US12005163B2 - Phased array microwave sanitizer for pathogens - Google Patents
Phased array microwave sanitizer for pathogens Download PDFInfo
- Publication number
- US12005163B2 US12005163B2 US17/335,629 US202117335629A US12005163B2 US 12005163 B2 US12005163 B2 US 12005163B2 US 202117335629 A US202117335629 A US 202117335629A US 12005163 B2 US12005163 B2 US 12005163B2
- Authority
- US
- United States
- Prior art keywords
- esa
- array antenna
- antenna panels
- ghz
- enclosed volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/12—Microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/11—Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/12—Apparatus for isolating biocidal substances from the environment
- A61L2202/122—Chambers for sterilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/14—Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2209/00—Aspects relating to disinfection, sterilisation or deodorisation of air
- A61L2209/10—Apparatus features
- A61L2209/11—Apparatus for controlling air treatment
Definitions
- pandemic responses often necessitate quarantine operations with a potential to severely impact global industries and economies of entire nations.
- Air handling systems for closed environments are a significant vector for transmission of airborne respiratory pathogens.
- Medical facilities have a continual need to sanitize their equipment that requires copious amounts of chemical cleaning agents.
- pathogens do not spread only by respiratory droplets that settle onto surfaces within a relatively short distance of approximately two meters (six feet), but also as microscopic airborne particles, or aerosols that are small enough to be transported by air current. Such small droplets are free to travel in the air and carry their viral content meters and tens of meters from their origin. Those droplets remain viable and infectious in aerosols for hours and on surfaces up to days. The viability of these pathogens to infect human beings does not decrease as readily when in aerosol form as it does in droplet form on surfaces.
- Air handling systems in enclosed environments are a significant vector for the spread of these pathogens in aerosol form.
- inventions of the inventive concepts disclosed herein are directed to a system and method for sterilizing recirculated airflow in closed environments, as well as certain types of material equipment.
- the system includes electronically steered antenna (ESA) elements.
- ESA elements operate in radio frequencies (RF).
- RF radio frequencies
- the ESA elements produce directed beams of microwave radiation to sterilize surfaces or volumes of air.
- the directivity gain associated with the beam forming increases RF energy density in the area where the beam is steered.
- FIG. 1 shows graphs of pathogen viability under various conditions and on various surfaces
- FIG. 2 shows a cross-sectional view of a sterilizing chamber according to an exemplary embodiment
- FIG. 3 shows a side view of a sterilizing chamber according to an exemplary embodiment
- FIG. 4 shows scanning patterns according to exemplary embodiments
- FIG. 5 shows a graph of absorption bands for an exemplary pathogen
- FIG. 6 shows a graph of absorption bands for an exemplary pathogen
- FIG. 7 shows a side view of a sterilizing chamber according to an exemplary embodiment
- FIG. 8 shows a side view of a sterilizing chamber according to an exemplary embodiment
- FIG. 9 shows a far-field array useful in exemplary embodiments
- FIG. 10 shows a table of antenna peak power, distance, and pathogen death rates
- inventive concepts are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings.
- inventive concepts disclosed herein may be practiced without these specific details.
- well-known features may not be described in detail to avoid unnecessarily complicating the instant disclosure.
- inventive concepts disclosed herein are capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
- a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1 , 1 a , 1 b ).
- Such shorthand notations are used for purposes of convenience only, and should not be construed to limit the inventive concepts disclosed herein in any way unless expressly stated to the contrary.
- any reference to “one embodiment,” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the inventive concepts disclosed herein.
- the appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments of the inventive concepts disclosed may include one or more of the features expressly described or inherently present herein, or any combination of sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the instant disclosure.
- inventions of the inventive concepts disclosed herein are directed to a system and method for sterilizing recirculated airflow in closed environments, as well as certain types of material equipment.
- the system includes electronically steered antenna (ESA) elements.
- ESA elements operate in radio frequencies (RF).
- the ESA elements produce directed beams of microwave radiation to sterilize surfaces or volumes of air.
- the directivity gain associated with the beam forming increases RF energy density in the area where the beam is steered.
- FIG. 1 graphs of pathogen viability under various conditions and on various surfaces is shown.
- the quantity of viable virus (titers) remains relatively constant in an aerosol 100 compared to how fast they decay on copper 102 , cardboard 104 , stainless steel 106 , or plastic 108 surfaces.
- the half-life some viruses exceeds three hours in aerosol form.
- Those types of pathogens may remain in the air as viable disease vectors for hours. They may be picked up by air circulation systems while still infectious.
- FIG. 2 a cross-sectional view of a sterilizing chamber 200 according to an exemplary embodiment is shown.
- the sterilizing chamber 200 is defined by a plurality of ESA panels 202 , 204 .
- the plurality of ESA panels 202 , 204 are disposed to irradiate the volume enclosed by the chamber 200 .
- the ESA panels 202 , 204 comprise eight ESA panels 202 , 204 in an octagonal arrangement forming the interior walls of the chamber 200 .
- Each ESA panels 202 , 204 produces a steerable beam 206 , 208 that scans the interior volume. Pathogens in the interior volume may be neutralized via exposure to radiation from the ESA panels 202 , 204 .
- Each ESA panel 202 , 204 may be steered independently to follow a different steering profile to irradiate any particles within the volume multiple times from multiple angles of incidence as they travel through the chamber 200 .
- Each ESA panel 202 , 204 may transmit RF energy at a different frequency from the others, with enough separation in the frequency domain to avoid formation of null zones (regions within the volume where the net energy is close to zero) due to deconstructive interference.
- the ESA panels 202 , 204 in this exemplary embodiment can be designed to radiate at specific target frequencies determined by the RF absorption spectra of certain pathogens such as rod-shaped influenza particles and spherical-shaped coronavirus particles.
- FIG. 3 a side view of a sterilizing chamber 304 according to an exemplary embodiment is shown.
- the sterilizing chamber 304 defined by a plurality of ESA panels, is further defined by parabolic reflectors 302 , 306 configured to retain reflected radiation and sidelobe radiation from the ESA panels within the chamber 304 .
- the parabolic reflectors 302 , 306 may define an input 300 and an output 308 respectively.
- An airflow system may control the speed of airflow within the chamber 304 to optimize dwell time; alternatively, or in addition, the chamber 304 may include a manifold system to extend the functional airflow path within the chamber 304 .
- other mechanisms to extend dwell time within the enclosed volume may include a dielectric material that causes turbulence or a pump to increase internal pressure while limiting output via a regulator may increase dwell time.
- Each ESA panel defining a sterilizing chamber may be configured to produce a beam that scans a regular pattern 400 , 402 , 404 , 406 , 408 , 410 , 412 , 414 of the contained volume to ensure the entire volume is sufficiently irradiated for a sufficient duration to destroy pathogens generally or specific pathogens.
- radiation frequencies may be specific to certain pathogens; that is to say certain pathogens are more vulnerable to (more absorbent of) certain radiation frequencies.
- the ESA panels may be configured to the most effective radiation frequencies.
- the duration of irradiation may be defined by a desired threshold of pathogen destruction; for example, an exposure time of 15 minutes may produce approximately 93% pathogen destruction.
- ESA panels may be configured for different scanning patterns 400 , 402 , 404 , 406 , 408 , 410 , 412 , 414 .
- a first set of ESA panels may employ a lateral scanning pattern 400 while a second set of ESA panels simultaneously employ a vertical scanning pattern 404 .
- different scanning patterns 400 , 402 , 404 , 406 , 408 , 410 , 412 , 414 may prevent incidental interference that reduces dwell time at the desired frequency.
- different scanning patterns 400 , 402 , 404 , 406 , 408 , 410 , 412 , 414 may ensure that the ESA panels are always maintaining a threshold level of irradiation in every unit volume of the chamber.
- the absorption band 500 for a rod-shaped virus falls between 6 and 7 GHz.
- a sterilization chamber defined by ESA panels configured for beam forming in 8 separate frequencies within that range sterilizes the internal volume to an arbitrary threshold based on total duration of exposure.
- a graph of absorption bands for an exemplary pathogen is shown.
- Absorption bands 600 , 602 for a spherical-shaped virus fall between 8 and 10 GHz and 19 and 21 GHz respectively.
- a sterilization chamber defined by ESA panels configured for beam forming in 8 separate frequencies within those ranges sterilizes the internal volume to an arbitrary threshold based on total duration of exposure. It may be appreciated that ESA panels may be configured to separately for maximum effectiveness against specific pathogens. Alternatively, or in addition, the sterilizing chamber may be configured with different sets of ESA panels configured for different frequency ranges.
- the ESA panels may be configured for maximum effectiveness against specific pathogens at different times; for example, the ESA panels may be configured for 6 to 7 GHz for a first dwell time and 8 to 10 GHz and 19 to 21 GHz for a second dwell time.
- FIG. 7 a side view of a sterilizing chamber 704 according to an exemplary embodiment is shown.
- the sterilizing chamber 704 defined by a plurality of ESA panels, is further defined by parabolic reflectors 702 , 706 configured to retain reflected radiation and sidelobe radiation from the ESA panels within the chamber 704 .
- the parabolic reflectors 702 , 706 may define an input compressor 700 and an output regulator 708 respectively.
- the compressor 700 receives an airflow at a first, normal rate, and compresses the air to a higher pressure inside the sterilizing chamber 704 .
- the regulator 708 slowly releases the higher-pressure air from inside the chamber 708 . Increased pressure allows for increased dwell time, a smaller chamber volume per flow-rate of air, or both.
- FIG. 8 a side view of a sterilizing chamber 804 according to an exemplary embodiment is shown.
- the sterilizing chamber 804 defined by a plurality of ESA panels, is further defined by parabolic reflectors 802 , 806 configured to retain reflected radiation and sidelobe radiation from the ESA panels within the chamber 804 .
- the parabolic reflectors 802 , 806 define doors into the sterilizing chamber 804 .
- Equipment 810 , 812 such as hospital beds or other hospital equipment that is large and difficult to reliably sterilize, is loaded into the chamber 804 and the parabolic reflectors 802 , 806 are closed.
- the equipment 810 , 812 is then irradiated by ESA panels that define the chamber 804 for a dwell time and at all angles, sufficient to destroy pathogens of interest to within an arbitrary threshold.
- a far-field array useful in exemplary embodiments is shown. Radiation from a feeding antenna 900 is directed to a reflecting surface 904 and then reradiated by phase-arranged reflecting elements of the reflecting surface 904 .
- the reradiated waves 908 , 910 form a planar phase front to some desired far-field direction.
- the wavefront of the reradiated waves 908 , 910 remain co-phasal in the desired far-field direction.
- the phase of the wavefront associated with a given reflecting element is the summation of the propagation phase delay from the feeding antenna 900 to the reflecting element, the reflection phase of that reflecting element, and the propagation phase delay from that reflecting element to the desired main beam direction.
- radiation from a feeding antenna 902 is directed to a reflecting surface 906 and the reradiated waves 912 , 914 are focused onto a desired focal point 916 which may be mostly in the radiating near-field region of the reflecting surface 906 .
- the focusing reflecting surface 906 concentrates microwave (or other radiation) power onto the focal point 916 . Focusing power at a focal point means that the waves reradiated from the reflecting elements should be co-phasal or in phase at the desired focal point 916 .
- FIG. 10 a table of antenna peak power, distance, and pathogen death rates is shown.
- Time-averaged power densities of three different radiation array configurations with slot array at 80 mm, slot array at 30 mm, and focusing reflecting surface at 178 mm were previously tested.
- the input power levels are fixed at 1 W.
- virus samples were illuminated for 15 minutes and the death rate of the virus of each sample was recorded.
- the death rates of the virus samples were 7%, 53%, and 93%, respectively.
- the results show that focusing outperforms far-field high-gain slot array antennas in virus sanitization.
- Embodiments of the present disclosure are directed to a cavity that encloses a treatment volume; the walls of the cavity are formed by ESA panels.
- ESA panels are mounted on the walls of the cavity or the entire surface area of the wall of the cavity is the radiator of the ESA itself.
- Parabolic reflector end caps keep any stray energy from side lobes or reflections from escaping the volume.
- the parabolic reflector with a feed port in the center appears as a black body to any radiation that hits it. Radiation is be reflected back inside of the chamber.
- Radiation from the ESAs excites acoustic resonant modes in the pathogen particles and cause them to vibrate enough that their geometry changes on the outer surface.
- Multiple different frequency ranges target multiple pathogens instead of just one. Different pathogens are affected by different frequencies, so one set of ESA panels may be configured to target pathogens like coronavirus while others target pathogens like flu virus.
- each panel is steered around separately and particles traveling through the treatment volume can be irradiated from multiple angles of incidents many times to eliminate effects of shading.
- Such embodiments may be particularly advantageous when scaled up to sanitize things such as hospital beds where it may be difficult to illuminate all surfaces with existing UV point sources.
- Embodiments of the present disclosure may be suitable for inclusion in the air filtration system of mobile platforms such as aircraft.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/335,629 US12005163B2 (en) | 2020-06-10 | 2021-06-01 | Phased array microwave sanitizer for pathogens |
EP21178634.8A EP3923679A1 (en) | 2020-06-10 | 2021-06-09 | Phased array microwave sanitizer for pathogens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063037099P | 2020-06-10 | 2020-06-10 | |
US17/335,629 US12005163B2 (en) | 2020-06-10 | 2021-06-01 | Phased array microwave sanitizer for pathogens |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210386899A1 US20210386899A1 (en) | 2021-12-16 |
US12005163B2 true US12005163B2 (en) | 2024-06-11 |
Family
ID=76374939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/335,629 Active 2042-05-28 US12005163B2 (en) | 2020-06-10 | 2021-06-01 | Phased array microwave sanitizer for pathogens |
Country Status (2)
Country | Link |
---|---|
US (1) | US12005163B2 (en) |
EP (1) | EP3923679A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5098665A (en) | 1987-04-14 | 1992-03-24 | Helmut Katschnig | Device for heating of articles and organisms |
WO2004105808A2 (en) | 2003-05-28 | 2004-12-09 | George Thompson | Combined high energy field air sterilizer and absorption chiller/cooler |
US7658891B1 (en) * | 1997-11-21 | 2010-02-09 | Barnes Ronald L | Air purification and decontamination for hazmat suits |
US8524445B2 (en) * | 2008-03-18 | 2013-09-03 | National Taiwan University | Detect and identify virus by the microwave absorption spectroscopy |
EP3331323A1 (en) | 2015-07-31 | 2018-06-06 | Imagineering, Inc. | Electromagnetic wave heating device |
WO2019224392A1 (en) | 2018-05-25 | 2019-11-28 | Gea Food Solutions Bakel B.V. | Combination of solid-state rf techology with another heat treatment for food |
-
2021
- 2021-06-01 US US17/335,629 patent/US12005163B2/en active Active
- 2021-06-09 EP EP21178634.8A patent/EP3923679A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5098665A (en) | 1987-04-14 | 1992-03-24 | Helmut Katschnig | Device for heating of articles and organisms |
US7658891B1 (en) * | 1997-11-21 | 2010-02-09 | Barnes Ronald L | Air purification and decontamination for hazmat suits |
WO2004105808A2 (en) | 2003-05-28 | 2004-12-09 | George Thompson | Combined high energy field air sterilizer and absorption chiller/cooler |
WO2004105808A3 (en) | 2003-05-28 | 2005-07-28 | George Thompson | Combined high energy field air sterilizer and absorption chiller/cooler |
US8524445B2 (en) * | 2008-03-18 | 2013-09-03 | National Taiwan University | Detect and identify virus by the microwave absorption spectroscopy |
EP3331323A1 (en) | 2015-07-31 | 2018-06-06 | Imagineering, Inc. | Electromagnetic wave heating device |
EP3331323A4 (en) | 2015-07-31 | 2018-07-25 | Imagineering, Inc. | Electromagnetic wave heating device |
WO2019224392A1 (en) | 2018-05-25 | 2019-11-28 | Gea Food Solutions Bakel B.V. | Combination of solid-state rf techology with another heat treatment for food |
Non-Patent Citations (6)
Title |
---|
Extended Search Report for European Application No. 21178634.8 dated Oct. 22, 2021, 8 pages. |
Guo, Zhen-Dong et al., Centers for Disease Control and Prevention, ISSN: 1080-6059, vol. 26, No. 7, Jul. 2020, 5 pages. |
Hung, Wan-Ting et al., "A focusing reflectarray and its application in microwave virus sanitizer", Radio Science, vol. 49, Issue 10, 15 pages. |
Morawska, Lidia et al., "Airborne transmission of SARS-COV-2: The world should face the reality", Environ Int., Jun. 2020, 139, 105730, PMCID: PMC7151430, PMID: 32294574, Elsevier Public Health Emergency Collection, 6 pages. |
Sun, Chi-Kuang et al., "Resonant Dipolar Coupling of Microwaves with Confined Acoustic Vibrations in a Rod-shaped Virus", Scientific Reports, 7:4611, DOI: 10. 1038/s41598-017-04089-7, Published Online Jul. 4, 2017, 9 pages. |
Van Doremalen, Neeltje et al., "Aerosol and Surface Stability of SARS-COV-2 as Compared with SARS-COV-1", N. Engl. J. Med, Mar. 17, 2020, NEJMc2004973, doi: 10.1056/NEJMc2004973, PMCID: PMC7121658, PMID: 32182409, NEJM Group Public Health Emergency Collection, 5 pages. |
Also Published As
Publication number | Publication date |
---|---|
EP3923679A1 (en) | 2021-12-15 |
US20210386899A1 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Design of linear and circular antenna arrays using cuckoo optimization algorithm | |
US20170028093A1 (en) | Enhanced photo-catalytic cells | |
US8585980B2 (en) | Enhanced photo-catalytic cells | |
US20080210175A1 (en) | Employing millimeter-wave electromagnetic energy in collision avoidance | |
US20210299289A1 (en) | Methods and apparatus for volumetric inactivation of viruses by acoustic resonance stimulation using non-ionizing gigahertz electromagnetic radiation | |
US11209247B2 (en) | Radiation source for microwave pulses and radiation device | |
US20240374907A1 (en) | System and method for transmitting radio frequency energy at a virus resonant frequency to disable it | |
US12005163B2 (en) | Phased array microwave sanitizer for pathogens | |
WO2007059508A1 (en) | Time reversal antenna network based directed energy systems | |
Kossenas et al. | A methodology for remote microwave sterilization applicable to the coronavirus and other pathogens using retrodirective antenna arrays | |
WO2001097953A2 (en) | Air sterilizing system | |
Mumtaz et al. | Biological Effects of Pulsed High-Power Microwaves | |
US20210227420A1 (en) | Systems and methods for electromagnetic virus inactivation | |
KR20180108057A (en) | System for Exterminating Bursaphelenchus xylophilus and the Method for the same | |
Echchgadda et al. | Evaluation of viral inactivation on dry surface by high peak power microwave (HPPM) exposure | |
EP3870994B1 (en) | Radar system for jammed environments | |
US11471544B2 (en) | Using a steerable beam of RF energy to eliminate viruses and/or bacteria from a volume of air | |
AU2021253569A1 (en) | Systems and methods for electromagnetic virus inactivation | |
WO2019234485A1 (en) | Transducer assembly | |
Kossenas et al. | Remote Destruction of the Coronavirus by Dual-Polarized Wireless Power Transmission | |
KR102255907B1 (en) | A System for Controlling a Growth by a Characteristic Band Width of an Electro-Magnetic Wave and the Method for Controlling the Growth using the Same | |
HK40084479A (en) | Systems and methods for electromagnetic virus inactivation | |
RU2259215C1 (en) | Device for protecting against energetic actions | |
TW202206114A (en) | Systems and methods for electromagnetic virus inactivation | |
ATE479114T1 (en) | BISTATIC RADIOELECTRIC DEVICE FOR PRODUCING AN INTRUSION DETECTION BARRIER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROCKWELL COLLINS, INC., IOWA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAVIES, ORION;REEL/FRAME:056403/0076 Effective date: 20210531 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |