US11298112B2 - Biomonitoring devices, methods, and systems for use in a bathroom setting - Google Patents
Biomonitoring devices, methods, and systems for use in a bathroom setting Download PDFInfo
- Publication number
- US11298112B2 US11298112B2 US16/446,111 US201916446111A US11298112B2 US 11298112 B2 US11298112 B2 US 11298112B2 US 201916446111 A US201916446111 A US 201916446111A US 11298112 B2 US11298112 B2 US 11298112B2
- Authority
- US
- United States
- Prior art keywords
- toilet
- bowl
- user
- sensor
- electromagnetic radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 claims description 35
- 239000000126 substance Substances 0.000 claims description 24
- 230000005670 electromagnetic radiation Effects 0.000 claims description 22
- 210000003608 fece Anatomy 0.000 claims description 19
- 210000002700 urine Anatomy 0.000 claims description 18
- 239000008280 blood Substances 0.000 claims description 14
- 210000004369 blood Anatomy 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 238000012549 training Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 230000027939 micturition Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 239000012491 analyte Substances 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000013500 data storage Methods 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 2
- 239000003814 drug Substances 0.000 abstract description 11
- 229940079593 drug Drugs 0.000 abstract description 11
- 239000013589 supplement Substances 0.000 abstract description 11
- 238000002483 medication Methods 0.000 abstract description 8
- 230000002452 interceptive effect Effects 0.000 abstract description 4
- 238000003860 storage Methods 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 238000004590 computer program Methods 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 10
- 238000012706 support-vector machine Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000006187 pill Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000000845 anti-microbial effect Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 206010009944 Colon cancer Diseases 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 238000011871 bio-impedance analysis Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000013872 defecation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000012855 volatile organic compound Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229920006332 epoxy adhesive Polymers 0.000 description 3
- 230000004313 glare Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N Valeric acid Natural products CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 208000014617 hemorrhoid Diseases 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002211 ultraviolet spectrum Methods 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 208000019206 urinary tract infection Diseases 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009535 clinical urine test Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical class CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000012125 lateral flow test Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0038—Devices for taking faeces samples; Faecal examination devices
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47K—SANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
- A47K13/00—Seats or covers for all kinds of closets
- A47K13/24—Parts or details not covered in, or of interest apart from, groups A47K13/02 - A47K13/22, e.g. devices imparting a swinging or vibrating motion to the seats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/007—Devices for taking samples of body liquids for taking urine samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7475—User input or interface means, e.g. keyboard, pointing device, joystick
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03D—WATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
- E03D11/00—Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
- E03D11/13—Parts or details of bowls; Special adaptations of pipe joints or couplings for use with bowls, e.g. provisions in bowl construction preventing backflow of waste-water from the bowl in the flushing pipe or cistern, provisions for a secondary flushing, for noise-reducing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/4833—Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/493—Physical analysis of biological material of liquid biological material urine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H04N5/332—
-
- H04N5/374—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B2010/0003—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements including means for analysis by an unskilled person
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B2010/0083—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements for taking gas samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/44—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
- G01G19/50—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G21/00—Details of weighing apparatus
- G01G21/28—Frames, Housings
Definitions
- the present application generally relates to biomonitoring. More specifically, the application discloses biomonitoring devices and methods that measure medically relevant excreta and health-related characteristics, and assist in health-related tasks.
- the toilet mostly lacks any electrical, sensor or network connected capabilities.
- the toilet seat is widely used as an electric bidet for reasons related to hygiene.
- the vast majority of bathroom mirrors across the world lack any electrical, sensor or network connected capabilities, especially related to health or wellness.
- the present invention is directed to devices, systems and methods for electronic biomonitoring of characteristics of excreta in a bathroom setting.
- a biomonitoring device that measures a parameter of a material expelled during use of a toilet by a user.
- the device comprises a sensor that detects electromagnetic radiation or an analyte chemical in the bowl of the toilet.
- a biomonitoring device that is a bathroom mirror.
- the device identifies a user, detects a febrile illness in a user, dispenses medications/supplements, connects to electrical device accessories in the bathroom, and provides an interactive user interface.
- the system comprises the above biomonitoring device.
- a method of determining a physiological parameter of a user comprises expelling a material into the bowl of a toilet in the presence of the above biomonitoring device.
- FIG. 1 is a perspective view of a system of the present invention.
- FIGS. 2A-2F illustrate various views of a seat-integrated toilet device of the present invention.
- FIG. 2A shows a top perspective view
- FIG. 2B shows a bottom view
- FIG. 2C shows an exploded view of an image sensor in the device
- FIG. 2D shows part of the inside of the device from top perspective cross-section view
- FIG. 2E is a close-up view of a load cell in the device
- FIG. 2F shows spectroscopic components in the device.
- FIGS. 3A-3C illustrate an air duct system in a seat-integrated toilet device of the present invention.
- FIG. 3A is a perspective view of the air duct system situated on the bottom of the device;
- FIG. 3B close-up view of the exit path of air from the air duct system;
- FIG. 3C is a close-up view of an array of gas sensors in the air duct system.
- FIGS. 4A and 4B illustrate an image sensor embodiment of the present invention.
- FIG. 4A is a perspective exploded view
- FIG. 4B is a close-up exploded view of the image sensor embodiment.
- FIGS. 5A and 5B illustrate another image sensor embodiment of the present invention.
- FIG. 5A is a perspective exploded view
- FIG. 5B is a close-up exploded view of the image sensor embodiment.
- FIGS. 6A-6C illustrate stool collection embodiments of the present invention.
- FIG. 6A is a bottom perspective view of an embodiment
- FIG. 6B is a cross-sectional view of the embodiment
- FIG. 6C is a bottom perspective view of an alternative attachment method of a stool collection embodiment.
- FIG. 7 is an exploded view of a foot scale embodiment of the present invention.
- FIG. 8 is a perspective view of a wall console of the present invention.
- FIGS. 9A-9D illustrate a mirror embodiment of the present invention.
- FIG. 9A illustrates a front perspective view of a wall mounted mirror embodiment
- FIG. 9B illustrates a perspective exploded view of a wall mounted mirror embodiment
- FIG. 9C illustrates perspective view of the accessories associated with a wall mounted mirror embodiment
- FIG. 9D illustrates a touchscreen user interface.
- FIGS. 10A-10I illustrate a portable embodiment of a device of the present invention.
- FIG. 10A is a perspective view of the embodiment;
- FIG. 10B illustrates components of the embodiment;
- FIG. 10C illustrates the device with wings at 90 degrees;
- FIG. 10D illustrates the device with wings at 180 degrees;
- FIG. 10E illustrates the device being opened and awakened from sleep mode;
- FIG. 10F , FIG. 10G , FIG. 10H and FIG. 10I illustrates representative steps in using the device.
- FIGS. 11A-11D illustrate an embodiment of a device of the present invention that clips onto the top of a toilet seat.
- FIG. 11A illustrates a perspective view of the device clipped onto a seat;
- FIG. 11B illustrates a cutaway view of the device;
- FIG. 11C illustrates a cross-sectional view of the device;
- FIG. 11D illustrates an additional cross-sectional view of the device.
- FIGS. 12A-12C illustrate an embodiment of a device of the present invention that fits between the bottom of a toilet seat and the toilet bowl rim.
- FIG. 12A illustrates a perspective view of the device installed onto a toilet;
- FIG. 12B illustrates a cutaway view of the device;
- FIG. 12C illustrates a cross-sectional view of the device.
- FIG. 13 illustrates an example of a generic computing device that may be used to store, transmit and process data from devices of the present invention.
- FIG. 14 is a block diagram that shows an exemplary communications network architecture, devices, and components for operating the devices of the present invention.
- FIGS. 15A-15D are block diagrams showing exemplary image processing and classification methods for processing data from the devices of the present invention.
- FIG. 15A shows exemplary image pre-processing tasks
- FIG. 15B shows one image classification method for classifying stool consistency
- FIG. 15C shows one image classification method for detecting colors in the excreta
- FIG. 15D is a set of labels for stool and urine classification
- FIG. 15E shows the workflow for estimating the urine voiding volume of a person.
- FIG. 16 is a block diagram that shows an exemplary set of steps taken by the user, devices, software, and/or user interfaces during use of the devices of the present invention.
- the present invention is directed to devices, systems and methods for electronic biomonitoring of characteristics of excreta in a bathroom setting.
- a biomonitoring device that measures a parameter of a material expelled during use of a toilet by a user.
- the device comprises a sensor or plurality of sensors that detects electromagnetic radiation or an analyte chemical in the bowl of the toilet.
- the material is feces, urine, flatus, or off-gas from feces or urine.
- FIG. 1 illustrates an exemplary system of the present invention that consists of a toilet 200 where various sensors are integrated into a toilet seat, a foot scale 300 , a wall console 400 and a mirror 500 in a bathroom setting. These various components of this system are further discussed below.
- FIG. 2A illustrates the exemplary toilet 200 from FIG. 1 .
- a conductive material 201 is deposited on the apparatus that serves as bioelectrical impedance analysis electrodes.
- Bioelectrical impedance is determined by applying a sinusoidal current into the body through the electrodes shown in 201 .
- the sinusoidal current is generated with an internal pattern generator and a digital-analog converter.
- a voltage-to-current converter applies this sinusoidal current into the body, between pairs of two terminals.
- the voltage created across these two terminals as a result of the impedance of the body is measured back with a differential amplifier, rectified, and its amplitude is extracted and measured by an analog-to-digital converter (ADC).
- ADC analog-to-digital converter
- the conductive material can be applied to the seat by any method known in the art, or later discovered.
- a pad-printable, B-stageable, electrically conductive two-part epoxy adhesive containing carbon filler is applied via tampography on a fixtured device and cured at 100 degrees Celsius for one hour.
- Sheet resistivity of the epoxy adhesive is between 140-200 ohms/sq/mil.
- the epoxy adhesive has elongation properties that allow for flexibility e.g., when a user sits on the device, and resists solvents such as common toilet cleaning chemicals and abrasives.
- FIG. 2A also shows a nozzle 202 for dispensing liquid, operatively connected to a receptacle 203 , that can be replaceable, for containing a liquid, e.g., a deodorizer, chemical reagent, or cleaning agent, to be dispensed into the bowl.
- a charging port 204 is operatively connected to the battery, which it recharges.
- FIG. 2B illustrates the exemplary toilet from a bottom perspective view.
- Low distortion lenses 205 are provided, which can further comprise hydrophobic and antimicrobial coatings. Electromagnetic radiation can pass through the lenses 205 from the inside of the toilet bowl to an image sensor.
- An additional or alternative lens 206 similar in material to 205 , can be utilized in a position that does not change when the seat is lifted.
- Behind lenses 205 and 206 are light sources that project electromagnetic radiation in the visible and/or invisible range of the electromagnetic spectrum.
- Load cells 207 are for capturing the weight of the user. In some embodiments, they pivot to accommodate contact with non-level surfaces, and/or contain anti-skid material where in contact with the toilet bowl.
- FIG. 2C illustrates an exploded view of the image sensor, light source and lens in an exemplary toilet.
- the image sensor is in a housing 208 .
- Lens 209 upon which hydrophobic and antimicrobial coatings can be applied, allows passage of electromagnetic radiation of various frequency and wavelengths.
- An electromagnetic radiation source 210 can emit electromagnetic radiation in the visible and invisible range of the electromagnetic spectrum into a toilet bowl.
- the visible and/or invisible light captured by the lens can be electronically measured by any means known in the art, for example using an active pixel sensor, for example a charge-coupled device (CCD), or a complementary metal-oxide-semiconductor (CMOS) 211 .
- CCD charge-coupled device
- CMOS complementary metal-oxide-semiconductor
- the light passing through the lens can also be measured using a thermographic array comprised of focal plane arrays that respond to longer wavelengths (mid- and long-wavelength infrared). Illumination of images occurs by turning on the electromagnetic radiation source 210 . Capture of images occurs through the sensor 211 , which obtains illuminated images inside the toilet bowl at configurable time intervals.
- FIG. 2D illustrates part of the inside of the example toilet apparatus from top perspective cross-section view.
- Load cell 212 captures force in multiple vectors.
- a load cell that captures force in one vector can also be used, such as a thin film load cell.
- Capacitive sensor 213 detects user presence while a user is seated on the device. The active presence of a user initiates the sensor measurement and can be used to determine the length of time a user is seated.
- FIG. 2E is a close-up view of an exemplary load cell.
- An additional strain gauge 214 is added to a traditional single-sensor bending-moment force gauge 215 .
- the addition of the strain gauge 214 allows the capture of torque around the sensing beam. This bending moment can be imparted by beam 216 capturing force across the rim of an uneven toilet bowl.
- the device algorithmically combines torque and bending inputs from the four load cells to calculate the user's weight.
- FIG. 2F shows components related to the spectroscopic-based detection of substances such as blood and urine.
- 217 is a laser diode or photo diode array.
- 218 is a laser diode
- 219 is a prism shape can change position depending on optical requirements
- 220 is the top surface of water in the toilet bowl
- 211 is an CMOS sensor
- 221 is a photosensor or photodetector
- 222 is a distance sensor which is intended to reflect off of the top surface of the water in the toilet bowl.
- 218 may emit light at specific wavelengths.
- the characteristic spectral signature of blood along the near infrared range (760-1500 nm) provides higher selectivity than using solely the visible range (400-780 nm).
- the presence and concentration of urine can be measured.
- 211 may be monochrome with the infrared filter removed.
- 221 may use single pixel imaging to detect the target substance in the near infrared spectrum.
- the use of laser diodes compared to a light source such as a light-emitting diodes (LEDs) is the narrower spread in wavelength bandwidth, thus allowing it to be more substance specific.
- Laser diodes are wavelength specific with full width at half maximum of + ⁇ 5 nm and require a prism or lens to disperse the laser over the target area (i.e. water table).
- the device may also be used with or without added chemicals that manipulate the chemical matter in and on biological cells in the excreta, with which may be useful in detecting the presence of or quantifying blood which may be associated with conditions such as hemorrhoids, ulcerative colitis, colorectal cancer, Crohn's disease, urinary tract infections, and bladder cancer.
- Such chemicals may be a combination of reagents, buffers, oxidizers or other chemical agents may be liquid or deposited on a substrate that are dispensed into the toilet bowl before defecating or urinating in order to optically display changes in color versus the substrate or provide a photoluminescent glow that can be detected by sensors 211 or 221 .
- An example of such a substrate and color-based blood detection system approved by the US Food and Drug Administration for use with colorectal cancer screening is EZ Detect (Biomerica, Inc., Irvine, Calif., USA).
- FIG. 3A illustrates an exemplary air fan and duct that pulls air from inside the toilet bowl through gas sensors. The path of air being pulled from the inside of the toilet bowl 223 and the path of air exiting the toilet seat 224 is shown.
- a set of gas sensors 225 can be calibrated to detect volatile organic compounds. The mean free path of air going across the gas sensors 225 may be constrained by a wall.
- FIG. 3B is a close-up view of the path of air.
- Filter 226 cleans the air prior to exiting into the bathroom.
- the filter can be made of any appropriate material, e.g., charcoal.
- gas sensor Any gas sensor known in the art can be utilized as appropriate to detect the gaseous chemicals.
- the gas sensor is a micro hotplate metal-oxide sensor.
- FIG. 3C is a close-up view of exemplary gas sensors. Shown is a combination of three micro hotplate metal-oxide sensors 227 , where each blade can have a different spectrum, a transimpedance amplifier 228 , and a control circuit board 229 , with temperature and humidity sensor and microcontroller. Electrochemical gas sensors may also be used. Some metal-oxides can behave as semiconductors at higher temperatures. Metal-oxide sensors are designed with a heater element and a sensor element (sintered metal-oxide with or without catalyst), separated by a very thin isolating membrane. Redox-reactions occurring at the sensor surface result in changes in resistance, which can be measured.
- the gas sensor assembly consists of one or more gas sensors that could be broadband sensors that are responsive to a mixture of gases, as well as narrowband sensors that only respond to concentrations of a particular gas or gases. The actual concentrations can then be computed back using Gaussian mixture models. Because many of the sensors operate with microcurrents and are sensitive to temperature changes, the assembly incorporates a temperature sensor and a chemical sensing front end consisting of a transimpedance amplifier and a cellbias generator. Furthermore, to keep the analog sensing path short, a microcontroller is incorporated in the assembly that converts the readings from the sensors using an ADC to digital signals that can be communicated and processed further through a digital interface as shown.
- the gaseous chemicals are volatile organic compounds.
- the volatile organic compounds found in the gut include short-chain fatty acids and branched-chain fatty acids (Gruber et al., 2016).
- Carbohydrates in the gut are fermented by different bacteria to produce ethanoic, propionic, butanoic, pentanoic, and hexanoic acid acids.
- Hydrogen sulfide and methanethiol are generated from sulfur-containing substances in the diet. Fermentation of tyrosine and tryptophan leads to the production of phenols and indoles (Zheng et al., 2011).
- the relative proportions of these different VOCs may reflect the bacterial composition present in the gut.
- the device can be installed with an existing toilet seat (i.e., it does not require replacing the seat).
- an existing toilet seat i.e., it does not require replacing the seat.
- FIGS. 4A, 4B, 5A and 5B provide exemplary embodiments.
- FIGS. 4A and 4B are perspective and close-up exploded views of another embodiment of an image sensor that can work in conjunction with an existing toilet seat (e.g., it does not require replacing the seat).
- An attachment point 230 is bolted into place with the existing bolts 231 and covered with the existing seat 232 .
- An attachment point that does not require bolting may also be used.
- a wire 233 is provided that is capable of transmitting power and communications. Power may also be provided through a battery and communications can be wireless.
- Processing and communications circuitry 234 are also provided, which may or may not be separate from the image sensor.
- housing 235 for the CMOS sensor 211 and an electromagnetic radiation source 210 providing light at various spectra into the toilet bowl. In some embodiments, multiple CMOS sensors may be used. Components related to spectroscopic-based detection of substances may also be used.
- FIGS. 5A and 5B are perspective and close-up exploded views of another embodiment of the image sensor that can work in conjunction with an existing toilet seat.
- a tray-like apparatus 236 fits into place on top of the toilet bowl rim and is covered with the existing seat 232 .
- a wire 233 capable of transmitting power and communications, and processing and communications circuitry 234 are also included, along with top cover 237 .
- Power may also be provided through a battery and communications can be wireless.
- An electromagnetic radiation source 210 provides light at various spectra into the toilet bowl, which is captured by CMOS sensor 211 .
- the CMOS sensor is held by apparatus 238 .
- Components related to spectroscopic-based detection of substances, e.g., as described above, may also be used. This device may be partially or completely sealed.
- FIGS. 6A and 6B are bottom and cross-section views of such an exemplary system with a toilet seat.
- Stool collector 239 is constructed with a water-soluble material such as polyvinyl alcohol.
- Holes 240 in the stool collector attach the stool collector to the toilet seat in conjunction with modified feet on the toilet seat 241 , where the hoes hook over the modified feet.
- Another view of the feet 242 depicts an exemplary location where the stool collector 239 can be fastened.
- FIG. 6C An alternative embodiment of fasteners 243 in a stool collection system is shown in FIG. 6C .
- Those fasteners can be used as an alternative to the fasteners at the toilet seat feet shown in FIGS. 6A and 6B .
- system further comprises a foot scale designed to be placed on the floor that performs any or all of the following functions: calculate, measure, assess and/or determine physiologic data.
- FIG. 7 is an exploded view of exemplary scale or footstool 300 .
- Mat 301 is close to the ground and has sloping edges that can prevent users from injuring themselves when using the device and also contains guides where users can place their feet.
- Thin film pressure sensors 302 can capture the weight placed on the guided area indicated in 301 and transmitted through 303 .
- 302 is a load cell.
- Conductive material 304 serves as bioelectrical impedance electrodes, measuring bioelectrical impedance through the feet.
- Base 305 can rest on the floor of a bathroom.
- Processing and communications circuitry 306 includes a battery holder.
- the system comprises an electronic console that performs any or all of the following functions: measure ambient light, determine user presence, identify user, and/or has a user interface to display physiologic information.
- the displayed physiologic information is any or all of the following: current information, historical information and/or current information in view of historical information.
- FIG. 8 is a perspective view of an exemplary console system 400 .
- Electronic display 401 provides real-time information to the user as he sits on the toilet, such as weight and body composition.
- Ambient light detection sensor 402 is also included in these embodiments.
- Speakers 403 are also present, through which audio feedback can be provided, e.g., indicating to the user that he has been successfully identified.
- Fingerprint sensor 404 is an example of an identification method that uniquely identifies the user.
- Passive infrared sensor 405 can be used to detect user presence.
- any of the above-described devices may also comprise any other bathroom-related component including but not limited to: an electric or non-electric bidet; a presence-activated night light; ambient lighting of different colors; a heated toilet seat; a foot warmer; a voice- or gesture-activated toilet flush; a toilet cover that opens/closes automatically; and a networked speaker to play music.
- a bathroom mirror device which may be non-portable or portable in nature, that performs any or all of the following functions: identify a user through facial recognition; detect a febrile illness in a user; dispense oral medications and supplements; gather data from portable electronic device accessories that may include a core temperature thermometer, toothbrush, shaver, breath sensor, otoscope, opthalmoscope, stethoscope, pulse oximeter, and blood pressure monitor; and provide an interactive user interface.
- FIG. 9A illustrates a front view of an exemplary wall-mounted mirror 500 powered by mains electricity and connected to a private network 20 ( FIG. 14 ).
- Ambient light sensor 501 detects ambient light conditions.
- Passive infrared sensor 502 detects user presence.
- LED lighting 503 illuminates the face and body of a user.
- An array of laser diodes 504 in combination with image sensor 505 is used to identify a user in a bathroom setting based on facial recognition techniques.
- a thermal sensor 506 is used to detect elevated temperature in a febrile user.
- Screen 507 serves as both a mirror and a touch display.
- Microphone and speakers 508 provide audio input through which a user's voice can be captured and audio output, such as from an artificially intelligent agent, that can interact with the user.
- Pill pack cartridge 510 contains medications and/or supplements. Pills are combined and dispensed in pre-determined dosages through pill dispenser 511 .
- Storage 512 is provided, as well as a charging dock 513 for accessories.
- FIG. 9B shows an exploded perspective view of the components of mirror 500 .
- a touchscreen display 514 is placed over a one-way or transparent mirror 515 .
- a charger 516 for accessories that connect to 500 may be inductive or wireless in nature.
- the charging embodiments described herein are not narrowly limited to any particular mechanism or device used for charging.
- FIG. 9C shows a more detailed view of the pill dispensing system and exemplary accessories. Pills of a particular medication or supplement are sealed in a pack 517 and placed in cartridge 518 . Pills may be combined in a way that facilitates dispensing the correct dosages. Toothpaste 519 and mouthwash 520 are stored in storage 512 . Exemplary electrical devices shown that connect to the system include a thermometer 521 , toothbrush 522 , breath sensor 523 , and blood pressure monitor 524 .
- FIG. 9D shows an interactive user interface 525 in which the user may use a touchscreen to interact with current and/or historical information that is gathered from toilet apparatus 200 , scale 300 , console 400 , mirror 500 , electrical device accessories that connect to system, the user themselves, or through any type of data source which can be connected to the system.
- the user may also interact with the system through voice.
- the interface may perform, but is not limited to, the following functions: obtaining information from the user; providing current/historical information to the user; alerting the user; dispensing medications/supplements to the correct user; determining user compliance in taking medications/supplements; facilitating the dispensing of medications/supplements at the recommended time; changing dosing of medications/supplements; sharing information about the user to others; and facilitating the provision of telemedicine through remote consultations and information gathered by the system.
- FIG. 10A shows a representative portable device 600 comprised of body 601 , sealed from liquid ingress and smooth with minimal crevices for easy cleanability, made out of a polymer with antimicrobial properties; with movable wings 602 comprised of a textured elastomeric material that allows for secure grip.
- FIG. 10B shows the components of 600 , with wings 602 in the down position, where the device is ready to be transported.
- the top area consists of a capacitive touchscreen panel 603 .
- the middle area includes fingerprint sensor 604 where the user is meant to place his or her finger on to be identified, printed circuit board assembly 605 , module chip 606 containing logic and communications hardware and components, three-axis accelerometer 607 , battery 608 , image sensor assembly 609 , and data storage unit 610 .
- an electromagnetic radiation source 611 capable of emitting electromagnetic radiation in the visible and invisible range of the electromagnetic spectrum into the toilet bowl, a lens 612 of low distortion upon which hydrophobic and antimicrobial coatings can be applied, and a CMOS sensor 613 .
- the CMOS sensor 613 may also be a thermographic array comprised of focal plane arrays that respond to longer wavelengths (mid- and long-wavelength infrared). Components for spectroscopic detection and analysis, e.g., as described above, can also be included.
- placing the wings 602 of the device in this down position turns the device off, e.g., when the user finishes the bowel movement and/or urination and wishes to put the device away in order to free his or her hands.
- a speaker 614 allows sounds to be played and haptic feedback is provided through 615 .
- a microphone 616 allows the user's voice to be captured.
- FIG. 10C shows the device with wings 602 in the 90 degree position, able to be placed on the lap of the user with the body of the device extending below the legs of the user, facing towards the drain hole of the toilet bowl.
- FIG. 10D shows the device with wings 602 in the 180 degree position, where it can be held by the hands of the user.
- FIGS. 10E-I show the steps involved in turning on and using the device.
- FIG. 10E shows wings 602 being moved upwards from a down position, which is also a sleeping state meant to conserve battery power, towards a 90 degree position, which awakens the device and prompts the user to identify themselves through fingerprint sensor 617 .
- FIG. 10F shows the device in use with wings 602 placed in a 90 degree position resting on the lap of a female user.
- FIG. 10G shows the device in use with wings 602 placed in a 180 degree position held in the hands of a male user.
- FIG. 10H shows a camera viewfinder on the top area of the device with guiding elements 618 and 619 that help the user position the device correctly and manually initiate image captures 620 .
- FIG. 10I shows a question 621 that includes an area for answers 622 , a way to capture additional images 623 , in case the user needs to relieve himself or herself again, and a way to move forward or backward to different screens 624 .
- Questions or questionnaires that are displayed to the user can be customized about topics such as urgency, satisfaction, pain, and difficulty of defecation and/or urination which are related to specific diseases or symptoms being tracked.
- the device may also be used with or without added chemicals that manipulate the chemical matter in and on biological cells in the excreta, with which may be useful e.g., in detecting the presence of or quantifying blood which may be associated with conditions such as hemorrhoids, ulcerative colitis, colorectal cancer, Crohn's disease, urinary tract infections, and bladder cancer.
- Such chemicals may be a combination of reagents, buffers, oxidizers or other chemical agents may be liquid or deposited on a substrate that are dispensed into the toilet bowl before defecating or urinating in order to optically display changes in color versus the substrate or provide a photoluminescent glow that can be detected by the sensor 613 .
- An example of such a substrate and color-based blood detection system approved by the US Food and Drug Administration for use with colorectal cancer screening is EZ Detect (Biomerica, Inc., Irvine, Calif., USA).
- FIG. 11A shows an alternative embodiment of the portable device 700 installed on top of a toilet seat 232 .
- the device can be successfully fitted in various positions around the circumference of the seat due to the conformity of features shown in FIGS. 11B-D .
- FIG. 11B shows the components of the device in FIG. 11A .
- a printed circuit board assembly 701 module chip 702 , image sensor assembly 703 , which, in these embodiments, comprise the light source and CMOS sensor, and storage 704 .
- an image sensor comprising an electromagnetic radiation source 705 providing light at various spectra into the toilet bowl, a lens 706 with low distortion that may be made of hydrophobic and/or antibacterial material that allows passage of light in the visible, near-infrared and ultraviolet spectrum, and a housing 707 .
- the sensor 708 may also be a thermographic array comprised of focal plane arrays that respond to longer wavelengths (mid- and long-wavelength infrared).
- a battery 709 and a spring-loaded feature 710 shown in uncompressed position, that adapts to multiple seat widths to securely hold the device in place yet allows for easy and rapid removal by user.
- FIGS. 11C and 11D show section views that identify the features that allow the device shown in FIG. 11A to adapt to different widths and thicknesses of toilet seats.
- Sliding plunger 711 is a shown in uncompressed and compressed position, backed by spring 712 that applies pressure to the outside of a toilet seat 716 to provide a constant force against surface 713 to hold the device in place.
- Features 714 serve to resist upward force to keep device in place; feature 715 is positioned on the top of the toilet seat 716 to resist downward force.
- FIG. 12A shows an alternative embodiment of device 800 in an in-use position installed below a toilet seat 716 , above the toilet bowl 801 with the optical head able to be manually rotated for orientation to the excreta in the bowl.
- FIG. 12B shows device 800 of FIG. 12A comprised of an optical head positioned above the toilet bowl and an angled body intended to fit underneath a closed toilet seat, above the bowl rim and that has a tapered design 802 such that it can adapt to various height clearances between the top of a toilet bowl and bottom of a toilet seat.
- Design 802 is molded or covered by a conformal elastomeric material, which may also be antimicrobial, to provide grip to aid in retainment.
- rotating feature 803 allows the optical head to be positioned for optimal alignment to the excreta in the toilet bowl.
- a printed circuit board assembly 804 Internally, there is a printed circuit board assembly 804 , module chip 805 , battery 806 , image sensor assembly 807 , and storage 808 .
- an image sensor comprising a light source 809 providing light at various spectra into the toilet bowl, a lens 810 with low distortion that may be made of hydrophobic material that allows passage of light in the visible, near-infrared and ultraviolet spectrum, a housing 811 for the image sensor assembly, and a CMOS sensor 812 .
- Sensor 812 may also be a thermographic array comprised of focal plane arrays that respond to longer wavelengths (mid- and long-wavelength infrared).
- a flushable sanitary bag 813 may be used to protect device 800 from direct contact with the toilet bowl rim and toilet seat.
- FIG. 12C shows device 800 of FIG. 12A utilizing design 802 wedge configuration 814 to fit securely between the bottom of a toilet seat 815 and the top of the toilet bowl rim 816 .
- Optical head 817 is shown over toilet bowl.
- the wedge shape is covered by a sanitary bag all around surfaces shown in 818 to provide sufficient barrier from allowing device to touch toilet seat 815 or toilet bowl rim 816 .
- any of these embodiments may use mains electricity, electric batteries, solar power, etc.
- the device and/or system of the present invention further comprises a data storage and/or transmittal unit that stores and/or transmits data from the sensor via wireless, optical or wired communications to a computing unit, which analyzes data from the sensor.
- FIG. 13 shows an example of a generic computing device 900 , that may be used with the techniques described in this disclosure.
- any or all of the components featured therein, and the functions performed thereby, can be incorporated into any of the devices described above.
- Computing device 900 includes a processor 901 , memory 902 , an input/output device such as a display 903 , a communication interface 904 , and a transceiver 905 , among other components.
- the computing device 900 may also be provided with a storage device, such as a microdrive or other device, to provide additional storage.
- a storage device such as a microdrive or other device, to provide additional storage.
- Each of the components 900 , 901 , 902 , 903 , 904 , and 905 are interconnected using various buses, and several of the components may be mounted on a common motherboard or in other manners as appropriate.
- the processor 901 can execute instructions within the computing device 900 , including instructions stored in the memory 902 .
- the processor may be implemented as a chipset of chips that include separate and multiple analog and digital processors.
- the processor may provide, for example, for coordination of the other components of the computing device 900 , such as control of user interfaces, applications run by computing device 900 , and wireless communication by computing device 900 .
- Processor 901 may communicate with a user through control interface 906 and display interface 907 coupled to a display 903 .
- the display 903 may be, for example, a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) or an Organic Light Emitting Diode (OLED) display, or other appropriate display technology.
- the display interface 907 may comprise appropriate circuitry for driving the display 903 to present graphical and other information to a user.
- the control interface 906 may receive commands from a user and convert them for submission to the processor 901 .
- an external interface 908 may be provided in communication with processor 901 , to enable near area communication of computing device 900 with other devices. External interface 908 may provide, for example, for wired communication in some implementations, or for wireless communication in other implementations, and multiple interfaces may also be used.
- the memory 902 stores information within the computing device 900 .
- the memory 902 can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units.
- Expansion memory 909 may also be provided and connected to computing device 900 through expansion interface 910 , which may include, for example, a SIMM (Single In Line Memory Module) card interface.
- SIMM Single In Line Memory Module
- expansion memory 909 may provide extra storage space for computing device 900 or may also store applications or other information for computing device 900 .
- expansion memory 909 may include instructions to carry out or supplement the processes described above and may also include secure information.
- expansion memory 909 may be provided as a security module for computing device 900 and may be programmed with instructions that permit secure use of computing device 900 .
- secure applications may be provided via the SIMM cards, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.
- the memory may include, for example, flash memory and/or NVRAM memory, as discussed below.
- a computer program product is tangibly embodied in an information carrier.
- the computer program product contains instructions that, when executed, perform one or more methods, such as those described above.
- the information carrier is a computer- or machine-readable medium, such as the memory 902 , expansion memory 909 , memory on processor 901 , or a propagated signal that may be received, for example, over transceiver 905 or external interface 908 .
- Computing device 900 may communicate wirelessly through communication interface 904 , which may include digital signal processing circuitry where necessary.
- Communication interface 904 may in some cases be a cellular modem.
- Communication interface 904 may provide for communications under various modes or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others.
- Such communication may occur, for example, through radio-frequency transceiver 1268 .
- short-range communication may occur, such as using a Bluetooth, WiFi, or other such transceiver (not shown).
- GPS Global Positioning System
- receiver module 911 may provide additional navigation- and location-related wireless data to computing device 900 , which may be used as appropriate by applications running on computing device 900 .
- Computing device 900 may also communicate audibly using audio codec 912 , which may receive spoken information from a user and convert it to usable digital information. Audio codec 912 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of computing device 900 . Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on computing device 900 .
- Audio codec 912 may receive spoken information from a user and convert it to usable digital information. Audio codec 912 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of computing device 900 . Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on computing device 900 .
- the computing device 900 may be implemented in a number of different forms.
- Implementations of the subject matter and the operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them.
- Implementations of the subject matter described in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on computer storage medium for execution by, or to control the operation of, data processing apparatus.
- the program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.
- a computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them.
- a computer storage medium is not a propagated signal, a computer storage medium can be a source or destination of computer program instructions encoded in an artificially-generated propagated signal.
- the computer storage medium can also be, or be included in, one or more separate physical components or media (e.g., multiple CDs, disks, or other storage devices).
- the operations described in this specification can be implemented as operations performed by a data processing apparatus on data stored on one or more computer-readable storage devices or received from other sources.
- the term “data processing apparatus” encompasses all kinds of apparatuses, devices, and machines for processing data, including by way of example a programmable processor, a computer, a system on a chip, or multiple ones, or combinations, of the foregoing.
- the apparatus can include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
- the apparatus can also include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, a cross-platform runtime environment, a virtual machine, or a combination of one or more of them.
- the apparatus and execution environment can realize various different computing model infrastructures, such as web services, distributed computing and grid computing infrastructures.
- a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment.
- a computer program may, but need not, correspond to a file in a file system.
- a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language resource), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code).
- a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
- the processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform actions by operating on input data and generating output.
- the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
- Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
- a processor will receive instructions and data from a read-only memory or a random access memory or both.
- the essential elements of a computer are a processor for performing actions in accordance with instructions and one or more memory devices for storing instructions and data.
- a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks.
- mass storage devices for storing data
- a computer need not have such devices.
- a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few.
- PDA personal digital assistant
- GPS Global Positioning System
- USB universal serial bus
- Devices suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
- semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
- magnetic disks e.g., internal hard disks or removable disks
- magneto-optical disks e.g., CD-ROM and DVD-ROM disks.
- the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
- implementations of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer.
- a display device e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
- a keyboard and a pointing device e.g., a mouse or a trackball
- a computer can interact with a user by sending resources to and receiving resources from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.
- Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components.
- the components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network.
- Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).
- LAN local area network
- WAN wide area network
- inter-network e.g., the Internet
- peer-to-peer networks e.g., ad hoc peer-to-peer networks.
- the computing system can include clients and servers.
- a client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client server relationship to each other.
- a server transmits data (e.g., an HTML page) to a client device (e.g., for purposes of displaying data to and receiving user input from a user interacting with the client device).
- Data generated at the client device e.g., a result of the user interaction
- a system of one or more computers can be configured to perform particular operations or actions by virtue of having software, firmware, hardware, or a combination of them installed on the system that in operation causes or cause the system to perform the actions.
- One or more computer programs can be configured to perform particular operations or actions by virtue of including instructions that, when executed by data processing apparatus, cause the apparatus to perform the actions.
- FIG. 14 is a block diagram that shows an example communications network architecture, devices and components, including representations of communication circuitry that may be incorporated in the example biometric monitoring devices according to at least certain embodiments of the present inventions; notably, the communication circuitry may implement or employ any form of communications (for example, wireless, optical, or wired) and/or protocol (for example, standard or proprietary) now known or later developed, all forms of communications and protocols are intended to fall within the scope of the present inventions (for example, Bluetooth, ANT, WLAN, Wi-Fi, power-line networking, all types and forms of Internet based communications, and/or SMS).
- any form of communications for example, wireless, optical, or wired
- protocol for example, standard or proprietary
- Large files can be distributed using a peer-to-peer, distributed file sharing protocol which both increases scalability of the networked system's throughput as more nodes are added and adds security due to fingerprinting for data integrity validation, inter-node consensus, and cryptographic shared secrets exchanged as an intrinsic aspect of the protocol.
- an encrypted virtual private network is utilized to provide an extra level of security for all communications, but specifically administrative, maintenance & metric-gathering functions.
- the images are conditioned for the classification.
- the unit takes several non-sample images (baseline images) during the day for calibration. Once the user's presence is detected, the unit can capture multiple images per second. Each image is then assessed for motion. To that end, a Harris & Stephens corner detector or similar is used to find corners in each image. The detected corners for each image are then assessed for motion by comparing a block of pixels around the corner of the current image with the next one in sequence using a motion detector like the Sum of Absolute Differences (SAD) processing. The number of flows above a set displacement threshold are then counted.
- SAD Sum of Absolute Differences
- the image is deemed to be suboptimal and removed from further processing.
- the objective of this step is to limit the classification to the images that have a stationary sample. Depending on the analysis objective the image is then analyzed for indicative features.
- a baseline model of the empty toilet bowl may be obtained from the baseline images.
- a training period of sample images are taken during a training period when no excreta is in the toilet bowl.
- These baseline images are taken with and without lighting to develop a robust background model that generates moving-average baselines.
- the background can be eliminated from the detection by frame differencing, a Gaussian mixture model for each pixel, or mean filter for each pixel. In frame differencing, the values of consecutive images without the sample are subtracted from the pixel values of the image with the sample.
- a confidence band for the value of each pixel for the background is developed. As part of pre-processing, pixels that fall within a confidence interval of the modelled mixture are ignored.
- an arithmetic mean of each pixel value is computed from images that do not contain the sample. This value is subtracted from the pixels of images that contain the sample. All pixels with a threshold close to zero are ignored from the classification, including glare spots and static artifacts that are specific to the environment.
- histogram equalization is performed. This procedure improves contrast in the image and makes the classification robust across different lighting condition.
- the sample collection is disengaged and the images are processed locally or sent through access point 30 to networked computing resources in a cloud computing environment 50 . Locally or remotely through memory 51 and processor 52 the images are then analyzed.
- FIG. 15A is an image classification method for the portable device 600 that takes place after the user is identified, seated on the toilet and then points the device into the toilet bowl right before or during defecation and/or urination.
- the application processor samples the image sensor continuously for frames, and the pan, tilt, and rotation angles are measured for each image captured from image sensor 613 .
- the electromagnetic radiation source 611 projects light of light at various spectra into the toilet bowl.
- the three-axis accelerometer sampling the pan, tilt, and rotation angles of the unit can be a MEMS-based (such as the Invensense MPU-60x0) or a solid-state accelerometer.
- the image sensor is a color CCD or a CMOS-based image sensor.
- the optical stack comprises a non-wide-angle lens ( ⁇ 90 degrees FOV). That sensor and lens combination results in low image distortion.
- the sensor has a minimum resolution of least 500 ⁇ 500 pixels. The frames and angles are sampled at rates in excess of 2 frames per second and saved locally on the device until the sample collection is disengaged.
- the sample collection is disengaged and the images are processed locally or sent through access point 40 to networked computing resources in a cloud computing environment 50 . Locally or remotely through memory 51 and processor 52 the images are then analyzed.
- the first step of the image processing is to rectify the images planar to the sample surface.
- the sampled pan, tilt, and rotation angles as well as the intrinsic camera parameters are used to compute an affine transformation of the image to the planar sample for each image.
- the images are then individually transformed to the perspective of the planar sample.
- the locations of known glare reflections of the light fixture are blackened.
- Each image is then assessed for motion.
- a Harris & Stephens corner detector or similar is used to find corners in each image.
- the detected corners for each image are then assessed for motion by comparing a block of pixels around the corner of the current image with the next one in sequence using a motion detector like the SAD processing.
- the number of flows above a set displacement threshold are then counted. If flows are counted above a set threshold, the image is deemed to be suboptimal and removed from further processing.
- the objective of this step is to limit the classification to the images that have a stationary sample. Depending on the analysis objective the image is then analyzed for indicative features.
- FIG. 15B is an image classification method for determining stool consistency.
- the first step is to convert the captured color image into a grayscale image.
- the gradient magnitude of the image is then computed using an operator such as Sobel-Feldman Operator.
- the gradient magnitudes are binned into a histogram of a fixed step size.
- Each image is encoded as features as a quantized histogram of gradients.
- SVM support-vector machine
- the classifier that assigns the label has been trained to labeled sets of images.
- Each image of the training set was assigned a discrete label that has been assigned as ground truth.
- the training of the SVM minimizes classification errors against these ground truth labels.
- This classification method determines the stool consistency from a range of hard and lumpy to completely unformed and liquid, using standard clinical labels used in clinical studies to assess bowel consistency. However, instead of relying on patient self-reporting, this method automates or semi-automates the classification with objective images captured from the identified individual.
- An alternate method to determine stool consistency is to use a shallow neural network (NN). With more data, the NN will be more accurate since the first few layers of the neural network will, naturally with training, evolve into more accurate feature detectors than hand-crafted features such as histogram of gradients.
- the output of the NN is modeled as independent matrix functions for each desired class-label. The rectified linear unit on the individual output could be sigmoid function-like. The independent outputs are derived to “meta-class labels” such as healthy or unhealthy.
- FIG. 15C is an image classification method for blood and urine colors.
- the pixels that match a color distribution of stool, or known toilet fixtures are blackened.
- a color histogram is computed for the red channel for blood, and the joint histogram of red and green for urine.
- the two histograms form the features for blood and urine classification respectively.
- the limiting thresholds are obtained for each color channel for blood and urine and histograms for the color channels are cropped accordingly. Now the total count of values of the histogram is normalized to the total number of pixels in the remaining image. From the same historic data set, thresholds are obtained for the normalized count for each channel for true blood and urine samples respectively. Classification is then performed based on these thresholds.
- the normalized histograms of historic data are used to train an SVM.
- the pre-trained SVM provides a model to classify the histograms into known class labels.
- the features for blood and urine are then classified using pre-trained classifiers, such as SVM's.
- the SVM has been pre-trained with features from expert-labelled images for the desired class-labels.
- SVMs are trained to classify the sample into categories.
- the images used to train the SVM are labelled by experts and features extracted in the same way as the sample for each type of analysis. Representative labels are indicated in FIG. 15D .
- FIG. 15E shows the workflow for estimating the urine and stool voiding volume of a person.
- Temporal changes in water level are used to approximate voiding volume for urine and stool.
- the temporal change in level is a key indicator for density or porosity of the sample.
- the density estimate provides another input to a machine learning method to achieve a higher classification accuracy with respect to the Bristol stool scale or related methods, when combined with optical features.
- To approximate the voiding volume the start and the stop time of the voiding is performed using an image sensor. When the user voids, the water table inside the toilet exhibits motion. Optical motion sensing from pairs of consecutive frames flag if the person is still voiding.
- the sum of the inter-frame capture time of pairs of frames that exhibit motion is factored with the constant flow rate to model the voiding volume.
- Motion sensing approaches that pertain to this are background subtraction based on sum-of-absolute differences, motion sensing based on background subtraction of averages, and motion sensing based on background subtraction Gaussian Mixture models. Approaches that do not rely on a background model can also be used, such as thresholding a sum-of-absolute differences of pairs of frames.
- the estimation of the voiding volume can be guarded by user detection using other means, such as a capacitive sensor capable of detecting when a user sits on the toilet seat or an ultrasonic sensor capable of detecting a standing user in front of the toilet, for example a male urinating standing up.
- This guard of the estimation process allows for excluding false sources of motion, and also resets the volume estimate across different users and periods of voiding.
- the image classification methods and systems presented can be applied to obtain results from tests that may be performed in a toilet setting involving colorimetric changes. These include urine test strips, lateral flow tests or immunochromatographic assays, or other currently available or future tests where the precise measurement of color changes can be used to obtain quantitative or semi-quantitative results.
- Information may also be interactively provided on a personal mobile device 60 , which may be a smartphone or connected device worn on the body such as a wristwatch.
- a personal mobile device 60 may be a smartphone or connected device worn on the body such as a wristwatch.
- analysis may also be conducted through human review, such as verifying flagged images or using information such as weight, body composition, stool consistency, stool frequency, urine color, voiding volume, urine frequency, and presence of visible blood to make a recommendation or provide an alert.
- controlling the parameters and geometry of the lighting and imagers means that the system does not have to account for perspective distortion as a mobile camera would.
- the fixed setting provides the opportunity to add polarization and wavelength filters to the imagers to limit the ingested light to a spectrum that shows the features needed for the classification more profoundly. By using polarization lenses effects of glare and unwanted reflections can be mitigated that provides a significant noise reduction and improves the overall quality of the classifiable features.
- a method of determining a physiological parameter of a user comprises expelling a material into the bowl of a toilet in the presence of the above biomonitoring device.
- FIG. 16 shows a typical workflow for these methods.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Ecology (AREA)
- Optics & Photonics (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radiology & Medical Imaging (AREA)
- Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
- Gruber et al. (2016). Gas monitoring during a glucose challenge by a combined PTR-QMS/GCxGC-TOFMS approach for the verification of potential volatile biomarkers. Journal of breath research. 10:036003.
- Janssen et al. (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. Journal of Applied Physiology 89:465-471.
- Kushner (1992). Bioelectrical impedance analysis: a review of principles and applications. Journal of the American College of Nutrition 11:199-209.
- Kushner and Schoeller (1986). Estimation of total body water by bioelectrical impedance analysis. American Journal of Clinical Nutrition 44:417-424.
- Zheng et al. (2011) The footprints of gut microbial-mammalian co-metabolism. Journal of proteome research. 10:5512-22.
- U.S. Pat. No. 4,697,656.
- U.S. Pat. No. 6,077,222.
- U.S. Pat. No. 9,416,524.
- U.S. Pat. No. 9,592,034.
- U.S. Pat. No. 9,595,185.
- U.S. Pat. No. 9,671,343.
- U.S. Pat. No. 9,737,181.
- U.S. Pat. No. 9,755,586.
- U.S. Pat. No. 9,757,097.
- U.S. Pat. No. 9,766,257.
- U.S. Pat. No. 9,801,508.
- U.S. Pat. No. 9,810,686.
- U.S. Pat. No. 9,822,519.
- U.S. Pat. No. 9,845,593.
- U.S. Pat. No. 9,867,513.
- U.S. Pat. No. 9,880,138.
- US Patent Application Publication 2006/0155175.
- US Patent Application Publication 2017/0135677.
- US Patent Application Publication 2010/0170722.
- US Patent Application Publication 2010/0205722.
- US Patent Application Publication 2016/0374619.
- US Patent Application Publication 2017/0198464.
- US Patent Application Publication 2017/0198466.
- US Patent Application Publication 2017/0198466.
- US Patent Application Publication 2017/0204595.
- US Patent Application Publication 2017/0251996.
- US Patent Application Publication 2017/0254060.
- US Patent Application Publication 2017/0254526.
- US Patent Application Publication 2017/0322197.
- US Patent Application Publication 2018/0000417.
- US Patent Application Publication 2018/0020889.
- US Patent Application Publication 2018/0020984.
- US Patent Application Publication 2018/0052955.
Claims (18)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/446,111 US11298112B2 (en) | 2017-04-07 | 2019-06-19 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US17/701,799 US12089822B2 (en) | 2017-04-07 | 2022-03-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US18/144,815 US20230277162A1 (en) | 2017-04-07 | 2023-05-08 | System, Method and Apparatus for Forming Machine Learning Sessions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762482912P | 2017-04-07 | 2017-04-07 | |
PCT/US2018/026618 WO2018187790A2 (en) | 2017-04-07 | 2018-04-06 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US16/016,559 US10376246B2 (en) | 2017-04-07 | 2018-06-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US16/446,111 US11298112B2 (en) | 2017-04-07 | 2019-06-19 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/026618 Continuation WO2018187790A2 (en) | 2017-04-07 | 2018-04-06 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US16/016,559 Continuation US10376246B2 (en) | 2017-04-07 | 2018-06-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/701,799 Continuation US12089822B2 (en) | 2017-04-07 | 2022-03-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190298316A1 US20190298316A1 (en) | 2019-10-03 |
US11298112B2 true US11298112B2 (en) | 2022-04-12 |
Family
ID=63712655
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/016,559 Active - Reinstated US10376246B2 (en) | 2017-04-07 | 2018-06-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US16/446,111 Active US11298112B2 (en) | 2017-04-07 | 2019-06-19 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
US17/701,799 Active US12089822B2 (en) | 2017-04-07 | 2022-03-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/016,559 Active - Reinstated US10376246B2 (en) | 2017-04-07 | 2018-06-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/701,799 Active US12089822B2 (en) | 2017-04-07 | 2022-03-23 | Biomonitoring devices, methods, and systems for use in a bathroom setting |
Country Status (9)
Country | Link |
---|---|
US (3) | US10376246B2 (en) |
EP (1) | EP3606412A4 (en) |
JP (3) | JP7193526B2 (en) |
KR (1) | KR102468412B1 (en) |
CN (1) | CN110461219B (en) |
AU (1) | AU2018249620A1 (en) |
CA (1) | CA3055079A1 (en) |
SG (1) | SG11201908090VA (en) |
WO (1) | WO2018187790A2 (en) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2977743C (en) | 2015-02-25 | 2024-04-23 | Outsense Diagnostics Ltd. | Bodily emission analysis |
US10292658B2 (en) | 2015-06-23 | 2019-05-21 | Rochester Institute Of Technology | Apparatus, system and method for medical analyses of seated individual |
GB2548895B (en) * | 2016-03-31 | 2019-04-03 | Baker George Group Ltd | Apparatus for capturing bodily waste matter |
EP4488639A3 (en) | 2016-08-30 | 2025-04-09 | Outsense Diagnostics Ltd. | Bodily emission analysis |
KR101881103B1 (en) * | 2017-05-22 | 2018-08-24 | 주식회사 모닛 | Smart System for sensing urination and method using the same |
CA3074329A1 (en) | 2017-10-30 | 2019-05-09 | Cheng Yang | Method and apparatus for collecting and analyzing urine samples |
CN108652678B (en) * | 2018-03-13 | 2024-05-17 | 上海科勒电子科技有限公司 | Method and device for automatically tracking urine |
US10669706B2 (en) * | 2018-04-20 | 2020-06-02 | 3S Renovations, LLC | Toilet assemblies |
US11604177B1 (en) | 2018-07-09 | 2023-03-14 | The Board Of Trustees Of The Leland Stanford Junior University | Smart toilet for human health monitoring |
US10372967B1 (en) * | 2018-07-18 | 2019-08-06 | Intervet Inc. | Automated parasite analysis system |
US11375986B1 (en) * | 2018-07-27 | 2022-07-05 | The University Of Chicago | Device and method for stool sample collection |
JP6797456B2 (en) * | 2018-10-04 | 2020-12-09 | アトナープ株式会社 | Biological information acquisition system, health management server and system |
TR201820187A2 (en) * | 2018-12-24 | 2020-07-21 | Eczacibasi Yapi Gerecleri Sanayi Ve Ticaret Anonim Sirketi | POLLUTANT TYPE DETECTION SYSTEM AND METHOD |
US11555763B2 (en) * | 2019-01-16 | 2023-01-17 | Medic, Inc. | Toilet equipped to provide fecal analysis |
WO2020172073A1 (en) | 2019-02-18 | 2020-08-27 | The Johns Hopkins University | Analyzing image data to determine rectal sample information |
JP2022521214A (en) * | 2019-02-22 | 2022-04-06 | トイ ラボズ、インコーポレイテッド | User detection and identification in a bathroom environment |
US11540760B1 (en) | 2019-05-03 | 2023-01-03 | Enceinte Health, Inc. | Retrofittable and portable commode and systems for detecting, tracking, and alerting health changes |
JP7262301B2 (en) * | 2019-05-17 | 2023-04-21 | 株式会社Lixil | Determination device, determination method, and program |
JP2020187691A (en) * | 2019-05-17 | 2020-11-19 | 株式会社Lixil | Determination device, determination method, and program |
JP7394602B2 (en) * | 2019-05-17 | 2023-12-08 | 株式会社Lixil | Judgment device |
US11763920B2 (en) | 2019-07-31 | 2023-09-19 | Dig Labs Corporation | Mucus analysis for animal health assessments |
EP4004938A1 (en) | 2019-07-31 | 2022-06-01 | Dig Labs Corporation | Animal health assessment |
EP3788956A1 (en) * | 2019-09-03 | 2021-03-10 | Koninklijke Philips N.V. | Controller |
JP7325282B2 (en) | 2019-09-24 | 2023-08-14 | 株式会社Lixil | judgment device |
WO2021106724A1 (en) * | 2019-11-26 | 2021-06-03 | 京セラ株式会社 | Stress measurement system and stress measurement method |
JP2021101783A (en) * | 2019-12-24 | 2021-07-15 | 株式会社Lixil | Toilet seat device |
JP7368049B2 (en) * | 2020-01-20 | 2023-10-24 | Necソリューションイノベータ株式会社 | Health management device, health management method, health management system, program, and recording medium |
EP3861925B1 (en) * | 2020-02-05 | 2023-11-01 | Martin Herbst | Toilet seat with a device for detecting values and method of use thereof |
CN111305338B (en) * | 2020-02-14 | 2021-06-29 | 宁波五维检测科技有限公司 | Disease early warning system based on excrement ecological evaluation, health monitoring ring and closestool |
US11172856B2 (en) * | 2020-03-05 | 2021-11-16 | Emano Metrics, Inc. | Systems and methods for uroflowmetry |
US20230009654A1 (en) * | 2020-04-03 | 2023-01-12 | Toto Ltd. | Excrement management system, excretion information management method, computer program, edge server, and toilet seat device |
JP7287366B2 (en) | 2020-04-03 | 2023-06-06 | Toto株式会社 | Excrement management system, excretion information management method, program, edge server and toilet seat device |
CN115988990A (en) * | 2020-04-07 | 2023-04-18 | 奥特森斯诊断有限公司 | Analysis of bodily emissions |
WO2021236317A1 (en) * | 2020-05-19 | 2021-11-25 | Toi Labs, Inc. | Bathroom temperature sensor |
WO2021240866A1 (en) * | 2020-05-27 | 2021-12-02 | パナソニック株式会社 | Excrement determination method, excrement determination device, and excrement determination program |
US11568994B2 (en) * | 2020-05-29 | 2023-01-31 | Russell Sebastian Glover, SR. | Smart toilet system |
WO2021261128A1 (en) * | 2020-06-26 | 2021-12-30 | パナソニック株式会社 | Output device, method, and program |
CN112081203A (en) * | 2020-07-10 | 2020-12-15 | 帝欧家居股份有限公司 | Intelligent closestool control method and system based on fingerprint identification and intelligent closestool |
US20220099660A1 (en) * | 2020-09-29 | 2022-03-31 | Olive Diagnostics Ltd. | Determining one or more parameters of one or more molecules within a urine sample |
JP7507348B2 (en) | 2020-10-29 | 2024-06-28 | パナソニックIpマネジメント株式会社 | Flight status display system and program for operating same |
KR102699918B1 (en) * | 2020-11-27 | 2024-08-29 | 한국전력공사 | Mobile measurement system of exhausting gas |
CN113062421A (en) * | 2021-03-03 | 2021-07-02 | 杭州跨视科技有限公司 | Intelligent closestool for health detection and health detection method thereof |
JP7160128B2 (en) | 2021-03-23 | 2022-10-25 | Toto株式会社 | Information processing system |
AU2022253067A1 (en) | 2021-04-09 | 2023-09-07 | Casana Care, Inc. | Systems, devices, and methods for monitoring loads and forces on a seat |
WO2022240999A1 (en) * | 2021-05-11 | 2022-11-17 | Casana Care, Inc. | Systems, devices, and methods for measuring loads and forces of a seated subject using scale devices |
JP2024519260A (en) | 2021-05-11 | 2024-05-10 | カサナ ケア,インコーポレイテッド | SYSTEMS, APPARATUS AND METHOD FOR MEASURING LOAD AND FORCE OF A SEATED SUBJECT USING A WEIGHT SCALE DEVICE - Patent application |
WO2022245834A1 (en) * | 2021-05-17 | 2022-11-24 | Casana Care, Inc. | Systems, devices, and methods for measuring body temperature of a subject using characterization of feces and/or urine |
AU2022275847A1 (en) | 2021-05-17 | 2023-10-05 | Casana Care, Inc. | Systems, devices, and methods for measuring body temperature of a subject using characterization of feces and/or urine |
US20230083587A1 (en) * | 2021-09-15 | 2023-03-16 | Chinazo Johns | Toilet Seat Device |
DE102021133283A1 (en) * | 2021-12-15 | 2023-06-15 | Hamberger Industriewerke Gmbh | Toilet seat set and toilet |
CN114299047A (en) * | 2021-12-31 | 2022-04-08 | 宁波峰誉科技有限公司 | A computer vision-based excrement analysis and early warning system and smart toilet |
US12126889B2 (en) * | 2022-01-28 | 2024-10-22 | Toto Ltd. | Photography system and toilet apparatus |
WO2023183660A1 (en) * | 2022-03-23 | 2023-09-28 | Toi Labs, Inc. | System, method and apparatus for forming machine learning sessions |
WO2024168083A1 (en) * | 2023-02-07 | 2024-08-15 | Casana Care, Inc. | Systems, devices and methods for health monitoring and identification of users |
JP2024136492A (en) * | 2023-03-24 | 2024-10-04 | Toto株式会社 | Biometric information measuring system and toilet seat device |
WO2024208399A2 (en) * | 2023-04-05 | 2024-10-10 | Medipee Gmbh | Device and method for real-time data acquisition, in particular including analysis, of excrements, assembly and use |
WO2025070890A1 (en) * | 2023-09-25 | 2025-04-03 | 주식회사 록서 | Smart bidet |
CN118037647B (en) * | 2024-01-25 | 2024-11-19 | 浙江喜尔康智能家居股份有限公司 | Health detection method and system based on intelligent toilet |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030074731A1 (en) * | 2001-10-22 | 2003-04-24 | Hideo Sumino | Toilet stool usable in a sitting posture |
US7002480B2 (en) * | 2000-12-22 | 2006-02-21 | Niles Co., Ltd. | Deposit detector and control device using it |
US20080301865A1 (en) * | 2007-06-11 | 2008-12-11 | Robert Hand | Toilet ventilation system and associated method |
US20090216099A1 (en) * | 2008-02-27 | 2009-08-27 | Jsm Health Care, Inc. | Apparatus for analyzing components of urine by using atr and method thereof |
US20140083780A1 (en) * | 2012-09-25 | 2014-03-27 | Tanita Corporation | Flexure element and weight measuring device |
US20150042834A1 (en) * | 2012-08-30 | 2015-02-12 | Google Inc. | Single pixel camera |
US20150060647A1 (en) | 2013-08-30 | 2015-03-05 | Sysmex Corporation | Urine sample analyzing method and sample analyzer |
US20150342574A1 (en) | 2014-03-05 | 2015-12-03 | Newvistas, Llc | Urine specimen capture and analysis device |
WO2015194405A1 (en) * | 2014-06-18 | 2015-12-23 | 関根 弘一 | Feces color detection device |
WO2016135735A1 (en) * | 2015-02-25 | 2016-09-01 | Outsense Diagnostics Ltd. | Bodily emission analysis |
US20160316978A1 (en) * | 2011-11-30 | 2016-11-03 | B-O-Lane Comfortech Co., Ltd. | Toilet seat |
US20170022536A1 (en) * | 2015-07-20 | 2017-01-26 | Eido Innova, Inc. | Urine metabolite monitoring device and management system |
US20180092602A1 (en) * | 2016-10-04 | 2018-04-05 | David R. Hall | Synthetic Aperture Photoplethysmography Sensor |
US20180255989A1 (en) * | 2015-09-16 | 2018-09-13 | Cws-Boco Supply Ag | Toilet seat having an automatic cleaning device |
Family Cites Families (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE788994A (en) * | 1971-09-20 | 1973-01-15 | Thetford Corp | LIQUID LEVEL INDICATOR |
WO1985004472A1 (en) | 1984-04-02 | 1985-10-10 | Emmanuel De Canecaude | Device for weighing individuals on w.c. seat |
DK0415288T3 (en) * | 1989-08-25 | 1996-07-22 | Toto Ltd | Toilet apparatus with system for inspection of health conditions |
CA2049589A1 (en) * | 1990-08-24 | 1992-02-25 | Naoki Tsukamura | Stool-type apparatus for sampling and assay of urine with swingable carriage |
JP3282345B2 (en) * | 1994-02-01 | 2002-05-13 | 松下電器産業株式会社 | Toilet seat device |
JP2601407B2 (en) * | 1994-04-14 | 1997-04-16 | コンビ株式会社 | Ozone generator for toilet |
JP3508227B2 (en) * | 1994-08-31 | 2004-03-22 | 松下電器産業株式会社 | Defecation device |
US6077222A (en) | 1997-10-28 | 2000-06-20 | Alere Incorporated | Method and device for detecting edema |
JP2001004531A (en) | 1999-06-25 | 2001-01-12 | Matsushita Electric Ind Co Ltd | Apparatus for inspecting urine |
JP2001153867A (en) * | 1999-11-30 | 2001-06-08 | Hitachi Ltd | Body fluid testing device |
JP2004045384A (en) * | 2002-05-22 | 2004-02-12 | Matsushita Electric Ind Co Ltd | Immunological measurement method, immunological measuring apparatus, tray for measuring organism component antialbuminmonoclonal antibody, cell for producing the antialubminmonoclonal antibody, and albumin detection kit |
JP3979238B2 (en) * | 2002-09-05 | 2007-09-19 | 住友大阪セメント株式会社 | In-space monitoring device |
AU2003272064A1 (en) * | 2002-10-18 | 2004-05-04 | S.A.E. Afikim Computerized Dairy Management System | System for monitoring the health of an individual and method for use thereof |
JP2005030992A (en) * | 2003-07-09 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Ovulation period monitoring system, and ovulation period monitoring method |
US20060155175A1 (en) | 2003-09-02 | 2006-07-13 | Matsushita Electric Industrial Co., Ltd. | Biological sensor and support system using the same |
JP2006061296A (en) * | 2004-08-25 | 2006-03-09 | Matsushita Electric Ind Co Ltd | Fecal matter confirmation device, and sanitary washing apparatus equipped with the same |
JP2006090931A (en) | 2004-09-27 | 2006-04-06 | Citizen Watch Co Ltd | Device for measuring urine component |
JP2006274710A (en) | 2005-03-30 | 2006-10-12 | Matsushita Electric Ind Co Ltd | Washing device |
KR100696369B1 (en) * | 2005-09-08 | 2007-03-19 | 손종원 | Health Diagnosis Device Using Vent Adapter |
US8537366B2 (en) * | 2005-10-11 | 2013-09-17 | Duke University | Systems and methods for endoscopic angle-resolved low coherence interferometry |
JP2007252805A (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Holdings Inc | Data detecting apparatus and data detecting method |
JP2008002137A (en) * | 2006-06-22 | 2008-01-10 | Matsushita Electric Works Ltd | Western style toilet device |
JP2009097872A (en) * | 2007-10-12 | 2009-05-07 | Sharp Corp | Optical range-finding sensor, object detection device, cleaning toilet seat, and manufacturing method of the optical range-finding sensor |
JP2009270951A (en) * | 2008-05-08 | 2009-11-19 | Toto Ltd | Device for measuring intestinal condition |
US7619725B1 (en) * | 2008-05-12 | 2009-11-17 | Sealite Engineering, Inc. | Optically amplified critical wavelength refractometer |
MX2011005413A (en) | 2008-11-24 | 2011-11-18 | Applied Ft Composite Solutions Inc | Resilient pad composite and process for making same. |
JP2010160048A (en) | 2009-01-08 | 2010-07-22 | Alps Electric Co Ltd | Load detecting device, seat, and load sensor |
US8723118B2 (en) * | 2009-10-01 | 2014-05-13 | Microsoft Corporation | Imager for constructing color and depth images |
JP6192032B2 (en) * | 2010-04-22 | 2017-09-06 | リーフ ヘルスケア インコーポレイテッド | A system for monitoring a patient's physiological status |
US20120023651A1 (en) * | 2010-07-29 | 2012-02-02 | Carlos Taylor | Seat for a toilet including a target illuminating feature |
DE102010061035B4 (en) * | 2010-12-06 | 2012-10-31 | BITS Zwickau Büromat IT-Systeme GmbH | Intelligent toilet and method of operation |
US8802442B2 (en) * | 2011-11-30 | 2014-08-12 | Eric B. Wheeldon | Apparatus and method for the remote sensing of blood in human feces and urine |
BR112014013187A2 (en) * | 2011-11-30 | 2019-11-26 | Wheeldon Eric | apparatus and method for the remote detection of blood in human feces and urine |
US8796105B2 (en) * | 2012-07-25 | 2014-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for preparing polysilazane on a semiconductor wafer |
US9133611B2 (en) * | 2012-12-18 | 2015-09-15 | Yevgeniy Plugovoy | Toilet ventilation systems |
US20140222349A1 (en) | 2013-01-16 | 2014-08-07 | Assurerx Health, Inc. | System and Methods for Pharmacogenomic Classification |
CN105007790B (en) * | 2013-01-23 | 2018-01-02 | 科勒公司 | System and method between Intelligent sanitary |
US9416524B2 (en) | 2013-03-05 | 2016-08-16 | David R. Hall | Piston-flush toilet system |
US9775586B2 (en) | 2013-03-05 | 2017-10-03 | Newvistas, Llc | Urine hat flush water capture device |
BR112015023081A2 (en) * | 2013-03-15 | 2017-07-18 | Harry Turner Richard | microscopic method for classifying particles as two-dimensional objects in a field of view, microscopic measuring apparatus, sample chamber, and methods for performing immunoassays and assays |
WO2015017842A2 (en) * | 2013-08-02 | 2015-02-05 | Lutron Electronics Co., Inc. | Motorized sheer shading system |
JP5595568B1 (en) * | 2013-08-28 | 2014-09-24 | 三菱重工業株式会社 | Laser processing equipment |
WO2015060457A1 (en) * | 2013-10-25 | 2015-04-30 | ナブテスコ 株式会社 | Lubricant deterioration sensor and optical sensor |
WO2015109406A1 (en) * | 2014-01-27 | 2015-07-30 | R Valley Farming Co. Ltd. | Deodorizing system, device and methods for odor removal |
US9788817B2 (en) | 2014-03-05 | 2017-10-17 | Newvistas, Llc | Urine specimen capture slit |
WO2016063547A1 (en) * | 2014-10-24 | 2016-04-28 | 日本電気株式会社 | Excrement analysis device, toilet provided with said analysis device, and method for analyzing excrement |
WO2016073651A1 (en) * | 2014-11-04 | 2016-05-12 | Fluidmaster, Inc. | Automatic flush-type recognition |
CA2912207C (en) * | 2014-11-24 | 2020-02-25 | Delta Faucet Company | Toilet usage sensing system |
JP6425089B2 (en) * | 2015-01-30 | 2018-11-21 | Toto株式会社 | Biological information measurement system |
WO2016149423A1 (en) * | 2015-03-16 | 2016-09-22 | Akari Systems, Inc. | Therapeutic light enabled toilet and methods for operating a therapeutic light source |
US20170322197A1 (en) | 2015-05-02 | 2017-11-09 | David R. Hall | Health Monitoring Toilet System |
US10292658B2 (en) | 2015-06-23 | 2019-05-21 | Rochester Institute Of Technology | Apparatus, system and method for medical analyses of seated individual |
CN105072337B (en) * | 2015-07-31 | 2019-03-26 | 小米科技有限责任公司 | Image processing method and device |
EP3406811B1 (en) * | 2015-08-24 | 2023-08-02 | Kohler Co. | Tankless toilet |
CN105125134A (en) * | 2015-09-16 | 2015-12-09 | 苏州合欣美电子科技有限公司 | Physical sign monitoring toilet seat based on Internet of Things |
JP2017067538A (en) | 2015-09-29 | 2017-04-06 | Toto株式会社 | Biological information measurement system |
US9845593B2 (en) | 2015-11-03 | 2017-12-19 | David R. Hall | Modular toilet system and components |
EP3399310B1 (en) | 2015-12-28 | 2021-11-24 | Symax Inc. | Health monitoring system, health monitoring method, and health monitoring program |
US9957705B2 (en) | 2016-01-09 | 2018-05-01 | David R. Hall | Helical drain for a toilet |
US10107665B2 (en) | 2016-01-09 | 2018-10-23 | David R. Hall | Toilet with flush jet fill tube flow meter |
US10060111B2 (en) | 2016-01-19 | 2018-08-28 | David R. Hall | Toilet with air sampling exhaust |
JP6742663B2 (en) | 2016-02-04 | 2020-08-19 | 株式会社Lixil | Toilet device |
US10077897B2 (en) | 2016-03-03 | 2018-09-18 | David R. Hall | Toilet with an LED diffuser strip |
US9920510B2 (en) | 2016-03-03 | 2018-03-20 | David R. Hall | Smart flush toilet system |
US10182789B2 (en) | 2016-03-03 | 2019-01-22 | David R. Hall | Toilet with stethoscope |
US9822519B2 (en) | 2016-03-08 | 2017-11-21 | David R. Hall | Intelligent dispensing toilet bidet system |
US10251597B2 (en) * | 2016-04-21 | 2019-04-09 | Viavi Solutions Inc. | Health tracking device |
US9595185B1 (en) * | 2016-05-10 | 2017-03-14 | David R. Hall | User identifying toilet apparatus |
KR20170030018A (en) * | 2016-05-23 | 2017-03-16 | 이정현 | Device and method using cabbage reagent for physical examination |
US10165980B2 (en) | 2016-06-29 | 2019-01-01 | David R. Hall | Toilet with a health monitoring torso belt |
US9737181B1 (en) | 2016-07-05 | 2017-08-22 | David R. Hall | Self-cleaning helical drain toilet |
US20180020889A1 (en) | 2016-07-19 | 2018-01-25 | David R. Hall | Toilet With A Front Facing User-Accessible Compartment |
US10888278B2 (en) | 2016-07-20 | 2021-01-12 | Hall Labs, Llc | Method of monitoring health while using a toilet |
US20180052955A1 (en) | 2016-08-22 | 2018-02-22 | David R. Hall | Health Condition Determination System |
US10918362B2 (en) * | 2016-08-29 | 2021-02-16 | Hall Labs Llc | Toilet volatile organic compound analysis system for urine |
EP4488639A3 (en) | 2016-08-30 | 2025-04-09 | Outsense Diagnostics Ltd. | Bodily emission analysis |
US9867513B1 (en) | 2016-09-06 | 2018-01-16 | David R. Hall | Medical toilet with user authentication |
US9810686B1 (en) | 2016-09-14 | 2017-11-07 | David R. Hall | Urinalysis cassette and system |
US9880138B1 (en) | 2016-09-21 | 2018-01-30 | David R. Hall | Medical toilet for diagnosing disease and use with disease sniffing animal |
US9801508B1 (en) | 2016-10-14 | 2017-10-31 | David R. Hall | Hidden hinge toilet seat and lid with water and electrical access |
US9766257B1 (en) | 2016-11-28 | 2017-09-19 | David R. Hall | Toilet that detects fluorescent drug markers and methods of use thereof |
US9671343B1 (en) * | 2016-11-28 | 2017-06-06 | David R. Hall | Toilet that detects drug markers and methods of use thereof |
US10360473B2 (en) | 2017-05-30 | 2019-07-23 | Adobe Inc. | User interface creation from screenshots |
US10489126B2 (en) | 2018-02-12 | 2019-11-26 | Oracle International Corporation | Automated code generation |
CN108255206A (en) | 2018-03-26 | 2018-07-06 | 曹可瀚 | Toilet and the method for rinsing human body |
CN109008759B (en) | 2018-04-12 | 2023-08-29 | 北京几何科技有限公司 | Method for providing customized service and intelligent closestool or intelligent closestool cover |
CN110222713A (en) | 2019-05-05 | 2019-09-10 | 深圳先进技术研究院 | A kind of infant's excrement sampled images specification processing system and method |
EP4004938A1 (en) | 2019-07-31 | 2022-06-01 | Dig Labs Corporation | Animal health assessment |
-
2018
- 2018-04-06 CN CN201880021453.9A patent/CN110461219B/en not_active Expired - Fee Related
- 2018-04-06 CA CA3055079A patent/CA3055079A1/en active Pending
- 2018-04-06 EP EP18780773.0A patent/EP3606412A4/en not_active Withdrawn
- 2018-04-06 WO PCT/US2018/026618 patent/WO2018187790A2/en active Application Filing
- 2018-04-06 JP JP2020504284A patent/JP7193526B2/en active Active
- 2018-04-06 KR KR1020197032697A patent/KR102468412B1/en active Active
- 2018-04-06 AU AU2018249620A patent/AU2018249620A1/en not_active Abandoned
- 2018-04-06 SG SG11201908090V patent/SG11201908090VA/en unknown
- 2018-06-23 US US16/016,559 patent/US10376246B2/en active Active - Reinstated
-
2019
- 2019-06-19 US US16/446,111 patent/US11298112B2/en active Active
-
2022
- 2022-03-23 US US17/701,799 patent/US12089822B2/en active Active
- 2022-12-08 JP JP2022196384A patent/JP7588126B2/en active Active
-
2024
- 2024-11-11 JP JP2024196638A patent/JP2025020364A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7002480B2 (en) * | 2000-12-22 | 2006-02-21 | Niles Co., Ltd. | Deposit detector and control device using it |
US20030074731A1 (en) * | 2001-10-22 | 2003-04-24 | Hideo Sumino | Toilet stool usable in a sitting posture |
US20080301865A1 (en) * | 2007-06-11 | 2008-12-11 | Robert Hand | Toilet ventilation system and associated method |
US20090216099A1 (en) * | 2008-02-27 | 2009-08-27 | Jsm Health Care, Inc. | Apparatus for analyzing components of urine by using atr and method thereof |
US20160316978A1 (en) * | 2011-11-30 | 2016-11-03 | B-O-Lane Comfortech Co., Ltd. | Toilet seat |
US20150042834A1 (en) * | 2012-08-30 | 2015-02-12 | Google Inc. | Single pixel camera |
US20140083780A1 (en) * | 2012-09-25 | 2014-03-27 | Tanita Corporation | Flexure element and weight measuring device |
US20150060647A1 (en) | 2013-08-30 | 2015-03-05 | Sysmex Corporation | Urine sample analyzing method and sample analyzer |
US20150342574A1 (en) | 2014-03-05 | 2015-12-03 | Newvistas, Llc | Urine specimen capture and analysis device |
WO2015194405A1 (en) * | 2014-06-18 | 2015-12-23 | 関根 弘一 | Feces color detection device |
US20200008786A1 (en) | 2014-06-18 | 2020-01-09 | Setech Co., Ltd. | Feces color detection device |
WO2016135735A1 (en) * | 2015-02-25 | 2016-09-01 | Outsense Diagnostics Ltd. | Bodily emission analysis |
US20170022536A1 (en) * | 2015-07-20 | 2017-01-26 | Eido Innova, Inc. | Urine metabolite monitoring device and management system |
US20180255989A1 (en) * | 2015-09-16 | 2018-09-13 | Cws-Boco Supply Ag | Toilet seat having an automatic cleaning device |
US20180092602A1 (en) * | 2016-10-04 | 2018-04-05 | David R. Hall | Synthetic Aperture Photoplethysmography Sensor |
Non-Patent Citations (1)
Title |
---|
Dongil Lee, "A prototype high sensitivity load cell using single walled carbon nanotube strain gauges", 2012 (Year: 2012). * |
Also Published As
Publication number | Publication date |
---|---|
JP2023025235A (en) | 2023-02-21 |
JP7193526B2 (en) | 2022-12-20 |
KR102468412B1 (en) | 2022-11-21 |
US20220211354A1 (en) | 2022-07-07 |
JP2025020364A (en) | 2025-02-12 |
WO2018187790A3 (en) | 2018-11-15 |
AU2018249620A1 (en) | 2019-09-19 |
JP7588126B2 (en) | 2024-11-21 |
CN110461219A (en) | 2019-11-15 |
WO2018187790A2 (en) | 2018-10-11 |
US10376246B2 (en) | 2019-08-13 |
EP3606412A4 (en) | 2020-12-23 |
SG11201908090VA (en) | 2019-10-30 |
US12089822B2 (en) | 2024-09-17 |
CA3055079A1 (en) | 2018-10-11 |
KR20190140448A (en) | 2019-12-19 |
EP3606412A2 (en) | 2020-02-12 |
JP2020516422A (en) | 2020-06-11 |
CN110461219B (en) | 2022-11-15 |
US20190298316A1 (en) | 2019-10-03 |
US20180303466A1 (en) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12089822B2 (en) | Biomonitoring devices, methods, and systems for use in a bathroom setting | |
US11927588B2 (en) | Health seat for toilets and bidets | |
CN104039216B (en) | Intraoral examination device and method for information display | |
KR101312559B1 (en) | System to diagnostic health using urine ans feces | |
CN105507394A (en) | Intelligent closestool capable of realizing urodynamics detection, health monitoring method and matched health monitoring system | |
JP2020201279A (en) | Bodily emission analysis | |
CN106567435A (en) | An intelligent detection system and method for an intelligent healthy toilet | |
CN215415008U (en) | Toilet seat with value obtaining equipment | |
CN113556980A (en) | User detection and identification in a toilet environment | |
US11604177B1 (en) | Smart toilet for human health monitoring | |
US20190212322A1 (en) | Health monitoring system, health monitoring method, and health monitoring program | |
JP7414279B2 (en) | Biometric information acquisition system, health management server and system | |
WO2018207711A1 (en) | Health monitoring system, health monitoring method, and health monitoring program | |
US20200390398A1 (en) | Toilet with User Detection | |
US20200390300A1 (en) | Foot Support for a Toilet | |
WO2018203565A1 (en) | Health monitoring system, health monitoring method and health monitoring program | |
CN118203303A (en) | Health score computing system | |
KR20240171700A (en) | Health care device using a urine detection sensor attached to a toilet | |
CN113250296A (en) | Non-contact intelligent sampling detection closestool device and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: TOI LABS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASHYAP, VIKRAM;SIMMONS, KEVIN D.;REIDEMEISTER, THOMAS;AND OTHERS;SIGNING DATES FROM 20180423 TO 20180424;REEL/FRAME:049682/0072 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
RR | Request for reexamination filed |
Effective date: 20240709 |