[go: up one dir, main page]

US11733490B2 - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
US11733490B2
US11733490B2 US17/080,208 US202017080208A US11733490B2 US 11733490 B2 US11733490 B2 US 11733490B2 US 202017080208 A US202017080208 A US 202017080208A US 11733490 B2 US11733490 B2 US 11733490B2
Authority
US
United States
Prior art keywords
lens
optical system
refractive power
image
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/080,208
Other versions
US20210041676A1 (en
Inventor
Il Yong Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to US17/080,208 priority Critical patent/US11733490B2/en
Publication of US20210041676A1 publication Critical patent/US20210041676A1/en
Priority to US18/218,798 priority patent/US12085697B2/en
Application granted granted Critical
Publication of US11733490B2 publication Critical patent/US11733490B2/en
Priority to US18/779,941 priority patent/US20240377619A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the following description relates to an optical system including lenses having refractive power.
  • camera modules have gradually been miniaturized.
  • camera module performance has gradually improved.
  • pixels of an image sensor have become small enough to enable realization of high resolution.
  • an optical system of a small camera module typically includes four lenses. However, it is difficult for the optical system including the four lenses to implement a clear image. Therefore, development of an optical system including five or more lenses is needed in order to enable realization of a clear image.
  • an optical system including: a first lens including a negative refractive power and a convex object-side surface; a second lens; a third lens including a negative refractive power and a convex object-side surface; a fourth lens; a fifth lens including a negative refractive power; and a sixth lens including a negative refractive power and including an inflection point on an image-side surface thereof, wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane.
  • V1 an Abbe number of the first lens and, V3, an Abbe number of the third lens may satisfy 25 ⁇ V1 ⁇ V3 ⁇ 45.
  • an overall focal length of the optical system and, f2, a focal length of the second lens may satisfy 0.3 ⁇ f2/f ⁇ 1.5.
  • an overall focal length of the optical system and, TTL, a distance from the object-side surface of the first lens to the imaging plane may satisfy TTL/f ⁇ 1.5.
  • an overall focal length of the optical system and, r11, a radius of curvature of an image-side surface of the fifth lens may satisfy 1.0 ⁇ r11/f.
  • the second lens has a positive refractive power.
  • the fourth lens has a positive refractive power.
  • an optical system including: a first lens including a negative refractive power and a convex object-side surface; a second lens including a convex object-side surface and a convex image-side surface; a third lens; a fourth lens including a concave object-side surface; a fifth lens including a negative refractive power; and a sixth lens may include an inflection point formed on an image-side surface thereof, wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane.
  • the first lens may include a concave image-side surface.
  • the third lens may include a convex object-side surface and a concave image-side surface.
  • the third lens may have a negative refractive power.
  • the fourth lens may include a convex image-side surface.
  • the fourth lens may have a positive refractive power.
  • the fifth lens may include a concave image-side surface.
  • the sixth lens may include a convex object-side surface and the image-side surface thereof is concave.
  • the sixth lens has a negative refractive power.
  • an optical system including: a first lens including a convex object-side surface and a concave image-side surface; a second lens including a convex object-side surface and a convex image-side surface; a third lens including a convex object-side surface and a concave image-side surface; a fourth lens including a concave object-side surface and a convex image-side surface; a fifth lens including a concave object-side surface and a concave image-side surface; and a sixth lens, wherein the second lens has a same refractive power as a refractive power of the first lens, the third lens, the fourth lens, and the fifth lens have a refractive power higher than the refractive powers of the first and second lenses, and the sixth lens has a refractive power lower than the refractive powers of the first and second lenses.
  • an overall focal length of the optical system and, f1, a focal length of the first lens may satisfy f1/f ⁇ 0.
  • an overall focal length of the optical system, and r7 a radius of curvature of the image-side surface of the third lens may satisfy 0.3 ⁇ r7/f ⁇ 1.4.
  • a field of view of the optical system may satisfy 74 ⁇ FOV.
  • Upper and lower ends of the fifth lens extend horizontally towards an object side, parallel to upper and lower portions of the first through fourth lenses.
  • the object-side surface of the fifth lens is concave in a paraxial region and gradually flattens at edge portions thereof.
  • the first lens may include a negative refractive power
  • the second lens may include a positive refractive power
  • the third lens may include a negative refractive power
  • the fourth lens may include a positive refractive power
  • the fifth lens may include a negative refractive power
  • the sixth lens may include a negative refractive power.
  • FIG. 1 is a view of an optical system, according to a first embodiment
  • FIG. 2 illustrates graphs having curves representing aberration of the optical system according to the first embodiment
  • FIG. 3 is a table representing characteristics of the optical system according to the first embodiment
  • FIG. 4 is a table representing aspherical characteristics of the optical system, according to the first embodiment
  • FIG. 5 is a view of an optical system, according to a second embodiment
  • FIG. 6 illustrates graphs having curves representing aberration of the optical system, according to the second embodiment
  • FIG. 7 is a table representing characteristics of the optical system, according to the second embodiment.
  • FIG. 8 is a table representing aspherical characteristics of the optical system, according to the second embodiment.
  • FIG. 9 is a view of an optical system, according to a third embodiment.
  • FIG. 10 illustrates graphs having curves representing aberration of the optical system, according to the third embodiment
  • FIG. 11 is a table representing characteristics of the optical system, according to the third embodiment.
  • FIG. 12 is a table representing aspherical characteristics of the optical system, according to the third embodiment.
  • FIG. 13 is a view of an optical system, according to a fourth embodiment.
  • FIG. 14 illustrates graphs having curves representing aberration of the optical system, according to the fourth embodiment
  • FIG. 15 is a table representing characteristics of the optical system, according to the fourth embodiment.
  • FIG. 16 is a table representing aspherical characteristics of the optical system, according to the fourth embodiment.
  • FIG. 17 is a view of an optical system, according to a fifth embodiment.
  • FIG. 18 illustrates graphs having curves representing aberration of the optical system, according to the fifth embodiment
  • FIG. 19 is a table representing characteristics of the optical system, according to the fifth embodiment.
  • FIG. 20 is a table representing aspherical characteristics of the optical system, according to the fifth embodiment.
  • FIG. 21 is a view of an optical system, according to a sixth embodiment.
  • FIG. 22 illustrates graphs having curves representing aberration of the optical system, according to the sixth embodiment
  • FIG. 23 is a table representing characteristics of the optical system, according to the sixth embodiment.
  • FIG. 24 is a table representing aspherical characteristics of the optical system, according to the sixth embodiment.
  • a surface of each lens closest to an object is referred to as a first surface or an object-side surface
  • a surface of each lens closest to an imaging surface is referred to as a second surface or an image-side surface.
  • all numerical values of radii of curvature, thicknesses/distances, TTLs, and other parameters of the lenses are represented in millimeters (mm).
  • all radii of curvature, thicknesses, OALs optical axis distances from the first surface of the first lens to the image sensor (OALs), a distance on the optical axis between the stop and the image sensor (SLs), image heights (IMGHs) (image heights), and black focus lengths (BFLs) (back focus lengths) of the lenses, an overall focal length of an optical system, and a focal length of each lens are indicated in millimeters (mm).
  • thicknesses of lenses, gaps between the lenses, OALs, and SLs are distances measured based on an optical axis of the lenses.
  • shapes of lenses are described and illustrated in relation to optical axis portions of the lenses.
  • a surface of a lens being convex means that an optical axis portion of a corresponding surface is convex
  • a surface of a lens being concave means that an optical axis portion of a corresponding surface is concave. Therefore, in a configuration in which one surface of a lens is described as being convex, an edge portion of the lens may be concave. Likewise, in a configuration in which one surface of a lens is described as being concave, an edge portion of the lens may be convex.
  • a paraxial region of a lens may be convex, while the remaining portion of the lens outside the paraxial region is either convex, concave, or flat. Further, a paraxial region of a lens may be concave, while the remaining portion of the lens outside the paraxial region is either convex, concave, or flat.
  • thicknesses and radii of curvatures of lenses are measured in relation to optical axes of the corresponding lenses.
  • An optical system includes six lenses.
  • the optical system may include a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the lens module may include from four lenses up to six lenses without departing from the scope of the embodiments herein described.
  • the embodiments described of the optical system include six lenses with a refractive power.
  • the number of lenses in the optical system may vary, for example, between two to six lenses, while achieving the various results and benefits described hereinbelow.
  • each lens is described with a particular refractive power, a different refractive power for at least one of the lenses may be used to achieve the intended result.
  • the first to sixth lenses are formed of materials including glass, plastic or other similar types of polycarbonate materials.
  • at least one of the first through sixth lenses is formed of a material different from the materials forming the other first through sixth lenses.
  • the first lens has a refractive power.
  • the first lens has a negative refractive power.
  • An object-side surface of the first lens is convex.
  • the first lens has an aspherical surface.
  • both of the object-side surface and an image-side surface of the first lens are aspherical.
  • the first lens is formed of plastic. However, a material of the first lens is not limited to plastic.
  • the second lens has a refractive power, such as a positive refractive power or a negative refractive power. Both of an object-side surface and an image-side surface of the second lens are convex.
  • the second lens has an aspherical surface. As an example, both of the object-side surface and the image-side surface of the second lens are aspherical.
  • the second lens is formed of plastic. However, a material of the second lens is not limited to plastic.
  • the third lens has a refractive power.
  • the third lens may have negative refractive power.
  • An object-side surface of the third lens is convex.
  • the third lens has an aspherical surface.
  • both of the object-side surface and an image-side surface of the third lens are aspherical.
  • the third lens is formed of plastic. However, a material of the third lens is not limited to plastic.
  • the fourth lens may have refractive power, such as a positive refractive power or a negative refractive power.
  • An object-side surface of the fourth lens is concave.
  • the fourth lens has an aspherical surface.
  • both of an object-side surface and the image-side surface of the fourth lens are aspherical.
  • the fourth lens is formed of plastic. However, a material of the fourth lens is not limited to plastic.
  • the fifth lens has a refractive power.
  • the fifth lens has a negative refractive power.
  • An image-side surface of the fifth lens is concave.
  • the fifth lens has an aspherical surface.
  • both of an object-side surface and the image-side surface of the fifth lens is aspherical.
  • the fifth lens has an inflection point.
  • one or more inflection points are formed on the image-side surface of the fifth lens.
  • the fifth lens is formed of plastic. However, a material of the fifth lens is not limited to plastic.
  • the sixth lens has a refractive power.
  • the sixth lens has a negative refractive power.
  • An image-side surface of the sixth lens is concave.
  • the sixth lens has an aspherical surface.
  • both of an object-side surface and the image-side surface of the sixth lens are aspherical.
  • the sixth lens has an inflection point.
  • one or more inflection points are formed on the image-side surface of the sixth lens.
  • the sixth lens is formed of plastic. However, a material of the sixth lens is not limited to plastic.
  • each of the first through six lenses may be configured in an opposite refractive power from the configuration described above.
  • the first lens has a positive refractive power
  • the second lens has a negative refractive power
  • the third lens has a positive refractive power
  • the fourth lens has a negative refractive power
  • the fifth lens has a positive refractive power
  • the sixth lens has a positive refractive power.
  • the optical system includes a filter and an image sensor.
  • the filter is disposed between the sixth lens and the image sensor.
  • the filter may filter an infrared component from incident light refracted through the first to sixth lenses.
  • the image sensor is disposed behind the filter, and converts the incident light refracted through the first to sixth lenses into electrical signals.
  • the optical system includes a stop.
  • the stop adjusts an amount of light incident to the first to sixth lenses.
  • the stop is disposed between the second lens and the third lens to adjust an amount to incident light.
  • f is an overall focal length of the optical system
  • f1 is a focal length of the first lens.
  • the Conditional Expression 1 represents or defines a condition for limiting a magnitude of refractive power of the first lens to overall refractive power of the optical system.
  • the first lens may not maintain the negative refractive power.
  • the optical system satisfies one or more of the following Conditional Expressions 2 through 4: V 1 ⁇ V 2 ⁇ 25 [Conditional Expression 2] 25 ⁇ V 1 ⁇ V 3 ⁇ 45 [Conditional Expression 3] 25 ⁇ V 1 ⁇ V 5 ⁇ 45. [Conditional Expression 4]
  • V1 is an Abbe number of the first lens
  • V2 is an Abbe number of the second lens
  • V3 is an Abbe number of the third lens
  • V5 is an Abbe number of the fifth lens.
  • the Conditional Expressions 2 through 4 indicate limit conditions for correction chromatic aberration of the optical system.
  • V1 ⁇ V2, V1 ⁇ V3, and V1 ⁇ V5 are outside of numerical ranges of the Conditional Expressions 2 through 4, respectively, the optical system has significantly great chromatic aberration, in such a manner that it is difficult to use the optical system in a camera module that needs high resolution.
  • f is the overall focal length of the optical system
  • f2 is a focal length of the second lens.
  • the Conditional Expression 5 represents or defines a condition for limiting a magnitude of refractive power of the second lens to the overall refractive power of the optical system.
  • the second lens has significantly great refractive power, in such a manner that it is difficult to correct spherical aberration.
  • the second lens has significantly low refractive power, which is advantageous to correct spherical aberration, but makes miniaturization of the optical system difficult.
  • f is the overall focal length of the optical system
  • f3 is a focal length of the third lens.
  • the Conditional Expression represents or defines a condition for limiting a magnitude of refractive power of the third lens to the overall refractive power of the optical system.
  • the third lens has significantly great refractive power making it difficult to correct spherical aberration.
  • the third lens has significantly low refractive power, which is advantageous in correcting spherical aberration, but makes miniaturization of the optical system difficult.
  • f is the overall focal length of the optical system
  • f4 is a focal length of the fourth lens.
  • the Conditional Expression 7 represents or defines a condition for limiting a magnitude of refractive power of the fourth lens to the overall refractive power of the optical system.
  • the fourth lens has significantly great refractive power making it difficult to correct spherical aberration.
  • f is the overall focal length of the optical system
  • f5 is a focal length of the fifth lens.
  • the Conditional Expression 8 represents or defines a condition for limiting a magnitude of refractive power of the fifth lens to the overall refractive power of the optical system.
  • the fifth lens has significantly great refractive power making it difficult to correct spherical aberration.
  • f is the overall focal length of the optical system
  • TTL is a distance from the object-side surface of the first lens to an imaging plane.
  • the Conditional Expression 9 represents or defines a condition for miniaturizing the optical system. As an example, in a case in which TTL/f is outside of an upper limit value of the Conditional Expression 9, it is difficult to mount the optical system in a small portable terminal.
  • f1 is the focal length of the first lens
  • f2 is the focal length of the second lens.
  • the Conditional Expression 10 represents or defines a condition for limiting a ratio of refractive power between the first lens and the second lens. As an example, in a case in which f1/f2 is outside of an upper limit value of the Conditional Expression 10, refractive power of the first lens or the second lens is significantly great making it difficult to correct aberration.
  • f2 is the focal length of the second lens
  • f3 is the focal length of the third lens.
  • the Conditional Expression 11 represents or defines a condition for limiting a ratio of refractive power between the second lens and the third lens. As an example, in a case in which f2/f3 is outside of a numerical range of the Conditional Expression 11, refractive power of the second lens or the third lens is significantly great making it difficult to correct aberration.
  • f is the overall focal length of the optical system
  • BFL is a distance from the object-side surface of the sixth lens to the imaging plane.
  • the Conditional Expression 12 represents or defines a condition for miniaturizing the optical system. As an example, in a case in which BFL/f is outside of an upper limit value of the Conditional Expression 12, it is difficult to miniaturize the optical system.
  • f is the overall focal length of the optical system
  • D2 is a distance from the image-side surface of the first lens to the object-side surface of the second lens.
  • the Conditional Expression 13 represents or defines a condition for improving longitudinal chromatic aberration characteristics.
  • D2/f is outside of an upper limit value of the Conditional Expression 13
  • the first lens and the second lens may have deteriorated longitudinal chromatic aberration characteristics.
  • f is the overall focal length of the optical system
  • r7 is a radius of curvature of the image-side surface of the third lens.
  • the Conditional Expression 14 represents or defines a condition for limiting refractive power of the third lens. As an example, in a case in which r7/f is outside of a numerical range of the Conditional Expression 14, it is not easy to manufacture the third lens, and it is difficult to secure the required refractive power.
  • f is the overall focal length of the optical system
  • r11 is a radius of curvature of the image-side surface of the fifth lens.
  • the Conditional Expression 15 represents or defines a condition for limiting refractive power of the fifth lens. As an example, in a case in which r11/f is outside of a numerical range of the Conditional Expression 15, it is not easy to manufacture the fifth lens, and it is difficult to secure the required refractive power.
  • the optical system satisfies one or more of the following Conditional Expressions 16 and 17: 74 ⁇ FOV [Conditional Expression 16] F number ⁇ 2.1. [Conditional Expression 17]
  • FOV is a field of view of the optical system.
  • the optical system configured as described above realizes a camera module having a wide field of view and high resolution.
  • each of the first to sixth lenses may be separate lenses configured as described above. A distance between lenses may vary. In another embodiment, at least one of the first to sixth lenses may be operatively connected or in contact with another one of the first to sixth lenses.
  • two or more of the lenses of the first to sixth lenses may be configured as a group and in operative connection or contact with another lens.
  • the first, second, and third lenses may be in contact with each other as a first group lens, while the fourth, fifth, and sixth lenses are configured separate from each other and from the first group lens.
  • the first, second, and third lenses may be in contact with each other as a first group lens
  • the fourth and the fifth lenses may be in contact with each other as a second group lens
  • the sixth lens is configured separate from the first and second group lenses.
  • FIG. 1 An optical system, according to a first embodiment, will be described with reference to FIG. 1 .
  • the optical system 100 includes first to sixth lenses 110 to 160 .
  • the first to sixth lenses 110 to 160 are sequentially disposed from an object toward an imaging plane.
  • the first lens 110 has a negative refractive power.
  • An object-side surface of the first lens 110 is convex, and an image-side surface thereof is concave.
  • the first lens 110 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 110 are aspherical.
  • the first lens 110 may be formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 110 may be ⁇ 47457.1 mm.
  • the second lens 120 has a positive refractive power.
  • An object-side surface of the second lens 120 is convex, and an image-side surface thereof is convex.
  • the second lens 120 has an aspherical shape.
  • both of the object-side surface and the image-side surface of the second lens 120 are aspherical.
  • the second lens 120 is formed of a material that is substantially the same as or similar to that of the first lens.
  • the second lens 120 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 120 may be 2.788 mm.
  • the third lens 130 has a negative refractive power.
  • An object-side surface of the third lens 130 is convex, and an image-side surface thereof is concave.
  • the third lens 130 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 130 are aspherical.
  • the third lens 130 has a refractive index higher than the refractive powers of the first and second lenses. As an example, a refractive index of the third lens 130 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 130 may be ⁇ 5.794 mm.
  • the fourth lens 140 has a positive refractive power.
  • An object-side surface of the fourth lens 140 is concave, and an image-side surface thereof is convex.
  • the fourth lens 140 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 140 are aspherical.
  • the fourth lens 140 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fourth lens 140 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 140 may be 158.832 mm.
  • the fifth lens 150 has a negative refractive power.
  • An object-side surface of the fifth lens 150 is convex, and an image-side surface thereof is concave.
  • the fifth lens 150 has an aspherical shape.
  • the object-side surface of the fifth lens 150 is convex in the paraxial region, and the image-side surface of the fifth lens 150 is concave in the paraxial region.
  • both of the object-side surface and the image-side surface of the fifth lens 150 are aspherical.
  • An inflection point is formed on the fifth lens 150 .
  • one or more inflection points are formed on the image-side surface of the fifth lens 150 .
  • the fifth lens 150 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fifth lens 150 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 150 may be ⁇ 176353.3 mm.
  • the sixth lens 160 has a negative refractive power.
  • An object-side surface of the sixth lens 160 is convex, and an image-side surface thereof is concave.
  • the sixth lens 160 may have an aspherical shape.
  • the object-side surface of the sixth lens 16 is convex in the paraxial region, and the image-side surface of the sixth lens 160 is concave in the paraxial region.
  • both of the object-side surface and the image-side surface of the sixth lens 160 are aspherical.
  • An inflection point is formed on the sixth lens 160 .
  • one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 160 .
  • the sixth lens 160 has a low refractive index.
  • a refractive index of the sixth lens 160 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 160 may be ⁇ 13.349 mm.
  • the optical system 100 includes a filter 170 and an image sensor 180 .
  • the filter 170 is disposed adjacently to the image-side surface of the sixth lens 160 .
  • the filter 170 has a substantially flat plate.
  • the filter 170 filters infrared rays from light refracted from the sixth lens 160 .
  • the image sensor 180 is disposed behind the filter 170 .
  • the image sensor 180 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 180 and an optical axis to a diagonal corner of the image sensor 180 may be 3.50 mm.
  • the optical system 100 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the stop ST may be positioned in between two of the lenses 110 to 160 .
  • the optical system 100 configured as described above represents aberration characteristics and optical characteristics as illustrated in FIGS. 2 and 3 .
  • an F number of the optical system 100 is 2.09
  • an overall length (TTL) which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 100 , is 5.211 mm
  • an overall focal length of the optical system 100 is 4.492 mm.
  • FIG. 4 is a table representing aspherical coefficients of the optical system 100 .
  • the optical system 200 includes first to sixth lenses 210 to 260 .
  • the first to sixth lenses 210 to 260 are sequentially disposed from an object toward an imaging plane.
  • the first lens 210 has a negative refractive power.
  • An object-side surface of the first lens 210 is convex, and an image-side surface thereof is concave.
  • the first lens 210 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 210 are aspherical.
  • the first lens 210 may be formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 210 may be ⁇ 40047.4 mm.
  • the second lens 220 has a positive refractive power.
  • An object-side surface of the second lens 220 is convex, and an image-side surface thereof is convex.
  • the second lens 220 has an aspherical shape.
  • both of the object-side surface and the image-side surface of the second lens 220 are aspherical.
  • the second lens 220 is formed of a material that is substantially the same as or similar to that of the first lens.
  • the second lens 220 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 220 may be 2.780 mm.
  • the third lens 230 has a negative refractive power.
  • An object-side surface of the third lens 230 is convex, and an image-side surface thereof is concave.
  • the third lens 230 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 230 are aspherical.
  • the third lens 230 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the third lens 230 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 230 may be ⁇ 5.758 mm.
  • the fourth lens 240 has a positive refractive power.
  • An object-side surface of the fourth lens 240 is concave, and an image-side surface thereof is convex.
  • the fourth lens 240 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 240 are aspherical.
  • the fourth lens 240 has a refractive index higher than the refractive indices of the first and second lenses.
  • refractive index of the fourth lens 240 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 240 may be 69.588 mm.
  • the fifth lens 250 has a negative refractive power.
  • An object-side surface of the fifth lens 250 is convex, and an image-side surface thereof is concave.
  • the fifth lens 250 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 250 are aspherical.
  • An inflection point is formed on the fifth lens 250 . As an example, one or more inflection points may be formed on the image-side surface of the fifth lens 250 .
  • the fifth lens 250 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 250 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 250 may be ⁇ 405.09 mm.
  • upper and lower ends of the fifth lens 250 extend horizontally towards the object side, parallel to upper and lower portions of the first through fourth lenses 210 through 240 , without contacting the upper and lower portions of the first through fourth lenses 210 through 240 .
  • the sixth lens 260 has a negative refractive power.
  • An object-side surface of the sixth lens 260 is convex, and an image-side surface thereof is concave.
  • the sixth lens 260 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 260 are aspherical.
  • An inflection point is formed on the sixth lens 260 . As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 260 .
  • the sixth lens 260 has a low refractive index. As an example, a refractive index of the sixth lens 260 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 260 may be ⁇ 13.722 mm.
  • the optical system 200 includes a filter 270 and an image sensor 280 .
  • the filter 270 is disposed adjacently to the image-side surface of the sixth lens 260 .
  • the filter 270 has a substantially flat plate.
  • the filter 270 filters infrared rays from light refracted from the sixth lens 260 .
  • the image sensor 280 is disposed behind the filter 270 .
  • the image sensor 280 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 280 and an optical axis to a diagonal corner of the image sensor 280 is 3.50 mm.
  • the optical system 200 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the optical system 200 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 6 and 7 .
  • an F number of the optical system 200 may be 2.07
  • an overall length (TTL) which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 200 , is 5.104 mm
  • an overall focal length of the optical system 200 is 4.402 mm.
  • FIG. 8 is a table representing aspherical coefficients of the optical system 200 .
  • the optical system 300 includes first to sixth lenses 310 to 360 .
  • the first to sixth lenses 310 to 360 are sequentially disposed from an object toward an imaging plane.
  • the first lens 310 has a negative refractive power.
  • An object-side surface of the first lens 310 is convex, and an image-side surface thereof is concave.
  • the first lens 310 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 310 are aspherical.
  • the first lens 310 may be formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 310 may be ⁇ 95.513 mm.
  • the second lens 320 has a positive refractive power.
  • An object-side surface of the second lens 320 is convex, and an image-side surface thereof is convex.
  • the second lens 320 has an aspherical shape.
  • both of the object-side surface and the image-side surface of the second lens 320 are aspherical.
  • the second lens 320 is formed of a material that is substantially the same as or similar to that of the first lens.
  • the second lens 320 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 320 may be 2.716 mm.
  • the third lens 330 has a negative refractive power.
  • An object-side surface of the third lens 330 is convex, and an image-side surface thereof is concave.
  • the third lens 330 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 330 are aspherical.
  • the third lens 330 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 330 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 330 may be ⁇ 6.192 mm.
  • the fourth lens 340 has a positive refractive power.
  • An object-side surface of the fourth lens 340 is concave, and an image-side surface thereof is convex.
  • the fourth lens 340 has an aspherical shape.
  • both of the object-side surface and the image-side surface of the fourth lens 340 are aspherical.
  • the fourth lens 340 may have a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fourth lens 340 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 340 may be 62.408 mm.
  • the fifth lens 350 has a negative refractive power.
  • An object-side surface of the fifth lens 350 is concave, and an image-side surface thereof is concave.
  • the fifth lens 350 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 350 are aspherical.
  • An inflection point is formed on the fifth lens 350 . As an example, one or more inflection points are formed on the image-side surface of the fifth lens 350 .
  • the fifth lens 350 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 350 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 350 may be ⁇ 196.150 mm.
  • the object-side surface of the fifth lens 350 is concave in a paraxial region and gradually flattens at edge portions thereof.
  • the sixth lens 360 has a negative refractive power.
  • An object-side surface of the sixth lens 360 is convex, and an image-side surface thereof is concave.
  • the sixth lens 360 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 360 are aspherical.
  • An inflection point is formed on the sixth lens 360 . As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 360 .
  • the sixth lens 360 has a low refractive index.
  • refractive power of the sixth lens 360 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 360 may be ⁇ 11.896 mm.
  • the optical system 300 includes a filter 370 and an image sensor 380 .
  • the filter 370 is disposed adjacently to the image-side surface of the sixth lens 360 .
  • the filter 370 has a substantially flat plate.
  • the filter 370 filters an infrared ray from light refracted from the sixth lens 360 .
  • the image sensor 380 is disposed behind the filter 370 .
  • the image sensor 380 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 380 and an optical axis to a diagonal corner of the image sensor 380 may be 3.50 mm.
  • the optical system 300 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the optical system 300 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 10 and 11 .
  • an F number of the optical system 300 is 2.09
  • an overall length (TTL) which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 300 , is 5.104 mm
  • an overall focal length of the optical system 300 is 4.392 mm.
  • FIG. 12 is a table representing aspherical coefficients of the optical system 300 .
  • the optical system 400 includes first to sixth lenses 410 to 460 .
  • the first to sixth lenses 410 to 460 are sequentially disposed from an object toward an imaging plane.
  • the first lens 410 has a negative refractive power.
  • An object-side surface of the first lens 410 is convex, and an image-side surface thereof is concave.
  • the first lens 410 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 410 are aspherical.
  • the first lens 410 may be formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 410 may be ⁇ 677.554 mm.
  • the second lens 420 has a positive refractive power.
  • An object-side surface of the second lens 420 is convex, and an image-side surface thereof is convex.
  • the second lens 420 has an aspherical shape.
  • both of the object-side surface and the image-side surface of the second lens 420 are aspherical.
  • the second lens 420 is formed of a material that is substantially the same as or similar to that of the first lens.
  • the second lens 420 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 420 may be 2.800 mm.
  • the third lens 430 has a negative refractive power.
  • An object-side surface of the third lens 430 is convex, and an image-side surface thereof is concave.
  • the third lens 430 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 430 may be aspherical.
  • the third lens 430 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 430 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 430 may be ⁇ 5.988 mm.
  • the fourth lens 440 has a positive refractive power.
  • An object-side surface of the fourth lens 440 is concave, and an image-side surface thereof is convex.
  • the fourth lens 440 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 440 are aspherical.
  • the fourth lens 440 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 440 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 440 may be 31.426 mm.
  • the fifth lens 450 has a negative refractive power.
  • An object-side surface of the fifth lens 450 is concave, and an image-side surface thereof is concave.
  • the fifth lens 450 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 450 are aspherical.
  • An inflection point is formed on the fifth lens 450 . As an example, one or more inflection points are formed on the image-side surface of the fifth lens 450 .
  • the fifth lens 450 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fifth lens 450 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 450 may be ⁇ 80.848 mm.
  • the object-side surface of the fifth lens 450 is concave in a paraxial region and gradually flattens at edge portions thereof
  • the sixth lens 460 has a negative refractive power.
  • An object-side surface of the sixth lens 460 is convex, and an image-side surface thereof is concave.
  • the sixth lens 460 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 460 are aspherical.
  • An inflection point is formed on the sixth lens 460 . As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 460 .
  • the sixth lens 460 has a low refractive index. As an example, a refractive index of the sixth lens 460 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 460 may be ⁇ 10.783 mm.
  • the optical system 400 includes a filter 470 and an image sensor 480 .
  • the filter 470 is disposed adjacently to the image-side surface of the sixth lens 460 .
  • the filter 470 has a substantially flat plate.
  • the filter 470 filters infrared rays from light refracted from the sixth lens 460 .
  • the image sensor 480 is disposed behind the filter 470 .
  • the image sensor 480 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 480 and an optical axis to a diagonal corner of the image sensor 480 is 3.50 mm.
  • the optical system 400 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the optical system 400 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 14 and 15 .
  • an F number of the optical system 400 is 2.00
  • an overall length (TTL) which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 400 , is 5.103 mm
  • an overall focal length of the optical system 400 is 4.327 mm.
  • FIG. 16 is a table representing aspherical coefficients of the optical system 400 .
  • the optical system 500 includes first to sixth lenses 510 to 560 .
  • the first to sixth lenses 510 to 560 are sequentially disposed from an object toward an imaging plane.
  • the first lens 510 has a negative refractive power.
  • An object-side surface of the first lens 510 is convex, and an image-side surface thereof is concave.
  • the first lens 510 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 510 are aspherical.
  • the first lens 510 is formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 510 may be ⁇ 9275.74 mm.
  • the second lens 520 has a positive refractive power.
  • An object-side surface of the second lens 520 is convex, and an image-side surface thereof is convex.
  • the second lens 520 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 520 re aspherical.
  • the second lens 520 is formed of a material that is substantially the same as or similar to that of the first lens.
  • the second lens 520 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 520 may be 2.816 mm.
  • the third lens 530 has a negative refractive power.
  • An object-side surface of the third lens 530 is convex, and an image-side surface thereof is concave.
  • the third lens 530 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 530 are aspherical.
  • the third lens 530 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the third lens 530 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 530 may be ⁇ 6.016 mm.
  • the fourth lens 540 has a positive refractive power.
  • An object-side surface of the fourth lens 540 is concave, and an image-side surface thereof is convex.
  • the fourth lens 540 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 540 are aspherical.
  • the fourth lens 540 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 540 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 540 may be 30.800 mm.
  • the fifth lens 550 has a negative refractive power.
  • An object-side surface of the fifth lens 550 is concave, and an image-side surface thereof is concave.
  • the fifth lens 550 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 550 are aspherical.
  • An inflection point is formed on the fifth lens 550 . As an example, one or more inflection points are formed on the image-side surface of the fifth lens 550 .
  • the fifth lens 550 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fifth lens 550 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 550 may be ⁇ 68.976 mm.
  • the object-side surface of the fifth lens 550 is concave in a paraxial region and gradually flattens at edge portions thereof.
  • the sixth lens 560 has a negative refractive power.
  • An object-side surface of the sixth lens 560 is convex, and an image-side surface thereof may be concave.
  • the sixth lens 560 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 560 are aspherical.
  • An inflection point is formed on the sixth lens 560 . As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 560 .
  • the sixth lens 560 has a low refractive index. As an example, a refractive index of the sixth lens 560 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 560 may be ⁇ 11.437 mm.
  • the optical system 500 includes a filter 570 and an image sensor 580 .
  • the filter 570 is disposed adjacently to the image-side surface of the sixth lens 560 .
  • the filter 570 has a substantially flat plate.
  • the filter 570 filters infrared rays from light refracted from the sixth lens 560 .
  • the image sensor 580 is disposed behind the filter 570 .
  • the image sensor 580 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 580 and an optical axis to a diagonal corner of the image sensor 580 is 3.50 mm.
  • the optical system 500 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the optical system 500 configured as described above represents aberration characteristics and optical characteristics as illustrated in FIGS. 18 and 19 .
  • an F number of the optical system 500 is 1 . 98
  • an overall length (TTL) of the optical system 500 is 5.102 mm
  • an overall focal length of the optical system 500 is 4.303 mm.
  • FIG. 20 is a table representing aspherical coefficients of the optical system 500 .
  • the optical system 600 includes first to sixth lenses 610 to 660 .
  • the first to sixth lenses 610 to 660 may be sequentially disposed from an object toward an imaging plane.
  • the first lens 610 has a negative refractive power.
  • An object-side surface of the first lens 610 is convex, and an image-side surface thereof is concave.
  • the first lens 610 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 610 are aspherical.
  • the first lens 610 may be formed of a material having a refractive index of 1.547.
  • a focal length of the first lens 610 may be ⁇ 5064.53 mm.
  • the second lens 620 has a positive refractive power.
  • An object-side surface of the second lens 320 is convex, and an image-side surface thereof is convex.
  • the second lens 620 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 620 are aspherical.
  • the second lens 620 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 620 has a refractive index of 1.547, which is the same as that of the first lens.
  • a focal length of the second lens 620 may be 2.818 mm.
  • the third lens 630 has a negative refractive power.
  • An object-side surface of the third lens 630 is convex, and an image-side surface thereof is concave.
  • the third lens 630 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 630 are aspherical.
  • the third lens 630 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 630 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the third lens 630 may be ⁇ 5.971 mm.
  • the fourth lens 640 has a positive refractive power.
  • An object-side surface of the fourth lens 640 is concave, and an image-side surface thereof is convex.
  • the fourth lens 640 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 640 may be aspherical.
  • the fourth lens 640 may have a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 640 may be 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fourth lens 640 may be 29.146 mm.
  • the fifth lens 650 has a negative refractive power.
  • An object-side surface of the fifth lens 650 is concave, and an image-side surface thereof is concave.
  • the fifth lens 650 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 650 is aspherical.
  • An inflection point is formed on the fifth lens 650 . As an example, one or more inflection points is formed on the image-side surface of the fifth lens 650 .
  • the fifth lens 650 has a refractive index higher than the refractive indices of the first and second lenses.
  • a refractive index of the fifth lens 650 is 1.657, which is higher than the refractive indices of the first and second lenses.
  • a focal length of the fifth lens 650 may be ⁇ 97.168 mm.
  • the object-side surface of the fifth lens 650 is concave in a paraxial region and gradually flattens at edge portions thereof.
  • the sixth lens 660 has a negative refractive power.
  • An object-side surface of the sixth lens 660 is convex, and an image-side surface thereof is concave.
  • the sixth lens 660 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 660 are aspherical.
  • An inflection point is formed on the sixth lens 660 . As an example, one or more inflection points is formed on the object-side surface and the image-side surface of the sixth lens 660 .
  • the sixth lens 660 has a low refractive index. As an example, a refractive index of the sixth lens 660 may be 1.537, which is lower than the refractive indices of the first and second lenses.
  • a focal length of the sixth lens 660 may be ⁇ 10.966 mm.
  • the optical system 600 includes a filter 670 and an image sensor 680 .
  • the filter 670 is disposed adjacently to the image-side surface of the sixth lens 660 .
  • the filter 670 has a substantially flat plate.
  • the filter 670 filters infrared rays from light refracted from the sixth lens 660 .
  • the image sensor 680 is disposed behind the filter 670 .
  • the image sensor 680 has a predetermined size.
  • a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 680 and an optical axis to a diagonal corner of the image sensor 680 may be 3.50 mm.
  • the optical system 600 includes a stop STOP.
  • the stop STOP is disposed between the second lens and the third lens.
  • the optical system 600 configured as described above, represents aberration characteristics and optical characteristics as illustrated in FIGS. 22 and 23 .
  • an F number of the optical system 600 is 1.98
  • an overall length (TTL) which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 600 , is 5.102 mm
  • an overall focal length of the optical system 600 is 4.298 mm.
  • FIG. 24 is a table representing aspherical coefficients of the optical system 600 .
  • optical systems according to the first to sixth embodiments, configured as described above satisfy all of the Conditional Expressions 1 through 17, as represented in Table 1.
  • the optical system photographs a clear image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical system includes a first lens including a negative refractive power and a convex object-side surface, a second lens, and a third lens including a negative refractive power and a convex object-side surface. The optical system also includes a fourth lens, a fifth lens including a negative refractive power, and a sixth lens including a negative refractive power and comprising an inflection point on an image-side surface thereof. The first to sixth lenses are sequentially disposed from an object toward an imaging plane.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 15/070,455 filed on Mar. 15, 2016, which claims the priority and benefit of Korean Patent Application No. 10-2015-0112495, filed on Aug. 10, 2015, with the Korean Intellectual Property Office, the entire disclosures of which are incorporated herein by reference.
BACKGROUND 1. Field
The following description relates to an optical system including lenses having refractive power.
2. Description of Related Art
Over the years, camera modules have gradually been miniaturized. In addition, camera module performance has gradually improved. As an example, pixels of an image sensor have become small enough to enable realization of high resolution.
Typically, an optical system of a small camera module includes four lenses. However, it is difficult for the optical system including the four lenses to implement a clear image. Therefore, development of an optical system including five or more lenses is needed in order to enable realization of a clear image.
SUMMARY
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In accordance with an embodiment, there is provided an optical system, including: a first lens including a negative refractive power and a convex object-side surface; a second lens; a third lens including a negative refractive power and a convex object-side surface; a fourth lens; a fifth lens including a negative refractive power; and a sixth lens including a negative refractive power and including an inflection point on an image-side surface thereof, wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane.
V1, an Abbe number of the first lens and, V3, an Abbe number of the third lens may satisfy 25<V1−V3<45.
f, an overall focal length of the optical system and, f2, a focal length of the second lens may satisfy 0.3<f2/f<1.5.
f, an overall focal length of the optical system and, TTL, a distance from the object-side surface of the first lens to the imaging plane may satisfy TTL/f<1.5.
f, an overall focal length of the optical system and, r11, a radius of curvature of an image-side surface of the fifth lens may satisfy 1.0<r11/f.
The second lens has a positive refractive power.
The fourth lens has a positive refractive power.
In accordance with an embodiment, there is provided an optical system, including: a first lens including a negative refractive power and a convex object-side surface; a second lens including a convex object-side surface and a convex image-side surface; a third lens; a fourth lens including a concave object-side surface; a fifth lens including a negative refractive power; and a sixth lens may include an inflection point formed on an image-side surface thereof, wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane.
The first lens may include a concave image-side surface.
The third lens may include a convex object-side surface and a concave image-side surface.
The third lens may have a negative refractive power.
The fourth lens may include a convex image-side surface.
The fourth lens may have a positive refractive power.
The fifth lens may include a concave image-side surface.
The sixth lens may include a convex object-side surface and the image-side surface thereof is concave.
The sixth lens has a negative refractive power.
In accordance with another embodiment, there is provided an optical system, including: a first lens including a convex object-side surface and a concave image-side surface; a second lens including a convex object-side surface and a convex image-side surface; a third lens including a convex object-side surface and a concave image-side surface; a fourth lens including a concave object-side surface and a convex image-side surface; a fifth lens including a concave object-side surface and a concave image-side surface; and a sixth lens, wherein the second lens has a same refractive power as a refractive power of the first lens, the third lens, the fourth lens, and the fifth lens have a refractive power higher than the refractive powers of the first and second lenses, and the sixth lens has a refractive power lower than the refractive powers of the first and second lenses.
f, an overall focal length of the optical system and, f1, a focal length of the first lens may satisfy f1/f<0.
f, an overall focal length of the optical system, and r7 a radius of curvature of the image-side surface of the third lens may satisfy 0.3<r7/f<1.4.
FOV, a field of view of the optical system may satisfy 74 <FOV.
Upper and lower ends of the fifth lens extend horizontally towards an object side, parallel to upper and lower portions of the first through fourth lenses.
The object-side surface of the fifth lens is concave in a paraxial region and gradually flattens at edge portions thereof.
The first lens may include a negative refractive power, the second lens may include a positive refractive power, the third lens may include a negative refractive power, the fourth lens may include a positive refractive power, the fifth lens may include a negative refractive power, and the sixth lens may include a negative refractive power.
Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
BRIEF DESCRIPTION OF DRAWINGS
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
FIG. 1 is a view of an optical system, according to a first embodiment;
FIG. 2 illustrates graphs having curves representing aberration of the optical system according to the first embodiment;
FIG. 3 is a table representing characteristics of the optical system according to the first embodiment;
FIG. 4 is a table representing aspherical characteristics of the optical system, according to the first embodiment;
FIG. 5 is a view of an optical system, according to a second embodiment;
FIG. 6 illustrates graphs having curves representing aberration of the optical system, according to the second embodiment;
FIG. 7 is a table representing characteristics of the optical system, according to the second embodiment;
FIG. 8 is a table representing aspherical characteristics of the optical system, according to the second embodiment;
FIG. 9 is a view of an optical system, according to a third embodiment;
FIG. 10 illustrates graphs having curves representing aberration of the optical system, according to the third embodiment;
FIG. 11 is a table representing characteristics of the optical system, according to the third embodiment;
FIG. 12 is a table representing aspherical characteristics of the optical system, according to the third embodiment;
FIG. 13 is a view of an optical system, according to a fourth embodiment;
FIG. 14 illustrates graphs having curves representing aberration of the optical system, according to the fourth embodiment;
FIG. 15 is a table representing characteristics of the optical system, according to the fourth embodiment;
FIG. 16 is a table representing aspherical characteristics of the optical system, according to the fourth embodiment;
FIG. 17 is a view of an optical system, according to a fifth embodiment;
FIG. 18 illustrates graphs having curves representing aberration of the optical system, according to the fifth embodiment;
FIG. 19 is a table representing characteristics of the optical system, according to the fifth embodiment;
FIG. 20 is a table representing aspherical characteristics of the optical system, according to the fifth embodiment;
FIG. 21 is a view of an optical system, according to a sixth embodiment;
FIG. 22 illustrates graphs having curves representing aberration of the optical system, according to the sixth embodiment;
FIG. 23 is a table representing characteristics of the optical system, according to the sixth embodiment; and
FIG. 24 is a table representing aspherical characteristics of the optical system, according to the sixth embodiment.
Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
DETAILED DESCRIPTION
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. However, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be apparent to one of ordinary skill in the art. The sequences of operations described herein are merely examples, and are not limited to those set forth herein, but may be changed as will be apparent to one of ordinary skill in the art, with the exception of operations necessarily occurring in a certain order. Also, descriptions of functions and constructions that are well known to one of ordinary skill in the art may be omitted for increased clarity and conciseness.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided so that this disclosure will be thorough and complete, and will convey the full scope of the disclosure to one of ordinary skill in the art.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided so that this disclosure will be thorough and complete, and will convey the full scope of the disclosure to one of ordinary skill in the art.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various lenses, these lenses should not be limited by these terms. These terms are only used to distinguish one lens from another lens. These terms do not necessarily imply a specific order or arrangement of the lenses. Thus, a first lens discussed below could be termed a second lens without departing from the teachings description of the various embodiments.
Example embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
In addition, a surface of each lens closest to an object is referred to as a first surface or an object-side surface, and a surface of each lens closest to an imaging surface is referred to as a second surface or an image-side surface. Further, all numerical values of radii of curvature, thicknesses/distances, TTLs, and other parameters of the lenses are represented in millimeters (mm).
A person skilled in the relevant art will appreciate that other units of measurement may be used. Further, in the present specification, all radii of curvature, thicknesses, OALs (optical axis distances from the first surface of the first lens to the image sensor (OALs), a distance on the optical axis between the stop and the image sensor (SLs), image heights (IMGHs) (image heights), and black focus lengths (BFLs) (back focus lengths) of the lenses, an overall focal length of an optical system, and a focal length of each lens are indicated in millimeters (mm). Further, thicknesses of lenses, gaps between the lenses, OALs, and SLs are distances measured based on an optical axis of the lenses.
In addition, in an embodiment, shapes of lenses are described and illustrated in relation to optical axis portions of the lenses.
A surface of a lens being convex means that an optical axis portion of a corresponding surface is convex, and a surface of a lens being concave means that an optical axis portion of a corresponding surface is concave. Therefore, in a configuration in which one surface of a lens is described as being convex, an edge portion of the lens may be concave. Likewise, in a configuration in which one surface of a lens is described as being concave, an edge portion of the lens may be convex. In other words, a paraxial region of a lens may be convex, while the remaining portion of the lens outside the paraxial region is either convex, concave, or flat. Further, a paraxial region of a lens may be concave, while the remaining portion of the lens outside the paraxial region is either convex, concave, or flat.
In addition, in an embodiment, thicknesses and radii of curvatures of lenses are measured in relation to optical axes of the corresponding lenses.
An optical system, according to an embodiment, includes six lenses. As an example, the optical system may include a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The lens module may include from four lenses up to six lenses without departing from the scope of the embodiments herein described. In accordance with an illustrative example, the embodiments described of the optical system include six lenses with a refractive power. However, a person of ordinary skill in the relevant art will appreciate that the number of lenses in the optical system may vary, for example, between two to six lenses, while achieving the various results and benefits described hereinbelow. Also, although each lens is described with a particular refractive power, a different refractive power for at least one of the lenses may be used to achieve the intended result.
In the optical system, according to embodiments, the first to sixth lenses are formed of materials including glass, plastic or other similar types of polycarbonate materials. In another embodiment, at least one of the first through sixth lenses is formed of a material different from the materials forming the other first through sixth lenses.
The first lens has a refractive power. As an example, the first lens has a negative refractive power. An object-side surface of the first lens is convex. The first lens has an aspherical surface. As an example, both of the object-side surface and an image-side surface of the first lens are aspherical. The first lens is formed of plastic. However, a material of the first lens is not limited to plastic.
The second lens has a refractive power, such as a positive refractive power or a negative refractive power. Both of an object-side surface and an image-side surface of the second lens are convex. The second lens has an aspherical surface. As an example, both of the object-side surface and the image-side surface of the second lens are aspherical. The second lens is formed of plastic. However, a material of the second lens is not limited to plastic.
The third lens has a refractive power. As an example, the third lens may have negative refractive power. An object-side surface of the third lens is convex. The third lens has an aspherical surface. As an example, both of the object-side surface and an image-side surface of the third lens are aspherical. The third lens is formed of plastic. However, a material of the third lens is not limited to plastic.
The fourth lens may have refractive power, such as a positive refractive power or a negative refractive power. An object-side surface of the fourth lens is concave. The fourth lens has an aspherical surface. As an example, both of an object-side surface and the image-side surface of the fourth lens are aspherical. The fourth lens is formed of plastic. However, a material of the fourth lens is not limited to plastic.
The fifth lens has a refractive power. As an example, the fifth lens has a negative refractive power. An image-side surface of the fifth lens is concave. The fifth lens has an aspherical surface. As an example, both of an object-side surface and the image-side surface of the fifth lens is aspherical. The fifth lens has an inflection point. As an example, one or more inflection points are formed on the image-side surface of the fifth lens. The fifth lens is formed of plastic. However, a material of the fifth lens is not limited to plastic.
The sixth lens has a refractive power. As an example, the sixth lens has a negative refractive power. An image-side surface of the sixth lens is concave. The sixth lens has an aspherical surface. As an example, both of an object-side surface and the image-side surface of the sixth lens are aspherical. The sixth lens has an inflection point. As an example, one or more inflection points are formed on the image-side surface of the sixth lens. The sixth lens is formed of plastic. However, a material of the sixth lens is not limited to plastic.
A person of ordinary skill in the relevant art will appreciate that each of the first through six lenses may be configured in an opposite refractive power from the configuration described above. For example, in an alternative configuration, the first lens has a positive refractive power, the second lens has a negative refractive power, the third lens has a positive refractive power, the fourth lens has a negative refractive power, the fifth lens has a positive refractive power, and the sixth lens has a positive refractive power.
The optical system includes a filter and an image sensor. The filter is disposed between the sixth lens and the image sensor. The filter may filter an infrared component from incident light refracted through the first to sixth lenses. The image sensor is disposed behind the filter, and converts the incident light refracted through the first to sixth lenses into electrical signals.
The optical system includes a stop. The stop adjusts an amount of light incident to the first to sixth lenses. As an example, the stop is disposed between the second lens and the third lens to adjust an amount to incident light.
The optical system satisfies the following Conditional Expression 1:
f1/f<0.   [Conditional Expression 1]
In an example, f is an overall focal length of the optical system, and f1 is a focal length of the first lens. The Conditional Expression 1 represents or defines a condition for limiting a magnitude of refractive power of the first lens to overall refractive power of the optical system. As an example, in a case in which f1/f is outside of an upper limit value of the Conditional Expression 1, the first lens may not maintain the negative refractive power.
The optical system satisfies one or more of the following Conditional Expressions 2 through 4:
V1−V2<25   [Conditional Expression 2]
25<V1−V3<45   [Conditional Expression 3]
25<V1−V5<45.   [Conditional Expression 4]
In one embodiment, V1 is an Abbe number of the first lens, V2 is an Abbe number of the second lens, V3 is an Abbe number of the third lens, and V5 is an Abbe number of the fifth lens. The Conditional Expressions 2 through 4 indicate limit conditions for correction chromatic aberration of the optical system. As an example, in a case in which V1−V2, V1−V3, and V1−V5 are outside of numerical ranges of the Conditional Expressions 2 through 4, respectively, the optical system has significantly great chromatic aberration, in such a manner that it is difficult to use the optical system in a camera module that needs high resolution.
The optical system satisfies the following Conditional Expression 5:
0.3<f2/f<1.5.   [Conditional Expression 5]
In an example, f is the overall focal length of the optical system, and f2 is a focal length of the second lens. The Conditional Expression 5 represents or defines a condition for limiting a magnitude of refractive power of the second lens to the overall refractive power of the optical system. As an example, in a case in which f2/f is outside of a lower limit value of the Conditional Expression 5, the second lens has significantly great refractive power, in such a manner that it is difficult to correct spherical aberration. As another example, in a case in which f2/f is outside of an upper limit value of the Conditional Expression 5, the second lens has significantly low refractive power, which is advantageous to correct spherical aberration, but makes miniaturization of the optical system difficult.
The optical system satisfies the following Conditional Expression 6:
−3.0<f3/f<−1.0.   [Conditional Expression 6]
In one example, f is the overall focal length of the optical system, and f3 is a focal length of the third lens. The Conditional Expression represents or defines a condition for limiting a magnitude of refractive power of the third lens to the overall refractive power of the optical system. As an example, in a case in which f3/f is outside of a lower limit value of the Conditional Expression 6, the third lens has significantly great refractive power making it difficult to correct spherical aberration. As another example, in a case in which f3/f is outside of an upper limit value of the Conditional Expression 6, the third lens has significantly low refractive power, which is advantageous in correcting spherical aberration, but makes miniaturization of the optical system difficult.
The optical system satisfies the following Conditional Expression 7:
3.0<|f4/f|.   [Conditional Expression 7]
In an embodiment, f is the overall focal length of the optical system, and f4 is a focal length of the fourth lens. The Conditional Expression 7 represents or defines a condition for limiting a magnitude of refractive power of the fourth lens to the overall refractive power of the optical system. As an example, in a case in which f4/f is outside of a lower limit value of the Conditional Expression 7, the fourth lens has significantly great refractive power making it difficult to correct spherical aberration.
The optical system satisfies the following Conditional Expression 8:
f5/f<−10.   [Conditional Expression 8]
In one example, f is the overall focal length of the optical system, and f5 is a focal length of the fifth lens. The Conditional Expression 8 represents or defines a condition for limiting a magnitude of refractive power of the fifth lens to the overall refractive power of the optical system. As an example, in a case in which f5/f is outside of an upper limit value of the Conditional Expression 8, the fifth lens has significantly great refractive power making it difficult to correct spherical aberration.
The optical system satisfies the following Conditional Expression 9:
TTL/f<1.5.   [Conditional Expression 9]
In an example, f is the overall focal length of the optical system, and TTL is a distance from the object-side surface of the first lens to an imaging plane. The Conditional Expression 9 represents or defines a condition for miniaturizing the optical system. As an example, in a case in which TTL/f is outside of an upper limit value of the Conditional Expression 9, it is difficult to mount the optical system in a small portable terminal.
The optical system satisfies the following Conditional Expression 10:
f1/f2<0.   [Conditional Expression 10]
In an embodiment, f1 is the focal length of the first lens, and f2 is the focal length of the second lens. The Conditional Expression 10 represents or defines a condition for limiting a ratio of refractive power between the first lens and the second lens. As an example, in a case in which f1/f2 is outside of an upper limit value of the Conditional Expression 10, refractive power of the first lens or the second lens is significantly great making it difficult to correct aberration.
The optical system satisfies the following Conditional Expression 11:
−1.2<f2/f3<0.   [Conditional Expression 11]
In one example, f2 is the focal length of the second lens, and f3 is the focal length of the third lens. The Conditional Expression 11 represents or defines a condition for limiting a ratio of refractive power between the second lens and the third lens. As an example, in a case in which f2/f3 is outside of a numerical range of the Conditional Expression 11, refractive power of the second lens or the third lens is significantly great making it difficult to correct aberration.
The optical system satisfies the following Conditional Expression 12:
BFL/f<0.5.   [Conditional Expression 12]
In an embodiment, f is the overall focal length of the optical system, and BFL is a distance from the object-side surface of the sixth lens to the imaging plane. The Conditional Expression 12 represents or defines a condition for miniaturizing the optical system. As an example, in a case in which BFL/f is outside of an upper limit value of the Conditional Expression 12, it is difficult to miniaturize the optical system.
The optical system satisfies the following Conditional Expression 13:
D2/f<0.1.   [Conditional Expression 13]
In one embodiment, f is the overall focal length of the optical system, and D2 is a distance from the image-side surface of the first lens to the object-side surface of the second lens. The Conditional Expression 13 represents or defines a condition for improving longitudinal chromatic aberration characteristics. As an example, in a case in which D2/f is outside of an upper limit value of the Conditional Expression 13, the first lens and the second lens may have deteriorated longitudinal chromatic aberration characteristics.
The optical system satisfies the following Conditional Expression 14:
0.3<r7/f<1.4.   [Conditional Expression 14]
In an example, f is the overall focal length of the optical system, and r7 is a radius of curvature of the image-side surface of the third lens. The Conditional Expression 14 represents or defines a condition for limiting refractive power of the third lens. As an example, in a case in which r7/f is outside of a numerical range of the Conditional Expression 14, it is not easy to manufacture the third lens, and it is difficult to secure the required refractive power.
The optical system satisfies the following Conditional Expression 15:
1.0<r11/f.   [Conditional Expression 15]
In one example, f is the overall focal length of the optical system, and r11 is a radius of curvature of the image-side surface of the fifth lens. The Conditional Expression 15 represents or defines a condition for limiting refractive power of the fifth lens. As an example, in a case in which r11/f is outside of a numerical range of the Conditional Expression 15, it is not easy to manufacture the fifth lens, and it is difficult to secure the required refractive power.
The optical system satisfies one or more of the following Conditional Expressions 16 and 17:
74<FOV   [Conditional Expression 16]
F number<2.1.   [Conditional Expression 17]
In a further example, FOV is a field of view of the optical system.
The optical system configured as described above realizes a camera module having a wide field of view and high resolution.
Also, in one embodiment, each of the first to sixth lenses may be separate lenses configured as described above. A distance between lenses may vary. In another embodiment, at least one of the first to sixth lenses may be operatively connected or in contact with another one of the first to sixth lenses.
In a further alternative embodiment, two or more of the lenses of the first to sixth lenses may be configured as a group and in operative connection or contact with another lens. For instance, the first, second, and third lenses may be in contact with each other as a first group lens, while the fourth, fifth, and sixth lenses are configured separate from each other and from the first group lens. In the alternative, the first, second, and third lenses may be in contact with each other as a first group lens, the fourth and the fifth lenses may be in contact with each other as a second group lens, and the sixth lens is configured separate from the first and second group lenses.
Next, several embodiments will be described.
An optical system, according to a first embodiment, will be described with reference to FIG. 1 .
The optical system 100, according to an embodiment, includes first to sixth lenses 110 to 160. The first to sixth lenses 110 to 160 are sequentially disposed from an object toward an imaging plane.
The first lens 110 has a negative refractive power. An object-side surface of the first lens 110 is convex, and an image-side surface thereof is concave. The first lens 110 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 110 are aspherical. The first lens 110 may be formed of a material having a refractive index of 1.547. A focal length of the first lens 110 may be −47457.1 mm.
The second lens 120 has a positive refractive power. An object-side surface of the second lens 120 is convex, and an image-side surface thereof is convex. The second lens 120 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 120 are aspherical. The second lens 120 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 120 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 120 may be 2.788 mm.
The third lens 130 has a negative refractive power. An object-side surface of the third lens 130 is convex, and an image-side surface thereof is concave. The third lens 130 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 130 are aspherical. The third lens 130 has a refractive index higher than the refractive powers of the first and second lenses. As an example, a refractive index of the third lens 130 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 130 may be −5.794 mm.
The fourth lens 140 has a positive refractive power. An object-side surface of the fourth lens 140 is concave, and an image-side surface thereof is convex. The fourth lens 140 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 140 are aspherical. The fourth lens 140 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 140 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 140 may be 158.832 mm.
The fifth lens 150 has a negative refractive power. An object-side surface of the fifth lens 150 is convex, and an image-side surface thereof is concave. The fifth lens 150 has an aspherical shape. For example, the object-side surface of the fifth lens 150 is convex in the paraxial region, and the image-side surface of the fifth lens 150 is concave in the paraxial region. As an example, both of the object-side surface and the image-side surface of the fifth lens 150 are aspherical. An inflection point is formed on the fifth lens 150. As an example, one or more inflection points are formed on the image-side surface of the fifth lens 150. The fifth lens 150 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 150 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 150 may be −176353.3 mm.
The sixth lens 160 has a negative refractive power. An object-side surface of the sixth lens 160 is convex, and an image-side surface thereof is concave. The sixth lens 160 may have an aspherical shape. For example, the object-side surface of the sixth lens 16 is convex in the paraxial region, and the image-side surface of the sixth lens 160 is concave in the paraxial region. As an example, both of the object-side surface and the image-side surface of the sixth lens 160 are aspherical. An inflection point is formed on the sixth lens 160. As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 160. The sixth lens 160 has a low refractive index. As an example, a refractive index of the sixth lens 160 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 160 may be −13.349 mm.
The optical system 100 includes a filter 170 and an image sensor 180. The filter 170 is disposed adjacently to the image-side surface of the sixth lens 160. The filter 170 has a substantially flat plate. The filter 170 filters infrared rays from light refracted from the sixth lens 160.
The image sensor 180 is disposed behind the filter 170. The image sensor 180 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 180 and an optical axis to a diagonal corner of the image sensor 180 may be 3.50 mm.
The optical system 100 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens. However, a person skill in the art will appreciate that the stop ST may be positioned in between two of the lenses 110 to 160.
The optical system 100 configured as described above represents aberration characteristics and optical characteristics as illustrated in FIGS. 2 and 3 . As an example, an F number of the optical system 100, according to an embodiment, is 2.09, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 100, is 5.211 mm, and an overall focal length of the optical system 100 is 4.492 mm. For reference, FIG. 4 is a table representing aspherical coefficients of the optical system 100.
An optical system, according to a second embodiment, will be described with reference to FIG. 5 .
The optical system 200, according to an embodiment, includes first to sixth lenses 210 to 260. The first to sixth lenses 210 to 260 are sequentially disposed from an object toward an imaging plane.
The first lens 210 has a negative refractive power. An object-side surface of the first lens 210 is convex, and an image-side surface thereof is concave. The first lens 210 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 210 are aspherical. The first lens 210 may be formed of a material having a refractive index of 1.547. A focal length of the first lens 210 may be −40047.4 mm.
The second lens 220 has a positive refractive power. An object-side surface of the second lens 220 is convex, and an image-side surface thereof is convex. The second lens 220 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 220 are aspherical. The second lens 220 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 220 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 220 may be 2.780 mm.
The third lens 230 has a negative refractive power. An object-side surface of the third lens 230 is convex, and an image-side surface thereof is concave. The third lens 230 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 230 are aspherical. The third lens 230 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 230 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 230 may be −5.758 mm.
The fourth lens 240 has a positive refractive power. An object-side surface of the fourth lens 240 is concave, and an image-side surface thereof is convex. The fourth lens 240 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 240 are aspherical. The fourth lens 240 has a refractive index higher than the refractive indices of the first and second lenses. As an example, refractive index of the fourth lens 240 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 240 may be 69.588 mm.
The fifth lens 250 has a negative refractive power. An object-side surface of the fifth lens 250 is convex, and an image-side surface thereof is concave. The fifth lens 250 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 250 are aspherical. An inflection point is formed on the fifth lens 250. As an example, one or more inflection points may be formed on the image-side surface of the fifth lens 250. The fifth lens 250 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 250 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 250 may be −405.09 mm. In accordance with an embodiment, as shown in FIG. 5 , upper and lower ends of the fifth lens 250 extend horizontally towards the object side, parallel to upper and lower portions of the first through fourth lenses 210 through 240, without contacting the upper and lower portions of the first through fourth lenses 210 through 240.
The sixth lens 260 has a negative refractive power. An object-side surface of the sixth lens 260 is convex, and an image-side surface thereof is concave. The sixth lens 260 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 260 are aspherical. An inflection point is formed on the sixth lens 260. As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 260. The sixth lens 260 has a low refractive index. As an example, a refractive index of the sixth lens 260 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 260 may be −13.722 mm.
The optical system 200 includes a filter 270 and an image sensor 280. The filter 270 is disposed adjacently to the image-side surface of the sixth lens 260. The filter 270 has a substantially flat plate. The filter 270 filters infrared rays from light refracted from the sixth lens 260.
The image sensor 280 is disposed behind the filter 270. The image sensor 280 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 280 and an optical axis to a diagonal corner of the image sensor 280 is 3.50 mm.
The optical system 200 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens.
The optical system 200 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 6 and 7 . As an example, an F number of the optical system 200, according to an embodiment may be 2.07, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 200, is 5.104 mm, and an overall focal length of the optical system 200 is 4.402 mm. For reference, FIG. 8 is a table representing aspherical coefficients of the optical system 200.
An optical system, according to a third embodiment, will be described with reference to FIG. 9 .
The optical system 300, according to an embodiment, includes first to sixth lenses 310 to 360. The first to sixth lenses 310 to 360 are sequentially disposed from an object toward an imaging plane.
The first lens 310 has a negative refractive power. An object-side surface of the first lens 310 is convex, and an image-side surface thereof is concave. The first lens 310 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 310 are aspherical. The first lens 310 may be formed of a material having a refractive index of 1.547. A focal length of the first lens 310 may be −95.513 mm.
The second lens 320 has a positive refractive power. An object-side surface of the second lens 320 is convex, and an image-side surface thereof is convex. The second lens 320 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 320 are aspherical. The second lens 320 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 320 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 320 may be 2.716 mm.
The third lens 330 has a negative refractive power. An object-side surface of the third lens 330 is convex, and an image-side surface thereof is concave. The third lens 330 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 330 are aspherical. The third lens 330 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 330 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 330 may be −6.192 mm.
The fourth lens 340 has a positive refractive power. An object-side surface of the fourth lens 340 is concave, and an image-side surface thereof is convex. The fourth lens 340 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 340 are aspherical. The fourth lens 340 may have a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 340 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 340 may be 62.408 mm.
The fifth lens 350 has a negative refractive power. An object-side surface of the fifth lens 350 is concave, and an image-side surface thereof is concave. The fifth lens 350 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 350 are aspherical. An inflection point is formed on the fifth lens 350. As an example, one or more inflection points are formed on the image-side surface of the fifth lens 350. The fifth lens 350 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 350 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 350 may be −196.150 mm. In one example, the object-side surface of the fifth lens 350 is concave in a paraxial region and gradually flattens at edge portions thereof.
The sixth lens 360 has a negative refractive power. An object-side surface of the sixth lens 360 is convex, and an image-side surface thereof is concave. The sixth lens 360 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 360 are aspherical. An inflection point is formed on the sixth lens 360. As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 360. The sixth lens 360 has a low refractive index. As an example, refractive power of the sixth lens 360 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 360 may be −11.896 mm.
The optical system 300 includes a filter 370 and an image sensor 380. The filter 370 is disposed adjacently to the image-side surface of the sixth lens 360. The filter 370 has a substantially flat plate. The filter 370 filters an infrared ray from light refracted from the sixth lens 360.
The image sensor 380 is disposed behind the filter 370. The image sensor 380 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 380 and an optical axis to a diagonal corner of the image sensor 380 may be 3.50 mm.
The optical system 300 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens.
The optical system 300 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 10 and 11 . As an example, an F number of the optical system 300, according an embodiment, is 2.09, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 300, is 5.104 mm, and an overall focal length of the optical system 300 is 4.392 mm. For reference, FIG. 12 is a table representing aspherical coefficients of the optical system 300.
An optical system, according to a fourth embodiment, will be described with reference to FIG. 13 .
The optical system 400, according to an embodiment, includes first to sixth lenses 410 to 460. The first to sixth lenses 410 to 460 are sequentially disposed from an object toward an imaging plane.
The first lens 410 has a negative refractive power. An object-side surface of the first lens 410 is convex, and an image-side surface thereof is concave. The first lens 410 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 410 are aspherical. The first lens 410 may be formed of a material having a refractive index of 1.547. A focal length of the first lens 410 may be −677.554 mm.
The second lens 420 has a positive refractive power. An object-side surface of the second lens 420 is convex, and an image-side surface thereof is convex. The second lens 420 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 420 are aspherical. The second lens 420 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 420 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 420 may be 2.800 mm.
The third lens 430 has a negative refractive power. An object-side surface of the third lens 430 is convex, and an image-side surface thereof is concave. The third lens 430 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 430 may be aspherical. The third lens 430 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 430 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 430 may be −5.988 mm.
The fourth lens 440 has a positive refractive power. An object-side surface of the fourth lens 440 is concave, and an image-side surface thereof is convex. The fourth lens 440 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 440 are aspherical. The fourth lens 440 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 440 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 440 may be 31.426 mm.
The fifth lens 450 has a negative refractive power. An object-side surface of the fifth lens 450 is concave, and an image-side surface thereof is concave. The fifth lens 450 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 450 are aspherical. An inflection point is formed on the fifth lens 450. As an example, one or more inflection points are formed on the image-side surface of the fifth lens 450. The fifth lens 450 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 450 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 450 may be −80.848 mm. In one example, the object-side surface of the fifth lens 450 is concave in a paraxial region and gradually flattens at edge portions thereof
The sixth lens 460 has a negative refractive power. An object-side surface of the sixth lens 460 is convex, and an image-side surface thereof is concave. The sixth lens 460 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 460 are aspherical. An inflection point is formed on the sixth lens 460. As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 460. The sixth lens 460 has a low refractive index. As an example, a refractive index of the sixth lens 460 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 460 may be −10.783 mm.
The optical system 400 includes a filter 470 and an image sensor 480. The filter 470 is disposed adjacently to the image-side surface of the sixth lens 460. The filter 470 has a substantially flat plate. The filter 470 filters infrared rays from light refracted from the sixth lens 460.
The image sensor 480 is disposed behind the filter 470. The image sensor 480 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 480 and an optical axis to a diagonal corner of the image sensor 480 is 3.50 mm.
The optical system 400 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens.
The optical system 400 configured as described above may represent aberration characteristics and optical characteristics as illustrated in FIGS. 14 and 15 . As an example, an F number of the optical system 400, according to an embodiment is 2.00, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 400, is 5.103 mm, and an overall focal length of the optical system 400 is 4.327 mm. For reference, FIG. 16 is a table representing aspherical coefficients of the optical system 400.
An optical system, according to a fifth embodiment, will be described with reference to FIG. 17 .
The optical system 500, according to an embodiment, includes first to sixth lenses 510 to 560. The first to sixth lenses 510 to 560 are sequentially disposed from an object toward an imaging plane.
The first lens 510 has a negative refractive power. An object-side surface of the first lens 510 is convex, and an image-side surface thereof is concave. The first lens 510 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 510 are aspherical. The first lens 510 is formed of a material having a refractive index of 1.547. A focal length of the first lens 510 may be −9275.74 mm.
The second lens 520 has a positive refractive power. An object-side surface of the second lens 520 is convex, and an image-side surface thereof is convex. The second lens 520 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 520 re aspherical. The second lens 520 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 520 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 520 may be 2.816 mm.
The third lens 530 has a negative refractive power. An object-side surface of the third lens 530 is convex, and an image-side surface thereof is concave. The third lens 530 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 530 are aspherical. The third lens 530 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 530 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 530 may be −6.016 mm.
The fourth lens 540 has a positive refractive power. An object-side surface of the fourth lens 540 is concave, and an image-side surface thereof is convex. The fourth lens 540 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 540 are aspherical. The fourth lens 540 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 540 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 540 may be 30.800 mm.
The fifth lens 550 has a negative refractive power. An object-side surface of the fifth lens 550 is concave, and an image-side surface thereof is concave. The fifth lens 550 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 550 are aspherical. An inflection point is formed on the fifth lens 550. As an example, one or more inflection points are formed on the image-side surface of the fifth lens 550. The fifth lens 550 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 550 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 550 may be −68.976 mm. In one example, the object-side surface of the fifth lens 550 is concave in a paraxial region and gradually flattens at edge portions thereof.
The sixth lens 560 has a negative refractive power. An object-side surface of the sixth lens 560 is convex, and an image-side surface thereof may be concave. The sixth lens 560 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 560 are aspherical. An inflection point is formed on the sixth lens 560. As an example, one or more inflection points are formed on the object-side surface and the image-side surface of the sixth lens 560. The sixth lens 560 has a low refractive index. As an example, a refractive index of the sixth lens 560 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 560 may be −11.437 mm.
The optical system 500 includes a filter 570 and an image sensor 580. The filter 570 is disposed adjacently to the image-side surface of the sixth lens 560. The filter 570 has a substantially flat plate. The filter 570 filters infrared rays from light refracted from the sixth lens 560.
The image sensor 580 is disposed behind the filter 570. The image sensor 580 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 580 and an optical axis to a diagonal corner of the image sensor 580 is 3.50 mm.
The optical system 500 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens.
The optical system 500 configured as described above represents aberration characteristics and optical characteristics as illustrated in FIGS. 18 and 19 . As an example, an F number of the optical system 500, according to an embodiment, is 1.98, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane) of the optical system 500, is 5.102 mm, and an overall focal length of the optical system 500 is 4.303 mm. For reference, FIG. 20 is a table representing aspherical coefficients of the optical system 500.
An optical system, according to a sixth embodiment, will be described with reference to FIG. 21 .
The optical system 600, according to an embodiment, includes first to sixth lenses 610 to 660. The first to sixth lenses 610 to 660 may be sequentially disposed from an object toward an imaging plane.
The first lens 610 has a negative refractive power. An object-side surface of the first lens 610 is convex, and an image-side surface thereof is concave. The first lens 610 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the first lens 610 are aspherical. The first lens 610 may be formed of a material having a refractive index of 1.547. A focal length of the first lens 610 may be −5064.53 mm.
The second lens 620 has a positive refractive power. An object-side surface of the second lens 320 is convex, and an image-side surface thereof is convex. The second lens 620 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the second lens 620 are aspherical. The second lens 620 is formed of a material that is substantially the same as or similar to that of the first lens. As an example, the second lens 620 has a refractive index of 1.547, which is the same as that of the first lens. A focal length of the second lens 620 may be 2.818 mm.
The third lens 630 has a negative refractive power. An object-side surface of the third lens 630 is convex, and an image-side surface thereof is concave. The third lens 630 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the third lens 630 are aspherical. The third lens 630 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the third lens 630 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the third lens 630 may be −5.971 mm.
The fourth lens 640 has a positive refractive power. An object-side surface of the fourth lens 640 is concave, and an image-side surface thereof is convex. The fourth lens 640 may have an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fourth lens 640 may be aspherical. The fourth lens 640 may have a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fourth lens 640 may be 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fourth lens 640 may be 29.146 mm.
The fifth lens 650 has a negative refractive power. An object-side surface of the fifth lens 650 is concave, and an image-side surface thereof is concave. The fifth lens 650 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the fifth lens 650 is aspherical. An inflection point is formed on the fifth lens 650. As an example, one or more inflection points is formed on the image-side surface of the fifth lens 650. The fifth lens 650 has a refractive index higher than the refractive indices of the first and second lenses. As an example, a refractive index of the fifth lens 650 is 1.657, which is higher than the refractive indices of the first and second lenses. A focal length of the fifth lens 650 may be −97.168 mm. In one example, the object-side surface of the fifth lens 650 is concave in a paraxial region and gradually flattens at edge portions thereof.
The sixth lens 660 has a negative refractive power. An object-side surface of the sixth lens 660 is convex, and an image-side surface thereof is concave. The sixth lens 660 has an aspherical shape. As an example, both of the object-side surface and the image-side surface of the sixth lens 660 are aspherical. An inflection point is formed on the sixth lens 660. As an example, one or more inflection points is formed on the object-side surface and the image-side surface of the sixth lens 660. The sixth lens 660 has a low refractive index. As an example, a refractive index of the sixth lens 660 may be 1.537, which is lower than the refractive indices of the first and second lenses. A focal length of the sixth lens 660 may be −10.966 mm.
The optical system 600 includes a filter 670 and an image sensor 680. The filter 670 is disposed adjacently to the image-side surface of the sixth lens 660. The filter 670 has a substantially flat plate. The filter 670 filters infrared rays from light refracted from the sixth lens 660.
The image sensor 680 is disposed behind the filter 670. The image sensor 680 has a predetermined size. As an example, a distance (IMH HT) (see FIG. 2 ) from an intersection point between an imaging plane of the image sensor 680 and an optical axis to a diagonal corner of the image sensor 680 may be 3.50 mm.
The optical system 600 includes a stop STOP. The stop STOP is disposed between the second lens and the third lens.
The optical system 600 configured as described above, represents aberration characteristics and optical characteristics as illustrated in FIGS. 22 and 23 . As an example, an F number of the optical system 600, according to an embodiment, is 1.98, an overall length (TTL), which is a distance from the object-side surface of the first lens to the imaging plane of the optical system 600, is 5.102 mm, and an overall focal length of the optical system 600 is 4.298 mm. For reference, FIG. 24 is a table representing aspherical coefficients of the optical system 600.
The optical systems, according to the first to sixth embodiments, configured as described above satisfy all of the Conditional Expressions 1 through 17, as represented in Table 1.
TABLE 1
Conditional First Second Third Fourth Fifth Sixth
Remark Expression Embodiment Embodiment Embodiment Embodiment Embodiment Embodiment
1 f1/f < 0 −10565.046 −9096.919 −21.746 −156.580 −2155.795 −1178.319
2 V1-V2 < 25 0.0 0.0 0.0 0.0 0.0 0.0
3 25 < V1-V3 < 45 34.60 34.60 34.60 34.60 34.60 34.60
4 25 < V1-V5 < 45 34.60 34.60 34.60 34.60 34.60 34.60
5 0.3 < f2/f < 1.5 0.621 0.631 0.618 0.647 0.654 0.656
6 −3.0 < f3/f < −1.0 −1.290 −1.308 −1.410 −1.384 −1.398 −1.389
7 3.0 < |f4/f| 35.360 15.807 14.209 7.262 7.158 6.781
8 f5/f < −10 −39260.348 −92.017 −44.659 −18.684 −16.031 −22.607
9 TTL/f < 1.5 1.160 1.159 1.162 1.179 1.186 1.187
10 f1/f2 < 0 −17021.600 −14405.667 −35.168 −241.959 −3294.040 −1797.493
11 −1.2 < f2/f3 < 0 −0.481 −0.483 −0.439 −0.468 −0.468 −0.472
12 BFL/f < 0.5 0.235 0.240 0.250 0.236 0.239 0.241
13 D2/f < 0.1 0.014 0.014 0.009 0.012 0.013 0.013
14 0.3 < r7/f < 1.4 0.519 0.528 0.554 0.552 0.556 0.554
15 1.0 < r11/f 1.537 1.451 33.711 12.975 11.042 15.879
16 74 < FOV 74.1 75.2 75.3 76.2 76.4 76.4
17 F number < 2.1 2.09 2.07 2.08 2.00 1.98 1.98
As set forth above, the optical system, according to an embodiment, photographs a clear image.
While this disclosure includes specific examples, it will be apparent to one of ordinary skill in the art that various changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents. The examples described herein are to be considered in a descriptive sense only, and not for purposes of limitation. Descriptions of features or aspects in each example are to be considered as being applicable to similar features or aspects in other examples. Suitable results may be achieved if the described techniques are performed in a different order, and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Therefore, the scope of the disclosure is defined not by the detailed description, but by the claims and their equivalents, and all variations within the scope of the claims and their equivalents are to be construed as being included in the disclosure.

Claims (17)

What is claimed is:
1. An optical system, comprising:
a first lens comprising a negative refractive power and a convex object-side surface;
a second lens comprising a positive refractive power;
a third lens comprising a negative refractive power and a convex object-side surface;
a fourth lens comprising a positive refractive power;
a fifth lens comprising a negative refractive power; and
a sixth lens comprising a negative refractive power and comprising an inflection point on an image-side surface thereof,
wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane, and
wherein 3.0<|f4/f|, where f is an overall focal length of the optical system and f4 is a focal length of the fourth lens.
2. The optical system of claim 1, wherein, V1, an Abbe number of the first lens and, V3, an Abbe number of the third lens satisfy 25<V1−V3<45.
3. The optical system of claim 1, wherein, f2, a focal length of the second lens satisfies 0.3<f2/f<1.5.
4. The optical system of claim 1, wherein, TTL, a distance from the object-side surface of the first lens to the imaging plane satisfies TTL/f<1.5.
5. The optical system of claim 1, wherein r11, a radius of curvature of an image-side surface of the fifth lens satisfies 1.0<r11/f.
6. An optical system, comprising:
a first lens comprising a negative refractive power and a convex object-side surface;
a second lens comprising a positive refractive power and comprising a convex object-side surface and a convex image-side surface;
a third lens comprising a negative refractive power;
a fourth lens comprising a positive refractive power and comprising a concave object-side surface;
a fifth lens comprising a negative refractive power; and
a sixth lens comprising a negative refractive power and comprising an inflection point formed on an image-side surface thereof,
wherein the first to sixth lenses are sequentially disposed from an object toward an imaging plane, and
wherein 3.0<|f4/f|, where f is an overall focal length of the optical system and f4 is a focal length of the fourth lens.
7. The optical system of claim 6, wherein the first lens comprises a concave image-side surface.
8. The optical system of claim 6, wherein the third lens comprises a convex object-side surface and a concave image-side surface.
9. The optical system of claim 6, wherein the fourth lens comprises a convex image-side surface.
10. The optical system of claim 6, wherein the fifth lens comprises a concave image-side surface.
11. The optical system of claim 6, wherein the sixth lens comprises a convex object-side surface and the image-side surface thereof is concave.
12. An optical system, comprising:
a first lens comprising a convex object-side surface and a concave image-side surface;
a second lens comprising a convex object-side surface and a convex image-side surface;
a third lens comprising a convex object-side surface and a concave image-side surface;
a fourth lens comprising a concave object-side surface and a convex image-side surface;
a fifth lens comprising a concave object-side surface and a concave image-side surface; and
a sixth lens, wherein
the second lens has a same refractive power as a refractive power of the first lens,
the third lens, the fourth lens, and the fifth lens have a refractive index higher than the refractive indices of the first and second lenses,
the sixth lens has a refractive index lower than the refractive indices of the first and second lenses,
wherein the first lens comprises a negative refractive power, the second lens comprises a positive refractive power, the third lens comprises a negative refractive power, the fourth lens comprises a positive refractive power, the fifth lens comprises a negative refractive power, and the sixth lens comprises a negative refractive power, and
wherein 3.0<|f4/f|, where f is an overall focal length of the optical system and f4 is a focal length of the fourth lens.
13. The optical system of claim 12, wherein, f1, a focal length of the first lens satisfies f1/f<0.
14. The optical system of claim 12, wherein r7, a radius of curvature of the image-side surface of the third lens satisfies 0.3<r7/f<1.4.
15. The optical system of claim 12, wherein, FOV, a field of view of the optical system satisfy 74<FOV.
16. The optical system of claim 12, wherein upper and lower ends of the fifth lens extend horizontally towards an object side, parallel to upper and lower portions of the first through fourth lenses.
17. The optical system of claim 12, wherein the object-side surface of the fifth lens is concave in a paraxial region and gradually flattens at edge portions thereof.
US17/080,208 2015-08-10 2020-10-26 Optical system Active 2037-01-25 US11733490B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/080,208 US11733490B2 (en) 2015-08-10 2020-10-26 Optical system
US18/218,798 US12085697B2 (en) 2015-08-10 2023-07-06 Optical system
US18/779,941 US20240377619A1 (en) 2015-08-10 2024-07-22 Optical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0112495 2015-08-10
KR1020150112495A KR101823203B1 (en) 2015-08-10 2015-08-10 Imaging Lens System
US15/070,455 US10852509B2 (en) 2015-08-10 2016-03-15 Optical system
US17/080,208 US11733490B2 (en) 2015-08-10 2020-10-26 Optical system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/070,455 Continuation US10852509B2 (en) 2015-08-10 2016-03-15 Optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/218,798 Continuation US12085697B2 (en) 2015-08-10 2023-07-06 Optical system

Publications (2)

Publication Number Publication Date
US20210041676A1 US20210041676A1 (en) 2021-02-11
US11733490B2 true US11733490B2 (en) 2023-08-22

Family

ID=57995657

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/070,455 Active 2036-11-03 US10852509B2 (en) 2015-08-10 2016-03-15 Optical system
US17/080,208 Active 2037-01-25 US11733490B2 (en) 2015-08-10 2020-10-26 Optical system
US18/218,798 Active US12085697B2 (en) 2015-08-10 2023-07-06 Optical system
US18/779,941 Pending US20240377619A1 (en) 2015-08-10 2024-07-22 Optical system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/070,455 Active 2036-11-03 US10852509B2 (en) 2015-08-10 2016-03-15 Optical system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US18/218,798 Active US12085697B2 (en) 2015-08-10 2023-07-06 Optical system
US18/779,941 Pending US20240377619A1 (en) 2015-08-10 2024-07-22 Optical system

Country Status (3)

Country Link
US (4) US10852509B2 (en)
KR (1) KR101823203B1 (en)
CN (2) CN110632739B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762006B1 (en) * 2015-07-24 2017-07-26 삼성전기주식회사 Optical system and mobile device including a plurality of optical systems with different field of view
KR101823210B1 (en) 2015-12-28 2018-01-29 삼성전기주식회사 Optical Imaging System
TWI580999B (en) 2016-05-20 2017-05-01 大立光電股份有限公司 Image capturing lens assembly, imaging apparatus and electronic device
TWI644141B (en) 2016-10-14 2018-12-11 大立光電股份有限公司 Optical imaging module, image capturing apparatus and electronic device
JP6082839B1 (en) * 2016-11-03 2017-02-15 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
TWI594039B (en) * 2016-12-09 2017-08-01 大立光電股份有限公司 Photographing optical lens system, image capturing unit and electronic device
TWI626488B (en) 2017-03-28 2018-06-11 大立光電股份有限公司 Photographing optical lens assembly, image capturing unit and electronic device
TWI616700B (en) 2017-04-17 2018-03-01 大立光電股份有限公司 Optical image capturing lens assembly, imaging apparatus and electronic device
TWI629531B (en) 2017-10-25 2018-07-11 大立光電股份有限公司 Imaging lens assembly, imaging apparatus and electronic device
CN107966786B (en) * 2017-12-18 2020-07-07 广东旭业光电科技股份有限公司 A wide viewing angle optical imaging lens system
US10641990B2 (en) * 2017-12-18 2020-05-05 AAC Technologies Pte. Ltd. Camera optical lens
US10558016B2 (en) * 2017-12-29 2020-02-11 AAC Technologies Pte. Ltd. Camera optical lens
JP6425361B1 (en) * 2017-12-29 2018-11-21 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
US10539761B2 (en) * 2017-12-29 2020-01-21 AAC Technologies Pte. Ltd. Camera optical lens
TWI641864B (en) * 2018-01-24 2018-11-21 大立光電股份有限公司 Photographing lens assembly, image capturing unit and electronic device
CN118330846A (en) * 2018-03-30 2024-07-12 玉晶光电(厦门)有限公司 Optical imaging lens
CN108627953B (en) * 2018-04-28 2020-06-02 玉晶光电(厦门)有限公司 Optical imaging lens
CN110231698B (en) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
KR102526441B1 (en) * 2020-10-12 2023-04-27 삼성전기주식회사 Optical Imaging System
CN114637096B (en) * 2022-03-11 2024-06-14 浙江舜宇光学有限公司 Image pickup lens group

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163410A (en) 1997-06-03 2000-12-19 Olympus Optical Co., Ltd. Optical system
JP2004240464A (en) 2004-05-25 2004-08-26 Olympus Corp Optical system
JP2009025534A (en) 2007-07-19 2009-02-05 Konica Minolta Opto Inc Variable power optical system, imaging apparatus and digital device
US20120026608A1 (en) * 2010-07-29 2012-02-02 Fujifilm Corporation Imaging lens and imaging apparatus
US20120206822A1 (en) 2011-02-16 2012-08-16 Largan Precision Co., Ltd. Wide angle photographic lens assembly
TW201423145A (en) 2014-02-24 2014-06-16 Largan Precision Co Ltd Optical imaging lens assembly, image capturing device and mobile terminal
US20150055229A1 (en) 2013-08-20 2015-02-26 Samsung Electro-Mechanics Co., Ltd. Lens module
US20150098135A1 (en) 2013-10-03 2015-04-09 Glory Science Co., Ltd. Wide angle optical lens system
US20150124333A1 (en) * 2012-07-18 2015-05-07 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN104808316A (en) 2014-01-24 2015-07-29 大立光电股份有限公司 Optical image capturing lens, image capturing device and mobile terminal
US20160131899A1 (en) 2014-11-11 2016-05-12 Samsung Electro-Mechanics Co., Ltd. Optical system
EP3064976A2 (en) 2015-03-06 2016-09-07 Samsung Electronics Co., Ltd. Photographing lens system and photographing apparatus having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095443B2 (en) * 2008-02-28 2012-12-12 富士フイルム株式会社 Image reading lens and image reading apparatus
TWI438521B (en) * 2012-10-02 2014-05-21 Largan Precision Co Ltd Image system lens assembly

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163410A (en) 1997-06-03 2000-12-19 Olympus Optical Co., Ltd. Optical system
JP2004240464A (en) 2004-05-25 2004-08-26 Olympus Corp Optical system
JP2009025534A (en) 2007-07-19 2009-02-05 Konica Minolta Opto Inc Variable power optical system, imaging apparatus and digital device
US20120026608A1 (en) * 2010-07-29 2012-02-02 Fujifilm Corporation Imaging lens and imaging apparatus
US20120206822A1 (en) 2011-02-16 2012-08-16 Largan Precision Co., Ltd. Wide angle photographic lens assembly
US20150124333A1 (en) * 2012-07-18 2015-05-07 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
US20150055229A1 (en) 2013-08-20 2015-02-26 Samsung Electro-Mechanics Co., Ltd. Lens module
CN104423019A (en) 2013-08-20 2015-03-18 三星电机株式会社 Lens module
US20150098135A1 (en) 2013-10-03 2015-04-09 Glory Science Co., Ltd. Wide angle optical lens system
CN104516094A (en) 2013-10-03 2015-04-15 光燿科技股份有限公司 Wide-angle optical lens
US9201216B2 (en) 2014-01-24 2015-12-01 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
CN104808316A (en) 2014-01-24 2015-07-29 大立光电股份有限公司 Optical image capturing lens, image capturing device and mobile terminal
US20150212296A1 (en) * 2014-01-24 2015-07-30 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
TW201423145A (en) 2014-02-24 2014-06-16 Largan Precision Co Ltd Optical imaging lens assembly, image capturing device and mobile terminal
US20150241659A1 (en) 2014-02-24 2015-08-27 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing device and mobile terminal
US20160131899A1 (en) 2014-11-11 2016-05-12 Samsung Electro-Mechanics Co., Ltd. Optical system
CN106199903A (en) 2014-11-11 2016-12-07 三星电机株式会社 Optical system
EP3064976A2 (en) 2015-03-06 2016-09-07 Samsung Electronics Co., Ltd. Photographing lens system and photographing apparatus having the same
US20160259150A1 (en) 2015-03-06 2016-09-08 Samsung Electronics Co., Ltd. Photographing lens system and photographing apparatus having the same
CN105938238A (en) 2015-03-06 2016-09-14 三星电子株式会社 Photographing lens system and photographing apparatus having the same
KR20160108080A (en) 2015-03-06 2016-09-19 삼성전자주식회사 Photographing lens system and photographing apparatus having the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action dated Feb. 26, 2021 issued in counterpart Chinese Patent Application No. 201910858345.3. (5 pages in English)(6 pages in Chinese).
Chinese Office Action dated May 28, 2018 in corresponding Chinese Application No. 201610186710.7 (11 pages in English, 8 pages in Chinese).
Korean Office Action dated Feb. 7, 2017 in corresponding Korean patent application No. 10-2015-0112495 (6 pages in English; 5 pages in Korean).
Korean Office Action dated Jun. 26, 2017 in corresponding Korean Patent Application No. 10-2015-0112495 (8 pages in English and 6 pages in Korean).

Also Published As

Publication number Publication date
US20240377619A1 (en) 2024-11-14
KR101823203B1 (en) 2018-01-29
CN110632739B (en) 2021-11-26
CN110632739A (en) 2019-12-31
CN106443961A (en) 2017-02-22
CN106443961B (en) 2019-10-11
KR20170018624A (en) 2017-02-20
US20230350164A1 (en) 2023-11-02
US12085697B2 (en) 2024-09-10
US20170045718A1 (en) 2017-02-16
US10852509B2 (en) 2020-12-01
US20210041676A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US12085697B2 (en) Optical system
US11333857B2 (en) Optical system
US11982793B2 (en) Lens module
US11906705B2 (en) Optical system
US12181641B2 (en) Lens module
US20230296865A1 (en) Optical system
US12124013B2 (en) Optical imaging system
US20240085675A1 (en) Optical imaging system
US9645355B2 (en) Lens module
US12092899B2 (en) Optical imaging system
US10795122B2 (en) Optical imaging system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE