitada Sato | Negative Electrode for Non-Aqueous Electrolyte Secondary Battery and Method for Producing the Same |
US20120070734A1 (en) | 2010-09-17 | 2012-03-22 | Nitto Denko Corporation | Lithium secondary battery and anode therefor |
US20120116028A1 (en) | 2009-07-15 | 2012-05-10 | Yasuhiko Suzuki | Method for producing polycarbonate material having excellent solubility and affinity, and contact lens material comprising the same |
US20120321815A1 (en) | 2011-06-17 | 2012-12-20 | Applied Materials, Inc. | Thin Film Battery Fabrication With Mask-Less Electrolyte Deposition |
US20130017340A1 (en) | 2011-07-12 | 2013-01-17 | Applied Materials, Inc. | Methods to fabricate variations in porosity of lithium ion battery electrode films |
KR20130013990A (en) | 2011-07-29 | 2013-02-06 | 지에스칼텍스 주식회사 | Mathod of thin film battery manufacturing by laser trimming of thin film edge |
KR20130067920A (en) | 2011-12-14 | 2013-06-25 | 한국전자통신연구원 | Carbon powder coated li anode for lithium rechargeable batteries |
KR20130122578A (en) | 2012-04-30 | 2013-11-07 | 주식회사 엘지화학 | Secondary battery comprising solid electrolyte battery having a lithium ion-path, method for producing the same |
JP2013229315A (en) | 2012-03-29 | 2013-11-07 | Semiconductor Energy Lab Co Ltd | Lithium ion secondary battery manufacturing method |
CN103531815A (en) | 2013-10-25 | 2014-01-22 | 深圳清华大学研究院 | Perforated foil used for current collector and its making method |
KR20140073924A (en) | 2012-12-07 | 2014-06-17 | 엘지디스플레이 주식회사 | Multi-junction thin film battery and method of fabricating the same |
US20140308578A1 (en) | 2011-10-18 | 2014-10-16 | Hiroshi Onizuka | Non-aqueous electrolyte secondary battery, and manufacturing method thereof |
US20150318530A1 (en) | 2014-05-01 | 2015-11-05 | Sila Nanotechnologies, Inc. | Aqueous electrochemical energy storage devices and components |
CN105633338A (en) | 2016-03-25 | 2016-06-01 | 张五星 | Preparation method of composite metal anode for secondary battery and product thereof |
KR20170014216A (en) | 2015-07-29 | 2017-02-08 | 주식회사 엘지화학 | Patterning Lithium Electrode and Method for Manufacturing thereof and Lithium Secondary Battery using the same |
US20170324113A1 (en) * | 2015-02-03 | 2017-11-09 | Quantumscape Corporation | Metal sulfide anolytes for electrochemical cells |
US20180115021A1 (en) | 2016-10-24 | 2018-04-26 | Electronics And Telecommunications Research Institute | Lithium battery and method for manufacturing same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06223820A (en) * | 1993-01-21 | 1994-08-12 | Mitsubishi Cable Ind Ltd | Negative electrode for lithium secondary battery |
JP5413355B2 (en) * | 2010-11-08 | 2014-02-12 | トヨタ自動車株式会社 | All solid battery |
KR101621410B1 (en) * | 2013-09-11 | 2016-05-16 | 주식회사 엘지화학 | Lithium electrode and lithium secondary battery including the same |
US10256448B2 (en) * | 2014-07-10 | 2019-04-09 | The Board Of Trustees Of The Leland Stanford Junior University | Interfacial engineering for stable lithium metal anodes |
JP6548335B2 (en) | 2014-09-26 | 2019-07-24 | ライオン株式会社 | Detergent products |
CN105833338A (en) | 2016-04-25 | 2016-08-10 | 天津市赛宁生物工程技术有限公司 | Organic magnesium salt compound for medical tissue adhesive |
KR102242933B1 (en) | 2016-11-01 | 2021-04-22 | 주식회사 이엔에프테크놀로지 | Etching composition for oxide semiconductor film and silicon oxide film |
-
2018
- 2018-04-25 KR KR1020180047880A patent/KR102420592B1/en active Active
- 2018-04-26 CN CN201880005693.XA patent/CN110268558B/en active Active
- 2018-04-26 US US16/464,564 patent/US11843104B2/en active Active
- 2018-04-26 EP EP18802810.4A patent/EP3537520A4/en active Pending
- 2018-04-26 WO PCT/KR2018/004884 patent/WO2018212481A1/en unknown
-
2023
- 2023-10-31 US US18/498,797 patent/US12176511B2/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223820A (en) | 1995-02-13 | 1996-08-30 | Toshiba Eng & Constr Co Ltd | Redundant uninterruptible power-supply system |
US6210836B1 (en) | 1998-04-14 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary battery |
US20020187398A1 (en) | 2000-12-21 | 2002-12-12 | Yuriy V. Mikhaylik | Lithium anodes for electrochemical cells |
US20050008778A1 (en) | 2001-11-27 | 2005-01-13 | Koji Utsugi | Device and method for vacuum film formation |
US20050037916A1 (en) | 2003-08-15 | 2005-02-17 | Yong Chen | Imprinting nanoscale patterns for catalysis and fuel cells |
US20050079418A1 (en) | 2003-10-14 | 2005-04-14 | 3M Innovative Properties Company | In-line deposition processes for thin film battery fabrication |
US20080020271A1 (en) | 2004-10-21 | 2008-01-24 | Toshitada Sato | Negative Electrode for Non-Aqueous Electrolyte Secondary Battery and Method for Producing the Same |
KR100582557B1 (en) | 2004-11-25 | 2006-05-22 | 한국전자통신연구원 | A negative electrode for a lithium metal polymer secondary battery comprising a surface-patterned negative electrode current collector and a manufacturing method thereof |
US20060110661A1 (en) | 2004-11-25 | 2006-05-25 | Lee Young G | Anode for lithium metal polymer secondary battery comprising surface patterned anodic current collector and method of preparing the same |
US20120116028A1 (en) | 2009-07-15 | 2012-05-10 | Yasuhiko Suzuki | Method for producing polycarbonate material having excellent solubility and affinity, and contact lens material comprising the same |
US20120070734A1 (en) | 2010-09-17 | 2012-03-22 | Nitto Denko Corporation | Lithium secondary battery and anode therefor |
US20120321815A1 (en) | 2011-06-17 | 2012-12-20 | Applied Materials, Inc. | Thin Film Battery Fabrication With Mask-Less Electrolyte Deposition |
US20130017340A1 (en) | 2011-07-12 | 2013-01-17 | Applied Materials, Inc. | Methods to fabricate variations in porosity of lithium ion battery electrode films |
KR20130013990A (en) | 2011-07-29 | 2013-02-06 | 지에스칼텍스 주식회사 | Mathod of thin film battery manufacturing by laser trimming of thin film edge |
US20140308578A1 (en) | 2011-10-18 | 2014-10-16 | Hiroshi Onizuka | Non-aqueous electrolyte secondary battery, and manufacturing method thereof |
KR20130067920A (en) | 2011-12-14 | 2013-06-25 | 한국전자통신연구원 | Carbon powder coated li anode for lithium rechargeable batteries |
JP2013229315A (en) | 2012-03-29 | 2013-11-07 | Semiconductor Energy Lab Co Ltd | Lithium ion secondary battery manufacturing method |
KR20130122578A (en) | 2012-04-30 | 2013-11-07 | 주식회사 엘지화학 | Secondary battery comprising solid electrolyte battery having a lithium ion-path, method for producing the same |
KR101484845B1 (en) | 2012-04-30 | 2015-01-22 | 주식회사 엘지화학 | Secondary battery comprising solid electrolyte battery having a lithium ion-path, method for producing the same |
KR20140073924A (en) | 2012-12-07 | 2014-06-17 | 엘지디스플레이 주식회사 | Multi-junction thin film battery and method of fabricating the same |
CN103531815A (en) | 2013-10-25 | 2014-01-22 | 深圳清华大学研究院 | Perforated foil used for current collector and its making method |
US20150318530A1 (en) | 2014-05-01 | 2015-11-05 | Sila Nanotechnologies, Inc. | Aqueous electrochemical energy storage devices and components |
US20170324113A1 (en) * | 2015-02-03 | 2017-11-09 | Quantumscape Corporation | Metal sulfide anolytes for electrochemical cells |
KR20170014216A (en) | 2015-07-29 | 2017-02-08 | 주식회사 엘지화학 | Patterning Lithium Electrode and Method for Manufacturing thereof and Lithium Secondary Battery using the same |
CN105633338A (en) | 2016-03-25 | 2016-06-01 | 张五星 | Preparation method of composite metal anode for secondary battery and product thereof |
US20180115021A1 (en) | 2016-10-24 | 2018-04-26 | Electronics And Telecommunications Research Institute | Lithium battery and method for manufacturing same |
Non-Patent Citations (3)
Title |
---|
Fan et al., "Influence of electrolytic etching current collector Cu foil on the performance of anode", Battery Bimonthly, vol. 39, No. 3, Jun. 2009, pp. 131-134, with English abstract. |
International Search Report (PCT/ISA/210) issued in PCT/KR2018/004884, mailed on Aug. 24, 2018. |
Tang et al. "Binary Iron Sulfide as a Low-Cost and High-Performance Anode for Lithium-/Sodium-Ion Batteries", ACS Applied Materials & Interfaces, pp. 52888-52898, 2020. |
Also Published As
Publication number | Publication date |
---|---|
EP3537520A1 (en) | 2019-09-11 |
KR20180127189A (en) | 2018-11-28 |
US11843104B2 (en) | 2023-12-12 |
KR102420592B1 (en) | 2022-07-13 |
CN110268558B (en) | 2022-08-09 |
CN110268558A (en) | 2019-09-20 |
US20210104723A1 (en) | 2021-04-08 |
US20240063363A1 (en) | 2024-02-22 |
WO2018212481A1 (en) | 2018-11-22 |
EP3537520A4 (en) | 2019-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12176511B2 (en) | Method for manufacturing anode for lithium secondary battery | |
KR102160708B1 (en) | Anode for lithium secondary battery with double protective layer and lithium secondary battery comprising the same | |
KR102140129B1 (en) | Anode with mesh type insulating layer, lithium secondary battery containing the same | |
JP7313148B2 (en) | Lithium secondary battery in which lithium metal is formed on positive electrode and manufacturing method thereof | |
KR102160701B1 (en) | Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same | |
US9711798B2 (en) | Lithium electrode and lithium secondary battery comprising the same | |
US9673443B2 (en) | Lithium electrode and lithium secondary battery comprising the same | |
US11127949B2 (en) | Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same | |
KR102244904B1 (en) | Anode comprising electrode protective layer and lithium secondary battery comprising the same | |
US10651469B2 (en) | Lithium secondary battery comprising positive electrode active material for synthesis of lithium cobalt oxide and preparation method thereof | |
KR102148509B1 (en) | Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR102488677B1 (en) | Method for preparing lithium secondary battery | |
KR20190033922A (en) | Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR102207527B1 (en) | Anode comprising electrode protective layer and lithium secondary battery comprising the same | |
EP3567660B1 (en) | Lithium electrode and lithium secondary battery comprising same | |
KR20170011357A (en) | Porous Lithium Electrode and Method for Manufacturing thereof and Lithium Secondary Battery using the same | |
US11929487B2 (en) | Method of preparing negative electrode for lithium secondary battery | |
KR102148506B1 (en) | Anode Comprising Mesh Type Current Collector, Lithium Secondary Battery Comprising the Same and Manufacturing Method thereof | |
KR102617866B1 (en) | Curent Collector, Electrode and Lithium Secondary Battery Comprising the Same | |
KR20200127645A (en) | Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR102639661B1 (en) | Lithium Secondary Battery | |
KR20240086585A (en) | Negative electrode currentor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |