US11193399B2 - Variable camshaft timing assembly - Google Patents
Variable camshaft timing assembly Download PDFInfo
- Publication number
- US11193399B2 US11193399B2 US16/697,322 US201916697322A US11193399B2 US 11193399 B2 US11193399 B2 US 11193399B2 US 201916697322 A US201916697322 A US 201916697322A US 11193399 B2 US11193399 B2 US 11193399B2
- Authority
- US
- United States
- Prior art keywords
- vct
- slots
- camshaft
- assembly
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001419 dependent effect Effects 0.000 claims abstract description 32
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
- F01L2001/0471—Assembled camshafts
- F01L2001/0473—Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L2001/34486—Location and number of the means for changing the angular relationship
- F01L2001/34489—Two phasers on one camshaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
Definitions
- the present application relates to internal combustion engines (ICEs) and, more particularly, to variable camshaft timing (VCT) technologies equipped on ICEs.
- ICEs internal combustion engines
- VCT variable camshaft timing
- ICEs Internal combustion engines
- VCT variable camshaft timing
- VCT can be implemented using VCT devices (sometimes referred to as camshaft phasers) that change the angular position of the camshaft relative to the crankshaft.
- VCT devices sometimes referred to as camshaft phasers
- camshaft phasers can be hydraulically- or electrically-actuated, and are typically directly attached to one end of the camshaft.
- Concentric camshafts including an inner camshaft and an outer camshaft can be used to vary the angular position of the inner camshaft relative to the crankshaft and the outer camshaft relative to the crankshaft.
- One VCT device can be coupled with one of the concentric camshafts (the inner camshaft or outer camshaft) to change the angular position of that camshaft relative to the crankshaft, and another VCT device can be coupled with the other of the concentric camshafts to change the angular position of the other camshaft relative to the crankshaft.
- the use of two VCT devices that each independently controls the angular position of a camshaft relative to the crankshaft can increase the overall axial length of the VCT assembly. In certain applications, it would be helpful to reduce the axial length of the VCT assembly and hence decrease the cost and complexity of the VCT assembly.
- a variable camshaft timing (VCT) assembly for controlling angular positions of camshafts may include an independent VCT device and a dependent VCT device.
- the independent VCT device is coupled with a first camshaft and has a first component that rotates during phasing movements of the VCT assembly.
- the first component has a first set of slots that reside therein.
- the dependent VCT device is coupled with a second camshaft.
- the dependent VCT device has a second component that lacks rotation during phasing movements of the VCT assembly.
- the second component has a second set of slots that reside therein.
- the dependent VCT device also has multiple phase lugs.
- the phase lugs are received in the first set of slots and are received in the second set of slots. During control of the angular positions of the first and second camshafts, the phase lugs are urged to move along the first and second sets of slots by way of the first component.
- FIG. 1 is a perspective view depicting an implementation of a variable camshaft timing (VCT) assembly
- FIG. 2 is a front view of the VCT assembly
- FIG. 3 is a sectional view of the VCT assembly taken at arrowed lines A-A in FIG. 2 ;
- FIG. 4 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in one state;
- FIG. 5 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in another state;
- FIG. 6 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in yet another state;
- FIG. 7 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in yet another state;
- FIG. 8 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in yet another state;
- FIG. 9 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in yet another state.
- FIG. 10 is a front view of the VCT assembly with certain internal components visible, and showing the VCT assembly in yet another state.
- a variable camshaft timing (VCT) assembly is used in an internal combustion engine (ICE) and employed to control the angular positions of first and second camshafts of the ICE.
- the VCT assembly is equipped with a single source of actuation—hydraulic actuation or electric actuation—to make angular adjustments to the first and second camshafts relative to the ICE's crankshaft for advancing and retarding the opening and closing movements of the ICE's intake and exhaust valves.
- the single source of actuation differs from previous VCT technologies for camshafts which commonly involved two sources of actuation. With the single source, the first and second camshafts exhibit a dependent phase relationship, but one that in certain implementations is a non-fixed and non-linear phase relationship.
- the VCT assembly has a single actuation source rather than two, the VCT assembly more readily satisfies packaging demands which can oftentimes be inflexible in certain applications, especially in automotive applications with regards to overall axial lengths of ICEs.
- the terms axially, radially, and circumferentially, and their related grammatical forms are used in reference to the generally circular shape of the shown VCT assembly and some of its components.
- axially refers to a direction that is generally along or parallel to a central axis of the circular shape
- radially refers to a direction that is generally along or parallel to a radius of the circular shape
- circumferentially refers to a direction that is generally along or in a similar direction as a circumference of the circular shape.
- ICEs use reciprocating pistons linked to a crankshaft.
- the pistons move within cylinders in response to controlled combustion of air and fuel in the presence of a spark in combustion chambers.
- the control of the combustion is in part regulated by opening and closing intake and exhaust valves using rotating camshafts.
- the camshafts rotate relative to the crankshaft and, during rotation, the cams open and close intake and exhaust valves at specified times relative to the delivery of the spark to the combustion chambers of the cylinders.
- ICEs can implement multiple camshafts in different ways. For example, some ICEs use multiple camshafts, dedicating one camshaft for controlling the operation of intake valves and another camshaft for controlling the operation of exhaust valves.
- the intake valve camshaft and the exhaust valve camshaft are concentrically situated relative to each other.
- Concentrically situated camshafts include a first concentric camshaft and a second concentric camshaft that can change angular position relative to each other.
- Concentric camshafts are known by those skilled in the art, an example of which is shown in FIG. 1 of U.S. Pat. No. 8,186,319 and described in column 6, lines 10-53; the contents of that portion of U.S. Pat. No. 8,186,319 are incorporated by reference.
- a VCT assembly 10 can have different designs, constructions, and components in different implementations.
- the VCT assembly 10 includes an independent VCT device 12 and a dependent VCT device 14 .
- the independent VCT device 12 transmits rotational drive output to a first concentric camshaft 16 which, in the example presented, is an outer concentric camshaft; still, in other implementations the first concentric camshaft could be an inner concentric camshaft.
- the independent VCT device 12 of the figures is a hydraulically-actuated camshaft phaser, but could be an electrically-actuated camshaft phaser in other implementations. An example of a hydraulically-actuated camshaft phaser is described in U.S. Pat. No.
- the independent VCT device 12 includes a rotor 18 , a housing 20 , and a first component or plate 22 .
- the rotor 18 has a hub 24 and multiple vanes 26 spanning radially outwardly from the hub 24 .
- the rotor 18 has a rigid coupling to the first concentric camshaft 16 on one axial side, and has a rigid coupling to the plate 22 on its other axial side, as best shown by FIG. 3 .
- rotation of the rotor 18 causes rotation of the first concentric camshaft 16 and rotation of the plate 22 .
- the housing 20 has a camshaft sprocket (not specifically shown) and partly defines multiple fluid chambers 28 .
- the camshaft sprocket has external gear teeth that are engaged by an endless loop, such as a chain, that further engages a crankshaft sprocket of the accompanying ICE.
- the plate 22 rotates with the rotor 18 and, via interactions with components of the dependent VCT device 14 as subsequently described, prompts the dependent phase relationship between the independent VCT device 12 and the dependent VCT device 14 .
- the plate 22 when viewed from the front, generally has a circular shape at its center with a pair of lobe-like shapes spanning radially-outwardly therefrom.
- the plate 22 has an axial extension portion 30 in direct surface-to-surface confrontation with the rotor 18 .
- the rigid coupling between the plate 22 and the rotor 18 are effected via bolts 32 .
- the plate 22 has a first set of slots 34 residing in its structure.
- the slots 34 can take different forms in different implementations. In the implementation of the figures, the slots 34 span axially and wholly through the plate 22 .
- the first set of slots 34 includes a pair of individual slots situated on opposite sides of the plate 22 with an approximate spacing of one-hundred-and-eighty degrees (180°) from each other and at the lobe-like shapes. With particular reference to FIG. 2 , each individual slot of the first set of slots 34 has a generally linear profile and is situated along a radial direction with respect to the circular shape of the plate's center region.
- the dependent VCT device 14 receives rotational drive input from the independent VCT device 12 and itself lacks a more immediate and direct actuation source such as the hydraulic or electric actuation source of the independent VCT device 12 .
- phasing functionality of the dependent VCT device 14 is set in motion and effected by the independent VCT device 12 .
- the dependent VCT device 14 transmits rotational drive output to a second concentric camshaft 36 ( FIG. 3 ) which, in the example presented, is an inner concentric camshaft; still, in other implementations the second concentric camshaft could be an outer concentric camshaft.
- the second concentric camshaft 36 has a radial inward position.
- the dependent VCT device 14 includes a second component or end plate 38 , multiple phase lugs 40 , a linkage 42 , and a hub plate 44 .
- the end plate 38 has a rigid coupling to the housing 20 and, amid phasing movements of the VCT assembly 10 , neither the end plate 38 nor the housing 20 rotate with the plate 22 and rotor 18 . Instead, the end plate 38 and the housing 20 lack rotation relative to the plate 22 and the rotor 18 during phasing movements.
- the end plate 38 When viewed from the front, the end plate 38 generally has an annular shape.
- An opening 46 ( FIG. 3 ) is defined in a central region of the end plate 38 and receives insertion of the axial extension portion 30 of the plate 22 .
- the end plate 38 has a second set of slots 48 residing in its structure.
- the slots 48 can take different forms in different implementations. In the implementation of the figures, the slots 48 span axially partway through the end plate 38 .
- the second set of slots 48 include a pair of individual slots situated on opposite sides of the end plate 38 with an approximate spacing of one-hundred-and-eighty degrees (180°) from each other.
- each individual slot of the second set of slots 48 has a generally arcuate profile.
- each individual slot of the second set of slots 48 resembles a segment of an Archimedean spiral.
- the phase lugs 40 are received in the first set of slots 34 and are received in the second set of slots 48 .
- a section of an individual slot 34 always overlaps with a section of an individual slot 48 during phasing movements of the VCT assembly 10 .
- the phase lugs 40 slide and move along the profile extents of the first and second sets of slots 34 , 48 .
- the rotation of the plate 22 urges the phase lugs 40 to move along the first and second sets of slots 34 , 48 , and the movement along the slots 34 , 48 , in part, brings about the dependent phase relationship between the independent VCT device 12 and the dependent VCT device 14 .
- the phase lugs 40 include a pair of individual phase lugs—a single phase lug for a single slot 34 and slot 48 .
- each individual phase lug 40 has a head 50 and a shank 52 .
- the head 50 is received in the slot 48 , while the shank 52 passes through the slot 34 .
- the linkage 42 joins the phase lugs 40 with the hub plate 44 and transfers movement from the phase lugs 40 to the hub plate 44 .
- the sliding movement of the phase lugs 40 is transferred into rotating movement of the hub plate 44 via the linkage 42 .
- the linkage 42 can take different forms in different implementations.
- the linkage 42 includes a first link member 54 and a second link member 56 .
- the first and second link members 54 , 56 each have a generally arcuate profile, as perhaps demonstrated best by FIG. 2 .
- the first link member 54 has a rigid coupling with one of the phase lugs 40
- the second link member 56 has a rigid coupling with the other of the phase lugs 40 .
- the first link member 54 has a pivotal coupling to the hub plate 44 via a first pin 58
- the second link member 56 has a pivotal coupling to the hub plate 44 via a second pin 60
- the first and second link members 54 , 56 are hinged and are able to turn thereabout.
- the hub plate 44 has a direct rigid coupling to the second concentric camshaft 36 whereby the hub plate 44 and second concentric camshaft 36 co-rotate with each other amid phasing movements of the VCT assembly 10 .
- the ICE's crankshaft rotates and that rotation is transferred to the housing 20 of the independent VCT device 12 through the endless loop.
- the independent VCT device 12 transfers the rotational drive to the first and second concentric camshafts 16 , 36 .
- the rotor 18 can be angularly displaced relative to the housing 20 thereby changing the angular position of the first concentric camshaft 16 relative to the ICE's crankshaft.
- Pressurized fluid can be selectively directed to one side of the vanes 26 to move the rotor 18 relative to the housing 20 in one angular direction, or directed to the other side of the vanes 26 to move the rotor 18 relative to the housing 20 in another angular direction.
- This angular movement can also be referred to as advancing or retarding the angular position between the camshaft(s) and the crankshaft.
- the rotor 18 can maintain its position relative to the housing 20 , thus maintaining the phase relationship between the first concentric camshaft 16 and the second concentric camshaft 36 .
- a valve (not shown) can control the pressurized fluid to move the rotor 18 in one angular direction, move the rotor 18 in another angular direction, or maintain the angular position of the rotor 18 relative to the housing 20 .
- this angular movement can move the first concentric camshaft 16 relative to the ICE's crankshaft.
- the movement of the rotor 18 also changes the angular position of the second concentric camshaft 36 relative to the first concentric camshaft 16 .
- FIGS. 4-10 depict successive states of phasing movements of the VCT assembly 10 .
- the end plate 38 is transparent with only an outline of the second set of slots 48 remaining visible in order to show movement of the rotor 18 .
- the rotor 18 is set at a first angular position relative to the housing 20 , and the phase lugs 40 are located at ends of the first and second sets of slots 34 , 48 .
- the rotor 18 has moved counterclockwise to a second angular position, and the phase lugs 40 have slid along the profile extents of the first and second sets of slots 34 , 48 and are now displaced away from the ends of the slots 34 , 48 . Further, in FIG.
- the hub plate 44 has moved clockwise from its previous angular position.
- the rotor 18 has moved farther counter-clockwise to a third angular position, and the phase lugs 40 have slid farther along the profile extents of the first and second sets of slots 34 , 48 .
- the hub plate 44 has moved farther clockwise from its previous angular position.
- the rotor 18 has moved farther counter-clockwise to a fourth angular position, and the phase lugs 40 have slid farther along the profile extents of the first and second sets of slots 34 , 48 .
- the hub plate 44 lacks rotating movement from the state of FIG. 6 to that of FIG. 7 .
- the rotor 18 has moved yet farther counter-clockwise to a fifth angular position, and the phase lugs 40 have slid yet farther along the profile extents of the first and second sets of slots 34 , 48 .
- the hub plate 44 has now moved counterclockwise from the state of FIG. 7 to that of FIG. 8 .
- the rotor 18 has moved yet farther counterclockwise to a sixth angular position, and the phase lugs 40 have slid yet farther along the profile extents of the first and second sets of slots 34 , 48 .
- the hub plate 44 has moved farther counterclockwise from its previous angular position.
- FIG. 9 the hub plate 44 has moved farther counterclockwise from its previous angular position.
- the rotor 18 has moved yet farther counterclockwise to a seventh angular position, and the phase lugs 40 have slid yet farther along the profile extents of the first and second sets of slots 34 , 48 .
- the hub plate 44 has moved farther counter-clockwise from its previous angular position and to the angular position it exhibited in the prior state of FIG. 4 .
- the particular dependent phase relationship between the independent VCT device 12 and the dependent VCT device 14 comes into view from an examination of the successive states of phasing movements of the VCT assembly 10 presented by FIGS. 4-10 .
- the dependent phase relationship is based in part upon the precise profile extents of the first and second sets of slots 34 , 48 .
- these profile extents can vary in order to consequently vary the effected dependent phase relationship between the independent VCT device 12 and the dependent VCT device 14 .
- each of the second set of slots 48 could have a profile with a bend approximately midway in its extent and with linear or arcuate profiles on each side of the bend.
- the rotor of the independent VCT device could have the first set of slots residing in its structure (the rotor would thus constitute the first component of the independent VCT device).
- the plate 22 would be absent in this implementation.
- the first set of slots could include four individual slots spaced equally around the rotor, with each individual slot having a generally linear profile and situated along a radial direction of the rotor.
- the end plate could have the second set of slots residing in its structure.
- the second set of slots could include four individual slots spaced equally around the end plate, with each individual slot having a generally arcuate profile.
- a coupler plate could be included as a component of the dependent VCT device.
- the coupler plate could have a rigid coupling with the second concentric camshaft whereby the coupler plate and second concentric camshaft co-rotate with each other amid phasing movements.
- the linkage 42 and hub plate 44 would be absent in this implementation.
- the coupler plate could have a third set of slots residing in its structure.
- the third set of slots could include four individual slots spaced equally around the coupler plate, with each individual slot having a profile with a bend approximately midway in its extent and with linear profiles on each side of the bend.
- the phase lugs would be received in all of the first set of slots, the second set of slots, and the third set of slots.
- first and third sets of slots could have the same profile extent, and that profile extent could be each individual slot having a generally linear profile and situated along a radial direction of the respective component.
- the second and third sets of slots could have the same profile extent, and that profile extent could be each individual slot having a generally arcuate profile.
- the VCT assembly and its independent and dependent VCT devices could be equipped on other types of camshafts apart from those concentrically arranged as described.
- a first camshaft and a discrete second camshaft could be arranged in a non-concentric manner with one or more chain, gear, or belt drives situated between them.
- other types of camshafts are possible.
- the terms “e.g.,” “for example,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items.
- Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Description
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/697,322 US11193399B2 (en) | 2018-11-27 | 2019-11-27 | Variable camshaft timing assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862771861P | 2018-11-27 | 2018-11-27 | |
US16/697,322 US11193399B2 (en) | 2018-11-27 | 2019-11-27 | Variable camshaft timing assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200165943A1 US20200165943A1 (en) | 2020-05-28 |
US11193399B2 true US11193399B2 (en) | 2021-12-07 |
Family
ID=70770582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/697,322 Active US11193399B2 (en) | 2018-11-27 | 2019-11-27 | Variable camshaft timing assembly |
Country Status (1)
Country | Link |
---|---|
US (1) | US11193399B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10823017B2 (en) * | 2018-12-13 | 2020-11-03 | ECO Holding 1 GmbH | Dual cam phaser |
WO2022048756A1 (en) * | 2020-09-03 | 2022-03-10 | Pierburg Gmbh | Camshaft adjustment system |
WO2022048758A1 (en) * | 2020-09-03 | 2022-03-10 | Pierburg Gmbh | Camshaft adjustment system |
WO2022048759A1 (en) * | 2020-09-03 | 2022-03-10 | Pierburg Gmbh | Camshaft adjustment system |
WO2022048757A1 (en) * | 2020-09-03 | 2022-03-10 | Pierburg Gmbh | Camshaft adjustment system |
US11905861B2 (en) * | 2020-12-01 | 2024-02-20 | Schaeffler Technologies AG & Co. KG | Multi-camshaft phase adjusting system |
DE102021114162B4 (en) | 2021-06-01 | 2022-12-08 | Schaeffler Technologies AG & Co. KG | Electromechanical camshaft adjuster |
US11852054B2 (en) * | 2021-09-17 | 2023-12-26 | Borgwarner Inc. | Variable camshaft timing system |
Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417186A (en) | 1993-06-28 | 1995-05-23 | Clemson University | Dual-acting apparatus for variable valve timing and the like |
US6044816A (en) | 1997-10-24 | 2000-04-04 | Daimlerchrysler Ag | Variable valve control for an internal combustion engine |
US6253719B1 (en) | 1999-02-18 | 2001-07-03 | Mechadyne Plc | Variable phase mechanism |
GB2401163A (en) | 2003-04-29 | 2004-11-03 | Mechadyne Plc | Variable phase mechanism |
US20050051121A1 (en) | 2003-09-05 | 2005-03-10 | Borgwarner Inc. | Variable camshaft timing phaser having a housing and a driving element of two different materials |
US20050056249A1 (en) | 2003-07-24 | 2005-03-17 | Matthias Heinze | Camshaft adjustment control device |
US20080196681A1 (en) | 2007-02-19 | 2008-08-21 | Mechadyne Plc | Mounting of an scp camshaft on an engine |
US7536986B2 (en) | 2006-05-27 | 2009-05-26 | Mahle International Gmbh | Camshaft |
US20100235067A1 (en) * | 2006-06-09 | 2010-09-16 | Toyota Jidosha Kabushiki Kaisha | Variable valve timing apparatus and control method thereof |
US7866293B2 (en) | 2008-03-12 | 2011-01-11 | GM Global Technology Operations LLC | Concentric camshaft with improved torque resistance |
US7938090B2 (en) | 2006-07-20 | 2011-05-10 | Mechadyne Plc | Variable phase mechanism |
US8051818B2 (en) * | 2008-10-09 | 2011-11-08 | Schaeffler Technologies Gmbh & Co. Kg | Dual independent phasing system to independently phase the intake and exhaust cam lobes of a concentric camshaft arrangement |
US8113159B2 (en) | 2008-10-14 | 2012-02-14 | Schaeffler Technologies Gmbh & Co. Kg | Camshaft phaser and drive adapter for a concentric camshaft |
US8122863B2 (en) | 2008-10-09 | 2012-02-28 | Schaeffler Technologies Gmbh & Co. Kg | Camshaft phaser for the inner camshaft of a concentric camshaft assembly |
US8146551B2 (en) | 2007-06-19 | 2012-04-03 | Borgwarner Inc. | Concentric cam with phaser |
US8191521B2 (en) | 2009-01-28 | 2012-06-05 | Schaeffler Technologies AG & Co. KG | Camshaft phase adjuster for concentric camshafts |
US8201528B2 (en) * | 2008-01-04 | 2012-06-19 | Hilite Germany Gmbh | Doubled cam shaft adjuster in layered construction |
US8256393B2 (en) | 2007-07-06 | 2012-09-04 | Borgwarner Inc. | Variable cam timing controls mounted in the camshaft |
US8261705B2 (en) | 2006-12-19 | 2012-09-11 | Mechadyne Plc | Camshaft and phaser assembly |
US8336512B2 (en) | 2008-10-09 | 2012-12-25 | Schaeffler Technologies AG & Co. KG | Camshaft phaser for a concentric camshaft |
US8375906B2 (en) | 2008-10-14 | 2013-02-19 | Schaeffler Technologies AG & Co. KG | Camshaft phaser for a concentric camshaft |
US20130092114A1 (en) | 2010-03-19 | 2013-04-18 | Elmar Pietsch | Method and device for operating an internal combustion engine in the event of a fault in a crankshaft sensor |
US8522737B2 (en) | 2009-04-10 | 2013-09-03 | Toyota Jidosha Kabushiki Kaisha | Variable valve timing mechanism with intermediate locking mechanism and fabrication method thereof |
US8596236B2 (en) | 2010-12-06 | 2013-12-03 | Hyundai Motor Company | Variable valve driving apparatus |
US8677960B2 (en) | 2010-08-04 | 2014-03-25 | Hilite Germany Gmbh | Camshaft adjuster, in particular with camshaft |
US8695545B2 (en) | 2011-03-31 | 2014-04-15 | Toyota Jidosha Kabushiki Kaisha | Phase changing device of camshaft |
US20140190434A1 (en) | 2011-08-04 | 2014-07-10 | Schaeffler Technologies AG & Co. KG | Preassembly of a camshaft phaser |
US20150068474A1 (en) | 2013-09-06 | 2015-03-12 | Hyundai Motor Company | Engine having variable valve timing device |
US8978605B2 (en) | 2011-06-15 | 2015-03-17 | Schaeffler Technologies AG & Co. KG | Phase-adjusting device of a camshaft for an internal combustion engine |
US9297281B2 (en) | 2010-04-23 | 2016-03-29 | Borgwarner, Inc. | Concentric camshaft phaser flex plate |
US9297283B2 (en) | 2012-05-18 | 2016-03-29 | Schaeffler Technologies AG & Co. KG | Camshaft unit |
US9366159B2 (en) | 2011-03-30 | 2016-06-14 | Borgwarner, Inc. | Concentric camshaft phaser torsional drive mechanism |
US9506379B2 (en) | 2013-03-11 | 2016-11-29 | Schaeffler Technologies AG & Co. KG | Concentric camshaft phaser |
US9512747B2 (en) | 2013-12-20 | 2016-12-06 | Hyundai Motor Company | Valve train layout structure including cam phaser and camshaft-in-camshaft |
EP3141711A1 (en) | 2015-09-11 | 2017-03-15 | Mechadyne International Limited | Dual camshaft phaser |
US9638306B2 (en) | 2012-05-18 | 2017-05-02 | Schaeffler Technologies AG & Co. KG | Camshaft unit |
US20170254232A1 (en) | 2014-08-28 | 2017-09-07 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster having two ball joints |
US9797277B2 (en) | 2015-02-20 | 2017-10-24 | Schaeffler Technologies AG & Co. KG | Camshaft phaser |
US9840942B2 (en) | 2013-08-14 | 2017-12-12 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster |
US20190368389A1 (en) * | 2018-06-01 | 2019-12-05 | Schaeffler Technologies AG & Co. KG | Coupling for a camshaft phaser arrangement for a concentric camshaft assembly |
US10612429B1 (en) * | 2018-11-16 | 2020-04-07 | Schaeffler Technologies AG & Co. KG | Coupling for a camshaft phaser arrangement for a concentric camshaft assembly |
US20200149439A1 (en) * | 2018-11-08 | 2020-05-14 | Borgwarner, Inc. | Variable camshaft timing assembly |
-
2019
- 2019-11-27 US US16/697,322 patent/US11193399B2/en active Active
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417186A (en) | 1993-06-28 | 1995-05-23 | Clemson University | Dual-acting apparatus for variable valve timing and the like |
US6044816A (en) | 1997-10-24 | 2000-04-04 | Daimlerchrysler Ag | Variable valve control for an internal combustion engine |
US6253719B1 (en) | 1999-02-18 | 2001-07-03 | Mechadyne Plc | Variable phase mechanism |
GB2401163A (en) | 2003-04-29 | 2004-11-03 | Mechadyne Plc | Variable phase mechanism |
US20050056249A1 (en) | 2003-07-24 | 2005-03-17 | Matthias Heinze | Camshaft adjustment control device |
US20050051121A1 (en) | 2003-09-05 | 2005-03-10 | Borgwarner Inc. | Variable camshaft timing phaser having a housing and a driving element of two different materials |
US7536986B2 (en) | 2006-05-27 | 2009-05-26 | Mahle International Gmbh | Camshaft |
US20100235067A1 (en) * | 2006-06-09 | 2010-09-16 | Toyota Jidosha Kabushiki Kaisha | Variable valve timing apparatus and control method thereof |
US7938090B2 (en) | 2006-07-20 | 2011-05-10 | Mechadyne Plc | Variable phase mechanism |
US8261705B2 (en) | 2006-12-19 | 2012-09-11 | Mechadyne Plc | Camshaft and phaser assembly |
US20080196681A1 (en) | 2007-02-19 | 2008-08-21 | Mechadyne Plc | Mounting of an scp camshaft on an engine |
US8146551B2 (en) | 2007-06-19 | 2012-04-03 | Borgwarner Inc. | Concentric cam with phaser |
US8256393B2 (en) | 2007-07-06 | 2012-09-04 | Borgwarner Inc. | Variable cam timing controls mounted in the camshaft |
US8201528B2 (en) * | 2008-01-04 | 2012-06-19 | Hilite Germany Gmbh | Doubled cam shaft adjuster in layered construction |
US7866293B2 (en) | 2008-03-12 | 2011-01-11 | GM Global Technology Operations LLC | Concentric camshaft with improved torque resistance |
US8051818B2 (en) * | 2008-10-09 | 2011-11-08 | Schaeffler Technologies Gmbh & Co. Kg | Dual independent phasing system to independently phase the intake and exhaust cam lobes of a concentric camshaft arrangement |
US8122863B2 (en) | 2008-10-09 | 2012-02-28 | Schaeffler Technologies Gmbh & Co. Kg | Camshaft phaser for the inner camshaft of a concentric camshaft assembly |
US8336512B2 (en) | 2008-10-09 | 2012-12-25 | Schaeffler Technologies AG & Co. KG | Camshaft phaser for a concentric camshaft |
US8375906B2 (en) | 2008-10-14 | 2013-02-19 | Schaeffler Technologies AG & Co. KG | Camshaft phaser for a concentric camshaft |
US8113159B2 (en) | 2008-10-14 | 2012-02-14 | Schaeffler Technologies Gmbh & Co. Kg | Camshaft phaser and drive adapter for a concentric camshaft |
US8191521B2 (en) | 2009-01-28 | 2012-06-05 | Schaeffler Technologies AG & Co. KG | Camshaft phase adjuster for concentric camshafts |
US8522737B2 (en) | 2009-04-10 | 2013-09-03 | Toyota Jidosha Kabushiki Kaisha | Variable valve timing mechanism with intermediate locking mechanism and fabrication method thereof |
US20130092114A1 (en) | 2010-03-19 | 2013-04-18 | Elmar Pietsch | Method and device for operating an internal combustion engine in the event of a fault in a crankshaft sensor |
US9297281B2 (en) | 2010-04-23 | 2016-03-29 | Borgwarner, Inc. | Concentric camshaft phaser flex plate |
US8677960B2 (en) | 2010-08-04 | 2014-03-25 | Hilite Germany Gmbh | Camshaft adjuster, in particular with camshaft |
US8596236B2 (en) | 2010-12-06 | 2013-12-03 | Hyundai Motor Company | Variable valve driving apparatus |
US9366159B2 (en) | 2011-03-30 | 2016-06-14 | Borgwarner, Inc. | Concentric camshaft phaser torsional drive mechanism |
US8695545B2 (en) | 2011-03-31 | 2014-04-15 | Toyota Jidosha Kabushiki Kaisha | Phase changing device of camshaft |
US8978605B2 (en) | 2011-06-15 | 2015-03-17 | Schaeffler Technologies AG & Co. KG | Phase-adjusting device of a camshaft for an internal combustion engine |
US20140190434A1 (en) | 2011-08-04 | 2014-07-10 | Schaeffler Technologies AG & Co. KG | Preassembly of a camshaft phaser |
US9638306B2 (en) | 2012-05-18 | 2017-05-02 | Schaeffler Technologies AG & Co. KG | Camshaft unit |
US9297283B2 (en) | 2012-05-18 | 2016-03-29 | Schaeffler Technologies AG & Co. KG | Camshaft unit |
US9506379B2 (en) | 2013-03-11 | 2016-11-29 | Schaeffler Technologies AG & Co. KG | Concentric camshaft phaser |
US9840942B2 (en) | 2013-08-14 | 2017-12-12 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster |
US20150068474A1 (en) | 2013-09-06 | 2015-03-12 | Hyundai Motor Company | Engine having variable valve timing device |
US9512747B2 (en) | 2013-12-20 | 2016-12-06 | Hyundai Motor Company | Valve train layout structure including cam phaser and camshaft-in-camshaft |
US20170254232A1 (en) | 2014-08-28 | 2017-09-07 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster having two ball joints |
US9797277B2 (en) | 2015-02-20 | 2017-10-24 | Schaeffler Technologies AG & Co. KG | Camshaft phaser |
EP3141711A1 (en) | 2015-09-11 | 2017-03-15 | Mechadyne International Limited | Dual camshaft phaser |
US20190368389A1 (en) * | 2018-06-01 | 2019-12-05 | Schaeffler Technologies AG & Co. KG | Coupling for a camshaft phaser arrangement for a concentric camshaft assembly |
US20200149439A1 (en) * | 2018-11-08 | 2020-05-14 | Borgwarner, Inc. | Variable camshaft timing assembly |
US10612429B1 (en) * | 2018-11-16 | 2020-04-07 | Schaeffler Technologies AG & Co. KG | Coupling for a camshaft phaser arrangement for a concentric camshaft assembly |
Also Published As
Publication number | Publication date |
---|---|
US20200165943A1 (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11193399B2 (en) | Variable camshaft timing assembly | |
US20210372302A1 (en) | Dual actuating variable cam | |
JP6244390B2 (en) | Flex plate for concentric camshaft phaser | |
US9810108B2 (en) | Engine variable camshaft timing phaser with planetary gear assembly | |
US8146551B2 (en) | Concentric cam with phaser | |
US10006321B2 (en) | Engine variable camshaft timing phaser with planetary gear set | |
JP5604433B2 (en) | Phaser built into camshaft or concentric camshaft | |
JP5876081B2 (en) | Double phaser assembled concentrically on concentric camshaft system | |
US11274577B2 (en) | Variable camshaft timing assembly | |
EP2927440A1 (en) | Camshaft phaser | |
US10557385B2 (en) | Engine variable camshaft timing phaser with planetary gear assembly | |
RU2012107557A (en) | ACTUATED DEVICE FOR ADJUSTABLE VALVES FOR INTERNAL COMBUSTION ENGINE | |
US11781451B2 (en) | Engine variable camshaft timing phaser with planetary gear set | |
US11852053B2 (en) | Electrically-actuated camshaft phaser with backlash reduction | |
US20190226365A1 (en) | Off-axis camshaft phaser | |
US11852054B2 (en) | Variable camshaft timing system | |
US11280228B2 (en) | Variable camshaft timing assembly | |
US11174762B1 (en) | VCT valve with reed check | |
CN111140305B (en) | Cam phaser camshaft coupling | |
US11454142B2 (en) | Electrically-actuated variable camshaft timing phaser with removable fixture | |
US11905861B2 (en) | Multi-camshaft phase adjusting system | |
CN118391108A (en) | Variable camshaft timing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BORGWARNER, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEEFOVER, ROBERT;KENYON, BRIAN THOMAS;SIGNING DATES FROM 20181126 TO 20181127;REEL/FRAME:051140/0037 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
STCC | Information on status: application revival |
Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |