[go: up one dir, main page]

US11572096B2 - Steering control method and steering control device - Google Patents

Steering control method and steering control device Download PDF

Info

Publication number
US11572096B2
US11572096B2 US17/622,999 US201917622999A US11572096B2 US 11572096 B2 US11572096 B2 US 11572096B2 US 201917622999 A US201917622999 A US 201917622999A US 11572096 B2 US11572096 B2 US 11572096B2
Authority
US
United States
Prior art keywords
steering
wheel
reaction force
emergency
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/622,999
Other versions
US20220227417A1 (en
Inventor
Taku Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Assigned to NISSAN MOTOR CO., LTD. reassignment NISSAN MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUZUKI, TAKU
Publication of US20220227417A1 publication Critical patent/US20220227417A1/en
Application granted granted Critical
Publication of US11572096B2 publication Critical patent/US11572096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels

Definitions

  • the present invention relates to a steering control method and a steering control device.
  • a vehicle steering reaction force control device described in PTL 1 includes an emergency steering wheel operation necessity determination means that determines whether or not an emergency steering wheel operation (emergency steering operation) for avoiding an obstacle in an emergency is necessary and a steering reaction force reducing means that reduce the steering reaction force when the emergency steering wheel operation is necessary.
  • an emergency steering wheel operation necessity determination means that determines whether or not an emergency steering wheel operation (emergency steering operation) for avoiding an obstacle in an emergency is necessary
  • a steering reaction force reducing means that reduce the steering reaction force when the emergency steering wheel operation is necessary.
  • a steering control method including: applying a steering reaction force obtained by adding a first steering reaction force according to a steering angle of a steering wheel and a second steering reaction force according to a steering angular acceleration of the steering wheel to the steering wheel; determining a possibility that an emergency steering operation of the steering wheel by a driver will be performed; and when it is determined that there is the possibility of the emergency steering operation being performed, making the second steering reaction force small compared with when it is not determined that there is the possibility of the emergency steering operation being performed.
  • FIG. 1 is a schematic configuration diagram of one example of a steering system of a vehicle on which a steering control device is mounted;
  • FIG. 2 is a block diagram illustrating a functional configuration example of a controller of FIG. 1 ;
  • FIG. 3 is a block diagram illustrating a functional configuration example of a reaction force control unit of FIG. 2 ;
  • FIG. 4 is an illustrative diagram of one example of a first steering reaction torque Tr 1 ;
  • FIG. 5 A is an illustrative diagram of one example of a pinion angle corresponding to an actual wheel-turning angle and an actual steering angle;
  • FIG. 5 B is an illustrative diagram of a deviation angular velocity between the pinion angle and the actual steering angle of FIG. 5 A ;
  • FIG. 5 C is an illustrative diagram of a deviation angular acceleration between the pinion angle and the actual steering angle of FIG. 5 A ;
  • FIG. 6 A is an illustrative diagram of one example of a pinion angle corresponding to a virtual wheel-turning angle and the actual steering angle;
  • FIG. 6 B is an illustrative diagram of a deviation angular velocity between the pinion angle and the actual steering angle of FIG. 6 A ;
  • FIG. 6 C is an illustrative diagram of a deviation angular acceleration between the pinion angle and the actual steering angle of FIG. 6 A ;
  • FIG. 7 is an illustrative diagram of one example of a third steering reaction torque Tr 3 ;
  • FIG. 8 is a flowchart of one example of a steering control method of an embodiment.
  • FIG. 9 is an illustrative diagram of one example of a second steering reaction torque Tr 2 .
  • FIG. 1 is a schematic configuration diagram of one example of a steering system of a vehicle (hereinafter referred to as “host vehicle”) on which a steering control device according to the present embodiment is mounted.
  • host vehicle a vehicle on which a steering control device according to the present embodiment is mounted.
  • the host vehicle includes a steering unit 31 , a wheel-turning unit 32 , and a backup clutch 33 . Additionally, the host vehicle includes a controller 11 and an external sensor 16 .
  • the host vehicle employs a steer-by-wire (SBW) system in which when the backup clutch 33 is released, the steering unit 31 that receives a steering input of a driver and the wheel-turning unit 32 that turns left and right front wheels 34 FL and 34 FR, which are steered wheels, are mechanically disconnected.
  • SBW steer-by-wire
  • the left and right front wheels 34 FL and 34 FR may be referred to as “steered wheels 34 ”.
  • the steering unit 31 includes a steering wheel 31 a , a column shaft 31 b , a current sensor 31 c , a reaction force actuator 12 , a first driver circuit 13 , and a steering angle sensor 19 .
  • the wheel-turning unit 32 includes a pinion shaft 32 a , a steering gear 32 b , a rack gear 32 c , a steering rack 32 d , a wheel-turning actuator 14 , a second driver circuit 15 , and a wheel-turning angle sensor 35 .
  • the reaction force actuator 12 applies a reaction force on the steering wheel 31 a of the steering unit 31 , and the steering wheel 31 a rotates in response to the input of a steering torque applied by the driver.
  • the reaction torque applied to the steering wheel by the actuator may be referred to as “steering reaction torque”.
  • the column shaft 31 b rotates integrally with the steering wheel 31 a.
  • the steering gear 32 b of the wheel-turning unit 32 meshes with the rack gear 32 c , and turns the steered wheels 34 according to rotation of the pinion shaft 32 a .
  • the steering gear 32 b for example, a rack and pinion type steering gear or the like may be employed.
  • the backup clutch 33 is provided between the column shaft 31 b and the pinion shaft 32 a . Then, when the backup clutch 33 is released, the steering unit 31 and the wheel-turning unit 32 are mechanically disconnected, and when it is engaged, the steering unit 31 and the wheel-turning unit 32 are mechanically connected.
  • the external sensor 16 is a sensor that detects a surrounding environment of the host vehicle, for example, objects around the host vehicle.
  • the external sensor 16 may include, for example, a camera and a distance measuring device.
  • the camera and the distance measuring device detect the surrounding environment of the host vehicle, such as objects present around the host vehicle (for example, other vehicles, pedestrians, white lines such as lane boundary lines and lane markings, and features such as traffic signals, stop lines, signs, buildings, utility poles, curbs, and crosswalks provided on roads or near the roads), relative positions of the objects with respect to the host vehicle, and relative distances between the host vehicle and the objects.
  • objects present around the host vehicle for example, other vehicles, pedestrians, white lines such as lane boundary lines and lane markings, and features such as traffic signals, stop lines, signs, buildings, utility poles, curbs, and crosswalks provided on roads or near the roads
  • features such as traffic signals, stop lines, signs, buildings, utility poles, curbs, and crosswalks provided on roads or near the roads
  • the camera may be, for example, a stereo camera.
  • the camera may be a monocular camera, in which the same object may be photographed from a plurality of viewpoints by the monocular camera, and a distance to the object may be calculated. Additionally, the distance to the object may be calculated on the basis of a ground contact position of the object detected from an image captured by the monocular camera.
  • the distance measuring device may be, for example, a laser range-finder (LRF), a radar unit, or a laser scanner unit.
  • LRF laser range-finder
  • radar unit a radar unit
  • laser scanner unit a laser scanner unit
  • the steering angle sensor 19 detects a column shaft rotation angle, i.e., an actual steering angle ⁇ s (a steering wheel angle) of the steering wheel.
  • the wheel-turning angle sensor 35 detects a wheel-turning angle (actual wheel-turning angle) ⁇ t of the steered wheels 34 .
  • the controller 11 is an electronic control unit (ECU) that performs wheel-turning control of the steered wheels and reaction force control of the steering wheel.
  • the “reaction force control” refers to control of a steering reaction torque applied to the steering wheel 31 a by an actuator such as the reaction force actuator 12 .
  • the controller 11 includes a processor 20 and a peripheral component such as a storage device 21 .
  • the processor 20 may be, for example, a central processing unit (CPU) or a micro-processing unit (MPU).
  • the storage device 21 may include a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device 21 may include memories, such as register, cache memory, and read only memory (ROM) and random access memory (RAM) used as primary storage devices.
  • controller 11 may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the controller 11 may include a programmable logic device (PLD), such as a field-programmable gate array (FPGA), or the like.
  • PLD programmable logic device
  • FPGA field-programmable gate array
  • FIG. 2 is a block diagram illustrating a functional configuration example of the controller 11 .
  • the controller 11 includes a wheel-turning control unit 36 , a reaction force control unit 37 , and an emergency steering determination unit 38 .
  • Functions of the wheel-turning control unit 36 , the reaction force control unit 37 , the emergency steering determination unit 38 may be realized, for example, by allowing the processor 20 to execute a computer program stored in the storage device 21 of the controller 11 .
  • the wheel-turning control unit 36 determines a command wheel-turning angle, which is a command value of the wheel-turning angle of the steered wheels 34 , according to the actual steering angle ⁇ s of the steering wheel 31 a.
  • the wheel-turning control unit 36 outputs the calculated command wheel-turning angle to the second driver circuit 15 , and drives the wheel-turning actuator 14 so that the actual wheel-turning angle ⁇ t becomes the command wheel-turning angle.
  • the wheel-turning actuator 14 may be, for example, an electric motor such as a brushless motor.
  • An output shaft of the wheel-turning actuator 14 is connected to the rack gear 32 c via a decelerator.
  • the wheel-turning actuator 14 outputs a wheel-turning torque for turning the steered wheels 34 to the steering rack 32 d in response to a command current output from the second driver circuit 15 .
  • the wheel-turning angle sensor 35 detects a rotation angle of the output shaft of the wheel-turning actuator 14 , and detects the wheel-turning angle of the steered wheels 34 on the basis of the detected rotation angle.
  • the second driver circuit 15 controls the command current to the wheel-turning actuator 14 by servo control so that the actual wheel-turning angle detected by the wheel-turning angle sensor 35 matches the command wheel-turning angle indicated by a control signal from the wheel-turning control unit 36 .
  • the emergency steering determination unit 38 determines whether or not there is a possibility that an emergency steering operation of the steering wheel 31 a by the driver will be performed.
  • the emergency steering operation of the steering wheel 31 a by the driver may be simply referred to as the “emergency steering operation”.
  • the emergency steering operation means a sudden steering operation, such as an operation performed when a sudden change in a direction of travel of the vehicle is required, unlike a steering operation during normal driving, such as traveling along a lane.
  • a steering operation during normal driving such as traveling along a lane.
  • One example thereof is emergency steering for avoiding an obstacle around the host vehicle.
  • the emergency steering determination unit 38 determines whether or not there is a possibility of the emergency steering operation being performed on the basis of surrounding environment information, which is information about the surrounding environment detected by the external sensor 16 .
  • the emergency steering determination unit 38 calculates a risk to an obstacle around the host vehicle, determines that there is the possibility of the emergency steering operation being performed when the calculated risk is equal to or more than a threshold value, and does not determine that there is the possibility of the emergency steering operation being performed when the calculated risk is less than the threshold value. Alternatively, when the risk is less than the threshold value, the emergency steering determination unit 38 determines that there is no possibility that the emergency steering operation will be performed.
  • the emergency steering determination unit 38 may calculate a time to collision (TTC) with respect to an obstacle as the above risk.
  • the emergency steering determination unit 38 may determine that the risk is equal to or more than a previously determined prescribed threshold value when the time to collision (TTC) is equal to or more than a prescribed value.
  • the emergency steering determination unit 38 may calculate a time-headway (THW) with respect to another vehicle ahead of the host vehicle as the above risk.
  • the emergency steering determination unit 38 may determine that the risk is equal to or more than the threshold value when the time-headway (THW) is equal to or less than a previously determined prescribed value.
  • TTC time to collision
  • TW time-headway
  • a higher risk may be calculated for a shorter time to collision (TTC) or time-headway (THW), and it may be determined that the calculated risk is equal to or less than the previously determined prescribed threshold value.
  • the position of an obstacle in the direction of travel of the host vehicle may be detected to calculate an overlap amount or an offset amount of the obstacle with respect to a width direction of the host vehicle, and when the time to collision (TTC) or the time-headway (THW) is equal to or less than the previously determined prescribed value and the overlap amount is equal to or more than a previously determined prescribed value or the offset amount is equal to or less than a previously determined prescribed value, it may be determined that the risk is equal to or more than the threshold value.
  • TTC time to collision
  • TW time-headway
  • the emergency steering determination unit 38 outputs an emergency steering flag indicating a determination result as to whether or not there is a possibility that the emergency steering operation will be performed.
  • the reaction force control unit 37 calculates a command reaction torque Tr, which is a command value of a steering reaction torque applied to the steering wheel (a rotation torque applied to the steering wheel 31 a , which is hereinafter also referred to as reaction torque), according to a detection result of the actual steering angle ⁇ s by the steering angle sensor 19 , a detection result of the actual wheel-turning angle ⁇ t by the wheel-turning angle sensor 35 , and the emergency steering flag.
  • a command reaction torque Tr which is a command value of a steering reaction torque applied to the steering wheel (a rotation torque applied to the steering wheel 31 a , which is hereinafter also referred to as reaction torque)
  • the reaction force control unit 37 outputs a control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13 , and drives the reaction force actuator 12 to apply the calculated steering reaction torque to the steering wheel.
  • the reaction force actuator 12 may be, for example, an electric motor.
  • the reaction force actuator 12 includes an output shaft located on the same axis as the column shaft 31 b.
  • the reaction force actuator 12 outputs a rotation torque to be applied to the steering wheel 31 a to the column shaft 31 b in response to a command current output from the first driver circuit 13 .
  • the rotation torque By applying the rotation torque, the steering reaction torque is generated on the steering wheel 31 a.
  • the first driver circuit 13 controls the command current output to the reaction force actuator 12 by torque feedback that matches an actual steering reaction torque estimated from a drive current of the reaction force actuator 12 detected by the current sensor 31 c with the command steering torque Tr indicated by the control signal output from the reaction force control unit 37 .
  • the first driver circuit 13 may control the command current output to the reaction force actuator 12 by current feedback that matches the drive current of the reaction force actuator 12 detected by the current sensor 31 c with a drive current corresponding to the command reaction torque Tr.
  • the reaction force actuator 12 , the first driver circuit 13 , and the controller 11 form the steering control device.
  • the reaction force control unit 37 includes a first steering reaction torque calculation unit 40 , a second steering reaction torque calculation unit 41 , a third steering reaction torque calculation unit 42 , and an adder 43 .
  • the first steering reaction torque calculation unit 40 calculates a first steering reaction torque Tr 1 according to the actual steering angle ⁇ s.
  • FIG. 4 illustrates one example of the first steering reaction torque Tr 1 .
  • the first steering reaction torque calculation unit 40 calculates, as the first steering reaction torque Tr 1 , a reaction torque in a direction of trying to return the steering wheel 31 a in a neutral position.
  • the first steering reaction torque Tr 1 increases as a deviation between the neutral position of the steering wheel 31 a and the actual steering angle ⁇ s increases.
  • the first steering reaction torque calculation unit 40 outputs the first steering reaction torque Tr 1 to the adder 43 .
  • the second steering reaction torque calculation unit 41 calculates a second steering reaction torque Tr 2 according to a steering angular acceleration d 2 ⁇ s/dt 2 of the actual steering angle ⁇ s of the steering wheel 31 a.
  • the second steering reaction torque calculation unit 41 controls the second steering reaction torque Tr 2 on the basis of the emergency steering flag.
  • the emergency steering determination unit 38 determines that there is a possibility that the emergency steering operation will be performed
  • the second steering reaction torque Tr 2 is made smaller than when it is not determined that there is the possibility that the emergency steering operation will be performed (or it is determined that there is no possibility that the emergency steering operation will be performed).
  • the second steering reaction torque Tr 2 corresponding to the steering angular acceleration d 2 ⁇ s/dt 2 includes a torque component proportional to a force (steering torque) applied to the steering wheel 31 a by the driver.
  • the second steering reaction torque calculation unit 41 includes a torsional reaction force calculation unit 44 , a virtual wheel-turning angle calculation unit 45 , a pseudo torsional reaction force calculation unit 46 , and a switching unit 47 .
  • the switching unit is denoted by “SW”.
  • the torsional reaction force calculation unit 44 calculates a torsional reaction torque Trt that increases with a delay in a change of the actual wheel-turning angle ⁇ t with respect to a change of the actual steering angle ⁇ s.
  • the torsional reaction force calculation unit 44 calculates the torsional reaction torque Trt according to a difference between the actual steering angle ⁇ s and the actual wheel-turning angle ⁇ t of the steered wheels 34 .
  • the torsional reaction force calculation unit 44 calculates a pinion angle (a rotation angle of the pinion shaft 32 a ) corresponding to the actual wheel-turning angle ⁇ t, and calculates the torsional reaction torque Trt proportional to an angle difference between the actual steering angle ⁇ s and the pinion angle.
  • the angle difference between the actual steering angle ⁇ s and the pinion angle changes with the force (torque) applied to the steering wheel 31 a . Therefore, the torsional reaction torque Trt becomes a larger reaction torque as the steering angular acceleration d 2 ⁇ s/dt 2 of the steering wheel 31 a is larger.
  • the torsional reaction torque Trt changes with the actual wheel-turning angle ⁇ t, and thus changes depending on a wasted time from the change of the actual steering angle ⁇ s to a start of movement of the steered wheels 34 .
  • a response delay of the actual wheel-turning angle ⁇ t i.e. a difference between a change rate in the actual steering angle ⁇ s and a change rate in the actual wheel-turning angle ⁇ t
  • the torsional reaction torque Trt also changes according to this.
  • a response guarantee is provided in the servo control of the second driver circuit 15 that controls wheel turning of the steered wheels 34 , and the steered wheels 34 are driven to realize a behavioral model that keeps the wasted time and the response delay to prescribed design values or less.
  • FIG. 5 A illustrates one example of a pinion angle corresponding to the actual wheel-turning angle ⁇ t and the actual steering angle ⁇ s.
  • a solid line 50 indicates the actual steering angle ⁇ s, and a solid line 51 indicates the pinion angle.
  • FIGS. 5 B and 5 C illustrate a deviation angular velocity and a deviation angular acceleration between the pinion angle and the actual steering angle ⁇ s of FIG. 5 A .
  • a virtual wheel-turning angle that changes with the actual steering angle ⁇ s is calculated, and when there is a possibility of the emergency steering operation being performed, the second steering reaction torque Tr 2 is calculated according to a difference between the virtual wheel-turning angle and the actual steering angle ⁇ s.
  • the virtual wheel-turning angle calculation unit 45 calculates the vertical wheel-turning angle that changes with the actual steering angle ⁇ s.
  • the virtual wheel-turning angle calculation unit 45 calculates the virtual wheel-turning angle so that the virtual wheel-turning angle responds to the change of the actual steering angle ⁇ s earlier than the actual wheel-turning angle ⁇ t when there is sudden steering. In other words, when there is sudden steering, a delay time from a start of change of the actual steering angle ⁇ s to a start of change of the virtual wheel-turning angle is shorter than a delay time from the start of change of the actual steering angle ⁇ s to a start of change of the actual wheel-turning angle ⁇ t.
  • the virtual wheel-turning angle calculation unit 45 calculates the virtual wheel-turning angle so that the wasted time and response delay of the virtual wheel-turning angle satisfy the response guarantee of the serve control by the second driver circuit 15 (i.e., so that they become equal to or less than the design values of the wasted time and the response delay guaranteed by the response guarantee).
  • the pseudo torsional reaction force calculation unit 46 calculates a pseudo torsional reaction torque Trp according to a difference between the virtual wheel-turning angle and the actual steering angle ⁇ s.
  • the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction torque Trp proportional to an angle difference between a pinion angle corresponding to the virtual wheel-turning angle and the actual steering angle ⁇ s.
  • the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction torque Trp on the basis of the virtual wheel-turning angle virtually calculated instead of the actual wheel-turning angle ⁇ t.
  • the wasted time and response delay of the virtual wheel-turning angle do not change and are kept to relatively small values (for example, previously determined values equal to or less than the design values of the response guarantee).
  • the wasted time and response delay generated at the virtual wheel-turning angle become smaller than the wasted time and response delay generated at the actual wheel-turning angle ⁇ t, so that the pseudo torsional reaction torque Trp is smaller than the torsional reaction torque Trt.
  • FIG. 6 A illustrates one example of the pinion angle corresponding to the virtual wheel-turning angle and the actual steering angle ⁇ s.
  • the solid line 50 indicates the actual steering angle ⁇ s, and a solid line 52 indicates the pinion angle.
  • FIGS. 6 B and 6 C illustrate a deviation angular velocity and a deviation angular acceleration between the pinion angle and the actual steering angle ⁇ s of FIG. 6 A .
  • the pinion angle corresponding to the virtual wheel-turning angle is set small so that the wasted time from the change of the actual steering angle ⁇ s to a start of change of the pinion angle satisfies the design value designed by the response guarantee.
  • the switching unit 47 outputs the pseudo torsional reaction torque Trp, as the second steering reaction torque Tr 2 , to the adder 43 .
  • the torsional reaction torque Trt is output as the second steering reaction torque Tr 2 to the adder 43 .
  • the second steering reaction torque Tr 2 can be made smaller.
  • the third steering reaction torque calculation unit 42 calculates a third steering reaction torque Tr 3 according to the steering angular velocity d ⁇ s/dt of the actual steering angle ⁇ s.
  • FIG. 7 illustrates one example of the third steering reaction torque Tr 3 .
  • the third steering reaction torque calculation unit 42 calculates, as the third steering reaction torque Tr 3 , a steering torque opposite to a direction in which the actual steering angle ⁇ s changes.
  • the third steering reaction torque Tr 3 increases as the steering angular velocity d ⁇ s/dt increases.
  • the third steering reaction torque calculation unit 42 outputs the third steering reaction torque Tr 3 to the adder 43 .
  • the adder 43 adds the first steering reaction torque Tr 1 , the second steering reaction torque Tr 2 , and the third steering reaction torque Tr 3 to calculate the command reaction torque Tr, and outputs a control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13 .
  • the steering reaction force initially generated in response to such large force can be reduced. This facilitates the emergency steering operation and improves operability of the steering wheel 31 a.
  • the present embodiment adds the third steering reaction torque Tr 3 according to the steering angular velocity des/dt to the first and second steering reaction torques Tr 1 and Tr 2 to obtain the command reaction torque Tr, the third steering reaction torque Tr 3 is the steering reaction force corresponding to the frictional component and the viscous component, as described above, and has a very small value compared with the first and second steering reaction torques Tr 1 and Tr 2 .
  • a value obtained by adding only the first and second steering reaction torques Tr 1 and Tr 2 may be used as the command reaction torque Tr, and the third steering reaction torque Tr 3 is not always required.
  • the first steering reaction torque calculation unit 40 calculates the first steering reaction torque Tr 1 according to the actual steering angle ⁇ s.
  • step S 2 the emergency steering determination unit 38 determines whether or not there is the possibility that the emergency steering operation will be performed.
  • step S 2 determines whether or not there is the possibility that the emergency steering operation will be performed.
  • step S 2 When it is not determined that there is the possibility of the emergency steering operation being performed or when it is determined that there is no possibility of the emergency steering operation being performed (step S 2 : N), processing proceeds to step S 3 .
  • step S 3 the second steering reaction torque calculation unit 41 calculates the second steering reaction torque Tr 2 according to the difference between the actual steering angle Os and the actual wheel-turning angle ⁇ t. Then, processing proceeds to step S 5 .
  • step S 4 the second steering reaction torque calculation unit 41 calculates the second steering reaction torque Tt 2 according to the difference between the actual steering angle ⁇ s and a virtual wheel-turning angle. Then, processing proceeds to step S 5 .
  • the third steering reaction torque calculation unit 42 calculates the third steering reaction torque Tr 3 according to the steering angular velocity d ⁇ s/dt of the actual steering angle ⁇ s.
  • the adder 43 adds the first steering reaction torque Tr 1 , the second steering reaction torque Tr 2 , and the third steering reaction torque Tr 3 to calculate the command reaction torque Tr, and outputs the control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13 .
  • the first driver circuit 13 drives the reaction force actuator 12 in response to the control signal.
  • the reaction force control unit 37 , the first driver circuit 13 , and the reaction force actuator 12 apply the steering reaction force obtained by adding the first steering reaction force Tr 1 according to the actual steering angle ⁇ s of the steering wheel 31 a and the second steering reaction force Tr 2 according to the steering angular acceleration d 2 ⁇ s/dt 2 of the steering wheel 31 a to the steering wheel 31 a.
  • the emergency steering determination unit 38 determines the possibility that the emergency steering operation of the steering wheel 31 a by the driver will be performed. When it is determined that there is the possibility of the emergency steering operation being performed, the reaction force control unit 37 makes the second steering reaction force Tr 2 smaller than when it is not determined that there is the possibility of the emergency steering operation being performed.
  • the reaction force control unit 37 , the first driver circuit 13 , and the reaction force actuator 12 apply the steering reaction force Tr obtained by adding the third steering reaction force Tr 3 according to the steering angular velocity d ⁇ s/dt of the steering wheel 31 a , the first steering reaction force Tr 1 , and the second steering reaction force Tr 2 to the steering wheel 31 a.
  • the steering reaction force corresponding to the frictional component and the viscous component can be applied, so that the sense of discomfort about the steering reaction force can be reduced.
  • the emergency steering determination unit 38 determines that there is the possibility that the emergency steering operation will be performed. This allows the possibility of the emergency steering operation of the steering wheel 31 a by the driver being performed to be determined more accurately.
  • the emergency steering determination unit 38 determines that the risk is equal to or more than the threshold value. This allows the possibility of the emergency steering operation of the steering wheel 31 a by the driver being performed to be determined more accurately.
  • the torsional reaction force calculation unit 44 calculates the second steering reaction force Tr 2 according to the difference between the actual wheel-turning angle ⁇ t of the steered wheels 34 and the actual steering angle ⁇ s.
  • the virtual wheel-turning angle calculation unit 45 calculates the second steering reaction force Tr 2 according to the difference between a virtual wheel-turning angle set so as to respond to the change of the steering angle earlier than the actual wheel-turning angle and the actual steering angle ⁇ s.
  • the second steering reaction force Tr 2 can be reduced to facilitate the emergency steering operation and improve the operability of the steering wheel 31 a.
  • the second steering reaction torque calculation unit 41 when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction torque calculation unit 41 has calculated the pseudo torsional reaction torque Trp as the second steering reaction torque Tr 2 . Additionally, when it is not determined that there is the possibility of the emergency steering operation being performed (or when it is determined that there is no possibility of the emergency steering operation being performed), the torsional reaction torque Trt has been calculated as the second steering reaction torque Tr 2 .
  • the present invention is not limited thereto, and the second steering reaction torque Tr 2 may be calculated by various methods.
  • the second steering reaction torque calculation unit 41 may calculate the second steering reaction torque Tr 2 that has characteristics as illustrated in FIG. 9 .
  • the second steering reaction torque Tr 2 increases as the steering angular acceleration d 2 ⁇ s/dt 2 of the steering wheel 31 a increases.
  • the second steering reaction torque calculation unit 41 may set the second steering reaction torque Tr 2 to 0. This allows the reaction torque component proportional to the force (torque) applied to the steering wheel 31 a to be reduced to 0, so that the operability of the steering wheel 31 a can be further improved.
  • the second steering reaction torque calculation unit 41 may reduce the slope of a characteristic line illustrated in FIG. 9 or provide an upper limit value to reduce the second steering reaction torque Tr 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A steering control method including: applying a steering reaction force obtained by adding a first steering reaction force according to a steering angle of a steering wheel and a second steering reaction force according to a steering angular acceleration of the steering wheel to the steering wheel; determining a possibility that an emergency steering operation of the steering wheel by a driver will be performed; and when it is determined that there is the possibility of the emergency steering operation being performed, making the second steering reaction force small compared with when it is not determined that there is the possibility of the emergency steering operation being performed.

Description

TECHNICAL FIELD
The present invention relates to a steering control method and a steering control device.
BACKGROUND ART
Technologies for controlling a steering reaction force applied to a steering wheel in response to a driver's steering operation have been proposed.
For example, a vehicle steering reaction force control device described in PTL 1 includes an emergency steering wheel operation necessity determination means that determines whether or not an emergency steering wheel operation (emergency steering operation) for avoiding an obstacle in an emergency is necessary and a steering reaction force reducing means that reduce the steering reaction force when the emergency steering wheel operation is necessary.
CITATION LIST Patent Literature
  • PTL 1: JP 2009-241725 A
SUMMARY OF INVENTION Technical Problem
However, simply reducing the steering reaction force when the driver performs the emergency steering operation of the steering wheel may make the driver feel uncomfortable due to a difference from a steering reaction force when the emergency steering operation is not necessary.
It is an object of the present invention to improve operability of a steering wheel while reducing a sense of discomfort about a steering reaction force when a driver performs an emergency steering operation of the steering wheel.
Solution to Problem
According to an aspect of the present invention, there is provided a steering control method including: applying a steering reaction force obtained by adding a first steering reaction force according to a steering angle of a steering wheel and a second steering reaction force according to a steering angular acceleration of the steering wheel to the steering wheel; determining a possibility that an emergency steering operation of the steering wheel by a driver will be performed; and when it is determined that there is the possibility of the emergency steering operation being performed, making the second steering reaction force small compared with when it is not determined that there is the possibility of the emergency steering operation being performed.
Advantageous Effects of Invention
According to the aspect of the present invention, it is possible to improve operability of a steering wheel while reducing a sense of discomfort about a steering reaction force when a driver performs an emergency steering operation of the steering wheel.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic configuration diagram of one example of a steering system of a vehicle on which a steering control device is mounted;
FIG. 2 is a block diagram illustrating a functional configuration example of a controller of FIG. 1 ;
FIG. 3 is a block diagram illustrating a functional configuration example of a reaction force control unit of FIG. 2 ;
FIG. 4 is an illustrative diagram of one example of a first steering reaction torque Tr1;
FIG. 5A is an illustrative diagram of one example of a pinion angle corresponding to an actual wheel-turning angle and an actual steering angle;
FIG. 5B is an illustrative diagram of a deviation angular velocity between the pinion angle and the actual steering angle of FIG. 5A;
FIG. 5C is an illustrative diagram of a deviation angular acceleration between the pinion angle and the actual steering angle of FIG. 5A;
FIG. 6A is an illustrative diagram of one example of a pinion angle corresponding to a virtual wheel-turning angle and the actual steering angle;
FIG. 6B is an illustrative diagram of a deviation angular velocity between the pinion angle and the actual steering angle of FIG. 6A;
FIG. 6C is an illustrative diagram of a deviation angular acceleration between the pinion angle and the actual steering angle of FIG. 6A;
FIG. 7 is an illustrative diagram of one example of a third steering reaction torque Tr3;
FIG. 8 is a flowchart of one example of a steering control method of an embodiment; and
FIG. 9 is an illustrative diagram of one example of a second steering reaction torque Tr2.
DESCRIPTION OF EMBODIMENTS
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Configuration)
FIG. 1 is a schematic configuration diagram of one example of a steering system of a vehicle (hereinafter referred to as “host vehicle”) on which a steering control device according to the present embodiment is mounted.
As illustrated in FIG. 1 , the host vehicle includes a steering unit 31, a wheel-turning unit 32, and a backup clutch 33. Additionally, the host vehicle includes a controller 11 and an external sensor 16.
The host vehicle employs a steer-by-wire (SBW) system in which when the backup clutch 33 is released, the steering unit 31 that receives a steering input of a driver and the wheel-turning unit 32 that turns left and right front wheels 34FL and 34FR, which are steered wheels, are mechanically disconnected. In the following description, the left and right front wheels 34FL and 34FR may be referred to as “steered wheels 34”.
The steering unit 31 includes a steering wheel 31 a, a column shaft 31 b, a current sensor 31 c, a reaction force actuator 12, a first driver circuit 13, and a steering angle sensor 19.
On the other hand, the wheel-turning unit 32 includes a pinion shaft 32 a, a steering gear 32 b, a rack gear 32 c, a steering rack 32 d, a wheel-turning actuator 14, a second driver circuit 15, and a wheel-turning angle sensor 35.
The reaction force actuator 12 applies a reaction force on the steering wheel 31 a of the steering unit 31, and the steering wheel 31 a rotates in response to the input of a steering torque applied by the driver. Note that, in the present specification, the reaction torque applied to the steering wheel by the actuator may be referred to as “steering reaction torque”.
The column shaft 31 b rotates integrally with the steering wheel 31 a.
On the other hand, the steering gear 32 b of the wheel-turning unit 32 meshes with the rack gear 32 c, and turns the steered wheels 34 according to rotation of the pinion shaft 32 a. As the steering gear 32 b, for example, a rack and pinion type steering gear or the like may be employed.
The backup clutch 33 is provided between the column shaft 31 b and the pinion shaft 32 a. Then, when the backup clutch 33 is released, the steering unit 31 and the wheel-turning unit 32 are mechanically disconnected, and when it is engaged, the steering unit 31 and the wheel-turning unit 32 are mechanically connected.
The external sensor 16 is a sensor that detects a surrounding environment of the host vehicle, for example, objects around the host vehicle. The external sensor 16 may include, for example, a camera and a distance measuring device.
The camera and the distance measuring device detect the surrounding environment of the host vehicle, such as objects present around the host vehicle (for example, other vehicles, pedestrians, white lines such as lane boundary lines and lane markings, and features such as traffic signals, stop lines, signs, buildings, utility poles, curbs, and crosswalks provided on roads or near the roads), relative positions of the objects with respect to the host vehicle, and relative distances between the host vehicle and the objects.
The camera may be, for example, a stereo camera. The camera may be a monocular camera, in which the same object may be photographed from a plurality of viewpoints by the monocular camera, and a distance to the object may be calculated. Additionally, the distance to the object may be calculated on the basis of a ground contact position of the object detected from an image captured by the monocular camera.
The distance measuring device may be, for example, a laser range-finder (LRF), a radar unit, or a laser scanner unit.
The steering angle sensor 19 detects a column shaft rotation angle, i.e., an actual steering angle θs (a steering wheel angle) of the steering wheel.
The wheel-turning angle sensor 35 detects a wheel-turning angle (actual wheel-turning angle) θt of the steered wheels 34.
The controller 11 is an electronic control unit (ECU) that performs wheel-turning control of the steered wheels and reaction force control of the steering wheel. In the present specification, the “reaction force control” refers to control of a steering reaction torque applied to the steering wheel 31 a by an actuator such as the reaction force actuator 12. The controller 11 includes a processor 20 and a peripheral component such as a storage device 21. The processor 20 may be, for example, a central processing unit (CPU) or a micro-processing unit (MPU).
The storage device 21 may include a semiconductor storage device, a magnetic storage device, and an optical storage device. The storage device 21 may include memories, such as register, cache memory, and read only memory (ROM) and random access memory (RAM) used as primary storage devices.
Note that the controller 11 may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit. For example, the controller 11 may include a programmable logic device (PLD), such as a field-programmable gate array (FPGA), or the like.
FIG. 2 is a block diagram illustrating a functional configuration example of the controller 11. The controller 11 includes a wheel-turning control unit 36, a reaction force control unit 37, and an emergency steering determination unit 38.
Functions of the wheel-turning control unit 36, the reaction force control unit 37, the emergency steering determination unit 38 may be realized, for example, by allowing the processor 20 to execute a computer program stored in the storage device 21 of the controller 11.
The wheel-turning control unit 36 determines a command wheel-turning angle, which is a command value of the wheel-turning angle of the steered wheels 34, according to the actual steering angle θs of the steering wheel 31 a.
The wheel-turning control unit 36 outputs the calculated command wheel-turning angle to the second driver circuit 15, and drives the wheel-turning actuator 14 so that the actual wheel-turning angle θt becomes the command wheel-turning angle.
Reference will be made to FIG. 1 . The wheel-turning actuator 14 may be, for example, an electric motor such as a brushless motor. An output shaft of the wheel-turning actuator 14 is connected to the rack gear 32 c via a decelerator.
The wheel-turning actuator 14 outputs a wheel-turning torque for turning the steered wheels 34 to the steering rack 32 d in response to a command current output from the second driver circuit 15.
The wheel-turning angle sensor 35 detects a rotation angle of the output shaft of the wheel-turning actuator 14, and detects the wheel-turning angle of the steered wheels 34 on the basis of the detected rotation angle.
The second driver circuit 15 controls the command current to the wheel-turning actuator 14 by servo control so that the actual wheel-turning angle detected by the wheel-turning angle sensor 35 matches the command wheel-turning angle indicated by a control signal from the wheel-turning control unit 36.
Reference will be made to FIG. 2 . The emergency steering determination unit 38 determines whether or not there is a possibility that an emergency steering operation of the steering wheel 31 a by the driver will be performed.
Hereinafter, the emergency steering operation of the steering wheel 31 a by the driver may be simply referred to as the “emergency steering operation”. Note that the emergency steering operation means a sudden steering operation, such as an operation performed when a sudden change in a direction of travel of the vehicle is required, unlike a steering operation during normal driving, such as traveling along a lane. One example thereof is emergency steering for avoiding an obstacle around the host vehicle.
For example, the emergency steering determination unit 38 determines whether or not there is a possibility of the emergency steering operation being performed on the basis of surrounding environment information, which is information about the surrounding environment detected by the external sensor 16.
For example, the emergency steering determination unit 38 calculates a risk to an obstacle around the host vehicle, determines that there is the possibility of the emergency steering operation being performed when the calculated risk is equal to or more than a threshold value, and does not determine that there is the possibility of the emergency steering operation being performed when the calculated risk is less than the threshold value. Alternatively, when the risk is less than the threshold value, the emergency steering determination unit 38 determines that there is no possibility that the emergency steering operation will be performed.
For example, the emergency steering determination unit 38 may calculate a time to collision (TTC) with respect to an obstacle as the above risk. The emergency steering determination unit 38 may determine that the risk is equal to or more than a previously determined prescribed threshold value when the time to collision (TTC) is equal to or more than a prescribed value.
Additionally, for example, the emergency steering determination unit 38 may calculate a time-headway (THW) with respect to another vehicle ahead of the host vehicle as the above risk. The emergency steering determination unit 38 may determine that the risk is equal to or more than the threshold value when the time-headway (THW) is equal to or less than a previously determined prescribed value.
Alternatively, as described above, depending on the time to collision (TTC) or the time-headway (THW), a higher risk may be calculated for a shorter time to collision (TTC) or time-headway (THW), and it may be determined that the calculated risk is equal to or less than the previously determined prescribed threshold value.
Furthermore, the position of an obstacle in the direction of travel of the host vehicle may be detected to calculate an overlap amount or an offset amount of the obstacle with respect to a width direction of the host vehicle, and when the time to collision (TTC) or the time-headway (THW) is equal to or less than the previously determined prescribed value and the overlap amount is equal to or more than a previously determined prescribed value or the offset amount is equal to or less than a previously determined prescribed value, it may be determined that the risk is equal to or more than the threshold value.
The emergency steering determination unit 38 outputs an emergency steering flag indicating a determination result as to whether or not there is a possibility that the emergency steering operation will be performed.
The reaction force control unit 37 calculates a command reaction torque Tr, which is a command value of a steering reaction torque applied to the steering wheel (a rotation torque applied to the steering wheel 31 a, which is hereinafter also referred to as reaction torque), according to a detection result of the actual steering angle θs by the steering angle sensor 19, a detection result of the actual wheel-turning angle θt by the wheel-turning angle sensor 35, and the emergency steering flag.
The reaction force control unit 37 outputs a control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13, and drives the reaction force actuator 12 to apply the calculated steering reaction torque to the steering wheel.
Reference will be made to FIG. 1 . The reaction force actuator 12 may be, for example, an electric motor. The reaction force actuator 12 includes an output shaft located on the same axis as the column shaft 31 b.
The reaction force actuator 12 outputs a rotation torque to be applied to the steering wheel 31 a to the column shaft 31 b in response to a command current output from the first driver circuit 13. By applying the rotation torque, the steering reaction torque is generated on the steering wheel 31 a.
The first driver circuit 13 controls the command current output to the reaction force actuator 12 by torque feedback that matches an actual steering reaction torque estimated from a drive current of the reaction force actuator 12 detected by the current sensor 31 c with the command steering torque Tr indicated by the control signal output from the reaction force control unit 37. Alternatively, the first driver circuit 13 may control the command current output to the reaction force actuator 12 by current feedback that matches the drive current of the reaction force actuator 12 detected by the current sensor 31 c with a drive current corresponding to the command reaction torque Tr.
The reaction force actuator 12, the first driver circuit 13, and the controller 11 form the steering control device.
Next, a description will be given of the command reaction torque Tr (i.e., the steering reaction torque) determined by the reaction force control unit 37. Reference will be made to FIG. 3 .
The reaction force control unit 37 includes a first steering reaction torque calculation unit 40, a second steering reaction torque calculation unit 41, a third steering reaction torque calculation unit 42, and an adder 43.
The first steering reaction torque calculation unit 40 calculates a first steering reaction torque Tr1 according to the actual steering angle θs.
FIG. 4 illustrates one example of the first steering reaction torque Tr1. The first steering reaction torque calculation unit 40 calculates, as the first steering reaction torque Tr1, a reaction torque in a direction of trying to return the steering wheel 31 a in a neutral position. The first steering reaction torque Tr1 increases as a deviation between the neutral position of the steering wheel 31 a and the actual steering angle θs increases. The first steering reaction torque calculation unit 40 outputs the first steering reaction torque Tr1 to the adder 43.
Reference will be made to FIG. 3 . The second steering reaction torque calculation unit 41 calculates a second steering reaction torque Tr2 according to a steering angular acceleration d2θs/dt2 of the actual steering angle θs of the steering wheel 31 a.
Furthermore, the second steering reaction torque calculation unit 41 controls the second steering reaction torque Tr2 on the basis of the emergency steering flag. When the emergency steering determination unit 38 determines that there is a possibility that the emergency steering operation will be performed, the second steering reaction torque Tr2 is made smaller than when it is not determined that there is the possibility that the emergency steering operation will be performed (or it is determined that there is no possibility that the emergency steering operation will be performed).
Here, the second steering reaction torque Tr2 corresponding to the steering angular acceleration d2θs/dt2 includes a torque component proportional to a force (steering torque) applied to the steering wheel 31 a by the driver.
Accordingly, when the driver applies a large force (steering torque) to the steering wheel 31 a in an attempt to steer quickly during the emergency steering operation, making the second steering reaction torque Tr2 smaller can reduce a steering reaction force that is initially generated in response to such large force. This facilitates the emergency steering operation and improves operability of the steering wheel 31 a.
In the embodiment of FIG. 3 , the second steering reaction torque calculation unit 41 includes a torsional reaction force calculation unit 44, a virtual wheel-turning angle calculation unit 45, a pseudo torsional reaction force calculation unit 46, and a switching unit 47. In FIG. 3 , the switching unit is denoted by “SW”.
The torsional reaction force calculation unit 44 calculates a torsional reaction torque Trt that increases with a delay in a change of the actual wheel-turning angle θt with respect to a change of the actual steering angle θs.
By applying such a torsional reaction torque Trt, as one component of the steering reaction force, to the steering wheel 31 a, feedback of a ground contact state of the steered wheels 34 on a road surface can be given to the driver.
The torsional reaction force calculation unit 44 calculates the torsional reaction torque Trt according to a difference between the actual steering angle θs and the actual wheel-turning angle θt of the steered wheels 34.
Specifically, the torsional reaction force calculation unit 44 calculates a pinion angle (a rotation angle of the pinion shaft 32 a) corresponding to the actual wheel-turning angle θt, and calculates the torsional reaction torque Trt proportional to an angle difference between the actual steering angle θs and the pinion angle.
The angle difference between the actual steering angle θs and the pinion angle changes with the force (torque) applied to the steering wheel 31 a. Therefore, the torsional reaction torque Trt becomes a larger reaction torque as the steering angular acceleration d2θs/dt2 of the steering wheel 31 a is larger.
The torsional reaction torque Trt changes with the actual wheel-turning angle θt, and thus changes depending on a wasted time from the change of the actual steering angle θs to a start of movement of the steered wheels 34.
Additionally, when a response delay of the actual wheel-turning angle θt (i.e. a difference between a change rate in the actual steering angle θs and a change rate in the actual wheel-turning angle θt) changes according to a difference of a road surface load, the torsional reaction torque Trt also changes according to this.
Regarding a response speed of the actual wheel-turning angle θt to the change of the actual steering angle θs, a response guarantee is provided in the servo control of the second driver circuit 15 that controls wheel turning of the steered wheels 34, and the steered wheels 34 are driven to realize a behavioral model that keeps the wasted time and the response delay to prescribed design values or less.
While the driver is operating the steering wheel 31 a relatively gently, the actual wheel-turning angle θt changes within a range of the response guarantee of the servo control by the second driver circuit 15. This keeps the wasted time and the response delay to the prescribed design values or less.
On the other hand, when sudden steering is performed like the emergency steering operation, the actual wheel-turning angle θt cannot follow within the range of the response guarantee of the servo control. In this case, the wasted time and the response delay from the change of the actual steering angle θs to the start of movement of the steered wheels 34 become large. In this way, the torsional reaction torque Trt changes depending on the traveling situation.
FIG. 5A illustrates one example of a pinion angle corresponding to the actual wheel-turning angle θt and the actual steering angle θs. A solid line 50 indicates the actual steering angle θs, and a solid line 51 indicates the pinion angle.
FIGS. 5B and 5C illustrate a deviation angular velocity and a deviation angular acceleration between the pinion angle and the actual steering angle θs of FIG. 5A.
After the actual steering angle θs changes at time point t0, the pinion angle starts to change at time point t1. This period from time point t0 to time point t1 becomes a wasted time. Additionally, in a period from time point t1 to time point t2, there is a response delay. Performing sudden steering results in longer wasted time and increased response delay.
Accordingly, the difference between the actual steering angle θs and the actual wheel-turning angle θt becomes large, thus increasing the torsional reaction torque Trt.
Therefore, in the present embodiment, instead of the actual wheel-turning angle θt, a virtual wheel-turning angle that changes with the actual steering angle θs is calculated, and when there is a possibility of the emergency steering operation being performed, the second steering reaction torque Tr2 is calculated according to a difference between the virtual wheel-turning angle and the actual steering angle θs.
The virtual wheel-turning angle calculation unit 45 calculates the vertical wheel-turning angle that changes with the actual steering angle θs.
The virtual wheel-turning angle calculation unit 45 calculates the virtual wheel-turning angle so that the virtual wheel-turning angle responds to the change of the actual steering angle θs earlier than the actual wheel-turning angle θt when there is sudden steering. In other words, when there is sudden steering, a delay time from a start of change of the actual steering angle θs to a start of change of the virtual wheel-turning angle is shorter than a delay time from the start of change of the actual steering angle θs to a start of change of the actual wheel-turning angle θt.
For example, the virtual wheel-turning angle calculation unit 45 calculates the virtual wheel-turning angle so that the wasted time and response delay of the virtual wheel-turning angle satisfy the response guarantee of the serve control by the second driver circuit 15 (i.e., so that they become equal to or less than the design values of the wasted time and the response delay guaranteed by the response guarantee).
The pseudo torsional reaction force calculation unit 46 calculates a pseudo torsional reaction torque Trp according to a difference between the virtual wheel-turning angle and the actual steering angle θs.
Specifically, the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction torque Trp proportional to an angle difference between a pinion angle corresponding to the virtual wheel-turning angle and the actual steering angle θs.
In this way, the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction torque Trp on the basis of the virtual wheel-turning angle virtually calculated instead of the actual wheel-turning angle θt.
Therefore, even when there is sudden steering, the wasted time and response delay of the virtual wheel-turning angle do not change and are kept to relatively small values (for example, previously determined values equal to or less than the design values of the response guarantee). As a result, the wasted time and response delay generated at the virtual wheel-turning angle become smaller than the wasted time and response delay generated at the actual wheel-turning angle θt, so that the pseudo torsional reaction torque Trp is smaller than the torsional reaction torque Trt.
FIG. 6A illustrates one example of the pinion angle corresponding to the virtual wheel-turning angle and the actual steering angle θs. The solid line 50 indicates the actual steering angle θs, and a solid line 52 indicates the pinion angle.
FIGS. 6B and 6C illustrate a deviation angular velocity and a deviation angular acceleration between the pinion angle and the actual steering angle θs of FIG. 6A.
The pinion angle corresponding to the virtual wheel-turning angle is set small so that the wasted time from the change of the actual steering angle θs to a start of change of the pinion angle satisfies the design value designed by the response guarantee.
Additionally, in a period from time point t0 to time point t3, there is a response delay of the pinion angle with respect to the actual steering angle θs (i.e., a change rate in the pinion angle is smaller than a change rate in the actual steering angle θs). However, a difference therebetween is set small so as to satisfy the design value designed by the response guarantee.
Therefore, even when there is sudden steering, the difference between the actual steering angle θs and the virtual wheel-turning angle is maintained at a small value, so that the pseudo torsional reaction torque Trp is smaller than the torsional reaction torque Trt.
Reference will be made to FIG. 3 . When the emergency steering determination unit 38 determines that there is a possibility of the emergency steering operation being performed on the basis of the emergency steering flag, the switching unit 47 outputs the pseudo torsional reaction torque Trp, as the second steering reaction torque Tr2, to the adder 43.
When it is not determined that there is the possibility of the emergency steering operation being performed (or when it is determined that there is no possibility of the emergency steering operation being performed), the torsional reaction torque Trt is output as the second steering reaction torque Tr2 to the adder 43.
As a result, when there is a possibility that the emergency steering operation will be performed, the second steering reaction torque Tr2 can be made smaller.
The third steering reaction torque calculation unit 42 calculates a third steering reaction torque Tr3 according to the steering angular velocity dθs/dt of the actual steering angle θs.
FIG. 7 illustrates one example of the third steering reaction torque Tr3. The third steering reaction torque calculation unit 42 calculates, as the third steering reaction torque Tr3, a steering torque opposite to a direction in which the actual steering angle θs changes. The third steering reaction torque Tr3 increases as the steering angular velocity dθs/dt increases. By applying the third steering reaction torque Tr3 to the steering wheel 31 a, a steering reaction force corresponding to a frictional component and a viscous component can be applied. The third steering reaction torque calculation unit 42 outputs the third steering reaction torque Tr3 to the adder 43.
The adder 43 adds the first steering reaction torque Tr1, the second steering reaction torque Tr2, and the third steering reaction torque Tr3 to calculate the command reaction torque Tr, and outputs a control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13.
With the above configuration, when the emergency steering determination unit 38 determines that there is a possibility of the emergency steering operation being performed, only the second steering reaction torque Tr2 becomes smaller than when it is not determined that there is the possibility of the emergency steering operation being performed (or when it is determined that there is no possibility of the emergency steering operation being performed).
Therefore, when a large force is applied to the steering wheel 31 a by the driver who attempts to steer quickly during the emergency steering operation, the steering reaction force initially generated in response to such large force can be reduced. This facilitates the emergency steering operation and improves operability of the steering wheel 31 a.
On the other hand, there remains a moderate steering reaction force due to the first steering reaction torque Tr1 and the third steering reaction torque Tr3, so that even when the second steering reaction torque Tr2 becomes small, a sense of discomfort about the steering reaction force can be reduced. Additionally, while the present embodiment adds the third steering reaction torque Tr3 according to the steering angular velocity des/dt to the first and second steering reaction torques Tr1 and Tr2 to obtain the command reaction torque Tr, the third steering reaction torque Tr3 is the steering reaction force corresponding to the frictional component and the viscous component, as described above, and has a very small value compared with the first and second steering reaction torques Tr1 and Tr2. Therefore, a value obtained by adding only the first and second steering reaction torques Tr1 and Tr2 may be used as the command reaction torque Tr, and the third steering reaction torque Tr3 is not always required. However, in order to apply a more desirable steering reaction force, as described in the present embodiment, it is preferable to add the third steering reaction torque Tr3 to the first and second steering reaction torques Tr1 and Tr2 to obtain the command reaction torque Tr.
(Operation)
Next, one example of a steering control method of an embodiment will be described with reference to FIG. 8 .
At step S1, the first steering reaction torque calculation unit 40 calculates the first steering reaction torque Tr1 according to the actual steering angle θs.
At step S2, the emergency steering determination unit 38 determines whether or not there is the possibility that the emergency steering operation will be performed. When it is determined that there is the possibility of the emergency steering operation being performed (step S2: Y), processing proceeds to step S4.
When it is not determined that there is the possibility of the emergency steering operation being performed or when it is determined that there is no possibility of the emergency steering operation being performed (step S2: N), processing proceeds to step S3.
At step S3, the second steering reaction torque calculation unit 41 calculates the second steering reaction torque Tr2 according to the difference between the actual steering angle Os and the actual wheel-turning angle θt. Then, processing proceeds to step S5.
At step S4, the second steering reaction torque calculation unit 41 calculates the second steering reaction torque Tt2 according to the difference between the actual steering angle θs and a virtual wheel-turning angle. Then, processing proceeds to step S5.
At step S5, the third steering reaction torque calculation unit 42 calculates the third steering reaction torque Tr3 according to the steering angular velocity dθs/dt of the actual steering angle θs.
At step S6, the adder 43 adds the first steering reaction torque Tr1, the second steering reaction torque Tr2, and the third steering reaction torque Tr3 to calculate the command reaction torque Tr, and outputs the control signal that causes the reaction force actuator 12 to generate the command reaction torque Tr to the first driver circuit 13. The first driver circuit 13 drives the reaction force actuator 12 in response to the control signal.
Effects of Embodiment
(1) The reaction force control unit 37, the first driver circuit 13, and the reaction force actuator 12 apply the steering reaction force obtained by adding the first steering reaction force Tr1 according to the actual steering angle θs of the steering wheel 31 a and the second steering reaction force Tr2 according to the steering angular acceleration d2θs/dt2 of the steering wheel 31 a to the steering wheel 31 a.
The emergency steering determination unit 38 determines the possibility that the emergency steering operation of the steering wheel 31 a by the driver will be performed. When it is determined that there is the possibility of the emergency steering operation being performed, the reaction force control unit 37 makes the second steering reaction force Tr2 smaller than when it is not determined that there is the possibility of the emergency steering operation being performed.
As a result, when the driver applies a large force to the steering wheel 31 a in an attempt to steer quickly during the emergency steering operation, the steering reaction force initially generated in response to such large force can be reduced. This facilitates the emergency steering operation and improves operability of the steering wheel 31 a.
On the other hand, there remains a moderate steering reaction force due to the first steering reaction torque Tr1, so that even when the second steering reaction torque Tr2 is made small, the sense of discomfort about the steering reaction force can be reduced.
Therefore, when the emergency steering operation of the steering wheel 31 a by the driver is performed, the operability of the steering wheel 31 a is improved while reducing the sense of discomfort about the steering reaction force.
(2) The reaction force control unit 37, the first driver circuit 13, and the reaction force actuator 12 apply the steering reaction force Tr obtained by adding the third steering reaction force Tr3 according to the steering angular velocity dθs/dt of the steering wheel 31 a, the first steering reaction force Tr1, and the second steering reaction force Tr2 to the steering wheel 31 a.
By adding the third steering reaction force Tr3 according to the steering angular velocity dθs/dt, the steering reaction force corresponding to the frictional component and the viscous component can be applied, so that the sense of discomfort about the steering reaction force can be reduced.
(3) When the risk to an obstacle around the host vehicle is equal to or more than the threshold value, the emergency steering determination unit 38 determines that there is the possibility that the emergency steering operation will be performed. This allows the possibility of the emergency steering operation of the steering wheel 31 a by the driver being performed to be determined more accurately.
(4) When the time to collision with the obstacle is equal to or less than the prescribed value, the emergency steering determination unit 38 determines that the risk is equal to or more than the threshold value. This allows the possibility of the emergency steering operation of the steering wheel 31 a by the driver being performed to be determined more accurately.
(5) When it is not determined that there is the possibility of the emergency steering operation being performed, the torsional reaction force calculation unit 44 calculates the second steering reaction force Tr2 according to the difference between the actual wheel-turning angle θt of the steered wheels 34 and the actual steering angle θs. When it is determined that there is the possibility of the emergency steering operation being performed, the virtual wheel-turning angle calculation unit 45 calculates the second steering reaction force Tr2 according to the difference between a virtual wheel-turning angle set so as to respond to the change of the steering angle earlier than the actual wheel-turning angle and the actual steering angle θs.
This can give to the driver the feedback of a ground contact state of the steered wheels 34 on a road surface as the second steering reaction force Tr2. Additionally, when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction force Tr2 can be reduced to facilitate the emergency steering operation and improve the operability of the steering wheel 31 a.
(Modifications)
(1) In the above embodiment, when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction torque calculation unit 41 has calculated the pseudo torsional reaction torque Trp as the second steering reaction torque Tr2. Additionally, when it is not determined that there is the possibility of the emergency steering operation being performed (or when it is determined that there is no possibility of the emergency steering operation being performed), the torsional reaction torque Trt has been calculated as the second steering reaction torque Tr2.
However, the present invention is not limited thereto, and the second steering reaction torque Tr2 may be calculated by various methods.
For example, the second steering reaction torque calculation unit 41 may calculate the second steering reaction torque Tr2 that has characteristics as illustrated in FIG. 9 . The second steering reaction torque Tr2 increases as the steering angular acceleration d2θs/dt2 of the steering wheel 31 a increases.
When it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction torque calculation unit 41 may set the second steering reaction torque Tr2 to 0. This allows the reaction torque component proportional to the force (torque) applied to the steering wheel 31 a to be reduced to 0, so that the operability of the steering wheel 31 a can be further improved.
Additionally, when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction torque calculation unit 41 may reduce the slope of a characteristic line illustrated in FIG. 9 or provide an upper limit value to reduce the second steering reaction torque Tr2.
(2) The above embodiment has described the case for employing the steer-by-wire (SBW) system in which the steering unit 31 that receives a steering input from the driver and the wheel-turning unit 32 that turns the left and right front wheels 34FL and 34FR, which are the steered wheels, are mechanically disconnected. However, the present invention is not limited thereto, and can also be applied to cases for employing an electric power steering device.
All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
REFERENCE SIGNS LIST
    • 11: Controller
    • 12: Reaction force actuator
    • 13: First driver circuit
    • 14: Wheel-turning actuator
    • 15: Second driver circuit
    • 16: External sensor
    • 19: Steering angle sensor
    • 20: Processor
    • 21: Storage device
    • 31: Steering unit
    • 31 a: Steering wheel
    • 31 b: Column shaft
    • 31 c: Current sensor
    • 32: Wheel-turning unit
    • 32 a: Pinion shaft
    • 32 b: Steering gear
    • 32 c: Rack gear
    • 32 d: Steering rack
    • 33: Backup clutch
    • 34: Steered wheels
    • 34FL: Left front wheel
    • 34FR: Right front wheel
    • 35: Wheel-turning angle sensor
    • 36: Wheel-turning control unit
    • 37: Reaction force control unit
    • 38: Emergency steering determination unit
    • 40: First steering reaction torque calculation unit
    • 41: Second steering reaction torque calculation unit
    • 42: Third steering reaction torque calculation unit
    • 43: Adder
    • 44: Reaction force calculation unit
    • 45: Virtual wheel-turning angle calculation unit
    • 46: Reaction force calculation unit
    • 47: Switching unit

Claims (7)

The invention claimed is:
1. A steering control method comprising:
applying a steering reaction force obtained by adding a first steering reaction force according to a steering angle of a steering wheel and a second steering reaction force according to a steering angular acceleration of the steering wheel to the steering wheel;
determining a possibility that an emergency steering operation of the steering wheel by a driver will be performed; and
when it is determined that there is the possibility of the emergency steering operation being performed, making the second steering reaction force small compared with when it is not determined that there is the possibility of the emergency steering operation being performed.
2. The steering control method according to claim 1, wherein when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction force is set to 0.
3. The steering control method according to claim 1, wherein the steering reaction force obtained by adding a third steering reaction force according to a steering angular velocity of the steering wheel, the first steering reaction force, and the second steering reaction force is applied to the steering wheel.
4. The steering control method according to claim 1, wherein when a risk to an obstacle around a host vehicle is equal to or more than a threshold value, it is determined that there is the possibility of the emergency steering operation being performed.
5. The steering control method according to claim 4, wherein when a time to collision with the obstacle is equal to or less than a prescribed value, it is determined that the risk is equal to or more than the threshold value.
6. The steering control method according to claim 1, wherein when it is not determined that there is the possibility of the emergency steering operation being performed, the second steering reaction force is calculated according to a difference between an actual wheel-turning angle of steered wheels and the steering angle, and when it is determined that there is the possibility of the emergency steering operation being performed, the second steering reaction force is calculated according to a difference between a virtual wheel-turning angle set to respond to a change of the steering angle earlier than the actual wheel-turning angle and the steering angle.
7. A steering control device comprising:
a reaction force actuator configured to apply a steering reaction force to a steering wheel;
a driver circuit configured to drive the reaction force actuator; and
a controller configured to output a control signal configured to cause the reaction force actuator to generate a steering reaction force obtained by adding a first steering reaction force according to a steering angle of the steering wheel and a second steering reaction force according to a steering angular acceleration of the steering wheel to the driver circuit, wherein the controller determines a possibility that an emergency steering operation of the steering wheel by a driver will be performed, and, when it is determined that there is the possibility of the emergency steering operation being performed, makes the second steering reaction force small compared with when it is not determined that there is the possibility of the emergency steering operation being performed.
US17/622,999 2019-06-28 2019-06-28 Steering control method and steering control device Active US11572096B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025806 WO2020261530A1 (en) 2019-06-28 2019-06-28 Steering control method and steering control device

Publications (2)

Publication Number Publication Date
US20220227417A1 US20220227417A1 (en) 2022-07-21
US11572096B2 true US11572096B2 (en) 2023-02-07

Family

ID=74060491

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/622,999 Active US11572096B2 (en) 2019-06-28 2019-06-28 Steering control method and steering control device

Country Status (5)

Country Link
US (1) US11572096B2 (en)
EP (1) EP3992059B1 (en)
JP (1) JP7243828B2 (en)
CN (1) CN114026011B (en)
WO (1) WO2020261530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12240448B2 (en) * 2021-12-24 2025-03-04 Toyota Jidosha Kabushiki Kaisha Vehicle steering assist device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144959A1 (en) * 2022-01-27 2023-08-03 株式会社ジェイテクト Steering control device and steering control method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072017A (en) 1998-09-03 2000-03-07 Koyo Seiko Co Ltd Steering device for vehicle
WO2003059680A1 (en) * 2001-12-27 2003-07-24 Toyota Jidosha Kabushiki Kaisha Integrated vehicle motion control system
JP2004306727A (en) 2003-04-04 2004-11-04 Nissan Motor Co Ltd Vehicular steering control device
JP2006315617A (en) 2005-05-16 2006-11-24 Mitsubishi Motors Corp Vehicle steering control device
JP2009101809A (en) 2007-10-23 2009-05-14 Mazda Motor Corp Vehicular driving support device
JP2009241725A (en) 2008-03-31 2009-10-22 Mazda Motor Corp Vehicle steering reaction force control device
JP2010149650A (en) 2008-12-25 2010-07-08 Nissan Motor Co Ltd Vehicular steering device, vehicle with vehicular steering device, and vehicular steering method
JP2010280276A (en) 2009-06-03 2010-12-16 Nissan Motor Co Ltd Vehicle traveling control device and vehicle traveling control method
US20110259663A1 (en) * 2010-04-21 2011-10-27 Nissan Motor Co., Ltd. Steering apparatus for vehicle
US8386119B2 (en) * 2009-02-27 2013-02-26 Nissan Motor Co., Ltd. Vehicle driving operation support apparatus/process and restraint control
US20130073147A1 (en) 2011-09-15 2013-03-21 Jtekt Corporation Vehicle steering system and loading vehicle
US9321484B2 (en) * 2013-02-19 2016-04-26 Toyota Jidosha Kabushiki Kaisha Collision avoidance assistance device and collision avoidance assistance method
US20190039650A1 (en) * 2016-02-17 2019-02-07 Nsk Ltd. Vehicle steering control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221966A (en) * 1986-03-24 1987-09-30 Honda Motor Co Ltd Electric power steering gear
JP3983324B2 (en) * 1997-01-09 2007-09-26 富士重工業株式会社 Vehicle lane departure prevention device
JP4617946B2 (en) * 2005-03-22 2011-01-26 株式会社ジェイテクト Vehicle steering system
JP2010221993A (en) * 2009-02-27 2010-10-07 Nissan Motor Co Ltd Driving operation auxiliary device for vehicle, driving operation auxiliary method for vehicle, and automobile
KR101687561B1 (en) * 2010-11-03 2016-12-19 현대모비스 주식회사 Power steering system and control method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072017A (en) 1998-09-03 2000-03-07 Koyo Seiko Co Ltd Steering device for vehicle
WO2003059680A1 (en) * 2001-12-27 2003-07-24 Toyota Jidosha Kabushiki Kaisha Integrated vehicle motion control system
JP2004306727A (en) 2003-04-04 2004-11-04 Nissan Motor Co Ltd Vehicular steering control device
JP2006315617A (en) 2005-05-16 2006-11-24 Mitsubishi Motors Corp Vehicle steering control device
JP2009101809A (en) 2007-10-23 2009-05-14 Mazda Motor Corp Vehicular driving support device
JP2009241725A (en) 2008-03-31 2009-10-22 Mazda Motor Corp Vehicle steering reaction force control device
JP2010149650A (en) 2008-12-25 2010-07-08 Nissan Motor Co Ltd Vehicular steering device, vehicle with vehicular steering device, and vehicular steering method
US8386119B2 (en) * 2009-02-27 2013-02-26 Nissan Motor Co., Ltd. Vehicle driving operation support apparatus/process and restraint control
JP2010280276A (en) 2009-06-03 2010-12-16 Nissan Motor Co Ltd Vehicle traveling control device and vehicle traveling control method
US20110259663A1 (en) * 2010-04-21 2011-10-27 Nissan Motor Co., Ltd. Steering apparatus for vehicle
US20130073147A1 (en) 2011-09-15 2013-03-21 Jtekt Corporation Vehicle steering system and loading vehicle
JP2013063680A (en) 2011-09-15 2013-04-11 Jtekt Corp Steering device for vehicle, and loading and unloading vehicle
US9321484B2 (en) * 2013-02-19 2016-04-26 Toyota Jidosha Kabushiki Kaisha Collision avoidance assistance device and collision avoidance assistance method
US20190039650A1 (en) * 2016-02-17 2019-02-07 Nsk Ltd. Vehicle steering control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12240448B2 (en) * 2021-12-24 2025-03-04 Toyota Jidosha Kabushiki Kaisha Vehicle steering assist device

Also Published As

Publication number Publication date
EP3992059A4 (en) 2022-07-13
JPWO2020261530A1 (en) 2020-12-30
CN114026011A (en) 2022-02-08
WO2020261530A1 (en) 2020-12-30
EP3992059B1 (en) 2023-04-19
CN114026011B (en) 2022-08-23
JP7243828B2 (en) 2023-03-22
EP3992059A1 (en) 2022-05-04
US20220227417A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US11603132B2 (en) Steering control method and steering control device
US10343718B2 (en) Driver assistance system for vehicle
US10179602B2 (en) Driver assistance system for vehicle
US9296418B2 (en) Vehicle control device
US11603128B2 (en) Steering control method and steering control device
JP3638169B2 (en) Vehicle collision prevention device
CN108238099B (en) Vehicle travel control device and autonomous driving control method
RU2672322C1 (en) Vehicle movement control device and autonomous movement control method
US20160200360A1 (en) Collision avoidance control integrated with electric power steering controller and rear steer
US20200346642A1 (en) Torque based vehicle path prediction
US11572096B2 (en) Steering control method and steering control device
CN115593497A (en) Vehicle control system and vehicle control method
CN115593498A (en) Vehicle control system and vehicle control method
JP4384952B2 (en) Vehicle operation support device
JP7613978B2 (en) Driving control device
WO2016194862A1 (en) Vehicle control device and vehicle control method
JP7287317B2 (en) steering controller
JP7609049B2 (en) Driving Support Devices
JP2017154512A (en) Vehicle control device
JP2021126935A (en) Driving support device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NISSAN MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUZUKI, TAKU;REEL/FRAME:058482/0087

Effective date: 20211102

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE