US11760280B2 - Systems and methods for streaming processing for autonomous vehicles - Google Patents
Systems and methods for streaming processing for autonomous vehicles Download PDFInfo
- Publication number
- US11760280B2 US11760280B2 US15/983,491 US201815983491A US11760280B2 US 11760280 B2 US11760280 B2 US 11760280B2 US 201815983491 A US201815983491 A US 201815983491A US 11760280 B2 US11760280 B2 US 11760280B2
- Authority
- US
- United States
- Prior art keywords
- sensor data
- data
- autonomous vehicle
- cycle
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
- G01S13/723—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/66—Tracking systems using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/933—Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9318—Controlling the steering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/93185—Controlling the brakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9319—Controlling the accelerator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9323—Alternative operation using light waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93273—Sensor installation details on the top of the vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G05D2201/0213—
Definitions
- the present disclosure relates generally to autonomous vehicles. More particularly, the present disclosure relates to systems and methods for streaming processing within one or more systems of an autonomous vehicle.
- An autonomous vehicle is a vehicle that is capable of sensing its environment and navigating with minimal or no human input.
- an autonomous vehicle can observe its surrounding environment using a variety of sensors and can attempt to comprehend the environment by performing various processing techniques on data collected by the sensors. Given knowledge of its surrounding environment, the autonomous vehicle can identify an appropriate motion path through such surrounding environment.
- One example aspect of the present disclosure is directed to a computing system including a sensor system, a memory device, and a data streaming controller.
- the sensor system includes at least one sensor configured to obtain sensor data at a plurality of consecutive cycles, the sensor data at each cycle including information descriptive of a 360 degree scene of an environment surrounding an autonomous vehicle.
- the memory device is configured to store the sensor data as the sensor data becomes available from the at least one sensor.
- the data streaming controller includes one or more processors and one or more non-transitory computer-readable media that collectively store instructions that, when executed by the one or more processors, cause the data streaming controller to perform operations.
- the operations include determining a subset of the sensor data at each cycle.
- the operations also include initiating transfer of the subset of the sensor data at each cycle from the memory device to an autonomy system associated with the computing system.
- the method includes obtaining, by a computing system comprising one or more computing devices, sensor data at a plurality of consecutive cycles, the sensor data at each cycle including information descriptive of a 360 degree scene of an environment surrounding an autonomous vehicle.
- the method also includes storing, by the computing system, the sensor data in a memory device as the sensor data becomes available from the at least one sensor.
- the method also includes determining, by the computing system, a subset of the sensor data at each cycle.
- the method also includes initiating transfer, by the computing system, of the subset of the sensor data at each cycle from the memory device to an autonomy system associated with the computing system in response to the entire subset being stored in the memory device.
- the autonomous vehicle includes one or more processors and one or more non-transitory computer-readable media that collectively store instructions that, when executed by the one or more processors, cause the one or more processors to perform operations.
- the operations include obtaining sensor data at a plurality of consecutive cycles, the sensor data at each cycle including information descriptive of a 360 degree scene of an environment surrounding an autonomous vehicle.
- the operations also include storing the sensor data in a memory device as the sensor data becomes available from the at least one sensor.
- the operations also include determining a portion of the sensor data at each cycle corresponding to at least one object of interest.
- the operations also include transferring the portion of the sensor data at each cycle from the memory device to an autonomy system associated with the computing system in response to the entire portion being stored in the memory device.
- the operations also include generating updated state data associated with the at least one object of interest based at least in part on the portion of sensor data received by the autonomy system.
- FIG. 1 depicts an example autonomy system for an autonomous vehicle according to example embodiments of the present disclosure
- FIG. 2 depicts a first aspect of sensor data obtained for a scene of an environment surrounding an autonomous vehicle according to example embodiments of the present disclosure
- FIG. 3 depicts a second aspect of sensor data obtained for a scene of an environment surrounding an autonomous vehicle according to example embodiments of the present disclosure
- FIG. 4 A depicts a block diagram of an example object prediction process according to example aspects of the present disclosure
- FIG. 4 B depicts a block diagram of an example streaming processing configuration according to example aspects of the present disclosure
- FIG. 5 depicts a block diagram of an example computing system according to example aspects of the present disclosure
- FIG. 6 depicts a flow chart diagram of a first example method according to example aspects of the present disclosure
- FIG. 7 depicts a flow chart diagram of a second example method according to example aspects of the present disclosure.
- FIG. 8 depicts a flow chart diagram of a third example method according to example aspects of the present disclosure.
- an autonomy computing system can include a plurality of systems.
- the system can control transmission of data associated with the update as well as a determination of other aspects by the given system. For example, the system can determine based on a received update for a particular aspect and a priority classification and/or interaction classification determined for that aspect whether data associated with the update should be transmitted to a subsequent system before waiting for other updates to arrive.
- autonomy data can be delivered to other systems in an advanced fashion (e.g., “ahead of schedule”).
- an autonomous vehicle can be controlled to react more quickly relative to aspects classified as high-priority. For example, the additional time gained through advancing the autonomy data in a streaming fashion can enable to vehicle to come to a stop more quickly or otherwise make improved maneuvers which enhance passenger and vehicle safety.
- different systems within an autonomy computing system can be configured to receive autonomy data descriptive of updates for a subset of a scene of a surrounding environment of an autonomous vehicle.
- a scene corresponds to a 360 degree scene of an environment surrounding an autonomous vehicle.
- the subset of the scene can include a smaller portion of autonomy data than autonomy data descriptive of updates for an entirety of a scene.
- the subset of the scene can be associated with one or more objects of interest within the scene (e.g., one or more vehicles, pedestrians, bicycles, buildings, roads, etc.).
- the subset of the scene can be associated with one or more regions of interest within the scene (e.g., a region of interest proximate to a planned trajectory of an autonomous vehicle).
- a subset of a 360 degree scene of an environment surrounding the autonomous vehicle can include an angular slice of the 360 degree scene (e.g., in the direction of the vehicle's planned trajectory).
- the subset of the scene includes an amount of sensor data that is less than an entire cycle of sensor data (e.g., less than a 360 degree scene of an environment).
- an autonomy computing system can include a priority classification system.
- the priority classification system can be configured to determine a priority classification for objects perceived by an autonomous vehicle and/or regions of interest within a scene surrounding an autonomous vehicle.
- determining a second aspect of the object and/or region of interest can be determined based at least in part on the priority classification, thereby enabling higher priority objects and/or regions of interest to the analyzed before lower priority objects and/or regions of interest.
- a priority classification for each aspect of a scene can be indicative of an importance of the object and/or region of interest to a determination for a motion plan for the autonomous vehicle.
- the priority classification assigned to each object can be based on a plurality of factors, such as how likely an object is to interact with the autonomous vehicle, how soon an object is likely to interact with the autonomous vehicle, whether an object is likely to impact a motion plan for the autonomous vehicle, etc. For example, a vehicle traveling at a high rate of speed towards the autonomous vehicle can be classified as a higher priority object than a vehicle traveling away from the autonomous vehicle.
- a priority classification for each aspect can be based on one or more heuristic processes. For example, one or more thresholds can be used to classify aspects based on one or more features of the aspect. For example, a minimum time duration, a minimum path, or a minimum distance to interaction with the autonomous vehicle can be used to classify the objects based on how far away the objects are from the autonomous vehicle or how soon the objects will likely interact with the autonomous vehicle. Similarly, a heading and/or velocity can be used to classify objects.
- objects traveling on headings away from the autonomous vehicle can be classified as lower priority than objects traveling towards the autonomous vehicle, and objects traveling at higher speeds towards the autonomous vehicle can be classified as higher priority than objects traveling at lower speeds towards the autonomous vehicle.
- object type e.g., vehicle, bicycle, pedestrian, etc.
- object size e.g., position, or any other feature described herein.
- the priority classification system can classify each aspect according to a variety of different protocols. In one example, the priority classification system can classify each aspect as either high-priority or low-priority based on the respective feature data for each aspect. In some implementations, features for each high-priority aspect can be determined before features are determined for any low-priority aspect. In another example, the priority classification system can classify each object into one of a plurality of priority categories and/or rank each object relative to each other object (e.g., for Y objects, determine a rank of 1 to Y). The relative priority classification and/or rank for each object can be determined based on the feature data for each object. The priority classification for each object can be indicative of an importance of the object to a determination for a motion plan for the autonomous vehicle.
- an autonomy computing system can include an interaction classification system.
- the interaction classification system can be part of the priority classification system or a separate system included in or otherwise accessed by the autonomy computing system.
- the interaction classification system can be configured to determine an interaction classification for objects and/or regions of interest.
- an interaction classification can be indicative of one or more predetermined types of interactions among objects and/or regions of interest.
- determining an interaction classification between a first object and a second object can include determining that the first object and the second object are likely to collide given their current tracks/trajectories.
- determining an interaction classification includes accessing a dependence graph (e.g., an object dependence graph) that identifies interacting aspects (e.g., objects and/or regions of interest).
- Such a dependence graph can be iteratively updated as systems determine new portions of autonomy data related to the aspects of a scene of the surrounding environment of the autonomous vehicle.
- interaction classifications can help a system determine when it is appropriate to update its determined autonomy aspects based on asynchronously received updates for objects and/or regions of interest.
- latency can be reduced and responsiveness can be improved within an autonomy computing system.
- an interaction classification can be used to help determine when a system should initiate new autonomy data determinations upon receiving an update associated with a given object and/or region of interest as opposed to waiting for updates associated with one or more different objects and/or regions of interest.
- a system can be configured to receive autonomy data associated with a first aspect of a first object (e.g., state data for the first object).
- An interaction classification system can determine that the first object has an interaction dependence on a second object, or vice versa. If autonomy data associated with a first aspect of the second object has not yet been received, an expected time estimate for receiving such autonomy data can be determined.
- the system can wait for such data before determining a second aspect of the first and second objects based at least in part on the received first aspect of the first and second objects.
- the expected time estimate is greater than a threshold value, or if the system waits for receipt of the autonomy data associated with the first aspect of the second object and doesn't receive it within the expected time estimate (e.g., because the second object is currently occluded)
- the first aspect of the second object can be predicted.
- the system can then be configured to determine a second aspect of the first and second objects based at least in part on the received first aspect of the first object and the predicted first aspect of the second object.
- the priority classification system and/or interaction classification system described herein can include or leverage one or more machine-learned models that assist in classifying each object perceived by the autonomous vehicle and/or region of interest within a scene of a surrounding environment of an autonomous vehicle.
- the priority classification system can include a machine-learned object classifier configured to classify each perceived object, such as by classifying each object as high-priority or low-priority.
- the interaction classification system can include a machine-learned object classifier configured to classify each perceived object, such as having one or more predetermined categories of interaction relative to one or more other objects.
- the use of machine-learned models can improve the speed, quality, and/or accuracy of object priority classification and/or interaction classification.
- the improved ability to classify objects according to priority and/or interaction can allow for more efficient use of autonomy computing system resources by, for example, allowing for aspects of higher priority objects to be determined before lower priority objects. Further, this can allow for the determined aspects for higher priority objects to be provided to other systems sooner, reducing overall latency within an autonomy stack and ultimately for determining a motion plan, thereby reducing autonomous vehicle response times and enhancing passenger safety and vehicle efficiency.
- the machine-learned models included in or employed by the priority classification system(s) and/or interaction classification system(s) described herein can be trained using log data collected during actual operation of autonomous vehicles on travelways (e.g., roadways).
- the log data can include sensor data and/or state data for various objects perceived by an autonomous vehicle (e.g., the perception system of an autonomous vehicle) and also the resulting future state for each object that occurred subsequent and/or contemporaneous to collection of the sensor data and/or generation of the state data.
- the log data can include a large number of real-world examples of objects paired with the data collected and/or generated by the autonomous vehicle (e.g., sensor data, map data, perception data, etc.) contemporaneous to such perception, such as whether the object became more or less likely to interact with the autonomous vehicle in the resulting future state of the object.
- Training the machine-learned models on such real-world log data can enable the machine-learned models to determine object classifications which better mirror or mimic real-world object behavior.
- an autonomous vehicle can include a computing system that assists in controlling the autonomous vehicle.
- the autonomous vehicle can be a ground-based autonomous vehicle (e.g., car, truck, bus, etc.), an air-based autonomous vehicle (e.g., airplane, drone, helicopter, or other aircraft), or other types of vehicles (e.g., watercraft).
- the computing system can include a perception system, a prediction system, and a motion planning system that cooperate to perceive the surrounding environment of the autonomous vehicle and determine a motion plan for controlling the motion of the autonomous vehicle accordingly.
- the perception system can perceive one or more objects that are proximate to an autonomous vehicle, and provide state data indicative of the one or more objects to the prediction system.
- the prediction system can then determine a predicted future state or track for each object perceived by the perception system.
- the motion planning system can then determine a motion plan for the autonomous vehicle based on the predicted future states or tracks for the objects. In this way, an autonomous vehicle can perceive objects proximate to the autonomous vehicle, and, in response, control the autonomous vehicle accordingly.
- an autonomous vehicle can perform each of the perception, prediction, and motion planning steps sequentially using data obtained in a plurality of consecutive time frames.
- the perception system can receive sensor data for the time frame N; the perception system can concurrently generate and provide state data to the prediction system for one or more objects perceived by the perception system for a time frame N minus 1 (N ⁇ 1); the prediction system can concurrently determine a predicted future state for each object perceived by the perception system for a time frame N minus 2 (N ⁇ 2); and a motion planning system can concurrently determine a motion plan for the autonomous vehicle using predicted future states for a time frame N minus 3 (N ⁇ 3).
- a motion plan for the autonomous vehicle can be iteratively determined using data from each of a plurality of consecutive time frames.
- each of the perception, prediction, and motion planning systems may require the preceding system to complete a respective analysis of data for a time frame before each system can subsequently analyze the data for the time frame.
- the perception system may need to complete an analysis of data obtained from one or more sensors on the autonomous vehicle in order to generate the state data used by the prediction system.
- the prediction system may need to complete an analysis of state data for a time frame to determine a predicted future state for each object before the motion planning system can determine a motion plan for the autonomous vehicle.
- the overall time from when an object is sensed by a sensor until a motion plan is determined in response to the object may be dependent upon each system completing its respective analysis of the object along with all other objects perceived at the same time as the object.
- the systems and methods according to example aspects of the present disclosure can allow for determining a priority classification and/or interaction classification for objects perceived by an autonomous vehicle and/or regions of interest within a scene of the environment surrounding an autonomous vehicle. Based at least in part on the priority classification and/or interaction classification, determination of subsequent aspects of autonomy data can be implemented for some objects and/or regions of interest (e.g., higher priority and/or dependent objects) before other objects and/or regions of interest.
- a sensor system can include at least one sensor that is coupled to or otherwise included within the autonomous vehicle.
- the at least one sensor can include a Light Detection and Ranging (LIDAR) system, a Radio Detection and Ranging (RADAR) system, one or more cameras (e.g., visible spectrum cameras, infrared cameras, etc.), and/or other sensors.
- LIDAR Light Detection and Ranging
- RADAR Radio Detection and Ranging
- the sensor data can include information that describes the location of objects within the surrounding environment of the autonomous vehicle.
- the sensor data can be obtained at a plurality of consecutive cycles, the sensor data at each cycle including information descriptive of a 360 degree scene of an environment surrounding an autonomous vehicle.
- a computing system can also include a memory device configured to store the sensor data as it becomes available from the at least one sensor.
- the memory device can include a rolling buffer to which sensor data is written at a plurality of successive increments of the sensor data within each cycle of the sensor data.
- each successive increment of the sensor data within a cycle of the sensor data comprises an angular slice of the 360 degree scene of an environment surrounding an autonomous vehicle.
- the computing system can also include a data streaming controller configured to determine a subset of the sensor data at each cycle of the sensor data and initiate transfer of the subset of the sensor data at each cycle of the sensor data from the memory device to an autonomy system associated with the computing system.
- the data controller can initiate transfer of each successive increment of the sensor data within each cycle as soon as it is written to the rolling buffer or other memory device.
- the data controller can also interact with a priority classification system that is configured to, for each cycle of the sensor data, determine at least one high-priority region of interest. Determining a subset of the sensor data at each cycle of the sensor data for which transfer to an autonomy system can be initiated can be based in part on the at least one high-priority region of interest.
- the at least one high-priority region of interest is determined based on an expected location of an object within a second cycle of the sensor data, the expected location of the object being determined by analyzing a first cycle of the sensor data, wherein the second cycle of the sensor data is obtained subsequently to the first cycle of the sensor data.
- the at least one high-priority region of interest can include an angular slice of the 360 degree scene of an environment surrounding an autonomous vehicle, the angular slice being inclusive of the object.
- the at least one high-priority region of interest is determined based on a predicted future location of the autonomous vehicle as specified by a motion plan determined at least in part from the sensor data.
- the autonomous vehicle can determine a planned vehicle trajectory for the autonomous vehicle to follow and the region of interest can be associated with a location along the planned vehicle trajectory.
- the priority classification system can be further configured to determine at least one high-priority region of interest for a third cycle of the sensor data.
- the at least one high-priority region of interest for the second cycle of the sensor data can at least partially overlap the at least one high-priority region of interest for the third cycle of the sensor data.
- the priority classification system can be configured to classify respective portions of the sensor data at each cycle of the sensor data as having a particular priority classification such that the data streaming controller is configured to initiate transfer of the respective portions of the sensor data at each cycle of the sensor data based at least in part on the particular priority classification for the respective portions.
- a perception system can be configured to receive each subset of sensor data at each cycle transferred from the memory device and to generate, for each of a plurality of consecutive time frames, state data descriptive of at least a current state of each of a plurality of objects that are perceived within the sensor data. Based on sensor data received from the sensor system and/or the map data, the perception system can identify one or more objects that are proximate to the autonomous vehicle at each time frame. As an example, in some implementations, the perception system can segment the sensor data (e.g., the LIDAR data) into discrete object polygons and/or track objects frame-to-frame (e.g., iteratively over a number of consecutive time frames or periods).
- the sensor data e.g., the LIDAR data
- the perception system can generate, for each object, state data that describes a current state of such object (also referred to as one or more features of the object).
- state data for each object can describe an estimate of the object's: location (also referred to as position); speed (also referred to as velocity); acceleration; heading; yaw rate; orientation; size/footprint (e.g., as represented by a bounding polygon or other shape); type/class (e.g., vehicle, pedestrian, bicycle); distance from the autonomous vehicle; minimum path to interaction with the autonomous vehicle; a minimum time duration to interaction with the autonomous vehicle; and/or other state information and/or covariances of the above-described forms of state information.
- certain state data for an object can be used to determine one or more other features for the object. For example, in some implementations, an object's position, speed, acceleration, and/or heading can be used to determine a minimum path to interaction with the autonomous vehicle or a minimum time duration to interaction with the autonomous vehicle.
- the perception system can provide the state data to the priority classification system and/or the prediction system (e.g., iteratively for each time frame).
- a perception system can be configured to obtain a first portion of autonomy data descriptive of an update for a first feature (e.g., sensor data) for a first object detected within a surrounding environment of an autonomous vehicle.
- the perception system can determine a second object to have an interaction classification relative to the first object, the interaction classification being indicative of one or more predetermined types of interaction between objects.
- the interaction classification is indicative that the first object and the second object are likely to collide (and/or otherwise interact) given their current trajectories.
- the interaction classification is indicative of the first object and the second object being within a predetermined level of proximity to one another at one or more of a current time or future time.
- determining the interaction classification between first object and the second object can include accessing a dependence graph that identifies interacting objects.
- the interaction classification can help the perception system determine when it is appropriate to determine updated state data for an object based on asynchronously received updates for that object and/or other objects and/or regions of interest.
- an expected time estimate for receiving such autonomy data can be determined.
- the perception system can wait for such data before determining updated state data for the first and second objects based at least in part on the received sensor data for the first and second objects.
- the expected time estimate is greater than a threshold value, or if the perception system waits for receipt of the sensor data for the second object and doesn't receive it within the expected time estimate (e.g., because the second object is currently occluded), then sensor data for the second object can be predicted.
- the system can then be configured to determine state data for the first and second objects based at least in part on the received sensor data for the first object.
- the system can also be configured to coordinate transmission of portions of state data to a second system of the autonomy computing system (e.g., a prediction system).
- the perception system can also be configured to determine a priority classification associated with one or more aspects of a scene (e.g., an object and/or region of interest). Transmission of updated portions of state data from the perception system to another system (e.g., a prediction system) can be coordinated at least in part based on the priority classification(s).
- determining a priority classification for each object in a plurality of objects can include classifying each object as either high-priority or low-priority.
- determining a priority classification for each object in a plurality of objects can include determining a priority classification value from within a predetermined range of values.
- an order can be determined in which the computing system determines state data for the plurality of objects based at least in part on the priority classification for each object.
- the state data can then be determined according to the order. Transmission of the state data can be controlled in an asynchronous fashion from the perception system to a prediction system or other system of an autonomy computing system.
- a prediction system can be configured to receive asynchronous updates of state data for each object and to generate, for each of a plurality of consecutive time frames, a predicted future state/track for each object.
- various prediction techniques can be used to predict the one or more future locations for the object(s) identified by the perception system.
- the prediction system can provide the predicted future locations of the objects to the motion planning system.
- the prediction system can be a goal-oriented prediction system that generates one or more potential goals, selects one or more of the most likely potential goals, and develops one or more trajectories by which the object can achieve the one or more selected goals.
- the prediction system can include a scenario generation system that generates and/or scores the one or more goals for an object and a scenario development system that determines the one or more trajectories by which the object can achieve the goals.
- the prediction system can include a machine-learned goal-scoring model, a machine-learned trajectory development model, and/or other machine-learned models.
- a prediction system can be configured to obtain a first portion of autonomy data descriptive of an update for a first feature (e.g., state data) for a first object detected within a surrounding environment of an autonomous vehicle.
- the prediction system can determine a second object to have an interaction classification relative to the first object, the interaction classification being indicative of one or more predetermined types of interaction between objects.
- the interaction classification is indicative that the first object and the second object are likely to collide given their current trajectories.
- the interaction classification is indicative of the first object and the second object being within a predetermined level of proximity to one another at one or more of a current time or future time.
- determining the interaction classification between first object and the second object can include accessing an object dependence graph that identifies interacting objects.
- the interaction classification can help the prediction system determine when it is appropriate to determine updated track data for an object based on asynchronously received updates for that object and/or other objects and/or regions of interest.
- an expected time estimate for receiving such autonomy data can be determined.
- the prediction system can wait for such data before determining updated track data for the first and second objects based at least in part on the received state data for the first and second objects.
- the expected time estimate is greater than a threshold value, or if the prediction system waits for receipt of the state data for the second object and doesn't receive it within the expected time estimate (e.g., because the second object is currently occluded)
- state data for the second object can be predicted.
- the system can then be configured to determine track data for the first and second objects based at least in part on the received state data for the first object.
- the system can also be configured to coordinate transmission of portions of track data to a second system of the autonomy computing system (e.g., a motion planning system).
- the prediction system can also be configured to determine a priority classification associated with one or more aspects of a scene (e.g., an object and/or region of interest). Transmission of updated portions of track data from the prediction system to another system (e.g., a motion planning system) can be coordinated at least in part based on the priority classification(s).
- determining a priority classification for each object in a plurality of objects can include classifying each object as either high-priority or low-priority.
- determining a priority classification for each object in a plurality of objects can include determining a priority classification value from within a predetermined range of values.
- an order can be determined in which the computing system determines track data for the plurality of objects based at least in part on the priority classification for each object.
- the track data can then be determined according to the order. Transmission of the track data can be controlled in an asynchronous fashion from the prediction system to a motion planning system or other system of an autonomy computing system.
- the motion planning system can determine a motion plan for the autonomous vehicle based at least in part on the state data provided by the perception system and/or the predicted one or more future locations or tracks for the objects provided by the prediction system. Stated differently, given information about the current locations of proximate objects and/or predictions about the future locations of proximate objects, the motion planning system can determine a motion plan for the autonomous vehicle that best navigates the vehicle relative to the objects at their current and/or future locations.
- the motion planning system operates to generate a new autonomous motion plan for the autonomous vehicle multiple times per second.
- Each new autonomous motion plan can describe motion of the autonomous vehicle over the next several seconds (e.g., 5 seconds).
- the motion planning system continuously operates to revise or otherwise generate a short-term motion plan based on the currently available data.
- the motion planning system can include an optimization planner that, for each instance of generating a new motion plan, searches (e.g., iteratively searches) over a motion planning space (e.g., a vehicle state space) to identify a motion plan that optimizes (e.g., locally optimizes) a total cost associated with the motion plan, as provided by one or more cost functions.
- the motion plan can include a series of vehicle states and/or a series of controls to achieve the series of vehicle states.
- a vehicle state can include the autonomous vehicle's current location (also referred to as position); current speed (also referred to as velocity); current acceleration, current heading; current orientation; and/or other state information.
- the optimization planner can be or include an iterative linear quadratic regulator or similar iterative solver.
- the optimal candidate motion plan can be selected and executed by the autonomous vehicle.
- the motion planning system can provide the selected motion plan to a vehicle controller that controls one or more vehicle controls (e.g., actuators that control gas flow, steering, braking, etc.) to execute the selected motion plan until the next motion plan is generated.
- vehicle controls e.g., actuators that control gas flow, steering, braking, etc.
- the motion planning system can employ or otherwise include one or more cost functions that, when evaluated, provide a total cost for a particular candidate motion plan.
- the optimization planner can search over a motion planning space (e.g., a vehicle state space) to identify a motion plan that optimizes (e.g., locally optimizes) the total cost provided by the one or more cost functions.
- different cost function(s) can be used depending upon a particular scenario that is selected by the motion planning system.
- the motion planning system can include a plurality of scenario controllers that detect certain scenarios (e.g., a changing lanes scenario versus a queueing scenario) and guide the behavior of the autonomous vehicle according to the selected scenario.
- Different sets of one or more cost functions can correspond to the different possible scenarios and the cost function(s) corresponding to the selected scenario can be loaded and used by the motion planning system at each instance of motion planning.
- the one or more cost functions used by the motion planning system can include a plurality of gains.
- Gains of the one or more cost functions can include coefficients, thresholds, or other configurable parameters of the one or more cost functions.
- the cost function gains can serve to effectuate a balance between competing concerns (e.g., in the form of cost features) when the motion planning system generates an autonomous motion plan for the autonomous vehicle.
- an example cost function can provide, among other costs, a first cost that is negatively correlated to a magnitude of a first distance from the autonomous vehicle to a lane boundary.
- a candidate motion plan approaches a lane boundary
- the first cost increases, thereby discouraging (e.g., through increased cost penalization) the autonomous vehicle from selecting motion plans that come close to or cross over lane boundaries.
- the magnitude of the first distance from the autonomous vehicle to the lane boundary can be referred to as a “feature.”
- the example cost function provides the first cost based on such feature.
- the example cost function includes a number of configurable parameters, including, for example, a threshold gain value that describes a certain magnitude of the first distance at which the first cost becomes greater than zero, a coefficient gain value that influences a rate at which the first cost increases as the magnitude of the first distance decreases, and/or other configurable parameters.
- the example cost function might provide, among other costs, a second cost that is negatively correlated to a magnitude of a second distance from the autonomous vehicle to a pedestrian.
- the motion planning system is discouraged from selecting motion plans that approach pedestrians.
- the magnitude of the second distance can be referred to as a feature and the cost function can include a number of gains that control the influence of such feature on the total cost.
- the respective gains of the second cost and the first cost will effectuate a certain balance between the second cost and the first cost (e.g., it is more important to avoid approaching a pedestrian than it is to avoid crossing a lane boundary).
- the example cost function described above is provided only as an example cost function to illustrate the principles of features, gains, and costs. Many other and different cost functions with different features and costs can be employed in addition or alternatively to the example cost function described above.
- the cost function(s) should be C1 continuous in state variables at each time step.
- the cost functions of the present disclosure can include any number (e.g., hundreds) of different features, gains, and costs.
- additional costs can be assessed based on dynamics, speed limits, crosstrack (e.g., deviation from a center line of a lane), end of path, stop sign, traffic light, adaptive cruise control, static obstacles, etc.
- the cost function(s) are quadratic, linear, or a combination thereof.
- the cost function(s) can include a portion that provides a reward rather than a cost.
- the reward can be of opposite sign to cost(s) provided by other portion(s) of the cost function.
- Example rewards can be provided for distance traveled, velocity, or other forms of progressing toward completion of a route.
- a computing system e.g., a motion planning computing system
- the first aspect of the scene of the environment surrounding the autonomous vehicle includes a region of interest within the scene.
- the first aspect of the scene of the environment surrounding the autonomous vehicle includes an object perceived within the scene.
- the computing system can be configured to determine a priority classification for the first aspect of the scene of the environment surrounding the autonomous vehicle. For example, in some implementations, determining a priority classification for the first aspect of the scene of the environment surrounding the autonomous vehicle can include determining a level of influence of the first aspect of the scene of the environment on a recently obtained motion plan for the autonomous vehicle.
- the computing system can be additionally or alternatively configured to determine an interaction classification for the first aspect of the scene relative to other aspects of the scene of the environment surrounding the autonomous vehicle. For example, determining an interaction classification can involve accessing a dependence graph that identifies interacting aspects.
- one or more discrete-type decisions relative to navigation of the autonomous vehicle can be determined and/or an optimized motion plan for the autonomous vehicle that is configured to control navigation of the autonomous vehicle in keeping with the discrete-type decision and that optimizes one or more cost functions can be determined.
- the computing system can be configured to determine a set of one or more discrete-type decisions from a plurality of discrete-type decisions, the set of one or more discrete-type decisions corresponding to those discrete-type decisions that are based at least in part on the first aspect of the scene of the environment surrounding the autonomous vehicle. In this manner, when an update is received for the first aspect (e.g., an object or region of interest), only those discrete-type decisions that depend on the first aspect are updated, thus reducing latency and processing requirements by the motion planning system.
- the first aspect e.g., an object or region of interest
- the computing system can be further configured to update a priority classification for the first aspect of the scene of the environment in a different system (e.g., a perception system and/or prediction system) other than the motion planning system.
- a different system e.g., a perception system and/or prediction system
- new aspects e.g., objects and/or regions of interest
- such priority classifications can be shared with other systems so that sensor data, state data and/or track data associated with the higher priority aspects can be received and processed more quickly by the motion planning system in future time frames.
- system latencies can be introduced at various points within an autonomy stack. For example, a first latency can be introduced by waiting for sensor data for an entire 360 degree scene relative to an autonomous vehicle to be captured. A second latency can be introduced within a perception system to detect and track objects for an accumulated portion of sensor data corresponding to the entire 360 degree scene. A third latency can be introduced within one or more of a prediction system and/or motion planning system that further implements a pipeline approach for implementing batch analysis for a list of detected and tracked objects.
- Systems and method according to example aspects of the present disclosure can advantageously remedy latency issues that arise during batch processing by streaming autonomy data updates on a per aspect fashion (e.g., as updates per object or region of interest are determined) as opposed to a batch fashion (e.g., as updates for an entire scene or plurality of objects/regions are determined).
- autonomy data can be delivered to other systems in an advanced fashion (e.g., “ahead of schedule”).
- an autonomous vehicle can be controlled to react more quickly relative to aspects classified as high-priority.
- the additional time gained through advancing the autonomy data in a streaming fashion can enable the vehicle to come to a stop more quickly or otherwise make improved maneuvers which enhance passenger and vehicle safety.
- a computing system can be configured to determine a priority classification and/or interaction classification for objects perceived by an autonomous vehicle.
- the systems and methods of the present disclosure can determine a respective priority classification and/or interaction classification for a plurality of aspects of a scene (e.g., objects and/or regions of interest) of a surrounding environment of an autonomous vehicle.
- An order at which features are determined for each aspect can then be determined based at least upon the respective priority classification and/or independence classification for each aspect.
- the ability to classify objects according to a respective priority and/or interaction dependence can allow for computational resources to be focused on higher-priority objects.
- one technical effect and benefit of the present disclosure is reduced latency for determining features for higher priority aspects (e.g., objects and/or regions of interest) which are more likely to impact a motion plan for an autonomous vehicle than low-priority aspects.
- the present disclosure provides techniques that enable a computing system to determine a motion plan for an autonomous vehicle as soon as a predicted feature for all high-priority aspects has been determined.
- the present disclosure can allow for a reduction in the time required for an autonomous vehicle to perceive an object and determine a motion plan in response to the object. This can allow for more efficient use of computing resources on board an autonomous vehicle.
- the present disclosure also provides additional technical effects and benefits, including, for example, enhancing passenger safety.
- the systems and methods according to example aspects of the present disclosure can allow for reduced reaction times for determining a motion plan in response to an object perceived by the autonomous vehicle. This can allow an autonomous vehicle to come to a stop more quickly, navigate around the object, or otherwise respond to the object more quickly, thereby reducing the likelihood of an autonomous vehicle colliding with the object.
- FIG. 1 depicts a block diagram of an example autonomous vehicle 10 according to example aspects of the present disclosure.
- the autonomous vehicle 10 can include a sensor system 102 , an autonomy computing system 106 , and one or more vehicle controls 108 .
- the autonomy computing system 106 can assist in controlling the autonomous vehicle 10 .
- the autonomy computing system 106 can receive sensor data from the sensor system 102 , attempt to comprehend the surrounding environment by performing various processing techniques on data collected by the sensor system 102 , and generate an appropriate motion path through such surrounding environment.
- the vehicle autonomy system 106 can control the one or more vehicle controls 108 to operate the autonomous vehicle 10 according to the motion path.
- the autonomy computing system 106 can include a perception system 110 , a prediction system 112 , and a motion planning system 114 that cooperate to perceive the surrounding environment of the autonomous vehicle 10 and determine a motion plan for controlling the motion of the autonomous vehicle 10 accordingly.
- the perception system 110 can receive sensor data from the sensor system 102 that is coupled to or otherwise included within the autonomous vehicle 10 .
- the sensor system 102 can include one or more sensors 104 , which can include a Light Detection and Ranging (LIDAR) system 122 , a Radio Detection and Ranging (RADAR) system 124 , one or more cameras 126 (e.g., visible spectrum cameras, infrared cameras, etc.), and/or other sensors 128 .
- LIDAR Light Detection and Ranging
- RADAR Radio Detection and Ranging
- the sensor data can include information that describes the location of objects within the surrounding environment of the autonomous vehicle 10 .
- the sensor data can include raw sensor data or sensor data that has been processed or manipulated in one or more fashions relative to the raw sensor data.
- the sensor data can include the location (e.g., in three-dimensional space relative to the LIDAR system 122 ) of a number of points that correspond to objects that have reflected a ranging laser.
- a LIDAR system 122 can measure distances by measuring the Time of Flight (TOF) that it takes a short laser pulse to travel from the sensor to an object and back, calculating the distance from the known speed of light.
- TOF Time of Flight
- the sensor data can include the location (e.g., in three-dimensional space relative to the RADAR system 124 ) of a number of points that correspond to objects that have reflected a ranging radio wave.
- radio waves e.g., pulsed or continuous
- transmitted by the RADAR system 124 can reflect off an object and return to a receiver of the RADAR system 124 , giving information about the object's location and speed.
- a RADAR system 124 can provide useful information about the current speed of an object.
- various processing techniques e.g., range imaging techniques such as, for example, structure from motion, structured light, stereo triangulation, and/or other techniques
- range imaging techniques such as, for example, structure from motion, structured light, stereo triangulation, and/or other techniques
- Other sensors 128 can identify the location of points that correspond to objects as well.
- the one or more sensors 104 can be used to collect sensor data that includes information that describes the location (e.g., in three-dimensional space relative to the autonomous vehicle 10 ) of points that correspond to objects within the surrounding environment of the autonomous vehicle 10 .
- the sensors 104 can be located at various different locations on the autonomous vehicle 10 .
- one or more cameras 126 and/or LIDAR sensors 122 can be located in a pod or other structure that is mounted on a roof of the autonomous vehicle 10 while one or more RADAR sensors 124 can be located in or behind the front and/or rear bumper(s) or body panel(s) of the autonomous vehicle 10 .
- camera(s) 126 can be located at the front or rear bumper(s) of the vehicle 10 as well. Other locations can be used as well.
- the sensor system 102 can include a positioning system 120 .
- the positioning system 120 can determine a current position of the vehicle 10 .
- the positioning system 120 can be any device or circuitry for analyzing the position of the vehicle 10 .
- the positioning system 120 can determine position by using one or more of inertial sensors, a satellite positioning system, based on IP address, by using triangulation and/or proximity to network access points or other network components (e.g., cellular towers, WiFi access points, etc.) and/or other suitable techniques.
- the position of the vehicle 10 can be used by various systems of the autonomy computing system 102 .
- the perception system 103 can retrieve or otherwise obtain map data 118 that provides detailed information about the surrounding environment of the autonomous vehicle 10 .
- the map data 118 can provide information regarding: the identity and location of different travelways (e.g., roadways), road segments, buildings, or other items or objects (e.g., lampposts, crosswalks, curbing, etc.); the location and directions of traffic lanes (e.g., the location and direction of a parking lane, a turning lane, a bicycle lane, or other lanes within a particular roadway or other travelway); traffic control data (e.g., the location and instructions of signage, traffic lights, or other traffic control devices); and/or any other map data that provides information that assists the autonomy computing system 106 in comprehending and perceiving its surrounding environment and its relationship thereto.
- travelways e.g., roadways
- road segments e.g., buildings, or other items or objects (e.g., lampposts, crosswalks, curbing, etc.)
- traffic lanes
- the perception system 110 can identify one or more objects that are proximate to the autonomous vehicle 10 based on sensor data received from the sensor system 102 and/or the map data 118 .
- the perception system 110 can determine, for each object, state data that describes a current state of such object (also referred to as features of the object).
- the state data for each object can describe an estimate of the object's: current location (also referred to as position); current speed (also referred to as velocity); current acceleration; current heading; current orientation; size/shape/footprint (e.g., as represented by a bounding shape such as a bounding polygon or polyhedron); type/class (e.g., vehicle versus pedestrian versus bicycle versus other); yaw rate; distance from the autonomous vehicle; minimum path to interaction with the autonomous vehicle; minimum time duration to interaction with the autonomous vehicle; and/or other state information.
- current location also referred to as position
- current speed also referred to as velocity
- current acceleration current heading
- type/class e.g., vehicle versus pedestrian versus bicycle versus other
- yaw rate distance from the autonomous vehicle; minimum path to interaction with the autonomous vehicle; minimum time duration to interaction with the autonomous
- the perception system 110 can determine state data for each object over a number of iterations. In particular, the perception system 110 can update the state data for each object at each iteration. Thus, the perception system 110 can detect and track objects (e.g., vehicles) that are proximate to the autonomous vehicle 10 over time.
- objects e.g., vehicles
- the prediction system 112 can receive the state data from the perception system 110 and predict one or more future locations for each object based on such state data. For example, the prediction system 112 can predict where each object will be located within the next 5 seconds, 10 seconds, 20 seconds, etc. As one example, an object can be predicted to adhere to its current trajectory according to its current speed. As another example, other, more sophisticated prediction techniques or modeling can be used.
- the motion planning system 114 can determine a motion plan for the autonomous vehicle 10 based at least in part on the predicted one or more future locations for the object and/or the state data for the object provided by the perception system 110 . Stated differently, given information about the current locations of objects and/or predicted future locations of proximate objects, the motion planning system 114 can determine a motion plan for the autonomous vehicle 10 that best navigates the autonomous vehicle 10 relative to the objects at such locations. In some implementations, the motion planning system 114 can determine the motion plan for the autonomous vehicle using one or more adjusted vehicle parameters, as described herein.
- the motion planning system 114 can evaluate one or more cost functions and/or one or more reward functions for each of one or more candidate motion plans for the autonomous vehicle 10 .
- the cost function(s) can describe a cost (e.g., over time) of adhering to a particular candidate motion plan while the reward function(s) can describe a reward for adhering to the particular candidate motion plan.
- the reward can be of opposite sign to the cost.
- the motion planning system 114 can determine a total cost (e.g., a sum of the cost(s) and/or reward(s) provided by the cost function(s) and/or reward function(s)) of adhering to a particular candidate pathway.
- the motion planning system 114 can select or determine a motion plan for the autonomous vehicle 10 based at least in part on the cost function(s) and the reward function(s). For example, the motion plan that minimizes the total cost can be selected or otherwise determined.
- the motion planning system 114 can provide the selected motion plan to a vehicle controller 116 that controls one or more vehicle controls 108 (e.g., actuators or other devices that control gas flow, steering, braking, etc.) to execute the selected motion plan.
- vehicle controller 116 controls one or more vehicle controls 108 (e.g., actuators or other devices that control gas flow, steering, braking, etc.) to execute the selected motion plan.
- the autonomy computing system 106 can also include a memory device 130 configured to store sensor data from the one or more sensors 104 as it becomes available.
- the memory device 130 can include a rolling buffer to which sensor data is written at a plurality of successive increments of the sensor data within each cycle.
- each successive increment of the sensor data within a cycle of the sensor data comprises an angular slice of the 360 degree scene of an environment surrounding an autonomous vehicle, as discussed further with respect to FIGS. 2 and 3 .
- the autonomy computing system 106 can also include a data streaming controller 140 configured to coordinate streaming processing within one or more systems of autonomy computing system 106 (e.g., the perception system 110 , prediction system 112 , and/or motion planning system 114 ). More particularly, when an update for a particular aspect (e.g., an object or region of interest) is received by a given system, the data streaming controller 140 can help control transmission of data associated with the update as well as a determination of other aspects by the given system.
- a data streaming controller 140 configured to coordinate streaming processing within one or more systems of autonomy computing system 106 (e.g., the perception system 110 , prediction system 112 , and/or motion planning system 114 ). More particularly, when an update for a particular aspect (e.g., an object or region of interest) is received by a given system, the data streaming controller 140 can help control transmission of data associated with the update as well as a determination of other aspects by the given system.
- the data streaming controller 140 can determine based on a received update for a particular aspect and a priority classification (e.g., as determined by priority classification system 142 ) and/or interaction classification determined for that aspect (e.g., as determined by interaction classification system 144 ) whether data associated with the update should be transmitted to a subsequent system before waiting for other updates to arrive.
- a priority classification e.g., as determined by priority classification system 142
- interaction classification determined for that aspect
- the data associated with the update should be transmitted to a subsequent system before waiting for other updates to arrive.
- autonomy data can be delivered to other systems in an advanced fashion (e.g., “ahead of schedule”).
- autonomous vehicle 10 can be controlled to react more quickly relative to aspects classified as high-priority.
- the additional time gained through advancing the autonomy data in a streaming fashion can enable to vehicle to come to a stop more quickly or otherwise make improved maneuvers which enhance passenger and vehicle safety.
- autonomy computing system 106 can include a priority classification system 142 .
- the priority classification system 142 can be configured to determine a priority classification for objects perceived by autonomous vehicle 10 and/or regions of interest within a scene surrounding autonomous vehicle 10 .
- determining a second aspect of the object and/or region of interest can be determined based at least in part on the priority classification, thereby enabling higher priority objects and/or regions of interest to the analyzed before lower priority objects and/or regions of interest.
- a priority classification for each aspect of a scene can be indicative of an importance of the object and/or region of interest to a determination for a motion plan for the autonomous vehicle 10 .
- the priority classification assigned to each object can be based on a plurality of factors, such as how likely an object is to interact with the autonomous vehicle 10 , how soon an object is likely to interact with the autonomous vehicle 10 , whether an object is likely to impact a motion plan for the autonomous vehicle 10 , etc. For example, a vehicle traveling at a high rate of speed towards the autonomous vehicle 10 can be classified as a higher priority object than a vehicle traveling away from the autonomous vehicle 10 .
- a priority classification for each aspect can be based on one or more heuristic processes. For example, one or more thresholds can be used to classify aspects based on one or more features of the aspect. For example, a minimum time duration, a minimum path, or a minimum distance to interaction with the autonomous vehicle 10 can be used to classify the objects based on how far away the objects are from the autonomous vehicle 10 or how soon the objects will likely interact with the autonomous vehicle 10 . Similarly, a heading and/or velocity can be used to classify objects.
- objects traveling on headings away from the autonomous vehicle 10 can be classified as lower priority than objects traveling towards the autonomous vehicle 10
- objects traveling at higher speeds towards the autonomous vehicle 10 can be classified as higher priority than objects traveling at lower speeds towards the autonomous vehicle 10 .
- Other features can be used as well, such as object type (e.g., vehicle, bicycle, pedestrian, etc.), object size, position, or any other feature described herein.
- the priority classification system 142 can classify each aspect according to a variety of different protocols. In one example, the priority classification system 142 can classify each aspect as either high-priority or low-priority based on the respective feature data for each aspect. In some implementations, features for each high-priority aspect can be determined before features are determined for any low-priority aspect. In another example, the priority classification system 142 can classify each object into one of a plurality of priority categories and/or rank each object relative to each other object (e.g., for Y objects, determine a rank of 1 to Y). The relative priority classification and/or rank for each object can be determined based on the feature data for each object. The priority classification for each object can be indicative of an importance of the object to a determination for a motion plan for the autonomous vehicle 10 .
- autonomy computing system 106 can include an interaction classification system 144 .
- the interaction classification system 144 can be part of the priority classification system 142 or a separate system included in or otherwise accessed by the autonomy computing system 106 .
- the interaction classification system 144 can be configured to determine an interaction classification for objects and/or regions of interest.
- an interaction classification can be indicative of one or more predetermined types of interactions among objects and/or regions of interest.
- determining an interaction classification between a first object and a second object can include determining that the first object and the second object are likely to collide given their current tracks/trajectories.
- determining an interaction classification includes accessing a dependence graph (e.g., an object dependence graph) that identifies interacting aspects (e.g., objects and/or regions of interest).
- a dependence graph e.g., an object dependence graph
- Such a dependence graph can be iteratively updated as systems determine new portions of autonomy data related to the aspects of a scene of the surrounding environment of the autonomous vehicle.
- interaction classifications can help a system determine when it is appropriate to update its determined autonomy aspects based on asynchronously received updates for objects and/or regions of interest.
- latency can be reduced and responsiveness can be improved within an autonomy computing system.
- an interaction classification can be used to help determine when a system should initiate new autonomy data determinations upon receiving an update associated with a given object and/or region of interest as opposed to waiting for updates associated with one or more different objects and/or regions of interest.
- a system can be configured to receive autonomy data associated with a first aspect of a first object (e.g., state data for the first object).
- An interaction classification system 144 can determine that the first object has an interaction dependence on a second object, or similarly that a second object has an interaction dependence on the first object. If autonomy data associated with a first aspect of the second object has not yet been received, an expected time estimate for receiving such autonomy data can be determined.
- the system can wait for such data before determining a second aspect of the first and second objects based at least in part on the received first aspect of the first and second objects.
- the expected time estimate is greater than a threshold value, or if the system waits for receipt of the autonomy data associated with the first aspect of the second object and doesn't receive it within the expected time estimate (e.g., because the second object is currently occluded)
- the first aspect of the second object can be predicted.
- the system can then be configured to determine a second aspect of the first and second objects based at least in part on the received first aspect of the first object and the predicted first aspect of the second object.
- Each of the perception system 110 , the prediction system 112 , the motion planning system 114 , the vehicle controller 116 , the data streaming controller 140 , the priority classification system 142 , and the interaction classification system 144 can include computer logic utilized to provide desired functionality.
- each of the perception system 110 , the prediction system 112 , the motion planning system 114 , the vehicle controller 116 , the data streaming controller 140 , the priority classification system 142 , and the interaction classification system 144 can be implemented in hardware, firmware, and/or software controlling a general purpose processor.
- each of the perception system 110 , the prediction system 112 , the motion planning system 114 , the vehicle controller 116 , the data streaming controller 140 , the priority classification system 142 , and the interaction classification system 144 includes program files stored on a storage device, loaded into a memory and executed by one or more processors.
- each of the perception system 110 , the prediction system 112 , the motion planning system 114 , the vehicle controller 116 , the data streaming controller 140 , the priority classification system 142 , and the interaction classification system 144 includes one or more sets of computer-executable instructions that are stored in a tangible computer-readable storage medium such as RAM hard disk or optical or magnetic media.
- FIG. 2 a first aspect of sensor data obtained for a scene 200 of an environment surrounding an autonomous vehicle 10 is depicted according to example embodiments of the present disclosure. Elements that are the same or similar to those shown in FIG. 1 are referred to with the same reference numerals.
- the example scene 200 depicted in FIG. 2 corresponds to a 360 degree scene of an environment surrounding autonomous vehicle 10 .
- Sensor data can be obtained by a sensor system associated with autonomous vehicle 10 , for example, such as corresponding to sensor system 102 of FIG. 1 .
- FIG. 2 illustrates example sensor data obtained by a Light Detection and Ranging (LIDAR) system and a plurality of cameras.
- LIDAR Light Detection and Ranging
- LIDAR system 122 can obtain LIDAR sweep data 202 within an approximately 360 degree field of view around autonomous vehicle 10 .
- LIDAR sweep data 202 is visually depicted as a collection of data points obtained around the periphery of autonomous vehicle 10 as LIDAR system 122 measure distances to objects in the scene 200 by measuring the Time of Flight (TOF) that it takes a short laser pulse to travel from a sensor of LIDAR system 122 to an object and back, calculating the distance from the known speed of light.
- TOF Time of Flight
- LIDAR system 122 can have a number of data channels (e.g., 32 channels, 64 channels) and an angular range (e.g., 360 degrees).
- Each LIDAR system channel can correspond, for example, to a unique light source (e.g., laser) from which a short light pulse (e.g., laser pulse) is emitted and a corresponding Time of Flight (TOF) distance measurement is received corresponding to the time it takes the pulse to travel from the sensor to an object and back.
- LIDAR sweep data 202 can be progressively obtained at different points within the 360-degree angular range of LIDAR sensor 122 .
- each cycle of LIDAR sweep data 202 starts at point 203 within scene 200 , then respective columns of LIDAR sweep data 202 can be progressively obtained starting at the rear of autonomous vehicle 10 , working clockwise around the autonomous vehicle 10 , until the LIDAR system 122 rotates back to point 203 .
- Each 360-degree sweep can be referred to as a cycle of the LIDAR sweep data 202 .
- FIG. 2 depicts a plurality of cameras 126 a - 126 e that are configured to respectively obtain a plurality of portions of image data corresponding to the respective fields of view 204 a - 204 e of the plurality of cameras 126 a - 126 e .
- the plurality of cameras 126 a - 126 e can be positioned in predetermined locations relative to autonomous vehicle 10 such that the corresponding fields of view 204 a - 204 e of each of the plurality of cameras 126 a - 126 e covers a subset of the scene 200 of the surrounding environment of autonomous vehicle 10 .
- the combined field of view (e.g., the combination of fields of view 204 a - 204 b ) of the plurality of cameras 126 a - 126 e can provide an approximately 360 degree field of view around the LIDAR system 122 or the periphery of the autonomous vehicle 10 .
- Streaming processing helps to relay sensor data such as depicted in FIG. 2 as it becomes available from each sensor.
- this sensor data can correspond to raw sensor data or to sensor data that has been processed or manipulated in one or more fashions relative to the raw sensor data. This is in contrast with waiting to relay sensor data in a batch process at the end of each cycle.
- the sensor data including LIDAR sweep data 202 and image data corresponding to fields of view 204 a - 204 b can be obtained at a plurality of consecutive cycles, the sensor data at each cycle including information descriptive of a 360 degree scene 200 of an environment surrounding an autonomous vehicle.
- each cycle of the sensor data can take a fixed amount of time (e.g., 100 ms) corresponding to the amount of time it takes LIDAR system 122 to finish a 360 degree sweep.
- each successive increment of the sensor data can correspond to an angular slice corresponding to the range of the sensor data (e.g., 360 degrees) divided by the number of cameras.
- each successive increment of the sensor data can correspond to a 72-degree angular slice.
- sensor data associate with a first angular slice 206 a can be first read to a memory device or otherwise relayed from the sensors (e.g., LIDAR system 122 and camera 126 a ), followed by sensor data associated with a second angular slice 206 b from LIDAR system 122 and camera 126 b , followed by sensor data associated with a third angular slice 206 c from LIDAR system 122 and camera 126 c , followed by sensor data associated with a fourth angular slice 206 d from LIDAR system 122 and camera 126 d , followed by sensor data associated with a fifth angular slice 206 e from LIDAR system 122 and camera 126 e .
- the sensors e.g., LIDAR system 122 and camera 126 a
- sensor data associated with a second angular slice 206 b from LIDAR system 122 and camera 126 b
- New subsets of sensor data updates can thus be relayed much more quickly relative to the time the corresponding subsets of sensor data are obtained. Latency rates for sensor data relay can thus be improved based on the subset size relative to the cycle size.
- sensor data associated with a first angular slice can be read or relayed after only 20 ms as opposed to waiting 100 ms, thus reducing latency rates for sensor data relay by a factor of five.
- FIG. 3 a second aspect of sensor data obtained for a scene 300 of an environment surrounding an autonomous vehicle 10 is depicted according to example embodiments of the present disclosure.
- the example scene 300 depicted in FIG. 3 corresponds to a 360 degree scene of an environment surrounding autonomous vehicle 10 .
- Sensor data can be obtained by a sensor system associated with autonomous vehicle 10 , for example, such as corresponding to sensor system 102 of FIG. 1 .
- FIG. 3 illustrates example LIDAR sweep data 302 obtained by a Light Detection and Ranging (LIDAR) system 122 , although other sensor data can additionally or alternatively be obtained.
- LIDAR Light Detection and Ranging
- FIG. 3 depicts an example of subsets of sensor data (e.g., LIDAR sweep data 122 ) that can be relayed as updates instead of waiting to relay an entire 360 degree cycle of LIDAR sweep data 122 .
- the subset of the scene 300 can be associated with one or more objects of interest within the scene.
- a first subset of scene 300 can be associated with a vehicle 304 .
- vehicle 304 can be identified as an aspect having a high priority classification.
- angular slice 314 of sensor data associated with vehicle 304 is obtained by LIDAR system 122 , it can be immediately read (e.g., read to memory device 130 of FIG.
- a second subset of scene 300 can be associated with a pedestrian 306 .
- angular slice 316 of sensor data associated with pedestrian 306 is obtained by LIDAR system 122 , it can be immediately read or relayed to the autonomy system.
- a third subset of scene 300 can be associated with a region of interest proximate to a planned trajectory 308 of autonomous vehicle 10 .
- a vehicle computing system can iteratively determine a motion plan using data obtained in a plurality of consecutive time frames.
- each of the perception, prediction, and motion planning systems illustrated in FIG. 1 can concurrently perform analysis on data from a plurality of consecutive time frames.
- block 410 represents analysis by a perception system for data from a frame N.
- the perception system's analysis of data for frame N can include a plurality of objects 411 A-J.
- Each of the objects can have associated state data descriptive of the object generated by the perception system.
- the perception system can generate state data describing a position, velocity, acceleration, heading, size, type, yaw rate, or other state data descriptive of the object as described herein.
- the state data descriptive of the objects 411 A-J generated by the perception system for frame N can be provided to the prediction system once the perception system has completed its analysis.
- the prediction system can receive the respective priority classifications for each object as well as the respective state data describing each object from the perception system.
- the perception system can then determine a predicted future state for each object based at least in part on the respective priority classification for each object.
- the prediction system can first determine a predicted future state for each object classified as high-priority.
- the prediction system can first determine a predicted future state for HP objects 431 A-D.
- the prediction system can determine a predicted future state for each object classified as high-priority based at least in part on the state data obtained for the most recent time frame (Frame N).
- the prediction system can provide the predicted future state for each object classified as high-priority for the current timeframe to the motion planning system. For example, as shown by the arrow from the dashed block 440 to the block 450 , once the prediction system has determined a predicted future state for each high-priority object HP 431 A-D, the prediction system can provide the predicted future states for the objects HP 431 A-D to the motion planning system. In this way, the motion planning system can begin determining a motion plan in an advanced fashion (e.g., “ahead of schedule”).
- the prediction system can have previously determined a predicted future state for objects 421 A-J, including high-priority objects HP 421 A-D and low-priority objects LP 421 E-J.
- the prediction system could concurrently determine predicted future states for high-priority objects HP 421 A-D and low-priority objects LP 421 E-J for time frame N ⁇ 1 in block 420 .
- each high-priority object HP 421 A-D can respectively correspond to each high-priority object HP 431 A-D for the time frame N ⁇ 1
- each low-priority object LP 421 E-J can respectively correspond to each low-priority object LP 431 E-J for the time frame N ⁇ 1.
- An advantage provided by the object prediction process depicted in FIG. 4 is that the time required to determine a motion plan for an autonomous vehicle can be reduced.
- the motion planning system can receive a predicted future state for each object much sooner, thereby allowing a motion plan to be determined ahead of schedule.
- the reduction in time for the prediction system to determine a predicted future state for each object can correspond to the ratio of high-priority objects to low-priority objects. For example, as depicted in FIG.
- low-priority objects can be classified as such based on their negligible impact on a motion plan
- using a predicted future state for a low-priority object from a previous sequential time frame can allow for a net increase in passenger and autonomous vehicle safety.
- low-priority objects such as objects positioned far away from an autonomous vehicle and traveling away from the autonomous vehicle
- high-priority objects such as objects travelling towards the autonomous vehicle or positioned near the autonomous vehicle, may be much more likely to impact a motion plan for the autonomous vehicle.
- the autonomous vehicle can respond to high-priority objects in a quicker fashion, thereby reducing the likelihood of unsafe conditions, such as a collision.
- FIG. 4 B depicts a block diagram of an example streaming processing configuration according to example aspects of the present disclosure.
- FIG. 4 B depicts example systems within an autonomy computing system 460 (e.g., autonomy computing system 106 of FIG. 1 ), such as perception system 110 , prediction system 112 , and motion planning system 114 .
- autonomy computing system 460 e.g., autonomy computing system 106 of FIG. 1
- perception system 110 e.g., perception system 110 , prediction system 112 , and motion planning system 114
- motion planning system 114 e.g., latency can be reduced within the autonomy system 460 by making sure that for each of the perception system 110 , prediction system 112 , and motion planning system 114 , inputs start processing as soon as they come in and outputs are published to other systems as soon as they are ready.
- perception system 110 can be configured to receive respective subsets of sensor data at one or more cycle(s) transferred from a sensor system (e.g., sensor system 102 of FIG. 1 ) and/or a memory device (e.g., memory device 130 of FIG. 1 ).
- a sensor system e.g., sensor system 102 of FIG. 1
- a memory device e.g., memory device 130 of FIG. 1
- perception system 110 is depicted in FIG. 4 B as receiving respective portions of sensor data 461 a - 461 f .
- the portions of sensor data 461 a - 461 f do not necessarily need to be received at the same time.
- the state data for each object can describe an estimate of the object's: location (also referred to as position); speed (also referred to as velocity); acceleration; heading; yaw rate; orientation; size/footprint (e.g., as represented by a bounding polygon or other shape); type/class (e.g., vehicle, pedestrian, bicycle); distance from the autonomous vehicle; minimum path to interaction with the autonomous vehicle; a minimum time duration to interaction with the autonomous vehicle; and/or other state information and/or covariances of the above-described forms of state information.
- certain state data for an object can be used to determine one or more other features for the object.
- an object's position, speed, acceleration, and/or heading can be used to determine a minimum path to interaction with the autonomous vehicle or a minimum time duration to interaction with the autonomous vehicle.
- the perception system 110 can provide the respective portions of state data 471 a - 471 f to the priority classification system (e.g., priority classification system 142 of FIG. 1 ) and/or the prediction system 112 (e.g., iteratively for each time frame).
- the priority classification system e.g., priority classification system 142 of FIG. 1
- the prediction system 112 e.g., iteratively for each time frame.
- the interaction classification is indicative of the first object and the second object being within a predetermined level of proximity to one another at one or more of a current time or future time.
- determining the interaction classification between first object and the second object can include accessing a dependence graph that identifies interacting objects. The interaction classification can help the perception system 110 determine when it is appropriate to determine updated state data for an object based on asynchronously received updates for that object and/or other objects and/or regions of interest.
- an expected time estimate for receiving such autonomy data can be determined.
- the perception system 110 can wait for the second portion of sensor data 461 b before determining updated state data for the first and second objects (e.g., portions of state data 471 a and 471 b ) based at least in part on the received sensor data for the first and second objects (e.g., portions of sensor data 461 a and 461 b ).
- the expected time estimate is greater than a threshold value, or if the perception system 110 waits for receipt of the second portion of sensor data 461 b for the second object and doesn't receive it within the expected time estimate (e.g., because the second object is currently occluded), then second portion of sensor data 461 b for the second object can be predicted.
- prediction system 112 can be configured to receive asynchronous updates of state data 471 a - 471 f for each object and to generate, for each of a plurality of consecutive time frames, a predicted future state/track for each object.
- Different tracks generated by prediction system 112 are represented in FIG. 4 B as tracks 481 a - 481 b .
- various prediction techniques can be used to predict the one or more future locations (e.g., tracks 481 a - 481 f ) for the object(s) identified by the perception system 110 .
- the prediction system 112 can provide the predicted future locations of the objects to the motion planning system 114 .
- an expected time estimate for receiving such autonomy data can be determined.
- the prediction system 112 can wait for such data before determining updated track data for the first and second objects (e.g., track data 481 a and 481 b ) based at least in part on the received state data for the first and second objects (e.g., state data 471 a and 471 b ).
- the prediction system 112 can also be configured to determine a priority classification associated with one or more aspects of a scene (e.g., an object and/or region of interest). Transmission of updated portions of track data 481 a - 481 f from the prediction system 112 to another system (e.g., a motion planning system 114 ) can be coordinated at least in part based on the priority classification(s).
- determining a priority classification for each object in a plurality of objects can include classifying each object as either high-priority or low-priority.
- determining a priority classification for each object in a plurality of objects can include determining a priority classification value from within a predetermined range of values.
- an order can be determined in which the prediction system 112 determines track data 481 a - 481 f for the plurality of objects based at least in part on the priority classification for each object.
- the track data 481 a - 481 f can then be determined according to the order. Transmission of the track data 481 a - 481 f can be controlled in an asynchronous fashion from the prediction system 112 to a motion planning system 114 or other system of an autonomy computing system.
- motion planning system 114 can be configured to receive autonomy data descriptive of an update for a first aspect of a scene of an environment surrounding the autonomous vehicle.
- the first aspect of the scene of the environment surrounding the autonomous vehicle includes a region of interest within the scene.
- the first aspect of the scene of the environment surrounding the autonomous vehicle includes an object perceived within the scene.
- autonomy data updates received for a first aspect of a scene can correspond to track updates 481 a - 481 f received from prediction system 112 .
- the computing system can be additionally or alternatively configured to determine an interaction classification for the first aspect of the scene (e.g., first portion of track data 481 a ) relative to other aspects of the scene (e.g., portions of track data 481 b - 481 f ) of the environment surrounding the autonomous vehicle. For example, determining an interaction classification can involve accessing a dependence graph that identifies interacting aspects.
- the motion planning system 114 can include one or more scenario controllers that make discrete-type decisions 492 regarding control of the autonomous vehicle according to different driving scenarios.
- the scenario controllers can include a yield controller that controls whether the autonomous vehicle yields to certain objects in the surrounding environment.
- Other example scenario controllers can include a pass, ignore, queue controller; a route selection/lane change controller; a speed regressor; and/or other controllers that make discrete-type decisions about how the autonomous vehicle should behave.
- the scenario controllers can make high-level decisions that correspond to or otherwise mimic human-level understanding and decision making about the surrounding environment (e.g., whether to yield to a particular object or not yield to a particular object).
- a trajectory generator can generate a motion plan 494 (e.g., through local optimization over a set of appropriate cost functions) that executes or otherwise complies with the decisions 492 made by the scenario controller(s).
- the computing system can be further configured to update a priority classification for the first aspect of the scene of the environment in a different system (e.g., a perception system 110 and/or prediction system 112 ) other than the motion planning system 114 .
- a different system e.g., a perception system 110 and/or prediction system 112
- new aspects e.g., objects and/or regions of interest
- such priority classifications can be shared with other systems so that sensor data, state data and/or track data associated with the higher priority aspects can be received and processed more quickly by the motion planning system in future time frames.
- the example computing system 100 can include a computing system 150 (e.g., an autonomy computing system 106 on an autonomous vehicle 10 ) and a machine learning computing system 180 that are communicatively coupled over one or more communication networks 170 .
- a computing system 150 e.g., an autonomy computing system 106 on an autonomous vehicle 10
- a machine learning computing system 180 that are communicatively coupled over one or more communication networks 170 .
- the computing system 150 can include one or more processor(s) 152 and memory 154 .
- the one or more processors 152 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, a FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected.
- the memory 154 can include one or more non-transitory computer-readable storage media, such as RAM, ROM, EEPROM, EPROM, one or more memory devices, flash memory devices, etc., and combinations thereof.
- the computing system 150 can also include a network interface 160 used to communicate with one or more systems or devices, including systems or devices that are remotely located from the computing system 150 .
- the network interface 160 can include any circuits, components, software, etc. for communicating with one or more networks (e.g., 170 ).
- the network interface 160 can include, for example, one or more of a communications controller, receiver, transceiver, transmitter, port, conductors, software and/or hardware for communicating data.
- the computing system 150 can also include a perception system 110 , a prediction system 112 , a motion planning system 114 , a vehicle controller 116 , and a data streaming controller 140 , as described herein.
- Each of the perception system 110 , prediction system 112 , motion planning system 114 , vehicle controller 116 , and data streaming controller 140 can include computer logic utilized to provide desired functionality.
- each of the perception system 110 , the prediction system 112 , the motion planning system 114 , the vehicle controller 116 , and the data streaming controller 140 can be implemented in hardware, firmware, and/or software controlling a general purpose processor.
- the one or more machine-learned models 148 can include one or more classifiers that assist in classifying each object perceived by the autonomous vehicle and/or region of interest within a scene of a surrounding environment of an autonomous vehicle.
- the machine-learned model(s) 148 can include a machine-learned object classifier configured to classify each perceived object, such as by classifying each object as high-priority or low-priority.
- the machine-learned model(s) 148 can include a machine-learned object classifier configured to classify each perceived object, such as having one or more predetermined categories of interaction relative to one or more other objects.
- the computing system 150 can determine a priority classification for each object and/or region of interest using the machine-learned model(s) 148 .
- the computing system 150 can obtain data descriptive of the machine-learned model, input one or more features associated with each object or region of interest into the machine-learned model, and receive data indicative of a respective priority classification for each object and/or region of interest as output of the machine-learned model.
- the computing system 150 can determine an interaction classification for selected objects and/or regions of interest using the machine-learned model(s) 148 .
- the computing system 150 can obtain data descriptive of the machine-learned model, input one or more features associated with each object or region of interest into the machine-learned model, and receive data indicative of a respective interaction classification for each object and/or region of interest as output of the machine-learned model.
- the computing system 1050 can receive the one or more machine-learned models 148 from the machine learning computing system 180 over network 170 and can store the one or more machine-learned models 148 in the memory 154 .
- the computing system 150 can then use or otherwise implement the one or more machine-learned models 148 (e.g., by processor(s) 152 ).
- certain operations described herein can be performed by a machine learning computing system 180 that is remotely located to the computing system 150 and in communication with the computing system 150 over one or more wireless networks 170 (e.g., cellular data networks, satellite communication networks, wide area networks, etc.).
- the machine learning computing system 180 can include one or more server computing devices.
- the server computing devices can be arranged according to a parallel computing architecture, a sequential computing architecture, or combinations thereof.
- the machine learning computing system 180 can include one or more processors 182 and a memory 184 .
- the one or more processors 182 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, a FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected.
- the memory 184 can include one or more non-transitory computer-readable storage media, such as RAM, ROM, EEPROM, EPROM, one or more memory devices, flash memory devices, etc., and combinations thereof.
- the memory 184 can store information that can be accessed by the one or more processors 182 .
- the memory 184 e.g., one or more non-transitory computer-readable storage mediums, memory devices
- the machine learning computing system 180 can obtain data from one or more memory device(s) that are remote from the machine learning computing system 180 .
- the machine learning computing system 180 can also include a network interface 183 used to communicate with one or more systems or devices, including systems or devices that are remotely located from the machine learning computing system 180 .
- the network interface 183 can include any circuits, components, software, etc. for communicating with one or more networks (e.g., 170 ).
- the network interface 183 can include, for example, one or more of a communications controller, receiver, transceiver, transmitter, port, conductors, software and/or hardware for communicating data.
- the machine learning computing system 180 includes one or more server computing devices. If the machine learning computing system 180 includes multiple server computing devices, such server computing devices can operate according to various computing architectures, including, for example, sequential computing architectures, parallel computing architectures, or some combination thereof.
- the machine learning computing system 180 can include one or more machine-learned models 188 .
- the machine-learned model(s) 188 can be or can otherwise include various machine-learned models such as decision tree-based models, support vector machines, k-Nearest Neighbor models, neural networks (e.g., deep neural networks), or other multi-layer non-linear models.
- Example neural networks include feed-forward neural networks, recurrent neural networks (e.g., long short-term memory recurrent neural networks), or other forms of neural networks.
- the machine learning computing system 180 can communicate with the computing system 150 according to a client-server relationship.
- the machine learning computing system 180 can implement the machine-learned model(s) 188 to provide a web service to the computing system 150 .
- the web service can provide priority classifications and/or interaction classifications to the computing system 150 .
- machine-learned models 148 can be located and used at the computing system 150 and/or machine-learned models 188 can be located and used at the machine learning computing system 180 .
- the machine learning computing system 180 and/or the computing system 150 can train the machine-learned models 148 and/or 188 through use of a model trainer 190 .
- the model trainer 190 can train the machine-learned models 148 and/or 188 using one or more training or learning algorithms.
- One example training technique is backwards propagation of errors.
- the model trainer 190 can perform supervised training techniques using a set of labeled training data 192 .
- the model trainer 190 can perform unsupervised training techniques using a set of unlabeled training data 192 .
- the model trainer 190 can perform a number of generalization techniques to improve the generalization capability of the models being trained. Generalization techniques include weight decays, dropouts, or other techniques.
- the model trainer 190 can train a machine-learned model 148 and/or 188 based on a set of training data 192 .
- the training data 192 can include, for example, vehicle data logs from previously completed autonomous vehicle driving sessions.
- the vehicle data logs can include, for example, sensor data obtained by the sensor system 102 of the autonomous vehicle, state data descriptive of one or more objects perceived by the perception system 110 of the autonomous vehicle, predicted future states for objects perceived by the autonomous vehicle determined by the prediction system 112 , previous motion plans determined by the motion planning system 114 , or other vehicle data as described herein.
- the model trainer 190 can be configured to train the machine-learned models 148 and/or 188 by determining whether objects perceived by the autonomous vehicle and/or particular regions of interest impacted a motion plan of the autonomous vehicle.
- the training data 192 can also include vehicle data logs that include priority classification labels and/or interaction classification labels manually recorded by a human reviewer and/or automatically applied by predetermined heuristic rules to train the machine-learned model(s) 148 and/or 188 .
- the model trainer 190 can include computer logic utilized to provide desired functionality, and can be implemented in hardware, firmware, and/or software controlling a general purpose processor.
- the model trainer 190 includes program files stored on a storage device, loaded into a memory and executed by one or more processors.
- the model trainer 190 includes one or more sets of computer-executable instructions that are stored in a tangible computer-readable storage medium such as RAM hard disk or optical or magnetic media.
- the network(s) 170 can be any type of network or combination of networks that allows for communication between devices.
- the network(s) 170 can include one or more of a local area network, wide area network, the Internet, secure network, cellular network, mesh network, peer-to-peer communication link and/or some combination thereof and can include any number of wired or wireless links.
- Communication over the network(s) 180 can be accomplished, for instance, via a network interface using any type of protocol, protection scheme, encoding, format, packaging, etc.
- FIG. 5 illustrates one example computing system 100 that can be used to implement the present disclosure.
- the computing system 150 can include the model trainer 190 and the training dataset 192 .
- the machine-learned models 148 can be both trained and used locally at the computing system 150 .
- the computing system 150 is not connected to other computing systems.
- components illustrated and/or discussed as being included in one of the computing systems 150 or 180 can instead be included in another of the computing systems 150 or 180 .
- Such configurations can be implemented without deviating from the scope of the present disclosure.
- the use of computer-based systems allows for a great variety of possible configurations, combinations, and divisions of tasks and functionality between and among components.
- Computer-implemented operations can be performed on a single component or across multiple components.
- Computer-implements tasks and/or operations can be performed sequentially or in parallel.
- Data and instructions can be stored in a single memory device or across multiple memory devices.
- FIG. 6 a first example method ( 600 ) according to example aspects of the present disclosure is depicted.
- FIG. 6 depicts steps performed in a particular order for purposes of illustration and discussion, the methods of the present disclosure are not limited to the particularly illustrated order or arrangement.
- the various steps of method ( 600 ) can be omitted, rearranged, combined, and/or adapted in various ways without deviating from the scope of the present disclosure.
- the method ( 600 ) can be implemented by a computing system, such as a computing system comprising one or more computing devices.
- the method ( 600 ) can include obtaining, by a computing system, sensor data at a plurality of consecutive cycles.
- the sensor data at each cycle can include information descriptive of a 360-degree scene of an environment surrounding an autonomous vehicle.
- the sensor data is obtained via a sensor system including at least one sensor, such as one or more cameras, one or more Light Detection and Ranging (LIDAR) system sensors, or one or more Radio Detection and Ranging (RADAR) system sensors.
- LIDAR Light Detection and Ranging
- RADAR Radio Detection and Ranging
- the method ( 600 ) can include storing, by the computing system, the sensor data in a memory device as it becomes available from the at least one sensor.
- the memory device comprises to which data is stored at ( 604 ) corresponds to a rolling buffer to which sensor data is written at a plurality of successive increments of the sensor data within each cycle of the sensor data.
- each successive increment of the sensor data within a cycle of the sensor data comprises an angular slice of the 360 degree scene of an environment surrounding an autonomous vehicle.
- the method ( 600 ) can include determining, by the computing system, a subset of the sensor data at each cycle.
- determining a subset of the sensor data at each cycle at ( 606 ) can include determining, by the computing system, at least one high-priority region of interest based on an expected location of an object within a second cycle of the sensor data.
- the expected location of the object can be determined by analyzing a first cycle of the sensor data, wherein the second cycle of the sensor data is obtained subsequently to the first cycle of the sensor data.
- the method ( 600 ) can include initiating transfer, by the computing system, of the subset of the sensor data at each cycle from the memory device to an autonomy system associated with the computing system in response to the entire subset being stored in the memory device.
- initiating transfer at ( 610 ) of the subset of the sensor data at each cycle of the sensor data from the memory device to an autonomy system associated with the computing system comprises initiating transfer of each successive increment of the sensor data within each cycle as soon as it is written to the rolling buffer.
- method ( 600 ) can include classifying, by the computing system, respective portions of the sensor data at each cycle as having a particular priority classification.
- classifying respective portions of the sensor data at each cycle at ( 608 ) can be implemented by a priority classification system as described herein.
- classifying at ( 608 ) can include classifying one or more aspects (e.g., objects and/or regions of interest) within the sensor data obtained at ( 602 ). For example, aspects can be classified as either high-priority or low-priority based on the respective feature data for each aspect.
- aspects can be classified into one of a plurality of priority categories and/or rankings relative to other aspects (e.g., for Y aspects, determine a rank of 1 to Y).
- the relative priority classification and/or rank for each aspect can be determined based on the feature data for each aspect.
- the priority classification for each aspect can be indicative of an importance of the aspect to a determination for a motion plan for the autonomous vehicle.
- classifying at ( 608 ) can include determining at least one high-priority region of interest based on an expected location of an object within a second cycle of the sensor data.
- the expected location of the object can be determined by analyzing a first cycle of the sensor data, wherein the second cycle of the sensor data is obtained subsequently to the first cycle of the sensor data.
- at least one high-priority region of interest can also be determined for a third cycle of the sensor data, wherein the at least one high-priority region of interest for the second cycle of the sensor data at least partially overlaps the at least one high-priority region of interest for the third cycle of the sensor data.
- the at least one high-priority region of interest includes an angular slice of the 360 degree scene of an environment surrounding an autonomous vehicle, the angular slice being inclusive of the object. In some implementations, the at least one high-priority region of interest is determined based on a predicted future location of the autonomous vehicle as specified by a motion plan determined at least in part from the sensor data.
- step ( 608 ) initiating transfer at ( 610 ) of the subset of the sensor data at each cycle of the sensor data from the memory device to an autonomy system associated with the computing system is based at least in part on the particular priority classification for the respective portions of each cycle as determined at ( 608 ).
- method ( 600 ) can include generating, by the computing system, for each of a plurality of consecutive time frames, state data descriptive of at least a current state of each of a plurality of objects that are perceived within the sensor data.
- generating stat data at ( 612 ) can be implemented by a perception system as described herein.
- FIG. 7 a second example method ( 700 ) according to example aspects of the present disclosure is depicted.
- FIG. 7 depicts steps performed in a particular order for purposes of illustration and discussion, the methods of the present disclosure are not limited to the particularly illustrated order or arrangement.
- the various steps of method ( 700 ) can be omitted, rearranged, combined, and/or adapted in various ways without deviating from the scope of the present disclosure.
- the method ( 700 ) can be implemented by a computing system, such as a computing system comprising one or more computing devices.
- the method ( 700 ) can include obtaining a first portion of autonomy data descriptive of an update for a first feature of a first object detected within a surrounding environment of an autonomous vehicle.
- obtaining a first portion of autonomy data at ( 702 ) can be implemented by a first system of an autonomy computing system.
- the method ( 700 ) can include determining that a second object has an interaction dependence relative to the first object.
- determining that the second object has an interaction dependence relative to the first object at ( 704 ) can correspond to determining that the first object and the second object are likely to interact given their current trajectories.
- determining that the second object has an interaction dependence relative to the first object at ( 704 ) can correspond to determining that the first object and the second object are within a predetermined level of proximity to one another at one or more of a current time or a future time.
- determining that a second object has an interaction dependence relative to the first object at ( 704 ) includes accessing an object dependence graph that identifies interacting objects based on determined interaction classifications for the objects. In some implementations, determining that a second object has an interaction classification relative to the first object at ( 704 ) can include determining an interaction classification for the first object using a machine-learned model that has been trained based at least in part on training data that comprises annotated vehicle data logs that were previously collected during previous autonomous vehicle driving sessions.
- the method ( 700 ) can include determining an expected time estimate for receipt by the first system of a second portion of autonomy data descriptive of an update for a first feature of the second object.
- the method ( 700 ) can include determining a second feature of the first object based at least in part on the first feature of the first object.
- the method ( 700 ) can include determining a priority classification associated with the first object.
- coordinating transmission of the second feature of the first object to a second system at ( 712 ) can be further based at least in part on the priority classification determined at ( 710 ).
- determining a priority classification for each object in the plurality of objects at ( 710 ) can include classifying each object as either high-priority or low-priority.
- the method ( 700 ) can include coordinating transmission of the second feature of the first object to a second system of the autonomy computing system based at least in part on the expected time estimate determined at ( 706 ).
- the first system that obtains autonomy data at ( 702 ) can be a perception system configured to generate state data descriptive of at least a current state of each of a plurality of objects that are perceived by the autonomous vehicle.
- the first feature can be sensor data associated with an object
- the second feature determined at ( 708 ) can be state data for the object determined at least in part from the sensor data associated with the object.
- the second system to which transmission is coordinated at ( 712 ) can be a prediction system configured to determine, for a current time frame, a predicted track for each of the plurality of objects including the first object and the second object.
- the first system that obtains autonomy data at ( 702 ) can be a prediction system configured to determine a predicted track for each of a plurality of objects that are perceived by the autonomous vehicle.
- the first feature can be current state data associated with an object of the plurality of objects
- the second feature determined at ( 708 ) can be predicted future track data for the object determined at least in part from the current state data associated with the object.
- the second system to which transmission is coordinated at ( 712 ) can be a motion planning system configured to determine, for a current time frame, a motion plan for the autonomous vehicle based at least in part on track data for the first object and the second object.
- determining an expected time estimate at ( 706 ) can include determining that an expected time estimate is less than a threshold value.
- coordinating transmission at ( 712 ) of the second feature of the first object to the second system of the autonomy computing system based at least in part on the expected time estimate can include more particular aspects.
- coordinating transmission at ( 712 ) in such examples can include obtaining by the first system a second portion of autonomy data descriptive of an update for the first feature of the second object.
- a second feature of the second object can be determined based at least in part on the first feature of the second object (and also the first feature of the first object if applicable). The second feature of the first object and the second feature of the second object can then be transmitted from the first system to the second system.
- determining an expected time estimate at ( 706 ) can include determining that an expected time estimate is greater than a threshold value.
- coordinating transmission at ( 712 ) of the second feature of the first object to the second system of the autonomy computing system based at least in part on the expected time estimate can include more particular aspects.
- coordinating transmission at ( 712 ) in such examples can include determining, by the first system, a predicted second feature of the second object based at least in part on the first feature of the first object. The second feature of the first object and the predicted second feature of the second object can be provided from the first system to the second system.
- method ( 700 ) can include additional and/or alternative operations.
- method ( 700 ) can include obtaining, by the first system, autonomy data descriptive of updates for a first feature of a plurality of objects detected within a surrounding environment of an autonomous vehicle.
- Method ( 700 ) can also include determining a priority classification for each object in the plurality of objects based at least in part on the respective updates for the first feature of each object.
- Method ( 700 ) can also include determining an order in which the computing system determines a second feature for each object based at least in part on the priority classification for each object.
- Method ( 700 ) can also include determining the second feature for each object based at least in part on the determined order.
- FIG. 8 a third example method ( 800 ) according to example aspects of the present disclosure is depicted.
- FIG. 8 depicts steps performed in a particular order for purposes of illustration and discussion, the methods of the present disclosure are not limited to the particularly illustrated order or arrangement.
- the various steps of method ( 800 ) can be omitted, rearranged, combined, and/or adapted in various ways without deviating from the scope of the present disclosure.
- the method ( 800 ) can be implemented by a computing system, such as a computing system comprising one or more computing devices.
- the method ( 800 ) can be implemented by a motion planning system comprising one or more computing devices.
- the method ( 800 ) can include receiving autonomy data descriptive of an update for a first aspect of a scene of an environment surrounding the autonomous vehicle.
- the first aspect of the scene of the environment surrounding the autonomous vehicle includes one or more of a region of interest within the scene or an object perceived within the scene.
- receiving the autonomy data at ( 802 ) descriptive of the update for the first aspect of the scene of the environment surrounding the autonomous vehicle corresponds to receiving the autonomy data from one or more of a perception system or a prediction system.
- the method ( 800 ) can include determining a priority classification for the first aspect of the scene of the environment surrounding the autonomous vehicle.
- determining a priority classification for the first aspect of the scene of the environment surrounding the autonomous vehicle includes determining a level of influence of the first aspect of the scene of the environment on a recently obtained motion plan for the autonomous vehicle.
- the method ( 800 ) can include determining an interaction classification for the first aspect of the scene relative to other aspects of the scene of the environment surrounding the autonomous vehicle.
- method ( 800 ) can include determining that one or more of the priority classification and the interaction classification for the first aspect meets one or more predetermined criteria. In response to such determination, the method ( 800 ) can include determining one or more of a discrete-type decision relative to navigation of the autonomous vehicle or an optimized motion plan for the autonomous vehicle that is configured to control navigation of the autonomous vehicle in keeping with the discrete-type decision and that optimizes one or more cost functions.
- determining one or more of a discrete-type decision includes determining a set of one or more discrete-type decisions from a plurality of discrete-type decisions, the set of one or more discrete-type decisions corresponding to those discrete-type decisions that are based at least in part on the first aspect of the scene of the environment surrounding the autonomous vehicle.
- the method ( 800 ) can include transmitting a priority classification update for the first aspect of the scene of the environment to a different system other than the motion planning system (e.g., to a sensor system, a perception system, and/or a prediction system).
- a different system than the motion planning system can then update a priority classification for the first aspect of the scene of the environment.
- method ( 800 ) can include additional and/or alternative operations.
- method ( 800 ) can additionally include determining that a second aspect of the scene has an interaction dependence relative to the first aspect of the scene, and receiving autonomy data descriptive of an update for the second aspect of the scene. More particularly, determining that the second aspect of the scene has the interaction dependence relative to the first aspect of the scene can include accessing an object dependence graph that identifies interacting aspects.
- determining at ( 808 ) one or more of the discrete-type decision relative to navigation of the autonomous vehicle or the optimized motion plan for the autonomous vehicle that is configured to control navigation of the autonomous vehicle in keeping with the discrete-type decision and that optimizes the one or more cost functions is based at least in part on the autonomy data descriptive of the update for the first aspect of the scene and the autonomy data descriptive of the update for the second aspect of the scene.
- the technology discussed herein makes reference to servers, databases, software applications, and other computer-based systems, as well as actions taken and information sent to and from such systems.
- the inherent flexibility of computer-based systems allows for a great variety of possible configurations, combinations, and divisions of tasks and functionality between and among components.
- processes discussed herein can be implemented using a single device or component or multiple devices or components working in combination.
- Databases and applications can be implemented on a single system or distributed across multiple systems. Distributed components can operate sequentially or in parallel.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aviation & Aerospace Engineering (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Transportation (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/983,491 US11760280B2 (en) | 2018-01-12 | 2018-05-18 | Systems and methods for streaming processing for autonomous vehicles |
PCT/US2019/013168 WO2019140171A1 (en) | 2018-01-12 | 2019-01-11 | Systems and methods for streaming processing for autonomous vehicles |
EP19706773.9A EP3724737A1 (en) | 2018-01-12 | 2019-01-11 | Systems and methods for streaming processing for autonomous vehicles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862616542P | 2018-01-12 | 2018-01-12 | |
US15/983,491 US11760280B2 (en) | 2018-01-12 | 2018-05-18 | Systems and methods for streaming processing for autonomous vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190220013A1 US20190220013A1 (en) | 2019-07-18 |
US11760280B2 true US11760280B2 (en) | 2023-09-19 |
Family
ID=67213230
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/983,499 Abandoned US20190217791A1 (en) | 2018-01-12 | 2018-05-18 | Systems and Methods for Streaming Processing for Autonomous Vehicles |
US15/983,491 Active 2040-09-26 US11760280B2 (en) | 2018-01-12 | 2018-05-18 | Systems and methods for streaming processing for autonomous vehicles |
US15/983,504 Active 2039-12-14 US11161464B2 (en) | 2018-01-12 | 2018-05-18 | Systems and methods for streaming processing for autonomous vehicles |
US17/515,932 Active US11713006B2 (en) | 2018-01-12 | 2021-11-01 | Systems and methods for streaming processing for autonomous vehicles |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/983,499 Abandoned US20190217791A1 (en) | 2018-01-12 | 2018-05-18 | Systems and Methods for Streaming Processing for Autonomous Vehicles |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/983,504 Active 2039-12-14 US11161464B2 (en) | 2018-01-12 | 2018-05-18 | Systems and methods for streaming processing for autonomous vehicles |
US17/515,932 Active US11713006B2 (en) | 2018-01-12 | 2021-11-01 | Systems and methods for streaming processing for autonomous vehicles |
Country Status (3)
Country | Link |
---|---|
US (4) | US20190217791A1 (en) |
EP (1) | EP3724737A1 (en) |
WO (1) | WO2019140171A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240005520A1 (en) * | 2022-06-30 | 2024-01-04 | Lenovo Global Technology (United States) Inc. | Systems and Methods for Predicting Object Location Within Images and for Analyzing the Images in the Predicted Location for Object Tracking |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10678244B2 (en) | 2017-03-23 | 2020-06-09 | Tesla, Inc. | Data synthesis for autonomous control systems |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
US20200120371A1 (en) * | 2018-10-10 | 2020-04-16 | Rovi Guides, Inc. | Systems and methods for providing ar/vr content based on vehicle conditions |
JP7539872B2 (en) | 2018-10-11 | 2024-08-26 | テスラ,インコーポレイテッド | SYSTEM AND METHOD FOR TRAINING MACHINE MODELS WITH AUGMENTED DATA - Patent application |
US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
US10901375B2 (en) * | 2019-01-31 | 2021-01-26 | Morgan Stanley Services Group Inc. | Chaotic system anomaly response by artificial intelligence |
US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
WO2020262718A1 (en) * | 2019-06-25 | 2020-12-30 | 엘지전자 주식회사 | Method for transmitting sensing information for remote driving in automated vehicle & highway systems, and apparatus therefor |
US11679764B2 (en) * | 2019-06-28 | 2023-06-20 | Baidu Usa Llc | Method for autonomously driving a vehicle based on moving trails of obstacles surrounding the vehicle |
US11095741B2 (en) * | 2019-07-11 | 2021-08-17 | Ghost Locomotion Inc. | Value-based transmission in an autonomous vehicle |
US11669092B2 (en) * | 2019-08-29 | 2023-06-06 | Rockwell Automation Technologies, Inc. | Time of flight system and method for safety-rated collision avoidance |
US11310451B1 (en) | 2019-09-05 | 2022-04-19 | Waymo Llc | Smart sensor with region of interest capabilities |
CN110579216B (en) * | 2019-09-12 | 2022-02-18 | 阿波罗智能技术(北京)有限公司 | Test scene library construction method and device, electronic equipment and medium |
US11608083B2 (en) * | 2019-09-18 | 2023-03-21 | Honda Motor Co., Ltd. | System and method for providing cooperation-aware lane change control in dense traffic |
US11577722B1 (en) * | 2019-09-30 | 2023-02-14 | Zoox, Inc. | Hyper planning based on object and/or region |
US11713056B2 (en) * | 2019-12-28 | 2023-08-01 | Intel Corporation | Autonomous vehicle system for detecting safety driving model compliance status of another vehicle, and planning accordingly |
US11284021B1 (en) | 2019-12-30 | 2022-03-22 | Waymo Llc | Smart sensor scheduler |
US11609321B2 (en) * | 2020-02-19 | 2023-03-21 | Zoox, Inc. | Radar-tracked object velocity and/or yaw |
US11428550B2 (en) | 2020-03-03 | 2022-08-30 | Waymo Llc | Sensor region of interest selection based on multisensor data |
US11769332B2 (en) * | 2020-06-15 | 2023-09-26 | Lytx, Inc. | Sensor fusion for collision detection |
US11756283B2 (en) | 2020-12-16 | 2023-09-12 | Waymo Llc | Smart sensor implementations of region of interest operating modes |
US20220289372A1 (en) * | 2021-03-04 | 2022-09-15 | Everseen Limited | System and method for detecting and tracking non-stationary obstacles in an aerial movement volume |
US12165523B2 (en) | 2021-03-15 | 2024-12-10 | Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company | Systems and methods for tracking objects relative to an aircraft within an air space |
US12055404B2 (en) * | 2021-05-04 | 2024-08-06 | At&T Intellectual Property I, L.P. | Sentiment-based navigation |
US20220382284A1 (en) * | 2021-05-26 | 2022-12-01 | Argo AI, LLC | Perception system for assessing relevance of objects in an environment of an autonomous vehicle |
US12046013B2 (en) * | 2021-05-26 | 2024-07-23 | Ford Global Technologies Llc | Using relevance of objects to assess performance of an autonomous vehicle perception system |
US11927456B2 (en) | 2021-05-27 | 2024-03-12 | Rovi Guides, Inc. | Methods and systems for providing dynamic in-vehicle content based on driving and navigation data |
US20230003872A1 (en) * | 2021-06-30 | 2023-01-05 | Zoox, Inc. | Tracking objects with radar data |
EP4339650A1 (en) * | 2022-09-14 | 2024-03-20 | Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company | Systems and methods for tracking objects relative to an aircraft within an air space |
GB2625324B (en) * | 2022-12-14 | 2025-02-19 | Aptiv Technologies AG | Perception sensor processing method and processing unit for performing the same |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6256712B1 (en) | 1997-08-01 | 2001-07-03 | International Business Machines Corporation | Scaleable method for maintaining and making consistent updates to caches |
US20120083960A1 (en) | 2010-10-05 | 2012-04-05 | Google Inc. | System and method for predicting behaviors of detected objects |
US20140136414A1 (en) | 2006-03-17 | 2014-05-15 | Raj Abhyanker | Autonomous neighborhood vehicle commerce network and community |
US20140203959A1 (en) | 2013-01-18 | 2014-07-24 | Caterpillar Inc. | Object recognition system having radar and camera input |
US8791802B2 (en) | 2011-09-09 | 2014-07-29 | Robert Bosch Gmbh | Driver assistance system for reducing blind-spot-detection false alerts |
EP2919032A1 (en) | 2014-03-14 | 2015-09-16 | Thales Holdings UK Plc | Low latency sort |
US20150268058A1 (en) | 2014-03-18 | 2015-09-24 | Sri International | Real-time system for multi-modal 3d geospatial mapping, object recognition, scene annotation and analytics |
US20160012282A1 (en) | 2013-02-27 | 2016-01-14 | Hitachi Automative Systems, Ltd. | Object Sensing Device |
US20170060893A1 (en) | 2015-08-25 | 2017-03-02 | Xcube Research And Development, Inc. | Translating file type aware virtual filesystem and content addressable globally distributed filesystem |
US20170101092A1 (en) | 2014-05-29 | 2017-04-13 | Toyota Jidosha Kabushiki Kaisha | Driving support apparatus |
US20170120902A1 (en) | 2015-11-04 | 2017-05-04 | Zoox, Inc. | Resilient safety system for a robotic vehicle |
US20170262727A1 (en) | 2016-03-11 | 2017-09-14 | Panasonic Intellectual Property Corporation Of America | Image processing method, image processing apparatus, and recording medium |
JP2017211817A (en) | 2016-05-25 | 2017-11-30 | パナソニックIpマネジメント株式会社 | Object detection device, program and recording medium |
US20180012088A1 (en) | 2014-07-08 | 2018-01-11 | Nissan Motor Co., Ltd. | Traffic Light Detection Device and Traffic Light Detection Method |
US20180261020A1 (en) | 2017-03-13 | 2018-09-13 | Renovo Motors, Inc. | Systems and methods for processing vehicle sensor data |
US20180341822A1 (en) | 2017-05-26 | 2018-11-29 | Dura Operating, Llc | Method and system for classifying objects in a perception scene graph by using a scene-detection-schema |
US10216189B1 (en) | 2017-08-23 | 2019-02-26 | Uber Technologies, Inc. | Systems and methods for prioritizing object prediction for autonomous vehicles |
US20190065895A1 (en) | 2017-08-30 | 2019-02-28 | Qualcomm Incorporated | Prioritizing objects for object recognition |
US20190086549A1 (en) | 2017-09-15 | 2019-03-21 | Toyota Research Institute, Inc. | System and method for object detection using a probabilistic observation model |
US10345815B2 (en) | 2016-09-14 | 2019-07-09 | Qualcomm Incorporated | Motion planning and intention prediction for autonomous driving in highway scenarios via graphical model-based factorization |
US20190236955A1 (en) * | 2017-12-27 | 2019-08-01 | drive.ai Inc. | Method for accessing supplemental sensor data from other vehicles |
US20190253694A1 (en) * | 2016-10-20 | 2019-08-15 | Hitachi Automotive Systems, Ltd. | Camera device |
US20190384302A1 (en) | 2018-06-18 | 2019-12-19 | Zoox, Inc. | Occulsion aware planning and control |
US10543838B2 (en) | 2015-11-04 | 2020-01-28 | Zoox, Inc. | Robotic vehicle active safety systems and methods |
US20200180638A1 (en) | 2017-05-26 | 2020-06-11 | Honda Motor Co., Ltd. | Vehicle control system and vehicle control method |
US20210027629A1 (en) | 2019-07-25 | 2021-01-28 | Baidu Usa Llc | Blind area processing for autonomous driving vehicles |
US10950129B1 (en) | 2020-01-24 | 2021-03-16 | Ford Global Technologies, Llc | Infrastructure component broadcast to vehicles |
US20210094173A1 (en) | 2019-01-03 | 2021-04-01 | Lucomm Technologies, Inc. | System for Physical-Virtual Environment Fusion |
-
2018
- 2018-05-18 US US15/983,499 patent/US20190217791A1/en not_active Abandoned
- 2018-05-18 US US15/983,491 patent/US11760280B2/en active Active
- 2018-05-18 US US15/983,504 patent/US11161464B2/en active Active
-
2019
- 2019-01-11 WO PCT/US2019/013168 patent/WO2019140171A1/en unknown
- 2019-01-11 EP EP19706773.9A patent/EP3724737A1/en not_active Withdrawn
-
2021
- 2021-11-01 US US17/515,932 patent/US11713006B2/en active Active
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6256712B1 (en) | 1997-08-01 | 2001-07-03 | International Business Machines Corporation | Scaleable method for maintaining and making consistent updates to caches |
US20140136414A1 (en) | 2006-03-17 | 2014-05-15 | Raj Abhyanker | Autonomous neighborhood vehicle commerce network and community |
US20120083960A1 (en) | 2010-10-05 | 2012-04-05 | Google Inc. | System and method for predicting behaviors of detected objects |
US8791802B2 (en) | 2011-09-09 | 2014-07-29 | Robert Bosch Gmbh | Driver assistance system for reducing blind-spot-detection false alerts |
US20140203959A1 (en) | 2013-01-18 | 2014-07-24 | Caterpillar Inc. | Object recognition system having radar and camera input |
US20160012282A1 (en) | 2013-02-27 | 2016-01-14 | Hitachi Automative Systems, Ltd. | Object Sensing Device |
EP2919032A1 (en) | 2014-03-14 | 2015-09-16 | Thales Holdings UK Plc | Low latency sort |
US20150268058A1 (en) | 2014-03-18 | 2015-09-24 | Sri International | Real-time system for multi-modal 3d geospatial mapping, object recognition, scene annotation and analytics |
US20170101092A1 (en) | 2014-05-29 | 2017-04-13 | Toyota Jidosha Kabushiki Kaisha | Driving support apparatus |
US20180012088A1 (en) | 2014-07-08 | 2018-01-11 | Nissan Motor Co., Ltd. | Traffic Light Detection Device and Traffic Light Detection Method |
US20170060893A1 (en) | 2015-08-25 | 2017-03-02 | Xcube Research And Development, Inc. | Translating file type aware virtual filesystem and content addressable globally distributed filesystem |
US20170120902A1 (en) | 2015-11-04 | 2017-05-04 | Zoox, Inc. | Resilient safety system for a robotic vehicle |
US10543838B2 (en) | 2015-11-04 | 2020-01-28 | Zoox, Inc. | Robotic vehicle active safety systems and methods |
US20170262727A1 (en) | 2016-03-11 | 2017-09-14 | Panasonic Intellectual Property Corporation Of America | Image processing method, image processing apparatus, and recording medium |
JP2017211817A (en) | 2016-05-25 | 2017-11-30 | パナソニックIpマネジメント株式会社 | Object detection device, program and recording medium |
US10345815B2 (en) | 2016-09-14 | 2019-07-09 | Qualcomm Incorporated | Motion planning and intention prediction for autonomous driving in highway scenarios via graphical model-based factorization |
US20190253694A1 (en) * | 2016-10-20 | 2019-08-15 | Hitachi Automotive Systems, Ltd. | Camera device |
US20180261020A1 (en) | 2017-03-13 | 2018-09-13 | Renovo Motors, Inc. | Systems and methods for processing vehicle sensor data |
US20200410787A1 (en) * | 2017-03-13 | 2020-12-31 | Renovo Motors, Inc. | Systems and methods for processing vehicle sensor data |
US20180341822A1 (en) | 2017-05-26 | 2018-11-29 | Dura Operating, Llc | Method and system for classifying objects in a perception scene graph by using a scene-detection-schema |
US20200180638A1 (en) | 2017-05-26 | 2020-06-11 | Honda Motor Co., Ltd. | Vehicle control system and vehicle control method |
US10216189B1 (en) | 2017-08-23 | 2019-02-26 | Uber Technologies, Inc. | Systems and methods for prioritizing object prediction for autonomous vehicles |
US20190065895A1 (en) | 2017-08-30 | 2019-02-28 | Qualcomm Incorporated | Prioritizing objects for object recognition |
US20190086549A1 (en) | 2017-09-15 | 2019-03-21 | Toyota Research Institute, Inc. | System and method for object detection using a probabilistic observation model |
US20190236955A1 (en) * | 2017-12-27 | 2019-08-01 | drive.ai Inc. | Method for accessing supplemental sensor data from other vehicles |
US20190384302A1 (en) | 2018-06-18 | 2019-12-19 | Zoox, Inc. | Occulsion aware planning and control |
US20210094173A1 (en) | 2019-01-03 | 2021-04-01 | Lucomm Technologies, Inc. | System for Physical-Virtual Environment Fusion |
US20210027629A1 (en) | 2019-07-25 | 2021-01-28 | Baidu Usa Llc | Blind area processing for autonomous driving vehicles |
US10950129B1 (en) | 2020-01-24 | 2021-03-16 | Ford Global Technologies, Llc | Infrastructure component broadcast to vehicles |
Non-Patent Citations (5)
Title |
---|
Halsey, A glimpse inside the secret site where driverless cars undergo 20,000 tests, https://www.washingtonpost.com/local/trafficandcommuting/a-glimpse-inside-the-secret-site-where-driverless-cars-undergo-20000-tests/2017/11/04/874e083c-bf15-11e7-97d9-bdab5a0ab381_story.html (Year: 2017). * |
International Search Report and Written Opinion for PCT/US2019/013168, dated Jul. 2, 2019, 22 pages. |
Partial Search Report for PCT/US2019/013168, dated May 2, 2019, 13 pages. |
U.S. Appl. No. 15/983,504, filed May 18, 2018, 72 pages. |
U.S. Appl. No. 17/515,932, filed Nov. 1, 2021, 73 pages. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240005520A1 (en) * | 2022-06-30 | 2024-01-04 | Lenovo Global Technology (United States) Inc. | Systems and Methods for Predicting Object Location Within Images and for Analyzing the Images in the Predicted Location for Object Tracking |
Also Published As
Publication number | Publication date |
---|---|
US11161464B2 (en) | 2021-11-02 |
US20220055549A1 (en) | 2022-02-24 |
US11713006B2 (en) | 2023-08-01 |
US20190217791A1 (en) | 2019-07-18 |
WO2019140171A1 (en) | 2019-07-18 |
US20190220013A1 (en) | 2019-07-18 |
US20190220014A1 (en) | 2019-07-18 |
EP3724737A1 (en) | 2020-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11713006B2 (en) | Systems and methods for streaming processing for autonomous vehicles | |
US11710303B2 (en) | Systems and methods for prioritizing object prediction for autonomous vehicles | |
US11822337B2 (en) | Autonomous vehicles featuring machine-learned yield model | |
US12130624B2 (en) | Discrete decision architecture for motion planning system of an autonomous vehicle | |
US11714417B2 (en) | Initial trajectory generator for motion planning system of autonomous vehicles | |
US11288963B2 (en) | Autonomous vehicles featuring vehicle intention system | |
US11851081B2 (en) | Predictability-based autonomous vehicle trajectory assessments | |
US20250121856A1 (en) | Autonomous Vehicles Featuring Machine-Learned Yield Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: UBER TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRADLEY, DAVID MCALLISTER;HAYNES, GALEN CLARK;SIGNING DATES FROM 20180521 TO 20180523;REEL/FRAME:046097/0109 |
|
AS | Assignment |
Owner name: UATC, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:UBER TECHNOLOGIES, INC.;REEL/FRAME:050353/0884 Effective date: 20190702 |
|
AS | Assignment |
Owner name: UATC, LLC, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE FROM CHANGE OF NAME TO ASSIGNMENT PREVIOUSLY RECORDED ON REEL 050353 FRAME 0884. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT CONVEYANCE SHOULD BE ASSIGNMENT;ASSIGNOR:UBER TECHNOLOGIES, INC.;REEL/FRAME:051145/0001 Effective date: 20190702 |
|
STCT | Information on status: administrative procedure adjustment |
Free format text: PROSECUTION SUSPENDED |
|
STCT | Information on status: administrative procedure adjustment |
Free format text: PROSECUTION SUSPENDED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: AURORA OPERATIONS, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UATC, LLC;REEL/FRAME:067733/0001 Effective date: 20240321 |