US10824484B2 - Event-driven computing - Google Patents
Event-driven computing Download PDFInfo
- Publication number
- US10824484B2 US10824484B2 US15/595,774 US201715595774A US10824484B2 US 10824484 B2 US10824484 B2 US 10824484B2 US 201715595774 A US201715595774 A US 201715595774A US 10824484 B2 US10824484 B2 US 10824484B2
- Authority
- US
- United States
- Prior art keywords
- user
- program code
- request
- provided program
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004044 response Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 40
- 230000015654 memory Effects 0.000 claims description 30
- 230000004048 modification Effects 0.000 claims description 14
- 238000012986 modification Methods 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 230000006870 function Effects 0.000 abstract description 57
- 230000001960 triggered effect Effects 0.000 abstract description 8
- 238000010792 warming Methods 0.000 description 52
- 238000012545 processing Methods 0.000 description 40
- 230000008569 process Effects 0.000 description 25
- 230000009471 action Effects 0.000 description 23
- 238000012544 monitoring process Methods 0.000 description 17
- 230000036541 health Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 239000010979 ruby Substances 0.000 description 3
- 229910001750 ruby Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013474 audit trail Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3006—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/301—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is a virtual computing platform, e.g. logically partitioned systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45504—Abstract machines for programme code execution, e.g. Java virtual machine [JVM], interpreters, emulators
- G06F9/45508—Runtime interpretation or emulation, e g. emulator loops, bytecode interpretation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5077—Logical partitioning of resources; Management or configuration of virtualized resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/542—Event management; Broadcasting; Multicasting; Notifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/547—Remote procedure calls [RPC]; Web services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45562—Creating, deleting, cloning virtual machine instances
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/4557—Distribution of virtual machine instances; Migration and load balancing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45575—Starting, stopping, suspending or resuming virtual machine instances
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/54—Indexing scheme relating to G06F9/54
- G06F2209/544—Remote
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/54—Indexing scheme relating to G06F9/54
- G06F2209/548—Queue
Definitions
- computing devices utilize a communication network, or a series of communication networks, to exchange data.
- Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties.
- the computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks).
- data centers or data processing centers herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center.
- the data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
- virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center.
- the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner.
- users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
- virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality.
- various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently.
- These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started.
- the device image is typically stored on the disk used to create or initialize the instance.
- a computing device may process the device image in order to implement the desired software configuration.
- FIG. 1 is a block diagram depicting an illustrative environment for processing event messages for user requests to execute program codes in a virtual compute system
- FIG. 2 depicts a general architecture of a computing device providing a frontend of a virtual compute system for processing event messages for user requests to execute program codes;
- FIG. 3 is a flow diagram illustrating a request processing routine implemented by a frontend of a virtual compute system, according to an example aspect
- FIG. 4 is a flow diagram illustrating a request routing routine implemented by a frontend of a virtual compute system, according to an example aspect.
- computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances.
- virtual machines are software implementations of physical machines (e.g., computers), which are hosted on physical computing devices, and may contain operating systems and applications that are traditionally provided on physical machines.
- These virtual machine instances are configured with a set of computing resources (e.g., memory, CPU, disk, network, etc.) that applications running on the virtual machine instances may request and can be utilized in the same manner as physical computers.
- virtual computing resources are purchased (e.g., in the form of virtual machine instances)
- developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them.
- the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented.
- the minimum time a virtual machine may be rented is typically on the order of hours.
- developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines.
- over-utilization e.g., acquiring too little computing resources and suffering performance issues
- under-utilization e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying
- prediction of change in traffic e.g., so that they know when to scale up or down
- instance and language runtime startup delay which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds.
- code execution on such a virtual compute system can be triggered by one or more events that occur.
- a trigger (which can be a piece of code that is configured to automatically respond to certain events occurring on the virtual compute system or at an external or auxiliary service) can be created, and when such events occur, the trigger may automatically cause an action to be performed (e.g., by generating a code execution request and sending it to the frontend of the virtual compute system).
- Event source Services that may operate as event sources include, but are not limited to, remote storage systems; database systems; message queue systems; data stream services; web services; auditing services; health monitoring services (e.g., for monitoring health status of a virtual compute system); logging services; billing services; resource management systems and services, or any other services or user-defined applications.
- an event specified by the trigger occurs at such an event source (e.g., upload of a new file, modification of existing data in a table, new data stream record is received, etc.)
- a corresponding program code may be caused to execute on the virtual compute system.
- the program code may perform any actions specified by the user who generated the trigger or by the virtual compute system, such as sending a notification or initiating a workflow.
- a trigger can be configured to generate an event every time a given database is modified.
- the triggered events can each cause the database modification to be recorded in permanent storage to create an audit trail of the activity in the database (e.g., by causing a program code configured to perform such storing operation to be executed).
- the events may further cause a program code that sends a notification to the administrator of the database to be executed on the virtual compute system.
- the actions performed by the triggered code execution are static in nature and often require a human operator to analyze the data and take further steps to improve, for example, the code execution performance.
- an improved method of processing events and code execution requests in a more dynamic and automatic fashion while maintaining low latency and high scalability is desired.
- aspects of the present disclosure relate to the management of virtual machine instances and containers created therein.
- systems and methods are disclosed which facilitate management of virtual machine instances in a virtual compute system.
- the virtual compute system maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. Maintaining the pool of virtual machine instances may involve creating a new instance, acquiring a new instance from an external instance provisioning service, destroying an instance, assigning/reassigning an instance to a user, modifying an instance (e.g., containers or resources therein), etc.
- the virtual machine instances in the pool can be designated to service user requests to execute program codes.
- program code can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
- a message queue, a message bus, or any other message intermediary service is provided to facilitate transportation or communication of event messages generated in a first programmatic environment (e.g., at an auxiliary service) to the programmatic environment provided by the virtual compute system described herein.
- event messages may be generated to include information descriptive of the triggered event, a user associated with a request to execute user code in response to the triggered event, and programmatic information to enable the virtual compute system to convert the event message into a user request for further processing by the virtual compute system.
- the event message and/or programmatic information contained therein may be structured according to a schema, a code model, or an application programming interface (“API”) to facilitate both creation/generation of the event message at the auxiliary service and conversion/processing of the event message at the virtual compute system.
- API application programming interface
- the phrases “events,” “event messages,” and “code execution requests” may be used interchangeably in the present disclosure.
- a virtual compute system may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components loaded thereon.
- the virtual compute system may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance.
- One benefit provided by the systems and methods described herein is the ability to dynamically improve, update, or modify various aspects of the code execution environment with or without interaction with the users. For example, in response to detecting a negative trend, the virtual compute system may automatically execute certain control functions to remedy or reverse the negative trend. Such control functions may modify user functions or modify one or more parameters used for executing such user functions. For example, the virtual compute system may monitor and log information related to the amount of resources allocated for executing user code. By doing so, the virtual compute system may be able to identify opportunities for improving the performance of the user code execution by adjusting the amount of allocated resources.
- Error rates may be reduced by increasing the amount of allocated resources in the event of over-utilization, and costs associated with executing the user code may be reduced by decreasing the amount of allocated resources in the event of under-utilization.
- the systems and methods described herein provide a dynamic and automated solution to address such errors and failures.
- FIG. 1 a block diagram illustrating an embodiment of a virtual environment 100 will be described.
- the example shown in FIG. 1 includes a virtual environment 100 in which users (e.g., developers, etc.) of user computing devices 102 may run various program codes using the virtual computing resources provided by a virtual compute system 110 .
- users e.g., developers, etc.
- virtual compute system 110 may run various program codes using the virtual computing resources provided by a virtual compute system 110 .
- various example user computing devices 102 are shown in communication with the virtual compute system 110 , including a desktop computer, laptop, and a mobile phone.
- the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices.
- the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein.
- the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices.
- IoT Internet of Things
- the virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programming interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110 ), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes.
- CLI command-line interfaces
- API application programming interfaces
- other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110 ), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes.
- the user computing devices 102 access the virtual compute system 110 over a network 104 .
- the network 104 may be any wired network, wireless network, or combination thereof.
- the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof.
- the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet.
- the network 104 may be a private or semi-private network, such as a corporate or university intranet.
- the network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network.
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- LTE Long Term Evolution
- the network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks.
- the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
- the virtual compute system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks.
- the virtual compute system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1 .
- the depiction of the virtual compute system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure.
- the virtual compute system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer-to-peer network configurations to implement at least a portion of the processes described herein.
- the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein.
- the one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
- the virtual environment 100 includes a virtual compute system 110 , which includes a frontend 120 (including an event/request processing unit 186 ), a warming pool manager 130 , and a worker manager 140 .
- a virtual compute system 110 which includes a frontend 120 (including an event/request processing unit 186 ), a warming pool manager 130 , and a worker manager 140 .
- virtual machine instances (“instances”) 152 , 154 are shown in a warming pool 130 A managed by the warming pool manager 130
- instances 156 , 158 are shown in an active pool 140 A managed by the worker manager 140 .
- the illustration of the various components within the virtual compute system 110 is logical in nature and one or more of the components can be implemented by a single computing device or multiple computing devices.
- the instances 152 , 154 , 156 , 158 can be implemented on one or more physical computing devices in different various geographic regions.
- each of the frontend 120 , the warming pool manager 130 , and the worker manager 140 can be implemented across multiple physical computing devices.
- one or more of the frontend 120 , the warming pool manager 130 , and the worker manager 140 can be implemented on a single physical computing device.
- the virtual compute system 110 may comprise multiple frontends, multiple warming pool managers, and/or multiple worker managers.
- four virtual machine instances are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of virtual machine instances implemented using any number of physical computing devices.
- a single warming pool and a single active pool are shown in the example of FIG. 1 , the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the virtual compute system 110 may comprise any number of warming pools and active pools.
- the virtual compute system 110 is illustrated as being connected to the network 104 .
- any of the components within the virtual compute system 110 can communicate with other components (e.g., the user computing devices 102 and auxiliary services 106 , which may include monitoring/logging/billing services 107 , a storage service 108 , an instance provisioning service 109 , a message queue service 105 , and/or other services that may communicate with the virtual compute system 110 ) of the virtual environment 100 via the network 104 .
- not all components of the virtual compute system 110 are capable of communicating with other components of the virtual environment 100 .
- any of the auxiliary services 106 may be configured to operate as an event triggering service in order to listen for events specified by users of the auxiliary service and trigger generation of event messages for processing by the virtual compute system 110 , as described in more detail herein.
- the storage service 108 may be configured to operate as an event triggering service in order to provide the capability of executing user code on the virtual compute system 110 in response to events as they occur on the storage service 108 .
- the auxiliary services 106 may be configured to associate an event or event type with a particular program code to be executed on the virtual compute system 110 (that is, the auxiliary services 106 may store or have access to data which associates the event with the particular program code).
- the auxiliary services 106 may not necessarily associate an event or event type with a particular program code to be executed on the virtual compute system 110 , but rather the auxiliary services 106 may generate event messages which the virtual compute system 110 is configured to interpret as being associated with the program code to be executed on the virtual compute system 110 (that is, the virtual compute system 110 may store or have access to data which associates the event with the particular program code).
- an intermediary system or service may be configured to handle interpretation and routing of event messages to execute the program code, such that neither the auxiliary services 106 nor the virtual compute system 110 may store or have access to the event-to-program code association data.
- the auxiliary services 106 may generate an event message that is agnostic to any particular program code to be executed; and the event message may be routed to the virtual compute system 110 (or an intermediary system) which evaluates the event message and associated metadata to determine which program code to execute in response, and initiate a corresponding request to execute the program code.
- any of the auxiliary services 106 may be configured to operate as an event triggering service. These include but are not limited to: remote storage systems; database systems; message queue systems (e.g., a message queue service provided by the virtual compute system 110 , a message queue system owned and/or operated by a user or client separate from the virtual compute system 110 , and so on); web services; auditing services; health monitoring services (e.g., for monitoring health status of a virtual compute system); logging services; billing services; resource management systems and services (e.g., for managing lifecycles and/or ownership of virtual computing environments and the like); and so on.
- message queue systems e.g., a message queue service provided by the virtual compute system 110 , a message queue system owned and/or operated by a user or client separate from the virtual compute system 110 , and so on
- web services e.g., a message queue service provided by the virtual compute system 110 , a message queue system owned and/or operated by a user or client separate from the virtual compute system 110
- Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed.
- One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code.
- the user may send a code execution request the virtual compute system 110 .
- the virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity.
- compute capacity e.g., containers, instances, etc., which are described in greater detail below
- the virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
- over-utilization e.g., acquiring too little computing resources and suffering performance issues
- under-utilization e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying.
- the frontend 120 receives and processes all the requests (sometimes in the form of event messages) to execute user code on the virtual compute system 110 .
- the frontend 120 serves as a front door to all the other services provided by the virtual compute system 110 .
- the frontend 120 processes the requests and makes sure that the requests are properly authorized. For example, the frontend 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
- the frontend 120 may serve as a front door to fully automated services including the auxiliary services 106 as well as the virtual compute system 110 (e.g., code execution service).
- how the frontend 120 processes incoming requests may differ based on the particular service(s) with which the frontend 120 is interacting. For example, the frontend 120 may treat code execution requests originating from the storage service 108 differently from the way the frontend 120 would treat code execution requests originating from the monitoring service 107 .
- the user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language.
- code e.g., a program, routine, subroutine, thread, etc.
- program code may be used interchangeably.
- Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user.
- the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby.
- the user code may be associated with a set of configurations. Such configurations may include information regarding how the user code will receive an event that may cause the user code to execute (e.g., event handler).
- a request to execute user code may include the user code (or the location thereof) and one or more arguments to be used for executing the user code.
- the user may provide the user code along with the request to execute the user code.
- the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID.
- the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110 ) prior to the request is received by the virtual compute system 110 .
- the virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.
- the frontend 120 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 120 .
- the frontend 120 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation.
- the user may configure an auxiliary service 106 to operate as an event triggering service by registering the user code with the auxiliary service 106 and specifying that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 120 .
- a particular event e.g., a new file is uploaded
- the user may have registered a timed job (e.g., execute the user code every 24 hours).
- the request to execute the user code may be sent to the frontend 120 .
- a timed or scheduled job may be implemented using the techniques of this disclosure to, for example, model the job as an event generated by a timer service.
- the timer service may generate an event message indicating that it is now time to run a user code, and the virtual compute system 110 may implement a process to run code at a certain time by utilizing the timer service to remind the virtual compute system 110 to run the user code.
- the frontend 120 may include or have access to a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 120 may process the user request.
- the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 .
- the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in FIG. 1 .
- a request to execute/activate user codes may be generated in response to an event associated with the user computing device 102 or an auxiliary service 106 .
- the event triggering service can trigger a request to execute/activate a code to generate a thumbnail of the image.
- the code may be hosted in the active pool 120 or downloaded from a storage service storage service 108 to the virtual compute system 110 .
- the virtual compute system 110 may generate an event message in response to a particular event occurring on the virtual compute system 110 .
- an event may be generated to send a notification to an administrator of the virtual compute system 110 , send a message to the logging service 107 for logging the information, or send a request to the frontend 120 to initiate an active pool capacity adjustment process.
- an event message representative of a request to execute the user code may be initially received by a message queue service 105 and provided to or placed in a message queue.
- the message queue service 105 maintains a separate storage area (e.g., a dead letter queue) for storing event messages that were not successfully processed by the frontend 120 .
- the message queue service 105 may be implemented as a component of the auxiliary services 106 or as a different component.
- the frontend 120 may periodically poll the message queue service 105 to identify and retrieve event messages for processing or re-processing.
- Event messages may be placed in the message queue for example by the message queue service 105 , such as in response to when an event is detected for which the user has registered to trigger automatic generation of a request to execute user code. In some instances it may be desirable or more practical to detect such events, trigger generation of an event message, and provide the event message to the message queue service 105 .
- the message queue service 105 may be configured to allow ordering of event messages so that the event messages are processed in a specific order and/or allow priority handling of event messages so that certain event messages may receive a higher priority than others.
- the message queue service 105 may be specifically or specially configured to facilitate transportation of certain types of programmatic events, such as database operations, certain types of data suitable for batch processing, and so on.
- the message queue service 105 may be configured to provide streaming, and/or ordered transport of messages (e.g., as a sharded set of data). The frontend 120 may then poll the message queue service 105 and retrieve event messages for further processing by the virtual compute system 110 .
- the message queue service 105 is illustrated in FIG. 1 as a component external to the virtual compute system 110 , in some cases, the message queue service 105 may be implemented as a component of the virtual compute system 110 (e.g., as part of the frontend 120 or another component that communicates with the frontend 120 ).
- the frontend 120 may query the auxiliary services 106 directly to request and receive event messages for further processing, such as via invocation of an API provided by the auxiliary services 106 .
- the auxiliary services 106 may interface directly with the frontend 120 via one or more APIs and function calls. For example, when an event is detected and an event message is generated, the auxiliary services 106 may invoke an API provided by the frontend 120 to provide the event message directly to the frontend 120 , without necessarily providing the event message to the message queue service 105 .
- Events generated on the auxiliary services 106 or the virtual compute system 110 may provide a variety of information depending on their type. In some embodiments, such events may be categorized into 5 different types: (i) events about occurrences on the virtual compute system 110 or the auxiliary services 106 , (ii) events about the event stream processed by the frontend 120 , (iii) events about the events (e.g., aggregates or summaries of the events), (iv) meta-events indicating the various metric levels, and (v) events about user code (e.g., program codes or functions executed on the virtual compute system 110 ).
- the events under category (i) may include an indication that a customer has uploaded a file onto the storage service 108 , an indication that the virtual machine instance 156 associated with a particular account owner has been terminated, or an indication that a database associated with the account owner has been modified.
- Events under category (ii) may include an indication that the frontend 120 has not received any event for the past 5 minutes, or an indication that the event stream (e.g., a stream of code execution requests) is still working properly.
- an indication may be provided to the account owner associated with the event stream, so that the account owner can assess whether the period of inactivity is unusual and take any necessary action.
- Events under category (iii) may include an aggregate summary of the events processed by the frontend 120 such as an indication that the frontend 120 should have processed 5,000 events in the last half hour. Such an aggregate summary may further specify the expected number of events to be received from each event source (e.g., an indication that the frontend 120 should have processed 500 events from event source A, 3,000 events from event source B, and 1,500 events from event source C). Such indications may be provided to the users of the virtual compute system 110 along with the actual number of events processed by the frontend 120 so that the users can sanity check their implementations or detect unusual behaviors/bugs by comparing the actual and expected numbers of events.
- an aggregate summary may further specify the expected number of events to be received from each event source (e.g., an indication that the frontend 120 should have processed 500 events from event source A, 3,000 events from event source B, and 1,500 events from event source C).
- Such indications may be provided to the users of the virtual compute system 110 along with the actual number of events processed by the frontend 120 so that the
- Events under category (iv) may include various metrics related to performance and code execution on the virtual compute system 110 .
- Such events may include an indication that a user is still running 50 virtual machine instances on the virtual compute system 110 , or an indication that the user has 80 TB of data stored in the storage service 108 .
- an indication may be used to trigger the execution of a program code configured to send an email to an account owner (or the developer who actually wrote the code) informing the account owner of the higher-than-average resource usage.
- a level indication may be used to trigger the execution of a program code configured to adjust the resource levels to accommodate the increase or decrease in usage.
- the frontend 120 upon detecting such an event, may be configured to execute a control function to increase the resource levels associated with the program code of the account owner, to throttle executions of the program code to operate under the specified resource levels associated with the program code, or to send a message to the account owner requesting the account owner's input on how to proceed in view of the higher-than-average usage or the account owner's approval for increasing the amount of resources allocated for executing the program code.
- Events under category (v) may include specific information about code execution on the virtual compute system 110 .
- information may include an indication that, for the last thousand times that an event was received from event source A, the program code failed to execute properly or timed out.
- Such an indication may be used to allow users to disable the program code or to modify the program code to better handle the events received from the particular event source identified as being problematic.
- the frontend 120 upon detecting such an event, may be configured to execute a control function to increase the duration specified for the user function, or send a message to the account owner requesting the account owner's input on how to proceed in view of the detected trend (e.g., repeatedly timing out) in the execution of the program code.
- the frontend 120 may execute a control function to adjust the amount of memory allocated to the particular program code, and send a message to the account owner, indicating that the amount of memory allocated to the particular program code has been adjusted in view of the trend in the execution of the particular program code.
- the frontend 120 may detect (e.g., based on an error that occurred while attempting to access certain resources of the account owner) that the permission settings for a particular user function are not properly configured, and cause a message to be sent to the account owner (or automatically adjust the permission settings for the particular user function such that the permission settings are properly configured).
- the virtual compute system 110 may perform a variety of actions in response to the events detected by and/or received from the auxiliary services 106 or one or more components of the virtual compute system 110 .
- the frontend 120 may detect that the account owner has used 75% of the allotted resources (e.g., number of requests, code execution duration, memory, etc.) and cause a message to be sent to the account owner, letting the account owner know that 75% of the allotted resources has been used.
- the frontend 120 upon detecting such an event, may cause a control function to be executed to adjust the rate at which the account owner uses the allotted resources.
- the frontend 120 may cause a portion of the code execution requests received for the account owner to be purposefully throttled, rejected, delayed, directed to a separate storage area for later execution, etc.
- the frontend 120 may adjust the amount of resources allocated to each code execution request so that each execution utilizes a reduced amount of resources. If the account owner has specified that 120 MB of memory is to be allocated for each execution of the user code, but the frontend 120 determines that each execution of the user code has been using only 50 MB of memory, once the resource usage reaches a threshold level (e.g., 75%), the frontend 120 may automatically adjust the amount of memory allocated for each execution from 120 MB to 50 MB.
- a threshold level e.g., 75%)
- control function may be configured to receive an event message generated in response to the account owner's resource usage reaching the threshold level, and adjust the amount of memory (e.g., or any other resource) allocated for the user code associated with the account owner.
- memory e.g., or any other resource allocated for the user code associated with the account owner.
- the monitored metrics may also include other resource levels (e.g., number of requests, duration, CPU, memory, storage, network, or other resources), the number of concurrent executions, the number of virtual machine instances/containers, the error rates, or any other metrics.
- the frontend 120 may monitor multiple conditions in parallel, and generate an event as soon as any one of those multiple conditions is satisfied. For example, the account owner may wish to stop running any user functions before any overage fees are charged to his or her account. In such an example, the frontend 120 may monitor the resources utilized by the account owner's user functions (e.g., memory, CPU, storage, network, etc.) and any other relevant criteria (e.g., number of requests), and as soon as any of the resources or criteria reaches a threshold value, the frontend 120 may automatically cause a control function to be executed to prevent the account owner from incurring any additional expenses.
- the resources utilized by the account owner's user functions e.g., memory, CPU, storage, network, etc.
- any other relevant criteria e.g., number of requests
- the account owner may wish to automatically authorize the virtual compute system 110 to charge the account owner additional fees so that the account owner's user functions can continue to be executed on the virtual compute system 110 without any interruption.
- the account owner may specify a custom function to be executed on the virtual compute system 110 as soon as one of several conditions is satisfied.
- the virtual compute system 110 may generate an event indicating that a software upgrade, a library update, or a system change has occurred or is expected to occur on the virtual compute system 110 .
- Such an event may be provided to the various user functions on the virtual compute system 110 and/or to the auxiliary services 106 , and in response to receiving such an event, a user function may perform an automated test run to determine whether the user function is compatible with the change. Based on the result of the automated test run, the user function may update certain variables, or make other changes to itself or other related user functions.
- a user function in response to receiving such an event, may cause the received information to be recorded (e.g., in the storage service 108 ).
- the frontend 120 may cause one or more control functions to be executed based on a control policy specified by the account owner. If the account owner is cost-sensitive, the account owner may specify a control policy that would minimize the costs associated with using the services provided by the virtual compute system 110 . On the other hand, if the account owner values performance over cost, the account owner may specify a control policy that would optimize the code execution performance. In some embodiments, each control policy may be associated with one or more control functions, and the frontend 120 may generate and forward one or more events to such control functions based on the control policy specified by the account owner.
- the control function executed by the frontend 120 may depend on the nature of the end user (e.g., customers of the account owner). For example, the account owner may deal with free users and paying users, and both classes of users may utilize the services provided by the account owner. In such an example, the frontend 120 may differentiate how the code execution requests are processed, based on the type of user initiating the code execution request. For example, if the resource usage associated with the account owner is reaching the monthly limit, the frontend 120 may throttle the code execution requests originating from the free users but not the paying users. In such an example, some or all of the code execution requests initiated by the free users may be routed to a separate storage area (e.g., dead letter queue) to be re-processed at a later time.
- a separate storage area e.g., dead letter queue
- the virtual compute system 110 may allow the account owner to specify a control policy indicating how the code execution requests associated with his or her account should be treated.
- the metrics monitored by the virtual compute system 110 may also be dynamically changed. For example, account owner may want to see the log data associated with his or her account only once a day under normal circumstances, but if there is something unusual happening with his or her account, the account owner may want to see more frequent updates (e.g., every minute).
- the frontend 120 upon detecting an occurrence that satisfies certain threshold criteria, may adjust the frequency at which updates are provided to the particular account owner.
- the virtual compute system 110 may allow the account owner to specify these threshold criteria. In other embodiments, the virtual compute system 110 may automatically determine these threshold criteria based on past performance associated with the account owner or the user functions associated with the account owner. Similar techniques may be applied to logging.
- the frontend 120 upon detecting an increased error rate or a spike in the number of events received, may cause a control function to be executed, where the control function is configured to turn up the granularity of the logged metrics (e.g., frequency, breadth, level of detail, etc.). If only errors are logged under normal circumstances, both errors and warnings may be logged when a threshold level of irregularities has been detected.
- a control function configured to turn up the granularity of the logged metrics (e.g., frequency, breadth, level of detail, etc.). If only errors are logged under normal circumstances, both errors and warnings may be logged when a threshold level of irregularities has been detected.
- the frontend 120 may receive an event message or a request to execute a program code, and if the frontend 120 is not able to successfully process the event message or the request (e.g., if the program code fails to execute or if there is something wrong with the request), the frontend 120 may send the request to a separate storage area called dead letter queue (DLQ).
- the requests placed in the DLQ may be re-processed at a later time.
- the items placed in the DLQ may be inspected by a human operator and/or recorded in a logging system (e.g., logging system 107 ).
- the virtual compute system 110 may send an item placed in the DLQ to a control function configured to handle such requests.
- the items placed in the DLQ are processed in the order that the items were placed in the DLQ. In other embodiments, the items placed in the DLQ are processed based on a priority value associated with the respective items.
- the priority values may be assigned to the items when the items are placed in the DLQ.
- the priority values assigned to the items in the DLQ may be modified over time (e.g., by the frontend 120 or another component managing the DLQ).
- the DLQ is internally managed by the virtual compute system 110 .
- the DLQ is managed by the message queue service 105 .
- the DLQ is managed by individual account owners. In such an embodiment, the account owners may review the content stored in the DLQ and may decide to send some of the requests stored in the DLQ back to the virtual compute system 110 for re-processing.
- the frontend 120 may determine which code version is associated with the code execution request that was placed in the DLQ. In such an example, if the frontend 120 determines that the code version is outdated, the frontend 120 may execute a control function configured to perform an automated update (e.g., to the latest stable version) of the code version of the one or more user functions associated with the code execution request.
- an automated update e.g., to the latest stable version
- the frontend 120 may subsequently re-process the request or cause another function or another service to be performed.
- the frontend 120 may provide an indication that the program code has failed to execute properly to a control function configured to generate logs, and the control function may forward the information to the logging service 107 to be recorded in a log associated with the account owner or to the storage service 108 to be stored in permanent storage associated with the account owner.
- the account owner can later examine the item in the log or storage and determine what went wrong with the program code.
- the frontend 120 may perform analytics on the items that are getting rejected and being sent to the DLQ. By doing so, the frontend 120 may detect patterns in the items that are getting rejected and identify why such items are getting rejected. For example, if the frontend 120 determines that 90% of the rejected code execution requests are associated with a version of the code that was recently updated, and that the code execution requests associated with older versions of the code are only getting rejected 5% of the time, the frontend 120 may identify the code version as the reason that the rejected items are getting rejected. In response to identifying the reason, the frontend 120 may execute a control function configured to initiate an automatic rollback of the code version of the program code.
- the frontend 120 may send a notification to the account holder via a messenger service.
- the frontend 120 may perform a pattern matching on the data that are getting rejected and placed in the DLQ.
- the pattern matching may identify similarities that are shared by the items that are getting rejected. For example, the items may be associated with similar user functions, similar file sizes, similar origin addresses, etc. Based on the identified similarities, the frontend 120 may generate a report that is sent to the account owner or stored in the account owner's storage for later review.
- the frontend 120 after identifying one or more potential problems with the items that are being sent to the DLQ, may make any necessary adjustments and try processing the items again. For example, in response to determining that the code version associated with the code execution request caused the code execution request to fail, the frontend 120 may reconfigure the code execution request such that the reconfigured code execution request is associated with an older, stable version of the code, and process the reconfigured code execution through the virtual compute system 110 .
- the account owner may utilize an image resizing function to generate thumbnails of the image files that uploaded by the account owner's customers.
- the frontend 120 may execute a user function (e.g., specified by the account owner) configure to send a message to those customers, indicating that their requests may be getting rejected due to the large file size and that they should try uploading images having a smaller file size.
- a user function e.g., specified by the account owner
- the frontend 120 may reconfigure (e.g., by specifying a different set of permission settings) the code execution requests and/or the program code associated with the code execution requests, and process the reconfigured code execution requests through the virtual compute system 110 .
- the criteria applied for sending an item to the DLQ may differ based on the type of item and/or the type of error generated by the item. For example, code execution requests associated with program codes owned and managed by the virtual compute system 110 may be placed in the DLQ after a different number of tries than code execution requests associated with program codes developed by the account owners. In another example, for one class of account owners, code execution requests may be sent to the DLQ only if the code fails to execute, and for another class of account owners, code execution requests may be sent to the DLQ if any warning is generated, even if the code itself executes successfully.
- the frontend 120 causes code execution requests associated with program codes owned by the virtual compute system 110 to be sent to the DLQ for subsequent analysis by a human operator.
- the frontend 120 upon detecting an error with a particular code execution request, may further determine whether the particular code execution request is associated with a program code that belongs to an account owner or to the virtual compute system 110 .
- the frontend 120 may send the code execution request to the DLQ to be analyzed by a human operator, without modifying the code execution request or the program code.
- the frontend 120 may execute a control function configured to modify the code execution request or the program code itself, and cause the code execution request to be processed again through the virtual compute system 110 .
- the virtual compute system 110 determines whether to send a request to the DLQ and whether to retrieve a request from the DLQ for re-processing (or whether to perform any other actions such as logging, discarding, etc.). In other embodiments, the virtual compute system 110 determines whether to send a request to the DLQ, and another system (e.g., the message queue service 105 or another user-controlled system) determines whether to send a request stored in the DLQ back to the virtual compute system 110 for re-processing (or whether to perform any other actions such as logging, discarding, etc.).
- another system e.g., the message queue service 105 or another user-controlled system
- a user request to execute a program code on the virtual compute system 110 may specify one or more third-party libraries (including native libraries) to be used along with the user code.
- the user request includes a package file (e.g., a compressed file, a ZIP file, a RAR file, etc.) containing the user code and any libraries (and/or identifications of storage locations thereof).
- the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code.
- the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties.
- resource-level constraints e.g., how much memory is to be allocated for executing a particular user code
- the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints.
- the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code.
- Such permission data may be used by the virtual compute system 110 to invoke the user code, pull events from one of the event sources (e.g., auxiliary services 106 ), access private resources (e.g., on a private network), etc.
- the permission data may allow the user code to access other resources (e.g., read objects stored in the storage service 108 , write logs to the logging service 107 , modify data stored in a database service, etc.)
- the user request may specify the behavior that should be adopted for handling the user request.
- the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed.
- the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface).
- the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user.
- the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110 .
- Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.
- the virtual compute system 110 may include multiple frontends 120 .
- a load balancer may be provided to distribute the incoming requests and/or event messages to the multiple frontends 120 , for example, in a round-robin fashion.
- An example architecture of the frontend 120 is described in greater detail below with reference to FIG. 2 .
- the warming pool manager 130 ensures that virtual machine instances are ready to be used by the worker manager 140 when the virtual compute system 110 receives a request to execute user code on the virtual compute system 110 .
- the warming pool manager 130 manages the warming pool 130 A, which is a group (sometimes referred to as a pool) of pre-initialized and pre-configured virtual machine instances that may be used to service incoming user code execution requests.
- the warming pool manager 130 causes virtual machine instances to be booted up on one or more physical computing machines within the virtual compute system 110 and added to the warming pool 130 A prior to receiving a code execution request that will be executed on the virtual machine instance.
- the warming pool manager 130 communicates with an auxiliary virtual machine instance service (e.g., an instance provisioning service 109 ) to create and add new instances to the warming pool 130 A.
- an auxiliary virtual machine instance service e.g., an instance provisioning service 109
- the warming pool manager 130 may cause additional instances to be added to the warming pool 130 A based on the available capacity in the warming pool 130 A to service incoming requests.
- the warming pool manager 130 may utilize both physical computing devices within the virtual compute system 110 and one or more virtual machine instance services to acquire and maintain compute capacity that can be used to service code execution requests received by the frontend 120 .
- the virtual compute system 110 may comprise one or more logical knobs or switches for controlling (e.g., increasing or decreasing) the available capacity in the warming pool 130 A.
- virtual machine instances in the warming pool 130 A can be configured based on a predetermined set of configurations independent from a specific user request to execute a user's code.
- the predetermined set of configurations can correspond to various types of virtual machine instances to execute user codes.
- the warming pool manager 130 can optimize types and numbers of virtual machine instances in the warming pool 130 A based on one or more metrics related to current or previous user code executions.
- instances may have operating systems (OS) and/or language runtimes loaded thereon.
- the warming pool 130 A managed by the warming pool manager 130 comprises instances 152 , 154 .
- the instance 152 includes an OS 152 A and a runtime 152 B.
- the instance 154 includes an OS 154 A.
- the instances in the warming pool 130 A may also include containers (which may further contain copies of operating systems, runtimes, user codes, etc.), which are described in greater detail below.
- the instance 152 is shown in FIG. 1 to include a single runtime, in other embodiments, the instances depicted in FIG. 1 may include two or more runtimes, each of which may be used for running a different user code.
- the warming pool manager 130 may maintain a list of instances in the warming pool 130 A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.
- the virtual machine instances in the warming pool 130 A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 130 A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 130 A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 130 A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations.
- two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code.
- multiple warming pools 130 A each having identically-configured virtual machine instances, are provided.
- the warming pool manager 130 may pre-configure the virtual machine instances in the warming pool 130 A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the virtual compute system 110 .
- the operating conditions may include program languages in which the potential user codes may be written.
- such languages may include Java, JavaScript, Python, Ruby, and the like.
- the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes.
- the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code.
- the service-level agreement (SLA) for utilizing the services provided by the virtual compute system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the virtual compute system 110 may assume that the requests satisfy the set of conditions in handling the requests.
- operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., HTTP vs. a triggered event); the timeout for the request (e.g., threshold time after which the request may be terminated); security policies (e.g., may control which instances in the warming pool 130 A are usable by which user); etc.
- the worker manager 140 manages the instances used for servicing incoming code execution requests.
- the worker manager 140 manages the active pool 140 A, which is a group (sometimes referred to as a pool) of virtual machine instances that are currently assigned to one or more users.
- the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance.
- the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's code in a container on a particular instance after another member's code has been executed in another container on the same instance does not pose security risks.
- the worker manager 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users.
- An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the virtual compute system 110 ).
- the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical).
- a request does not differentiate between the different users of the group and simply indicates the group to which the users associated with the requests belong.
- instances may have operating systems (OS), language runtimes, and containers.
- the containers may have individual copies of the OS and the runtimes and user codes loaded thereon.
- the active pool 140 A managed by the worker manager 140 includes the instances 156 , 158 .
- the instance 156 has an OS 156 A, runtimes 156 B, 156 C, and containers 156 D, 156 E.
- the container 156 D includes a copy of the OS 156 A, a copy of the runtime 156 B, and a copy of a code 156 D- 1 .
- the container 156 E includes a copy of the OS 156 A, a copy of the runtime 156 C, and a copy of a code 156 E- 1 .
- the instance 158 has an OS 158 A, runtimes 158 B, 158 C, 158 E, 158 F, a container 158 D, and codes 158 G, 158 H.
- the container 158 D has a copy of the OS 158 A, a copy of the runtime 158 B, and a copy of a code 158 D- 1 .
- instances may have user codes loaded thereon, and containers within those instances may also have user codes loaded therein.
- the worker manager 140 may maintain a list of instances in the active pool 140 A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.
- the worker manager 140 may have access to a list of instances in the warming pool 130 A (e.g., including the number and type of instances). In other embodiments, the worker manager 140 requests compute capacity from the warming pool manager 130 without having knowledge of the virtual machine instances in the warming pool 130 A.
- user codes are executed in isolated compute systems referred to as containers (e.g., containers 156 D, 156 E, 158 D).
- Containers are logical units created within a virtual machine instance using the resources available on that instance.
- the worker manager 140 may, based on information specified in the request to execute user code, create a new container or locate an existing container in one of the instances in the active pool 140 A and assigns the container to the request to handle the execution of the user code associated with the request.
- such containers are implemented as Linux containers.
- the virtual machine instances in the active pool 140 A may have one or more containers created thereon and have one or more program codes associated with the user loaded thereon (e.g., either in one of the containers or in a local cache of the instance).
- Each container may have credential information made available therein, so that user codes executing on the container have access to whatever the corresponding credential information allows them to access.
- the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110 . For example, if there exists a particular virtual machine instance in the active pool 140 A that has a container with the same user code loaded therein (e.g., code 156 D- 1 shown in the container 156 D), the worker manager 140 may assign the container to the request and cause the user code to be executed in the container.
- the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container.
- the worker manager 140 may determine whether any of the instances in the active pool 140 A is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to the request. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager 140 may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager 140 may load the particular library and the user code onto the container and use the container to execute the user code.
- the worker manager 140 pulls a new virtual machine instance from the warming pool 130 A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.
- the user code may be downloaded from an auxiliary service 106 such as the storage service 108 of FIG. 1 .
- Data 108 A illustrated in FIG. 1 may comprise user codes uploaded by one or more users, metadata associated with such user codes, or any other data utilized by the virtual compute system 110 to perform one or more techniques described herein.
- the virtual environment 100 may include other levels of storage systems from which the user code may be downloaded.
- each instance may have one or more storage systems either physically (e.g., a local storage resident on the physical computing system on which the instance is running) or logically (e.g., a network-attached storage system in network communication with the instance and provided within or outside of the virtual compute system 110 ) associated with the instance on which the container is created.
- the code may be downloaded from a web-based data store provided by the storage service 108 .
- the warming pool manager 130 or the worker manger 140 takes the instance out of the warming pool 130 A and assigns it to the user associated with the request.
- the assigned virtual machine instance is taken out of the warming pool 130 A and placed in the active pool 140 A.
- the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources.
- multiple containers belonging to different users may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity.
- the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 104 ).
- a web-based network storage e.g., accessible via the network 104.
- the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user.
- the determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released.
- the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
- the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests.
- the virtual compute system 110 may communicate with the monitoring/logging/billing services 107 .
- the monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110 , such as statuses of containers and instances on the virtual compute system 110 ; a logging service for managing logging information received from the virtual compute system 110 , such as activities performed by containers and instances on the virtual compute system 110 ; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service).
- the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110 .
- the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110 .
- the monitoring, logging, and billing services 107 may be provided as separate services.
- the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., those in the active pool 140 A). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks.
- the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers.
- the frequency of the health checks may be adjusted based on user requests.
- the worker manager 140 may perform similar health checks on the instances and/or containers in the warming pool 130 A.
- the instances and/or the containers in the warming pool 130 A may be managed either together with those instances and containers in the active pool 140 A or separately.
- the warming pool manager 130 instead of the worker manager 140 , may perform the health checks described above on the instances and/or the containers in the warming pool 130 A.
- the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the frontend 120 ).
- a time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend).
- Another time period can be determined as the difference in time between (1) detection of an event on an event-triggering service and (2a) receiving a request to execute the user code (e.g., received by a frontend) and/or (2b) initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user).
- Another time period can be determined as the difference in time between (1) retrieving, accessing, or receiving an event message (e.g., directly or indirectly from on an event-triggering service) and (2) initiating processing of a request to execute the user code (e.g., in a container on a virtual machine instance associated with the user).
- the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration.
- the predetermined duration is 500 ms.
- the predetermined duration is 300 ms.
- the predetermined duration is 100 ms.
- the predetermined duration is 50 ms.
- the predetermined duration is 10 ms.
- the predetermined duration may be any value chosen from the range of 10 ms to 500 ms.
- the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied.
- the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool 140 A at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool 140 A at the time the request is received; (3) the active pool 140 A contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 130 A has capacity to handle the request at the time the request is received.
- the worker manager 140 may include an instance allocation unit for finding compute capacity (e.g., containers) to service incoming code execution requests and a user code execution module for facilitating the execution of user codes on those containers.
- compute capacity e.g., containers
- user code execution module for facilitating the execution of user codes on those containers.
- FIG. 2 depicts a general architecture of a computing system (referenced as frontend 120 ) that processes (e.g., receives, generates, and/or routes) event messages for user requests to execute program codes in the virtual compute system 110 .
- the general architecture of the frontend 120 depicted in FIG. 2 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure.
- the hardware modules may be implemented with physical electronic devices, as discussed in greater detail below.
- the frontend 120 may include many more (or fewer) elements than those shown in FIG. 2 . It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to implement one or more of the other components illustrated in FIG. 1 .
- the frontend 120 includes a processing unit 190 , a network interface 192 , a computer readable medium drive 194 , an input/output device interface 196 , all of which may communicate with one another by way of a communication bus.
- the network interface 192 may provide connectivity to one or more networks or computing systems.
- the processing unit 190 may thus receive information and instructions from other computing systems or services via the network 104 .
- the processing unit 190 may also communicate to and from memory 180 and further provide output information for an optional display (not shown) via the input/output device interface 196 .
- the input/output device interface 196 may also accept input from an optional input device (not shown).
- the memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure.
- the memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media.
- the memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the worker manager 140 .
- the memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure.
- the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device.
- the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
- the memory 180 may include an event/request processing unit 186 which may include an event/request handling unit 186 A and an event/request routing unit 186 B that may be executed by the processing unit 190 .
- the user interface unit 182 , the event/request handling unit 186 A, and the event/request routing unit 186 B individually or collectively implement various aspects of the present disclosure, e.g., processing a code execution request (or an event message for a request to execute a program code), detecting a trend in the processing of the code execution request, generating a request to execute another program code based on the detected trend, etc. as described herein.
- the event/request handling unit 186 A may determine that one or more code execution requests have produced unexpected results and select one or more actions to be performed in response to such unexpected results. For example, the event/request handling unit 186 A may determine that the amount of available resources associated with a program code has fallen below a threshold level, and determine that a control function that is configured to allocate additional resources for use by the program code should be executed.
- the event/request routing unit 186 B may perform the actions determined by the event/request handling unit 186 A. For example, the event/request routing unit 186 B may route, for example, code execution requests that were not processed successfully to the dynamic DLQ. In another example, the event/request routing unit 186 B may cause a notification to be sent to a user, or a control function configured to either modify the program code or adjust certain parameters or configuration data associated with the program code to be executed.
- event/request handling unit 186 A and the event/request routing unit 186 B are shown in FIG. 2 as part of the frontend 120 , in other embodiments, all or a portion of the event/request handling unit 186 A and the event/request routing unit 186 B may be implemented by other components of the virtual compute system 110 and/or another computing device.
- another computing device in communication with the virtual compute system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the frontend 120 .
- the frontend 120 may further include components other than those illustrated in FIG. 2 .
- routine 300 implemented by one or more components of the virtual compute system 110 (e.g., the frontend 120 ) will be described. Although routine 300 is described with regard to implementation by the frontend 120 , one skilled in the relevant art will appreciate that alternative components may implement routine 300 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
- the frontend 120 receives a plurality of code execution requests associated with a first program code.
- the code execution requests may arrive at the frontend 120 in the form of event messages that are associated with (or configured to be received by) the first program code.
- event messages may include an identity of the first program code.
- the event messages and/or the code execution requests may include one or more first input parameters to be used for executing the first program code.
- the first program code may be associated with a set of configuration data that is specified for the first program code by, for example, the account owner associated with the first program code.
- the configuration data may include the resources allocated for executing the first program code.
- the resources may comprise one or more of CPU, memory, network, input/output (I/O), a maximum number of requests, or a maximum execution duration, or any other computing resources or constraints associated with the first program code.
- the frontend 120 processes the plurality of code execution requests using the one or more first input parameters and the configuration data. For example, the frontend 120 may cause the first program code to be executed for each of the plurality of code execution requests, by using the first input parameters and the configuration data. In another example, the frontend 120 causes the first program code to be executed for only a subset of the plurality of code execution requests, and determines that other code execution requests have failed due to, for example, an error in the provided input parameters or an insufficient amount of resources allocated to the first program code.
- the frontend 120 detects a trend in the processing of the plurality of code execution requests.
- the detected trend may be that code execution requests received at a certain time of day are more likely to fail.
- the detected trend may be that 95% of the code execution requests associated with the latest version of the first program code have failed so far.
- detecting a trend comprises determining whether the attempted code execution has produced an unexpected result (e.g., failure, error, warning, etc.) or satisfied any triggering conditions (e.g., failed three times in a row, etc.).
- the frontend 120 selects an action based on the detected trend.
- the selected action may be one of creating a log detailing the trend or unexpected result, automatically modifying the first program code or parameters associated with the first program code, sending a warning message or notification to the account owner, sending the request to a separate storage area for additional processing, executing a control function to make adjustments (e.g., perform an update, a rollback, etc.) to place the first program code in a better state for execution, etc.
- the frontend 120 may determine that the latest version of the first program code may not be stable and that a rollback may need to be performed.
- the frontend 120 causes a second program code configured to perform the selected action to be executed.
- the frontend 120 may determine one or more second input parameters that are used for executing the second program code.
- the second program code may be configured to perform any one of creating a log detailing the trend or unexpected result, automatically modifying the first program code or parameters associated with the first program code, sending a warning message or notification to the account owner, sending the request to a separate storage area for additional processing, executing a control function to make adjustments (e.g., perform an update, a rollback, etc.) to place the first program code in a better state for execution, etc.
- the second program code may be configured to modify at least one of the first program code or the configuration data associated with the first program code. For example, if the frontend 120 determined that the amount of memory allocated for executing the first program code is too low and is causing the code execution requests associated with the first program code to fail, the frontend 120 may cause the second program code to be executed, where the second program code is configured to increase the amount of memory allocated for executing the first program code.
- the second program code may be configured to send the request, after the request has failed to process successfully, to a separate storage area (e.g., a dynamic DLQ) configured to store requests for further analysis/processing.
- the requests that are sent to such a separate storage area may be sent back to the frontend 120 for re-processing, may generate notifications to the account owner, or may be discarded.
- a process for sending a request to a DLQ is described in greater detail below with reference to FIG. 4 .
- routine 300 of FIG. 3 has been described above with reference to blocks 302 - 310 , the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure. Further, the routine 300 of FIG. 3 may include different processes or routines which may be performed in a different order.
- routine 400 implemented by one or more components of the virtual compute system 110 (e.g., the frontend 120 ) will be described.
- routine 400 is described with regard to implementation by the frontend 120 , one skilled in the relevant art will appreciate that alternative components may implement routine 400 or that one or more of the blocks may be implemented by a different component or in a distributed manner.
- the frontend 120 receives a code execution request associated with a program code.
- the code execution requests may arrive at the frontend 120 in the form of an event message that is associated with (or configured to be received by) the program code.
- event messages may include an identity of the program code and one or more input parameters to the program code.
- the program code may be associated with a set of configuration data that is specified for the program code by, for example, the account owner associated with the program code.
- the configuration data may include the resources allocated for executing the program code.
- the resources may comprise one or more of CPU, memory, network, input/output (I/O), a maximum number of requests, or a maximum execution duration, or any other computing resources or constraints associated with the program code.
- the frontend 120 processes the code execution request using the one or more input parameters and the configuration data.
- the frontend 120 may cause the program code to be executed (e.g., either successfully or unsuccessfully) using the input parameters and the configuration data associated with the program code.
- the frontend 120 determines whether the execution of the program code (or the attempted execution thereof) has produced an unexpected result.
- the unexpected result may be any one of an error, a warning, or any result other than a successful execution of the program code. If the frontend 120 determines that the execution of the program code has not produced an unexpected result, the routine proceeds to block 402 to receive and process additional requests. Otherwise, the routine 400 proceeds to block 408 .
- the frontend 120 determines whether the request should be sent to a DLQ (or any other separate storage area that is either internal or external to the virtual compute system 110 ). If the frontend 120 determines that the request should not be sent to a DLQ, the routine 400 proceeds to block 410 to perform an alternative action.
- the alternative action may include, for example, any one of creating a log detailing the unexpected result, automatically modifying the program code or the configuration data associated with the program code, sending a warning message or notification to the account owner, executing a control function to make adjustments (e.g., perform an update, a rollback, etc.) to place the first program code in a better state for execution, discarding the request, etc. If the frontend 120 determines that the request should be sent to a DLQ, the routine 400 proceeds to block 412 to send the request to the DLQ.
- the frontend 120 determines whether a request stored in the DLQ should be re-processed.
- the request considered for re-processing may be the request that was sent to the DLQ at block 412 .
- the request considered for re-processing may be a different request that already existed in the DLQ with the request was sent to the DLQ at block 412 .
- the frontend 120 performs other actions or processes other jobs between blocks 412 and 414 .
- the same request may be considered for re-processing at block 414 after a threshold amount of time (e.g., 5 minutes, 30 minutes, 2 hours, etc.) has passed. If the frontend 120 determines that the request stored in the DLQ should be re-processed, the routine 400 proceeds to block 404 to process the request. Otherwise, the frontend 120 performs an alternative action at block 416 .
- a threshold amount of time e.g., 5 minutes, 30 minutes, 2 hours, etc.
- the alternative action may be any one of creating a log detailing the unexpected result, automatically modifying the program code or the configuration data associated with the program code, sending a warning message or notification to the account owner, executing a control function to make adjustments (e.g., perform an update, a rollback, etc.) to place the first program code in a better state for execution, discarding the request, etc.
- a control function to make adjustments (e.g., perform an update, a rollback, etc.) to place the first program code in a better state for execution, discarding the request, etc.
- routine 400 of FIG. 4 has been described above with reference to blocks 402 - 416 , the embodiments described herein are not limited as such, and one or more blocks may be omitted, modified, or switched without departing from the spirit of the present disclosure. Further, the routine 400 of FIG. 4 may include different processes or routines which may be performed in a different order.
- Conditional language such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Stored Programmes (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Debugging And Monitoring (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
application Ser. No. | Title |
14/502,648 | PROGRAMMATIC EVENT DETECTION AND |
MESSAGE GENERATION FOR REQUESTS TO | |
EXECUTE PROGRAM CODE | |
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/595,774 US10824484B2 (en) | 2014-09-30 | 2017-05-15 | Event-driven computing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/502,648 US9323556B2 (en) | 2014-09-30 | 2014-09-30 | Programmatic event detection and message generation for requests to execute program code |
US14/869,879 US9652306B1 (en) | 2014-09-30 | 2015-09-29 | Event-driven computing |
US15/595,774 US10824484B2 (en) | 2014-09-30 | 2017-05-15 | Event-driven computing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/869,879 Continuation US9652306B1 (en) | 2014-09-30 | 2015-09-29 | Event-driven computing |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170371724A1 US20170371724A1 (en) | 2017-12-28 |
US10824484B2 true US10824484B2 (en) | 2020-11-03 |
Family
ID=55584498
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/502,648 Active US9323556B2 (en) | 2014-09-30 | 2014-09-30 | Programmatic event detection and message generation for requests to execute program code |
US14/869,879 Active US9652306B1 (en) | 2014-09-30 | 2015-09-29 | Event-driven computing |
US15/136,602 Active US9760387B2 (en) | 2014-09-30 | 2016-04-22 | Programmatic event detection and message generation for requests to execute program code |
US15/595,774 Active US10824484B2 (en) | 2014-09-30 | 2017-05-15 | Event-driven computing |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/502,648 Active US9323556B2 (en) | 2014-09-30 | 2014-09-30 | Programmatic event detection and message generation for requests to execute program code |
US14/869,879 Active US9652306B1 (en) | 2014-09-30 | 2015-09-29 | Event-driven computing |
US15/136,602 Active US9760387B2 (en) | 2014-09-30 | 2016-04-22 | Programmatic event detection and message generation for requests to execute program code |
Country Status (6)
Country | Link |
---|---|
US (4) | US9323556B2 (en) |
EP (2) | EP3201768B1 (en) |
JP (1) | JP6352535B2 (en) |
CN (1) | CN107111508B (en) |
CA (1) | CA2962633C (en) |
WO (1) | WO2016053973A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
US11119809B1 (en) | 2019-06-20 | 2021-09-14 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11126469B2 (en) | 2014-12-05 | 2021-09-21 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US11132213B1 (en) | 2016-03-30 | 2021-09-28 | Amazon Technologies, Inc. | Dependency-based process of pre-existing data sets at an on demand code execution environment |
US11146569B1 (en) | 2018-06-28 | 2021-10-12 | Amazon Technologies, Inc. | Escalation-resistant secure network services using request-scoped authentication information |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US11263034B2 (en) | 2014-09-30 | 2022-03-01 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US11354169B2 (en) | 2016-06-29 | 2022-06-07 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US11360793B2 (en) | 2015-02-04 | 2022-06-14 | Amazon Technologies, Inc. | Stateful virtual compute system |
US11388210B1 (en) | 2021-06-30 | 2022-07-12 | Amazon Technologies, Inc. | Streaming analytics using a serverless compute system |
US11461124B2 (en) | 2015-02-04 | 2022-10-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US11467890B2 (en) | 2014-09-30 | 2022-10-11 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US11550713B1 (en) | 2020-11-25 | 2023-01-10 | Amazon Technologies, Inc. | Garbage collection in distributed systems using life cycled storage roots |
US11561811B2 (en) | 2014-09-30 | 2023-01-24 | Amazon Technologies, Inc. | Threading as a service |
US11593270B1 (en) | 2020-11-25 | 2023-02-28 | Amazon Technologies, Inc. | Fast distributed caching using erasure coded object parts |
US11714682B1 (en) | 2020-03-03 | 2023-08-01 | Amazon Technologies, Inc. | Reclaiming computing resources in an on-demand code execution system |
US11836516B2 (en) | 2018-07-25 | 2023-12-05 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11861386B1 (en) | 2019-03-22 | 2024-01-02 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11875173B2 (en) | 2018-06-25 | 2024-01-16 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US11943093B1 (en) | 2018-11-20 | 2024-03-26 | Amazon Technologies, Inc. | Network connection recovery after virtual machine transition in an on-demand network code execution system |
US11968280B1 (en) | 2021-11-24 | 2024-04-23 | Amazon Technologies, Inc. | Controlling ingestion of streaming data to serverless function executions |
US12015603B2 (en) | 2021-12-10 | 2024-06-18 | Amazon Technologies, Inc. | Multi-tenant mode for serverless code execution |
Families Citing this family (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8782434B1 (en) | 2010-07-15 | 2014-07-15 | The Research Foundation For The State University Of New York | System and method for validating program execution at run-time |
US9122873B2 (en) | 2012-09-14 | 2015-09-01 | The Research Foundation For The State University Of New York | Continuous run-time validation of program execution: a practical approach |
US9069782B2 (en) | 2012-10-01 | 2015-06-30 | The Research Foundation For The State University Of New York | System and method for security and privacy aware virtual machine checkpointing |
US9323556B2 (en) | 2014-09-30 | 2016-04-26 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US10048974B1 (en) | 2014-09-30 | 2018-08-14 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US9715402B2 (en) | 2014-09-30 | 2017-07-25 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US9256467B1 (en) | 2014-11-11 | 2016-02-09 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US10516733B2 (en) * | 2014-11-25 | 2019-12-24 | Auth0, Inc. | Multi-tenancy via code encapsulated in server requests |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9471775B1 (en) | 2015-02-04 | 2016-10-18 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9930103B2 (en) | 2015-04-08 | 2018-03-27 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US9785476B2 (en) | 2015-04-08 | 2017-10-10 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US10042660B2 (en) | 2015-09-30 | 2018-08-07 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US9830175B1 (en) * | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US10754701B1 (en) | 2015-12-16 | 2020-08-25 | Amazon Technologies, Inc. | Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions |
US10013267B1 (en) | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US9811363B1 (en) * | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US9910713B2 (en) * | 2015-12-21 | 2018-03-06 | Amazon Technologies, Inc. | Code execution request routing |
US10067801B1 (en) | 2015-12-21 | 2018-09-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US9858048B1 (en) * | 2016-03-16 | 2018-01-02 | Amazon Technologies, Inc. | Deterministic execution for visually developed operations |
US10162672B2 (en) | 2016-03-30 | 2018-12-25 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US10891145B2 (en) | 2016-03-30 | 2021-01-12 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US10069869B2 (en) | 2016-05-17 | 2018-09-04 | Amazon Technologies, Inc. | Versatile autoscaling |
US10452440B1 (en) * | 2016-06-07 | 2019-10-22 | PC Drivers Headquarters, Inc. | Systems and methods of optimized tuning of resources |
CN107508787B (en) * | 2016-06-14 | 2019-03-01 | 腾讯科技(深圳)有限公司 | A kind of task executing method, apparatus and system |
US9900302B2 (en) * | 2016-06-22 | 2018-02-20 | FinancialForce.com, Inc. | Seamless authentication for an application development platform |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
CN109564525B (en) | 2016-06-28 | 2023-05-02 | 亚马逊技术有限公司 | Asynchronous task management in an on-demand network code execution environment |
US10282229B2 (en) | 2016-06-28 | 2019-05-07 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US9977691B2 (en) | 2016-06-29 | 2018-05-22 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions based on communication between frontends |
EP3479229A1 (en) | 2016-06-30 | 2019-05-08 | Amazon Technologies Inc. | On-demand code execution using cross-account aliases |
US10277708B2 (en) | 2016-06-30 | 2019-04-30 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10203990B2 (en) | 2016-06-30 | 2019-02-12 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10884787B1 (en) | 2016-09-23 | 2021-01-05 | Amazon Technologies, Inc. | Execution guarantees in an on-demand network code execution system |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US20180091449A1 (en) * | 2016-09-26 | 2018-03-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Event-driven policy-based distributed container management system |
US11119813B1 (en) | 2016-09-30 | 2021-09-14 | Amazon Technologies, Inc. | Mapreduce implementation using an on-demand network code execution system |
US20180113748A1 (en) * | 2016-10-21 | 2018-04-26 | Hewlett Packard Enterprise Development Lp | Automated configuration of virtual infrastructure |
US20180121260A1 (en) * | 2016-10-31 | 2018-05-03 | Intuit Inc. | Defining variability schemas in an application programming interface (api) |
US10430249B2 (en) * | 2016-11-02 | 2019-10-01 | Red Hat Israel, Ltd. | Supporting quality-of-service for virtual machines based on operational events |
US10409642B1 (en) | 2016-11-22 | 2019-09-10 | Amazon Technologies, Inc. | Customer resource monitoring for versatile scaling service scaling policy recommendations |
US10216540B2 (en) | 2016-11-28 | 2019-02-26 | Amazon Technologies, Inc. | Localized device coordinator with on-demand code execution capabilities |
CN110462589B (en) * | 2016-11-28 | 2024-02-02 | 亚马逊技术有限公司 | On-demand code execution in a local device coordinator |
US10372486B2 (en) | 2016-11-28 | 2019-08-06 | Amazon Technologies, Inc. | Localized device coordinator |
US10608973B2 (en) | 2016-11-28 | 2020-03-31 | Amazon Technologies, Inc. | Embedded codes in messaging protocol communications |
US10417049B2 (en) | 2016-11-28 | 2019-09-17 | Amazon Technologies, Inc. | Intra-code communication in a localized device coordinator |
US10452439B2 (en) | 2016-11-28 | 2019-10-22 | Amazon Technologies, Inc. | On-demand code execution in a localized device coordinator |
US10637817B2 (en) | 2016-11-28 | 2020-04-28 | Amazon Technologies, Inc. | Managing messaging protocol communications |
JP6768158B2 (en) | 2016-11-28 | 2020-10-14 | アマゾン テクノロジーズ インコーポレイテッド | Localized device coordinator with on-demand code execution capability |
US10783016B2 (en) | 2016-11-28 | 2020-09-22 | Amazon Technologies, Inc. | Remote invocation of code execution in a localized device coordinator |
JP2020509792A (en) * | 2017-01-11 | 2020-04-02 | エム・ゼット・アイ・ピィ・ホールディングス・リミテッド・ライアビリティ・カンパニーMz Ip Holdings, Llc | System and method for managing dynamic design data for a virtual environment |
US10776081B2 (en) * | 2017-03-21 | 2020-09-15 | O.C. Tanner Company | Systems and methods for utilizing webhooks integrated in platform-as-a-service supported application development and deployment |
CN110431576B (en) * | 2017-04-07 | 2024-01-23 | 金伯利-克拉克环球有限公司 | Method and system for allocating resources in response to social media sessions |
EP3388943A1 (en) * | 2017-04-13 | 2018-10-17 | Nokia Solutions and Networks Oy | Method and apparatus for managing events in a network that adopts event-driven programming framework |
US11048995B2 (en) * | 2017-05-16 | 2021-06-29 | Google Llc | Delayed responses by computational assistant |
JP6677677B2 (en) * | 2017-06-21 | 2020-04-08 | 株式会社東芝 | Information processing apparatus, information processing system, information processing method and program |
US10725763B1 (en) | 2017-06-28 | 2020-07-28 | Amazon Technologies, Inc. | Update and rollback of configurations in a cloud-based architecture |
US10379838B1 (en) * | 2017-06-28 | 2019-08-13 | Amazon Technologies, Inc. | Update and rollback of code and API versions |
US10409654B2 (en) | 2017-07-13 | 2019-09-10 | International Business Machines Corporation | Facilitating event-driven processing using unikernels |
US10565044B2 (en) * | 2017-11-14 | 2020-02-18 | Sap Se | Message handling related to non-parallelizable functionality |
CN109840103B (en) * | 2017-11-27 | 2022-10-25 | 西门子(中国)有限公司 | Method and device for updating application program container and storage medium |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
US10733085B1 (en) | 2018-02-05 | 2020-08-04 | Amazon Technologies, Inc. | Detecting impedance mismatches due to cross-service calls |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
US10831898B1 (en) | 2018-02-05 | 2020-11-10 | Amazon Technologies, Inc. | Detecting privilege escalations in code including cross-service calls |
US10725752B1 (en) | 2018-02-13 | 2020-07-28 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10552141B1 (en) * | 2018-02-26 | 2020-02-04 | Amazon Technologies, Inc. | Upgrading an execution environment for event-driven functions |
US10776091B1 (en) | 2018-02-26 | 2020-09-15 | Amazon Technologies, Inc. | Logging endpoint in an on-demand code execution system |
US10884788B2 (en) | 2018-04-03 | 2021-01-05 | Amazon Technologies, Inc. | On-demand code execution with limited memory footprint |
WO2019195086A1 (en) | 2018-04-03 | 2019-10-10 | Walmart Apollo, Llc | Customized service request permission control system |
US10120926B1 (en) * | 2018-05-31 | 2018-11-06 | Capital One Services, Llc | Attribute sharing platform for data processing systems |
CN109032884B (en) * | 2018-06-11 | 2021-05-28 | 平安科技(深圳)有限公司 | Monitoring data processing method, server and computer readable storage medium |
CN108958930A (en) * | 2018-06-19 | 2018-12-07 | 北京百度网讯科技有限公司 | Processing method, device and the equipment of container resource |
CN112513813B (en) | 2018-06-25 | 2024-10-08 | 亚马逊技术有限公司 | Performing auxiliary functions in an on-demand network code execution system |
US10649749B1 (en) | 2018-06-26 | 2020-05-12 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US10949237B2 (en) | 2018-06-29 | 2021-03-16 | Amazon Technologies, Inc. | Operating system customization in an on-demand network code execution system |
US11316857B2 (en) * | 2018-07-11 | 2022-04-26 | Cyber Ark Software Ltd. | Automated creation of dynamic privileged access resources |
US11716264B2 (en) * | 2018-08-13 | 2023-08-01 | Cisco Technology, Inc. | In situ triggered function as a service within a service mesh |
CN109189463A (en) * | 2018-08-28 | 2019-01-11 | 杭州百腾教育科技有限公司 | The control method and control device that a kind of pair of program code is judged automatically |
US11449815B2 (en) * | 2018-11-08 | 2022-09-20 | Airslate, Inc. | Automated electronic document workflows |
US11200331B1 (en) | 2018-11-21 | 2021-12-14 | Amazon Technologies, Inc. | Management of protected data in a localized device coordinator |
US11327814B2 (en) * | 2018-11-28 | 2022-05-10 | International Business Machines Corporation | Semaphores for serverless computing |
US10884812B2 (en) | 2018-12-13 | 2021-01-05 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
CN110032568B (en) * | 2018-12-20 | 2020-05-12 | 阿里巴巴集团控股有限公司 | Data structure reading and updating method and device, and electronic equipment |
US11232192B2 (en) * | 2019-01-03 | 2022-01-25 | NeuVector, Inc. | Automatic deployment of application security policy using application manifest and dynamic process analysis in a containerization environment |
PT3912312T (en) | 2019-01-15 | 2022-08-04 | Ericsson Telefon Ab L M | Providing communication services using sets of i/o devices |
CN109873863B (en) * | 2019-01-18 | 2021-10-15 | 北京百度网讯科技有限公司 | Asynchronous calling method and device of service |
US11372654B1 (en) | 2019-03-25 | 2022-06-28 | Amazon Technologies, Inc. | Remote filesystem permissions management for on-demand code execution |
CN109992418B (en) * | 2019-03-25 | 2023-01-06 | 华南理工大学 | SLA-aware resource priority scheduling method and system for multi-tenant big data platform |
CN119576474A (en) * | 2019-03-27 | 2025-03-07 | 亚马逊技术有限公司 | Continuing workflow |
US10958713B2 (en) * | 2019-04-30 | 2021-03-23 | Verizon Digital Media Services Inc. | Function manager for an edge compute network |
US11909517B2 (en) * | 2019-05-29 | 2024-02-20 | CEO Vision, Inc | Systems and methods for secure, low bandwidth replicated virtual worlds for shared space computing |
WO2020264431A1 (en) | 2019-06-28 | 2020-12-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11115404B2 (en) | 2019-06-28 | 2021-09-07 | Amazon Technologies, Inc. | Facilitating service connections in serverless code executions |
US11669365B1 (en) | 2019-08-26 | 2023-06-06 | Amazon Technologies, Inc. | Task pool for managed compute instances |
WO2021061605A1 (en) | 2019-09-27 | 2021-04-01 | Amazon Technologies, Inc. | On-demand execution of object filter code in output path of object storage service |
US11055112B2 (en) | 2019-09-27 | 2021-07-06 | Amazon Technologies, Inc. | Inserting executions of owner-specified code into input/output path of object storage service |
US11550944B2 (en) | 2019-09-27 | 2023-01-10 | Amazon Technologies, Inc. | Code execution environment customization system for object storage service |
US11250007B1 (en) | 2019-09-27 | 2022-02-15 | Amazon Technologies, Inc. | On-demand execution of object combination code in output path of object storage service |
CN114586011B (en) | 2019-09-27 | 2023-06-06 | 亚马逊技术有限公司 | Inserting an owner-specified data processing pipeline into an input/output path of an object storage service |
US11263220B2 (en) | 2019-09-27 | 2022-03-01 | Amazon Technologies, Inc. | On-demand execution of object transformation code in output path of object storage service |
US11416628B2 (en) | 2019-09-27 | 2022-08-16 | Amazon Technologies, Inc. | User-specific data manipulation system for object storage service based on user-submitted code |
US11106477B2 (en) | 2019-09-27 | 2021-08-31 | Amazon Technologies, Inc. | Execution of owner-specified code during input/output path to object storage service |
US11360948B2 (en) | 2019-09-27 | 2022-06-14 | Amazon Technologies, Inc. | Inserting owner-specified data processing pipelines into input/output path of object storage service |
US11023311B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | On-demand code execution in input path of data uploaded to storage service in multiple data portions |
US11023416B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | Data access control system for object storage service based on owner-defined code |
US11656892B1 (en) | 2019-09-27 | 2023-05-23 | Amazon Technologies, Inc. | Sequential execution of user-submitted code and native functions |
US11386230B2 (en) | 2019-09-27 | 2022-07-12 | Amazon Technologies, Inc. | On-demand code obfuscation of data in input path of object storage service |
US11394761B1 (en) | 2019-09-27 | 2022-07-19 | Amazon Technologies, Inc. | Execution of user-submitted code on a stream of data |
WO2021061932A1 (en) | 2019-09-27 | 2021-04-01 | Amazon Technologies, Inc. | User-specific data manipulation system for object storage service based on user-submitted code |
EP4035047A1 (en) * | 2019-09-27 | 2022-08-03 | Amazon Technologies, Inc. | On-demand code obfuscation of data in input path of object storage service |
US10908927B1 (en) | 2019-09-27 | 2021-02-02 | Amazon Technologies, Inc. | On-demand execution of object filter code in output path of object storage service |
US10996961B2 (en) | 2019-09-27 | 2021-05-04 | Amazon Technologies, Inc. | On-demand indexing of data in input path of object storage service |
US11743155B2 (en) * | 2019-11-14 | 2023-08-29 | Trideum Corporation | Systems and methods of monitoring and controlling remote assets |
EP4066112A1 (en) | 2019-11-27 | 2022-10-05 | Amazon Technologies Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
US10942795B1 (en) | 2019-11-27 | 2021-03-09 | Amazon Technologies, Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
CN111158928B (en) * | 2019-12-18 | 2024-04-05 | 东软集团股份有限公司 | Distributed system and communication method |
US11163619B2 (en) * | 2019-12-30 | 2021-11-02 | Motorola Solutions, Inc. | Timer-based message handling for executing stateful services in a stateless environment |
CN113127162B (en) * | 2019-12-31 | 2022-04-26 | 阿里巴巴集团控股有限公司 | Automatic task execution method and device, electronic equipment and computer storage medium |
US11171853B2 (en) * | 2020-01-30 | 2021-11-09 | Ciena Corporation | Constraint-based event-driven telemetry |
US11188391B1 (en) | 2020-03-11 | 2021-11-30 | Amazon Technologies, Inc. | Allocating resources to on-demand code executions under scarcity conditions |
US11775640B1 (en) | 2020-03-30 | 2023-10-03 | Amazon Technologies, Inc. | Resource utilization-based malicious task detection in an on-demand code execution system |
US11582025B2 (en) * | 2020-09-29 | 2023-02-14 | Amazon Technologies, Inc. | Efficient deduplication using block-based convergent encryption |
US12248435B2 (en) | 2021-03-31 | 2025-03-11 | Nutanix, Inc. | File analytics systems and methods |
US12175270B2 (en) * | 2021-02-25 | 2024-12-24 | The Bank Of New York Mellon | System and method of code execution at a virtual machine allowing for extendibility and monitoring of customized applications and services |
US12135698B2 (en) * | 2021-03-15 | 2024-11-05 | Microsoft Technology Licensing, Llc | Distributed deduplication of incoming cloud computing requests |
US11973827B2 (en) | 2021-03-15 | 2024-04-30 | Microsoft Technology Licensing, Llc. | Cloud computing system for mailbox identity migration |
US12197398B2 (en) | 2021-03-31 | 2025-01-14 | Nutanix, Inc. | Virtualized file servers and methods to persistently store file system event data |
US12242455B2 (en) | 2021-03-31 | 2025-03-04 | Nutanix, Inc. | File analytics systems and methods including receiving and processing file system event data in order |
US12248434B2 (en) | 2021-03-31 | 2025-03-11 | Nutanix, Inc. | File analytics systems including examples providing metrics adjusted for application operation |
CN113254238B (en) * | 2021-06-21 | 2021-09-07 | 中国人民解放军国防科技大学 | An event-driven fluid-solid coupling module integration method and device |
CN113760767B (en) * | 2021-09-10 | 2024-04-19 | 元心信息科技集团有限公司 | Debugging method and device of operating system, electronic equipment and computer readable storage medium |
US20230195882A1 (en) * | 2021-12-21 | 2023-06-22 | Cyberark Software Ltd. | Orchestration and generation of minimal surface optimized unikernels |
US12182264B2 (en) | 2022-03-11 | 2024-12-31 | Nutanix, Inc. | Malicious activity detection, validation, and remediation in virtualized file servers |
US11875190B2 (en) | 2022-03-15 | 2024-01-16 | Liveperson, Inc. | Methods and systems for AI-based load balancing of processing resources in distributed environments |
US11875195B2 (en) | 2022-03-15 | 2024-01-16 | Liveperson, Inc. | Methods and systems for dynamic load balancing of processing resources in distributed environments |
WO2023192308A1 (en) | 2022-03-30 | 2023-10-05 | Amazon Technologies, Inc. | Tightly coupled parallel applications on a serverless computing system |
US12182638B2 (en) * | 2022-09-06 | 2024-12-31 | Jpmorgan Chase Bank, N.A. | Method and system for event topic checkpointing |
US12039381B2 (en) | 2022-09-27 | 2024-07-16 | Amazon Technologies, Inc. | On-demand code execution data management |
Citations (496)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949254A (en) | 1988-09-29 | 1990-08-14 | Ibm Corp. | Method to manage concurrent execution of a distributed application program by a host computer and a large plurality of intelligent work stations on an SNA network |
US5283888A (en) | 1991-08-27 | 1994-02-01 | International Business Machines Corporation | Voice processing interface unit employing virtual screen communications for accessing a plurality of primed applications |
US5970488A (en) | 1997-05-05 | 1999-10-19 | Northrop Grumman Corporation | Real-time distributed database system and method |
US20010044817A1 (en) | 2000-05-18 | 2001-11-22 | Masayasu Asano | Computer system and a method for controlling a computer system |
US6385636B1 (en) | 1997-07-30 | 2002-05-07 | International Business Machines Corporation | Distributed processing system and client node, server node and distributed processing method |
US20020120685A1 (en) | 1999-06-01 | 2002-08-29 | Alok Srivastava | System for dynamically invoking remote network services using service descriptions stored in a service registry |
JP2002287974A (en) | 2001-03-26 | 2002-10-04 | Ricoh Co Ltd | Method and device related to control for registering and starting application program |
US6463509B1 (en) | 1999-01-26 | 2002-10-08 | Motive Power, Inc. | Preloading data in a cache memory according to user-specified preload criteria |
US20020172273A1 (en) | 2001-05-21 | 2002-11-21 | Baker Albert D. | Adaptive resource management in a communication system |
US6501736B1 (en) | 1999-03-19 | 2002-12-31 | Lucent Technologies Inc. | System for increasing the call capacity of a wireless communication system |
US6523035B1 (en) | 1999-05-20 | 2003-02-18 | Bmc Software, Inc. | System and method for integrating a plurality of disparate database utilities into a single graphical user interface |
US20030071842A1 (en) | 2001-10-12 | 2003-04-17 | National Instruments Corporation | Dynamic and user-defined events for a graphical program |
US20030084434A1 (en) | 2001-07-16 | 2003-05-01 | Yuqing Ren | Embedded software update system |
US20030191795A1 (en) | 2002-02-04 | 2003-10-09 | James Bernardin | Adaptive scheduling |
US20030229794A1 (en) | 2002-06-07 | 2003-12-11 | Sutton James A. | System and method for protection against untrusted system management code by redirecting a system management interrupt and creating a virtual machine container |
US20040003087A1 (en) | 2002-06-28 | 2004-01-01 | Chambliss David Darden | Method for improving performance in a computer storage system by regulating resource requests from clients |
US20040044721A1 (en) | 2002-08-12 | 2004-03-04 | Yu Song | Application mobility service |
US20040049768A1 (en) | 2002-09-09 | 2004-03-11 | Fujitsu Limited | Method and program for compiling processing, and computer-readable medium recoding the program thereof |
US6708276B1 (en) | 1999-08-03 | 2004-03-16 | International Business Machines Corporation | Architecture for denied permissions in Java |
US20040098154A1 (en) | 2000-10-04 | 2004-05-20 | Mccarthy Brendan | Method and apparatus for computer system engineering |
US20040158551A1 (en) | 2003-02-06 | 2004-08-12 | International Business Machines Corporation | Patterned based query optimization |
US20040205493A1 (en) | 2001-08-08 | 2004-10-14 | Simpson Shell S. | Web based imaging application that creates customized content based on user selections |
US20040249947A1 (en) | 2003-05-22 | 2004-12-09 | Hewlett-Packard Development Company, L.P. | Concurrent cluster environment |
US20040268358A1 (en) | 2003-06-30 | 2004-12-30 | Microsoft Corporation | Network load balancing with host status information |
US20050027611A1 (en) | 1999-08-26 | 2005-02-03 | Wharton Brian K. | Electronic commerce systems and methods providing multiple-vendor searches |
US20050044301A1 (en) * | 2003-08-20 | 2005-02-24 | Vasilevsky Alexander David | Method and apparatus for providing virtual computing services |
US20050120160A1 (en) * | 2003-08-20 | 2005-06-02 | Jerry Plouffe | System and method for managing virtual servers |
US20050132167A1 (en) | 2003-12-10 | 2005-06-16 | Giuseppe Longobardi | Workload scheduler with cumulative weighting indexes |
US20050132368A1 (en) | 1999-10-21 | 2005-06-16 | Harlan Sexton | Using a virtual machine instance as the basic unit of user execution in a server environment |
US20050149535A1 (en) | 2003-12-30 | 2005-07-07 | Frey Gregor K. | Log configuration and online deployment services |
US20050193113A1 (en) | 2003-04-14 | 2005-09-01 | Fujitsu Limited | Server allocation control method |
US20050193283A1 (en) | 2003-12-30 | 2005-09-01 | Reinhardt Steven K. | Buffering unchecked stores for fault detection in redundant multithreading systems using speculative memory support |
US20050237948A1 (en) | 2004-01-09 | 2005-10-27 | Ntt Docomo, Inc. | Network topology configuring method and node |
US20050257051A1 (en) | 2003-08-18 | 2005-11-17 | Philippe Richard | Adaptive data transformation engine |
US20060080678A1 (en) | 2004-09-07 | 2006-04-13 | Bailey Mark W | Task distribution method for protecting servers and tasks in a distributed system |
JP2006107599A (en) | 2004-10-04 | 2006-04-20 | Sekisui Chem Co Ltd | Optical disk |
US7036121B1 (en) | 1999-12-01 | 2006-04-25 | International Business Machines Corporation | Method and system for maintaining software via network |
US20060123066A1 (en) | 2001-08-30 | 2006-06-08 | Bea Systems, Inc. | Cluster caching with concurrency checking |
US20060129684A1 (en) | 2004-11-10 | 2006-06-15 | Chutney Technologies, Inc. | Apparatus and method for distributing requests across a cluster of application servers |
US20060184669A1 (en) | 2004-08-13 | 2006-08-17 | Kalyanaraman Vaidyanathan | Monitoring system-calls to identify runaway processes within a computer system |
US20060200668A1 (en) | 2005-02-04 | 2006-09-07 | Jean Hybre | Process for the secure management of the execution of an application |
US20060212332A1 (en) | 2005-03-16 | 2006-09-21 | Cluster Resources, Inc. | Simple integration of on-demand compute environment |
US20060242647A1 (en) | 2005-04-21 | 2006-10-26 | Kimbrel Tracy J | Dynamic application placement under service and memory constraints |
US20060248195A1 (en) | 2005-04-27 | 2006-11-02 | Kunihiko Toumura | Computer system with a packet transfer device using a hash value for transferring a content request |
US20070033085A1 (en) | 2005-08-04 | 2007-02-08 | Johnson Jeffrey K | System and method for managing data within a calendaring framework |
US20070094396A1 (en) | 2005-10-20 | 2007-04-26 | Hitachi, Ltd. | Server pool management method |
US20070130341A1 (en) | 2005-12-06 | 2007-06-07 | Cisco Technology, Inc. | System for power savings in server farms |
US20070174419A1 (en) | 2006-01-23 | 2007-07-26 | O'connell Brian M | JavaScript error determination and reporting |
US20070192082A1 (en) | 2006-02-13 | 2007-08-16 | Maria Gaos | System and method for generating and executing a platform emulation based on a selected application |
US20070199000A1 (en) | 2006-02-03 | 2007-08-23 | Microsoft Corporation | Software system with controlled access to objects |
US20070220009A1 (en) | 2006-03-15 | 2007-09-20 | Morris Robert P | Methods, systems, and computer program products for controlling access to application data |
US20070240160A1 (en) | 2006-03-31 | 2007-10-11 | Amazon Technologies, Inc. | Managing execution of programs by multiple computing systems |
US20070255604A1 (en) | 2006-05-01 | 2007-11-01 | Seelig Michael J | Systems and methods to automatically activate distribution channels provided by business partners |
JP2007538323A (en) | 2004-05-20 | 2007-12-27 | エスアーペー アーゲー | Program, method and apparatus for sharing objects in a runtime system |
US20080028409A1 (en) | 2006-07-25 | 2008-01-31 | Ludmila Cherkasova | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US20080052725A1 (en) | 2006-08-28 | 2008-02-28 | International Business Machines Corporation | Runtime code modification in a multi-threaded environment |
US20080052401A1 (en) | 2006-08-22 | 2008-02-28 | Bugenhagen Michael K | Pin-hole firewall for communicating data packets on a packet network |
US20080082977A1 (en) | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Automatic load and balancing for virtual machines to meet resource requirements |
US20080104247A1 (en) | 2006-10-31 | 2008-05-01 | Sun Microsystems, Inc. | Adaptive management of computing resources |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US20080115143A1 (en) | 2006-11-10 | 2008-05-15 | International Business Machines Corporation | Job Execution Method, Job Execution System, and Job Execution Program |
US20080127125A1 (en) | 2006-10-27 | 2008-05-29 | Microsoft Corporation | Virtualization For Diversified Tamper Resistance |
US20080126486A1 (en) | 2006-09-15 | 2008-05-29 | Bea Systems, Inc. | Personal messaging application programming interface for integrating an application with groupware systems |
US20080126110A1 (en) | 2006-11-27 | 2008-05-29 | Tilmann Haeberle | Integrated software support for a distributed business application with seamless backend communications |
US20080147893A1 (en) | 2006-10-31 | 2008-06-19 | Marripudi Gunneswara R | Scsi i/o coordinator |
US20080189468A1 (en) | 2007-02-02 | 2008-08-07 | Vmware, Inc. | High Availability Virtual Machine Cluster |
US20080195369A1 (en) | 2007-02-13 | 2008-08-14 | Duyanovich Linda M | Diagnostic system and method |
US20080201568A1 (en) | 2007-02-15 | 2008-08-21 | Microsoft Corporation | Version-resilient loader for custom code runtimes |
US20080201711A1 (en) | 2007-02-15 | 2008-08-21 | Amir Husain Syed M | Maintaining a Pool of Free Virtual Machines on a Server Computer |
US20080209423A1 (en) | 2007-02-27 | 2008-08-28 | Fujitsu Limited | Job management device, cluster system, and computer-readable medium storing job management program |
WO2008114454A1 (en) | 2007-03-20 | 2008-09-25 | Fujitsu Limited | Renewing system, program executing device, and computer program |
US20090006897A1 (en) | 2007-06-27 | 2009-01-01 | Microsoft Corporation | Automated service testing |
US20090013153A1 (en) | 2007-07-04 | 2009-01-08 | Hilton Ronald N | Processor exclusivity in a partitioned system |
US20090025009A1 (en) | 2007-07-18 | 2009-01-22 | Frank Brunswig | Co-execution of objects from divergent runtime environments |
US20090055829A1 (en) | 2007-08-24 | 2009-02-26 | Gibson Gary A | Method and apparatus for fine grain performance management of computer systems |
US20090055810A1 (en) | 2007-08-21 | 2009-02-26 | Nce Technologies Inc. | Method And System For Compilation And Execution Of Software Codes |
US20090070355A1 (en) | 2007-09-11 | 2009-03-12 | International Business Machines Corporation | Transitioning between historical and real time data streams in the processing of data change messages |
US20090077569A1 (en) | 2007-09-14 | 2009-03-19 | Chris Appleton | Network management system event notification shortcut |
US20090125902A1 (en) | 2007-03-01 | 2009-05-14 | Ghosh Anup K | On-demand disposable virtual work system |
US20090158275A1 (en) | 2007-12-13 | 2009-06-18 | Zhikui Wang | Dynamically Resizing A Virtual Machine Container |
US20090177860A1 (en) | 2005-02-23 | 2009-07-09 | Yaolong Zhu | Data management method for network storage system and the network storage system built thereof |
US20090183162A1 (en) | 2008-01-15 | 2009-07-16 | Microsoft Corporation | Priority Based Scheduling System for Server |
US20090193410A1 (en) | 2007-09-28 | 2009-07-30 | Xcerion Aktiebolag | Network operating system |
US20090198769A1 (en) | 2008-02-01 | 2009-08-06 | Microsoft Corporation | Virtual Application Server With Version Control |
US20090204964A1 (en) | 2007-10-12 | 2009-08-13 | Foley Peter F | Distributed trusted virtualization platform |
US20090204960A1 (en) | 2008-02-12 | 2009-08-13 | Shmuel Ben-Yehuda | System, method and computer program product for accessing a memory space allocated to a virtual machine |
US20090222922A1 (en) | 2005-08-18 | 2009-09-03 | Stylianos Sidiroglou | Systems, methods, and media protecting a digital data processing device from attack |
US7590806B2 (en) | 2005-12-07 | 2009-09-15 | Microsoft Corporation | Filtering of transactional memory operations using associative tables |
US20090271472A1 (en) | 2008-04-28 | 2009-10-29 | Scheifler Robert W | System and Method for Programmatic Management of Distributed Computing Resources |
WO2009137567A1 (en) | 2008-05-08 | 2009-11-12 | Google Inc. | Method for safely executing an untrusted native code module on a computing device |
US20090288084A1 (en) | 2008-05-02 | 2009-11-19 | Skytap | Multitenant hosted virtual machine infrastructure |
US20090300599A1 (en) | 2008-05-30 | 2009-12-03 | Matthew Thomas Piotrowski | Systems and methods of utilizing virtual machines to protect computer systems |
US20100023940A1 (en) | 2008-07-28 | 2010-01-28 | Fujitsu Limited | Virtual machine system |
US20100031325A1 (en) | 2006-12-22 | 2010-02-04 | Virtuallogix Sa | System for enabling multiple execution environments to share a device |
US20100031274A1 (en) | 2004-05-10 | 2010-02-04 | Siew Yong Sim-Tang | Method and system for real-time event journaling to provide enterprise data services |
JP2010026562A (en) | 2008-07-15 | 2010-02-04 | Konica Minolta Business Technologies Inc | Relay server, relay method and relay program |
US20100036925A1 (en) | 2008-08-07 | 2010-02-11 | Tactara, Llc | Alias management platforms |
US7665090B1 (en) | 2004-03-08 | 2010-02-16 | Swsoft Holdings, Ltd. | System, method, and computer program product for group scheduling of computer resources |
US20100058351A1 (en) | 2008-09-01 | 2010-03-04 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US20100058342A1 (en) | 2007-01-11 | 2010-03-04 | Fumio Machida | Provisioning system, method, and program |
US20100064299A1 (en) | 2008-09-09 | 2010-03-11 | Kace Networks, Inc. | Deployment and Management of Virtual Containers |
US20100070678A1 (en) | 2008-09-12 | 2010-03-18 | Vmware, Inc. | Saving and Restoring State Information for Virtualized Computer Systems |
US20100070725A1 (en) | 2008-09-05 | 2010-03-18 | Anand Prahlad | Systems and methods for management of virtualization data |
US20100094816A1 (en) | 2008-09-09 | 2010-04-15 | Lockheed Martin Corporation | Safety-Critical Data Checking In Object-Oriented Systems |
US7707579B2 (en) | 2005-07-14 | 2010-04-27 | International Business Machines Corporation | Method and system for application profiling for purposes of defining resource requirements |
US20100106926A1 (en) | 2008-10-25 | 2010-04-29 | International Business Machines Corporation | Second failure data capture problem determination using user selective memory protection to trace application failures |
US20100115098A1 (en) | 2008-11-04 | 2010-05-06 | Novell, Inc. | Dynamic and automatic colocation and combining of service providers and service clients in a grid of resources |
US20100114825A1 (en) | 2008-10-27 | 2010-05-06 | Vmware, Inc. | Version control environment for virtual machines |
US20100122343A1 (en) | 2008-09-12 | 2010-05-13 | Anup Ghosh | Distributed Sensor for Detecting Malicious Software |
US20100131936A1 (en) | 2008-11-26 | 2010-05-27 | Optumsoft, Inc. | Efficient automated translation of procedures in an constraint-based programming language implemented with notification and callback |
US20100131959A1 (en) | 2008-11-26 | 2010-05-27 | Spiers Adam Z | Proactive application workload management |
US7730464B2 (en) | 2005-09-14 | 2010-06-01 | Microsoft Corporation | Code compilation management service |
US20100186011A1 (en) | 2009-01-20 | 2010-07-22 | Oracle International Corporation | Methods and systems for implementing transcendent page caching |
US20100198972A1 (en) | 2009-02-04 | 2010-08-05 | Steven Michael Umbehocker | Methods and Systems for Automated Management of Virtual Resources In A Cloud Computing Environment |
US20100199285A1 (en) | 2009-02-05 | 2010-08-05 | Vmware, Inc. | Virtual machine utility computing method and system |
US7774191B2 (en) | 2003-04-09 | 2010-08-10 | Gary Charles Berkowitz | Virtual supercomputer |
US20100257116A1 (en) | 2009-04-06 | 2010-10-07 | Accenture Global Services, Gmbh | Estimating a computing job complexity |
US20100269109A1 (en) | 2009-04-17 | 2010-10-21 | John Cartales | Methods and Systems for Evaluating Historical Metrics in Selecting a Physical Host for Execution of a Virtual Machine |
US7823186B2 (en) | 2006-08-24 | 2010-10-26 | Novell, Inc. | System and method for applying security policies on multiple assembly caches |
US20100312871A1 (en) | 2006-03-31 | 2010-12-09 | Amazon Technologies, Inc. | Executing Programs Based on User-Specified Constraints |
US20100325727A1 (en) | 2009-06-17 | 2010-12-23 | Microsoft Corporation | Security virtual machine for advanced auditing |
US20110010722A1 (en) | 2009-03-12 | 2011-01-13 | Canon Kabushiki Kaisha | Memory swap management method and apparatus, and storage medium |
US20110029984A1 (en) | 2009-06-16 | 2011-02-03 | David Everton Norman | Counter and timer constraints |
US20110029970A1 (en) | 2009-07-31 | 2011-02-03 | International Business Machines Corporation | Optimizing on demand allocation of virtual machines using a stateless preallocation pool |
US20110040812A1 (en) | 2007-12-20 | 2011-02-17 | Virtual Computer, Inc. | Layered Virtual File System |
US20110055683A1 (en) | 2009-09-02 | 2011-03-03 | Facebook Inc. | Page caching for rendering dynamic web pages |
US20110055378A1 (en) | 2009-08-31 | 2011-03-03 | James Michael Ferris | Methods and systems for metering software infrastructure in a cloud computing environment |
US20110055396A1 (en) | 2009-08-31 | 2011-03-03 | Dehaan Michael Paul | Methods and systems for abstracting cloud management to allow communication between independently controlled clouds |
US20110078679A1 (en) | 2009-09-30 | 2011-03-31 | International Business Machines Corporation | Provisioning virtual machine placement |
US20110099551A1 (en) | 2009-10-26 | 2011-04-28 | Microsoft Corporation | Opportunistically Scheduling and Adjusting Time Slices |
US20110099204A1 (en) | 2009-10-26 | 2011-04-28 | Sony Computer Entertainment America Llc. | File input/output scheduler using immediate data chunking |
US20110131572A1 (en) | 2009-11-30 | 2011-06-02 | Vitaly Elyashev | Controlling permissions in virtualization environment using hierarchical labeling |
US20110134761A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110141124A1 (en) | 2009-12-14 | 2011-06-16 | David Halls | Methods and systems for securing sensitive information using a hypervisor-trusted client |
US20110154353A1 (en) | 2009-12-22 | 2011-06-23 | Bmc Software, Inc. | Demand-Driven Workload Scheduling Optimization on Shared Computing Resources |
US20110153727A1 (en) | 2009-12-17 | 2011-06-23 | Hong Li | Cloud federation as a service |
US20110153838A1 (en) | 2009-12-18 | 2011-06-23 | Microsoft Corporation | Session monitoring of virtual desktops in a virtual machine farm |
US20110179162A1 (en) | 2010-01-15 | 2011-07-21 | Mayo Mark G | Managing Workloads and Hardware Resources in a Cloud Resource |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US8010990B2 (en) | 2006-10-26 | 2011-08-30 | Intel Corporation | Acceleration of packet flow classification in a virtualized system |
US20110225277A1 (en) | 2010-03-11 | 2011-09-15 | International Business Machines Corporation | Placement of virtual machines based on server cost and network cost |
US8024564B2 (en) | 2006-12-06 | 2011-09-20 | International Business Machines Corporation | Automating configuration of software applications |
US20110231680A1 (en) | 2010-03-22 | 2011-09-22 | Microsoft Corporation | Energy savings for a networked computer |
US20110247005A1 (en) | 2010-03-31 | 2011-10-06 | International Business Machines Corporation | Methods and Apparatus for Resource Capacity Evaluation in a System of Virtual Containers |
US20110265164A1 (en) | 2010-04-26 | 2011-10-27 | Vmware, Inc. | Cloud platform architecture |
US8051266B2 (en) | 2007-06-11 | 2011-11-01 | International Business Machines Corporation | Automatic memory management (AMM) |
US8051180B2 (en) | 2006-01-24 | 2011-11-01 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US20110271276A1 (en) * | 2010-04-28 | 2011-11-03 | International Business Machines Corporation | Automated tuning in a virtual machine computing environment |
US20110276945A1 (en) | 2010-05-07 | 2011-11-10 | Salesforce.Com, Inc. | Validating Visual Components |
US8065682B2 (en) | 2007-02-27 | 2011-11-22 | Microsoft Corporation | Enforcing system resource usage limits on query requests based on grouping query requests into workgroups and assigning workload groups to resource pools |
US8065676B1 (en) | 2007-04-24 | 2011-11-22 | Hewlett-Packard Development Company, L.P. | Automated provisioning of virtual machines for a virtual machine buffer pool and production pool |
US20110314465A1 (en) | 2010-06-17 | 2011-12-22 | Timothy Smith | Method and system for workload distributing and processing across a network of replicated virtual machines |
JP2011257847A (en) | 2010-06-07 | 2011-12-22 | Nippon Telegr & Teleph Corp <Ntt> | Communication system and communication system update method |
US20110321033A1 (en) | 2010-06-24 | 2011-12-29 | Bmc Software, Inc. | Application Blueprint and Deployment Model for Dynamic Business Service Management (BSM) |
US20110321051A1 (en) | 2010-06-25 | 2011-12-29 | Ebay Inc. | Task scheduling based on dependencies and resources |
US8095931B1 (en) | 2006-04-27 | 2012-01-10 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US20120011496A1 (en) | 2009-03-30 | 2012-01-12 | Nec Corporation | Service providing apparatus, service providing system, method of processing data in service providing apparatus, and computer program |
US20120011511A1 (en) | 2010-07-08 | 2012-01-12 | Microsoft Corporation | Methods for supporting users with task continuity and completion across devices and time |
US20120016721A1 (en) | 2010-07-15 | 2012-01-19 | Joseph Weinman | Price and Utility Optimization for Cloud Computing Resources |
US20120041970A1 (en) | 2010-08-12 | 2012-02-16 | Cdnetworks Co., Ltd. | Distributed data cache for on-demand application acceleration |
US8127284B2 (en) | 2007-10-16 | 2012-02-28 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US20120054744A1 (en) | 2010-05-10 | 2012-03-01 | Manbinder Pal Singh | Redirection of Information from Secure Virtual Machines to Unsecure Virtual Machines |
US20120072762A1 (en) | 2010-09-21 | 2012-03-22 | Atchison Lee A | Methods and systems for dynamically managing requests for computing capacity |
US20120072914A1 (en) | 2010-09-17 | 2012-03-22 | Canon Kabushiki Kaisha | Cloud computing system and method for controlling same |
US8146073B2 (en) | 2004-09-30 | 2012-03-27 | Microsoft Corporation | Updating software while it is running |
US20120079004A1 (en) | 2010-09-23 | 2012-03-29 | Salesforce.Com, Inc. | Business networking information feed alerts |
US20120096271A1 (en) | 2010-10-15 | 2012-04-19 | Microsoft Corporation | Remote Access to Hosted Virtual Machines By Enterprise Users |
US20120096468A1 (en) | 2010-10-13 | 2012-04-19 | Microsoft Corporation | Compute cluster with balanced resources |
WO2012050772A1 (en) | 2010-09-30 | 2012-04-19 | Amazon Technologies, Inc. | Virtual resource cost tracking with dedicated implementation resources |
US8166304B2 (en) | 2007-10-02 | 2012-04-24 | International Business Machines Corporation | Support for multiple security policies on a unified authentication architecture |
US20120102307A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus including architecture for protecting sensitive code and data |
US20120102493A1 (en) | 2010-10-20 | 2012-04-26 | Microsoft Corporation | Ordered scheduling of suspended processes based on resumption events |
US20120102481A1 (en) | 2010-10-22 | 2012-04-26 | Microsoft Corporation | Coordinated Upgrades In Distributed Systems |
US8171473B2 (en) | 2007-08-31 | 2012-05-01 | International Business Machines Corporation | Method and apparatus for determining a service cluster topology based on static analysis |
US20120110570A1 (en) | 2010-10-27 | 2012-05-03 | Microsoft Corporation | Stateful applications operating in a stateless cloud computing environment |
US20120110588A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Unified resource manager providing a single point of control |
US20120110155A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Management of a data network of a computing environment |
US20120110164A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Managing a workload of a plurality of virtual servers of a computing environment |
US20120131379A1 (en) | 2010-01-05 | 2012-05-24 | Hitachi, Ltd. | Computer system and availability method thereof |
US20120144290A1 (en) | 2010-12-02 | 2012-06-07 | Adobe Systems Incorporated | Integrated Native HTML Rendering |
US8209695B1 (en) | 2006-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Reserving resources in a resource-on-demand system for user desktop utility demand |
US20120166624A1 (en) | 2007-06-22 | 2012-06-28 | Suit John M | Automatic determination of required resource allocation of virtual machines |
US8219987B1 (en) | 2007-08-24 | 2012-07-10 | Vmware, Inc. | Optimized virtual machine specification for provisioning application specific runtime environment |
US20120192184A1 (en) | 2009-12-18 | 2012-07-26 | International Business Machines Corporation | Virtual image deployment with a warm cache |
US20120197958A1 (en) | 2011-01-31 | 2012-08-02 | Microsoft Corporation | Parallel Serialization of Request Processing |
US20120197795A1 (en) | 2002-05-06 | 2012-08-02 | Bottomline Technologies (De) Inc. | Integrated Payment System |
US20120198442A1 (en) | 2011-01-31 | 2012-08-02 | Vivek Kashyap | Virtual Container |
US20120222038A1 (en) | 2002-08-29 | 2012-08-30 | Qst Holdings, Llc | Task definition for specifying resource requirements |
US20120233464A1 (en) | 2011-03-11 | 2012-09-13 | Resource Interactive, Llc | Pci dss compliant proxy service |
US8321554B2 (en) | 2004-12-17 | 2012-11-27 | International Business Machines Corporation | System and program to automatically identify a server on which to deploy an application |
US8321558B1 (en) | 2009-03-31 | 2012-11-27 | Amazon Technologies, Inc. | Dynamically monitoring and modifying distributed execution of programs |
US8336079B2 (en) | 2008-12-31 | 2012-12-18 | Hytrust, Inc. | Intelligent security control system for virtualized ecosystems |
US20120331113A1 (en) | 2011-06-27 | 2012-12-27 | Microsoft Corporation | Resource management for cloud computing platforms |
US8352608B1 (en) | 2008-09-23 | 2013-01-08 | Gogrid, LLC | System and method for automated configuration of hosting resources |
US20130014101A1 (en) | 2011-07-06 | 2013-01-10 | Microsoft Corporation | Offering Network Performance Guarantees in Multi-Tenant Datacenters |
US20130042234A1 (en) | 2011-08-09 | 2013-02-14 | International Business Machines Corporation | Virtual machine management |
US8387075B1 (en) | 2008-03-28 | 2013-02-26 | Emc Corporation | Common scheduling and synchronization primitives |
US20130054804A1 (en) | 2011-08-25 | 2013-02-28 | At&T Intellectual Property I, L.P. | System for Consolidating Heterogeneous Data Centers Through Virtualization of Services |
US20130055262A1 (en) | 2011-08-25 | 2013-02-28 | Vincent G. Lubsey | Systems and methods of host-aware resource management involving cluster-based resource pools |
US20130054927A1 (en) | 2011-08-30 | 2013-02-28 | Bipul Raj | System and method for retaining deduplication in a storage object after a clone split operation |
US20130061208A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Transformational context-aware data source management |
US20130061220A1 (en) | 2011-09-06 | 2013-03-07 | Xerox Corporation | Method for on-demand inter-cloud load provisioning for transient bursts of computing needs |
US20130067494A1 (en) | 2011-09-09 | 2013-03-14 | Microsoft Corporation | Resuming Applications and/or Exempting Applications from Suspension |
US20130080641A1 (en) | 2011-09-26 | 2013-03-28 | Knoa Software, Inc. | Method, system and program product for allocation and/or prioritization of electronic resources |
US20130097601A1 (en) | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Optimizing virtual machines placement in cloud computing environments |
US8429282B1 (en) | 2011-03-22 | 2013-04-23 | Amazon Technologies, Inc. | System and method for avoiding system overload by maintaining an ideal request rate |
US20130111032A1 (en) | 2011-10-28 | 2013-05-02 | International Business Machines Corporation | Cloud optimization using workload analysis |
US20130111469A1 (en) | 2011-10-30 | 2013-05-02 | Kamath Harish B | Service provider management of virtual instances corresponding to hardware resources managed by other service providers |
US20130124807A1 (en) | 2011-11-14 | 2013-05-16 | Eric H. Nielsen | Enhanced Software Application Platform |
US8448165B1 (en) | 2009-09-15 | 2013-05-21 | Symantec Corporation | System and method for logging operations of virtual machines |
US20130132942A1 (en) | 2011-11-22 | 2013-05-23 | Huawei Technologies Co., Ltd. | Application software installation method and application software installation apparatus |
US20130139166A1 (en) | 2011-11-24 | 2013-05-30 | Alibaba Group Holding Limited | Distributed data stream processing method and system |
US20130139152A1 (en) | 2011-11-29 | 2013-05-30 | International Business Machines Corporation | Cloud provisioning accelerator |
US20130151648A1 (en) | 2011-12-07 | 2013-06-13 | Seven Networks, Inc. | Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic allieviation |
US20130152047A1 (en) | 2011-11-22 | 2013-06-13 | Solano Labs, Inc | System for distributed software quality improvement |
US20130179894A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Platform as a service job scheduling |
US20130179895A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Paas hierarchial scheduling and auto-scaling |
US20130179881A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Decoupling paas resources, jobs, and scheduling |
US20130179574A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corportaion | Assignment of resources in virtual machine pools |
US8490088B2 (en) | 2010-09-10 | 2013-07-16 | International Business Machines Corporation | On demand virtual machine image streaming |
US20130185719A1 (en) * | 2012-01-17 | 2013-07-18 | Microsoft Corporation | Throttling guest write ios based on destination throughput |
US20130185729A1 (en) | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
US20130191924A1 (en) | 2012-01-25 | 2013-07-25 | Gianni Tedesco | Approaches for Protecting Sensitive Data Within a Guest Operating System |
US20130198319A1 (en) | 2012-01-31 | 2013-08-01 | Vmware, Inc. | Elastic allocation of computing resources to software applications |
US20130198748A1 (en) | 2010-03-30 | 2013-08-01 | Richard Sharp | Storage optimization selection within a virtualization environment |
US20130198763A1 (en) | 2012-01-31 | 2013-08-01 | Red Hat Inc. | Connection management for an application in a computing platform |
US20130198743A1 (en) | 2012-01-26 | 2013-08-01 | Empire Technology Development Llc | Data center with continuous world switch security |
US20130205092A1 (en) | 2012-02-06 | 2013-08-08 | Empire Technology Development Llc | Multicore computer system with cache use based adaptive scheduling |
US20130219390A1 (en) | 2012-02-21 | 2013-08-22 | Hon Hai Precision Industry Co., Ltd. | Cloud server and method for creating virtual machines |
US20130227641A1 (en) | 2012-01-06 | 2013-08-29 | Optio Labs, LLC | Systems and methods to enforce security policies on the loading, linking, and execution of native code by mobile applications running inside of virtual machines |
US20130227710A1 (en) | 2012-02-27 | 2013-08-29 | Computer Associates Think, Inc. | System and method for securing leased images in a cloud environment |
US20130227534A1 (en) | 2010-10-12 | 2013-08-29 | Fujitsu Limited | Simulation apparatus, method and medium |
US20130227563A1 (en) | 2012-02-29 | 2013-08-29 | Michael P. McGrath | Mechanism for Creating and Maintaining Multi-Tenant Applications in a Platform-as-a-Service (PaaS) Environment of a Cloud Computing System |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20130232480A1 (en) | 2012-03-02 | 2013-09-05 | Vmware, Inc. | Single, logical, multi-tier application blueprint used for deployment and management of multiple physical applications in a cloud environment |
US20130239125A1 (en) | 2012-03-06 | 2013-09-12 | Francesco Iorio | Application level speculative processing |
US20130262556A1 (en) | 2012-03-28 | 2013-10-03 | Microsoft Corporation | Enhanced Computer Cluster Operation Using Resource Allocation Requests |
US20130263117A1 (en) | 2012-03-28 | 2013-10-03 | International Business Machines Corporation | Allocating resources to virtual machines via a weighted cost ratio |
US8555281B1 (en) | 2011-02-16 | 2013-10-08 | Google Inc. | Scheduling of tasks based upon historical execution times |
US20130275958A1 (en) | 2012-04-17 | 2013-10-17 | Radoslav Ivanov | Automatic identification of services |
US20130275975A1 (en) | 2010-10-27 | 2013-10-17 | Hitachi, Ltd. | Resource management server, resource management method and storage medium in which resource management program is stored |
US20130275969A1 (en) | 2012-04-17 | 2013-10-17 | Vencislav Dimitrov | Application installation management |
US20130275376A1 (en) | 2012-04-17 | 2013-10-17 | Igt | Cloud based virtual environment validation |
US20130283176A1 (en) | 2006-03-31 | 2013-10-24 | Amazon Technologies, Inc. | Managing communications between computing nodes |
US20130291087A1 (en) | 2012-04-30 | 2013-10-31 | Zscaler, Inc. | Systems and methods for integrating cloud services with information management systems |
US20130290538A1 (en) | 2012-04-27 | 2013-10-31 | Daniel Juergen Gmach | Evaluation of cloud computing services |
US20130297964A1 (en) | 2012-05-03 | 2013-11-07 | Vmware, Inc. | Virtual Machine Placement With Automatic Deployment Error Recovery |
EP2663052A1 (en) | 2012-05-09 | 2013-11-13 | Netflix, Inc. | API Platform That Includes Server-Executed Client-Based Code |
US20130311650A1 (en) | 2011-02-28 | 2013-11-21 | Amazon Technologies, Inc. | Managing allocation of computing capacity |
US20130326506A1 (en) | 2012-05-30 | 2013-12-05 | Michael P. McGrath | Mechanism for Controlling Capacity in a Multi-Tenant Platform-as-a-Service (Paas) Environment in a Cloud Computing System |
US8613070B1 (en) | 2012-10-12 | 2013-12-17 | Citrix Systems, Inc. | Single sign-on access in an orchestration framework for connected devices |
US20130339950A1 (en) | 2012-06-19 | 2013-12-19 | Microsoft Corporation | Intermediary virtual machine task management |
US20130346964A1 (en) | 2011-09-08 | 2013-12-26 | Hitachi Solutions, Ltd. | OSGi PROGRAM, OSGi SYSTEM |
US20130347095A1 (en) | 2012-06-25 | 2013-12-26 | International Business Machines Corporation | Isolation and security hardening among workloads in a multi-tenant networked environment |
US20130346946A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | System for hosted, shared, source control build |
US20130346994A1 (en) | 2012-06-20 | 2013-12-26 | Platform Computing Corporation | Job distribution within a grid environment |
US20130346470A1 (en) | 2012-06-26 | 2013-12-26 | Juniper Networks, Inc. | Distributed processing of network device tasks |
US20130346987A1 (en) | 2012-06-21 | 2013-12-26 | Kristopher Len Raney | Systems and methods for distributing tasks and/or processing recources in a system |
US20140007097A1 (en) | 2012-06-29 | 2014-01-02 | Brocade Communications Systems, Inc. | Dynamic resource allocation for virtual machines |
US20140019966A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for continuous optimization of computing systems with automated assignment of virtual machines and physical machines to hosts |
US20140019735A1 (en) | 2012-07-13 | 2014-01-16 | Jaikrishnan Menon | Computer Processor Providing Exception Handling with Reduced State Storage |
US20140019965A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for automated assignment of virtual machines and physical machines to hosts with right-sizing |
US20140019523A1 (en) | 2002-12-02 | 2014-01-16 | Sap Ag | Session-return enabling stateful web applications |
US20140040343A1 (en) | 2005-09-15 | 2014-02-06 | Peter Nickolov | Globally Distributed Utility Computing Cloud |
US20140040880A1 (en) | 2012-08-02 | 2014-02-06 | International Business Machines Corporation | Application deployment in heterogeneous environments |
US20140040857A1 (en) | 2012-05-04 | 2014-02-06 | International Business Machines Corporation | Instrumentation of software applications for configuration thereof |
US20140059209A1 (en) | 2012-08-27 | 2014-02-27 | Microsoft Corporation | State maintenance as a service |
US20140059226A1 (en) | 2012-08-21 | 2014-02-27 | Rackspace Us, Inc. | Multi-Level Cloud Computing System |
US20140059552A1 (en) | 2012-08-24 | 2014-02-27 | International Business Machines Corporation | Transparent efficiency for in-memory execution of map reduce job sequences |
US20140068611A1 (en) | 2012-09-06 | 2014-03-06 | Michael P. McGrath | Mechanism for Automatic Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) Environment in a Cloud Computing System |
US20140068568A1 (en) | 2012-09-04 | 2014-03-06 | Salesforce.Com, Inc. | System and method for dynamically debugging data in a multi-tenant database environment |
US8677359B1 (en) | 2013-03-14 | 2014-03-18 | Joyent, Inc. | Compute-centric object stores and methods of use |
US20140081984A1 (en) | 2008-02-11 | 2014-03-20 | Nuix Pty Ltd. | Systems and methods for scalable delocalized information governance |
US20140082201A1 (en) | 2012-09-11 | 2014-03-20 | Vmware, Inc. | Resource allocation diagnosis on distributed computer systems based on resource hierarchy |
US20140082165A1 (en) | 2012-09-20 | 2014-03-20 | Michael David Marr | Automated profiling of resource usage |
US8694996B2 (en) | 2011-12-14 | 2014-04-08 | International Business Machines Corporation | Application initiated negotiations for resources meeting a performance parameter in a virtualized computing environment |
US20140101649A1 (en) | 2012-10-05 | 2014-04-10 | International Business Machines Corporation | Virtual machine based controller and upgrade mechanism |
US8700768B2 (en) | 2009-06-24 | 2014-04-15 | Red Hat Israel, Ltd. | Scheduling timelines of virtual machines |
US20140108722A1 (en) | 2012-10-15 | 2014-04-17 | Red Hat Israel, Ltd. | Virtual machine installation image caching |
US20140109088A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Augmented allocation of virtual machines for application |
US20140109087A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Virtual machine provisioning using replicated containers |
US8719415B1 (en) | 2010-06-28 | 2014-05-06 | Amazon Technologies, Inc. | Use of temporarily available computing nodes for dynamic scaling of a cluster |
US20140129667A1 (en) | 2011-06-14 | 2014-05-08 | Nec Corporation | Content delivery system, controller and content delivery method |
US20140130040A1 (en) | 2012-11-02 | 2014-05-08 | The Boeing Company | Systems and methods for migrating virtual machines |
US8725702B1 (en) | 2012-03-15 | 2014-05-13 | Symantec Corporation | Systems and methods for repairing system files |
US20140137110A1 (en) | 2012-11-15 | 2014-05-15 | Bank Of America Corporation | Capacity reclamation and resource adjustment |
US8756696B1 (en) | 2010-10-30 | 2014-06-17 | Sra International, Inc. | System and method for providing a virtualized secure data containment service with a networked environment |
US20140173614A1 (en) | 2012-12-18 | 2014-06-19 | International Business Machines Corporation | Sending tasks between virtual machines based on expiration times |
US20140173616A1 (en) | 2012-12-19 | 2014-06-19 | International Business Machines Corporation | Adaptive resource usage limits for workload management |
US20140180862A1 (en) | 2010-09-14 | 2014-06-26 | Amazon Technologies, Inc. | Managing operational throughput for shared resources |
US8769519B2 (en) | 2011-12-08 | 2014-07-01 | Microsoft Corporation | Personal and pooled virtual machine update |
US20140189677A1 (en) | 2013-01-02 | 2014-07-03 | International Business Machines Corporation | Effective Migration and Upgrade of Virtual Machines in Cloud Environments |
US20140201735A1 (en) | 2013-01-16 | 2014-07-17 | VCE Company LLC | Master automation service |
US20140207912A1 (en) | 2013-01-18 | 2014-07-24 | Limelight Networks, Inc. | Selective content pre-warming in content delivery networks based on user actions and content categorizations |
US20140215073A1 (en) | 2013-01-28 | 2014-07-31 | International Business Machines Corporation | Computing optimized virtual machine allocations using equivalence combinations |
US8799236B1 (en) | 2012-06-15 | 2014-08-05 | Amazon Technologies, Inc. | Detecting duplicated content among digital items |
US8799879B2 (en) | 2009-06-30 | 2014-08-05 | Oracle America, Inc. | Method and apparatus for protecting translated code in a virtual machine |
US20140229221A1 (en) | 2013-02-11 | 2014-08-14 | Amazon Technologies, Inc. | Cost-minimizing task scheduler |
US8819679B2 (en) | 2011-07-28 | 2014-08-26 | International Business Machines Corporation | Methods and systems for on-boarding applications to a cloud |
US20140245297A1 (en) | 2013-02-27 | 2014-08-28 | International Business Machines Corporation | Managing allocation of hardware resources in a virtualized environment |
US8825863B2 (en) | 2011-09-20 | 2014-09-02 | International Business Machines Corporation | Virtual machine placement within a server farm |
US8825964B1 (en) | 2011-09-26 | 2014-09-02 | Emc Corporation | Adaptive integration of cloud data services with a data storage system |
US8839035B1 (en) | 2011-09-14 | 2014-09-16 | Amazon Technologies, Inc. | Cloud-based test execution |
US20140282559A1 (en) | 2013-03-14 | 2014-09-18 | Samsung Electronics Co., Ltd. | Computing system with task transfer mechanism and method of operation thereof |
US20140279581A1 (en) | 2013-03-14 | 2014-09-18 | Rockethouse, Llc | Rendering |
US20140280325A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Suspending and resuming continuous queries over data streams |
US20140283045A1 (en) | 2010-12-29 | 2014-09-18 | Amazon Technologies, Inc. | Managing virtual computing testing |
US20140282615A1 (en) | 2013-03-15 | 2014-09-18 | Mark Cavage | Versioning schemes for compute-centric object stores |
US20140282629A1 (en) | 2010-06-30 | 2014-09-18 | Amazon Technologies, Inc. | Managing requests for computing capacity |
US20140289286A1 (en) | 2013-03-25 | 2014-09-25 | Salesforce.Com, Inc. | System and method for performance tuning of garbage collection algorithms |
JP2014525624A (en) | 2011-08-30 | 2014-09-29 | マイクロソフト コーポレーション | Cloud-based build service |
US8850432B2 (en) | 2012-05-30 | 2014-09-30 | Red Hat, Inc. | Controlling utilization in a multi-tenant platform-as-a-service (PaaS) environment in a cloud computing system |
US20140298295A1 (en) | 2013-04-02 | 2014-10-02 | Apple Inc. | Dynamic program evaluation for system adaptation |
US20140304698A1 (en) | 2012-06-18 | 2014-10-09 | Tellabs Operations, Inc. | Methods and Apparatus for Performing In-Service Software Upgrade for a Network Device Using System Virtulization |
US20140304815A1 (en) | 2011-11-15 | 2014-10-09 | Japan Science And Technology Agency | Program analysis/verification service provision system, control method for same, control program, control program for directing computer to function, program analysis/verification device, program analysis/verification tool management device |
US20140317617A1 (en) | 2013-04-23 | 2014-10-23 | Sap Ag | Optimized Deployment of Data Services on the Cloud |
US20140344457A1 (en) | 2013-05-20 | 2014-11-20 | Microsoft Corporation | Resource allocation to game titles in a remote gaming environment |
US20140344736A1 (en) | 2013-05-20 | 2014-11-20 | Citrix Systems, Inc. | Bound Based Contextual Zoom |
US20140380085A1 (en) | 2013-06-23 | 2014-12-25 | Willam C. Rash | Machine check architecture execution environment for non-microcoded processor |
US20150033241A1 (en) | 2006-03-16 | 2015-01-29 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US20150040229A1 (en) | 2013-08-05 | 2015-02-05 | Netflix, Inc. | Dynamic security testing |
US20150039891A1 (en) | 2013-08-02 | 2015-02-05 | Ologn Technologies Ag | Secure Server on a System with Virtual Machines |
US20150046926A1 (en) | 2011-04-29 | 2015-02-12 | Netapp Inc. | Virtual machine dependency |
US20150052258A1 (en) | 2014-09-29 | 2015-02-19 | Weaved, Inc. | Direct map proxy system and protocol |
US20150058914A1 (en) | 2002-02-01 | 2015-02-26 | Satyendra Yadav | Integrated network intrusion detection |
US20150067830A1 (en) | 2013-08-28 | 2015-03-05 | Amazon Technologies, Inc. | Dynamic application security verification |
US20150074659A1 (en) | 2013-09-06 | 2015-03-12 | Vmware, Inc. | Methods and Apparatus to Perform Web-Based Installations and/or Upgrade Architectures for Enterprise Software |
US20150081885A1 (en) | 2012-04-30 | 2015-03-19 | Jeffery Darrel Thomas | Automated event management |
US20150106805A1 (en) | 2013-10-15 | 2015-04-16 | Cisco Technology, Inc. | Accelerated instantiation of cloud resource |
US20150120928A1 (en) | 2013-10-24 | 2015-04-30 | Vmware, Inc. | Container virtual machines for hadoop |
US9027087B2 (en) | 2013-03-14 | 2015-05-05 | Rackspace Us, Inc. | Method and system for identity-based authentication of virtual machines |
US20150135287A1 (en) | 2013-11-13 | 2015-05-14 | Evident.io, Inc. | Automated sdk ingestion |
US20150134626A1 (en) | 2013-11-11 | 2015-05-14 | Amazon Technologies, Inc. | Partition-based data stream processing framework |
US20150142952A1 (en) | 2013-11-19 | 2015-05-21 | International Business Machines Corporation | Maintaining virtual machines for cloud-based operators in a streaming application in a ready state |
US20150143381A1 (en) | 2013-11-20 | 2015-05-21 | International Business Machines Corporation | Computing session workload scheduling and management of parent-child tasks |
WO2015078394A1 (en) | 2013-11-29 | 2015-06-04 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for scheduling blocking tasks |
US9052935B1 (en) | 2012-11-27 | 2015-06-09 | Symantec Corporation | Systems and methods for managing affinity rules in virtual-machine environments |
US20150178110A1 (en) | 2013-12-20 | 2015-06-25 | Vmware, Inc. | State Customization of Forked Virtual Machines |
US20150186129A1 (en) | 2014-01-02 | 2015-07-02 | International Business Machines Corporation | Method and system for deploying a program module |
US20150188775A1 (en) | 2013-12-31 | 2015-07-02 | Vmware,Inc. | Intuitive gui for creating and managing hosts and virtual machines |
US20150199218A1 (en) | 2014-01-10 | 2015-07-16 | Fujitsu Limited | Job scheduling based on historical job data |
US9086897B2 (en) | 2011-07-01 | 2015-07-21 | Electronics And Telecommunications Research Institute | Method and architecture for virtual desktop service |
US20150205596A1 (en) | 2011-08-26 | 2015-07-23 | Vmware, Inc. | Management of software updates in a datacenter |
WO2015108539A1 (en) | 2014-01-20 | 2015-07-23 | Hewlett-Packard Development Company, L.P. | Determining a permission of a first tenant with respect to a second tenant |
US9092837B2 (en) | 2012-11-29 | 2015-07-28 | International Business Machines Corporation | Use of snapshots to reduce risk in migration to a standard virtualized environment |
US9098528B2 (en) | 2012-05-15 | 2015-08-04 | Hitachi, Ltd. | File storage system and load distribution method |
US20150227598A1 (en) | 2014-02-13 | 2015-08-13 | Amazon Technologies, Inc. | Log data service in a virtual environment |
US9110732B1 (en) | 2013-06-07 | 2015-08-18 | Amazon Technologies, Inc. | Proxy for injecting configuration information |
US9111037B1 (en) | 2013-08-21 | 2015-08-18 | Ca, Inc. | Method and apparatus to enable mainframe computer testing for software testing management platform |
US9110770B1 (en) | 2014-03-04 | 2015-08-18 | Amazon Technologies, Inc. | Assessing quality of code in an open platform environment |
US20150235144A1 (en) | 2010-12-10 | 2015-08-20 | Salesforce.Com, Inc. | Methods and systems for making effective use of system resources |
US20150242225A1 (en) | 2014-02-26 | 2015-08-27 | Red Hat Israel, Ltd. | Execution of a script based on properties of a virtual device associated with a virtual machine |
US20150256621A1 (en) | 2012-11-19 | 2015-09-10 | Hitachi, Ltd. | Management system and management method |
US20150254248A1 (en) | 2014-03-07 | 2015-09-10 | Printeron Inc. | System for suggesting network resource for use by a network terminal based on network resource ranking |
US20150261578A1 (en) | 2014-03-17 | 2015-09-17 | Ca, Inc. | Deployment of virtual machines to physical host machines based on infrastructure utilization decisions |
US9141410B2 (en) | 2011-03-08 | 2015-09-22 | Rackspace Us, Inc. | Pluggable allocation in a cloud computing system |
US9146764B1 (en) | 2014-09-30 | 2015-09-29 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US9152406B2 (en) | 2011-08-22 | 2015-10-06 | International Business Machines Corporation | Rapid provisioning of virtual machines based on multi-dimensional user request patterns in a cloud |
US20150289220A1 (en) | 2012-11-05 | 2015-10-08 | Lg Electronics Inc. | Method and apparatus for generating synchronous signal in wireless access system for supporting super-high frequency band |
US9164754B1 (en) | 2013-12-18 | 2015-10-20 | Amazon Technologies, Inc. | Runtime patching of native-code programs |
US20150309923A1 (en) | 2014-04-28 | 2015-10-29 | Fujitsu Limited | Storage control apparatus and storage system |
US20150319160A1 (en) | 2014-05-05 | 2015-11-05 | Microsoft Corporation | Secure Management of Operations on Protected Virtual Machines |
US9183019B2 (en) | 2012-04-25 | 2015-11-10 | Empire Technology Development Llc | Certification for flexible resource demand applications |
US20150324229A1 (en) | 2014-05-09 | 2015-11-12 | International Business Machines Corporation | Propagation of task progress through the use of coalesced time intervals |
US20150332195A1 (en) | 2014-05-13 | 2015-11-19 | Linkedln Corporation | Facilitating performance monitoring for periodically scheduled workflows |
US20150332048A1 (en) | 2014-05-15 | 2015-11-19 | Lynx Software Technologies, Inc. | Systems and Methods Involving Features of Hardware Virtualization, Hypervisor, APIs of Interest, and/or Other Features |
US20150350701A1 (en) | 2014-05-28 | 2015-12-03 | Verizon Patent And Licensing Inc. | Methods and Systems for Managing Storage of Media Program Copies Within a Network Digital Video Recording System |
US9208007B2 (en) | 2012-01-18 | 2015-12-08 | International Business Machines Corporation | Open resilience framework for simplified and coordinated orchestration of multiple availability managers |
US20150356294A1 (en) | 2014-06-09 | 2015-12-10 | Lehigh University | Methods for enforcing control flow of a computer program |
US20150363181A1 (en) | 2014-06-13 | 2015-12-17 | International Business Machines Corporation | Software deployment in a distributed virtual machine environment |
US9218190B2 (en) | 2012-12-17 | 2015-12-22 | International Business Machines Corporation | Hybrid virtual machine configuration management |
US20150370560A1 (en) | 2014-06-09 | 2015-12-24 | Lehigh University | Methods for enforcing control flow of a computer program |
US20150371244A1 (en) | 2014-06-23 | 2015-12-24 | Ca, Inc. | Forecasting information technology workload demand |
US9223966B1 (en) | 2014-05-04 | 2015-12-29 | Symantec Corporation | Systems and methods for replicating computing system environments |
US9223561B2 (en) | 2011-06-27 | 2015-12-29 | Orange | Method for providing an on-demand software execution service |
US20150378764A1 (en) | 2014-06-30 | 2015-12-31 | Bmc Software, Inc. | Capacity risk management for virtual machines |
US20150379167A1 (en) * | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Crowd-sourced operational metric analysis of virtual appliances |
US20150378765A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Methods and apparatus to scale application deployments in cloud computing environments using virtual machine pools |
US20150378762A1 (en) | 2014-06-30 | 2015-12-31 | Vmware, Inc. | Monitoring and dynamic configuration of virtual-machine memory-management |
US20160012099A1 (en) | 2014-07-14 | 2016-01-14 | Oracle International Corporation | Age-based policies for determining database cache hits |
US20160011901A1 (en) | 2014-07-09 | 2016-01-14 | Google Inc. | Dynamic Shard Allocation Adjustment |
US20160019536A1 (en) | 2012-10-17 | 2016-01-21 | Royal Bank Of Canada | Secure processing of data |
US20160026486A1 (en) | 2014-07-25 | 2016-01-28 | Soft Machines, Inc. | An allocation and issue stage for reordering a microinstruction sequence into an optimized microinstruction sequence to implement an instruction set agnostic runtime architecture |
US9250893B2 (en) | 2014-05-14 | 2016-02-02 | Western Digital Technologies, Inc. | Virtualized and automated software build system |
US20160048606A1 (en) | 2013-04-13 | 2016-02-18 | Kiss Digital Media Pty Ltd. | Methods, Systems, Apparatus, Products, Articles and Data Structures for Cross-Platform Digital Content |
US9268586B2 (en) | 2011-03-08 | 2016-02-23 | Rackspace Us, Inc. | Wake-on-LAN and instantiate-on-LAN in a cloud computing system |
US20160077901A1 (en) | 2014-09-17 | 2016-03-17 | StrongLoop, Inc | Dynamic Determination of Local and Remote API Calls |
US9298633B1 (en) | 2013-09-18 | 2016-03-29 | Emc Corporation | Adaptive prefecth for predicted write requests |
WO2016053968A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US20160098285A1 (en) | 2014-10-02 | 2016-04-07 | Vmware, Inc. | Using virtual machine containers in a virtualized computing platform |
WO2016053973A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
WO2016053950A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Threading as a service |
US20160100036A1 (en) | 2014-10-06 | 2016-04-07 | VMFive Inc. | System, method, server and device for trial use of application software |
US9317689B2 (en) | 2012-06-15 | 2016-04-19 | Visa International Service Association | Method and apparatus for secure application execution |
US20160117254A1 (en) | 2014-10-22 | 2016-04-28 | Netapp, Inc. | Cache optimization technique for large working data sets |
US20160124665A1 (en) | 2014-11-04 | 2016-05-05 | Rubrik, Inc. | Management of virtual machine snapshots |
US20160140180A1 (en) | 2012-09-28 | 2016-05-19 | Oracle International Corporation | Hybrid execution of continuous and scheduled queries |
US9361145B1 (en) | 2014-06-27 | 2016-06-07 | Amazon Technologies, Inc. | Virtual machine state replication using DMA write records |
WO2016090292A1 (en) | 2014-12-05 | 2016-06-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US20160191420A1 (en) | 2014-12-27 | 2016-06-30 | Intel Corporation | Mitigating traffic steering inefficiencies in distributed uncore fabric |
US20160212007A1 (en) | 2015-01-15 | 2016-07-21 | International Business Machines Corporation | Distributed map reduce network |
WO2016126731A1 (en) | 2015-02-04 | 2016-08-11 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9436555B2 (en) | 2014-09-22 | 2016-09-06 | Commvault Systems, Inc. | Efficient live-mount of a backed up virtual machine in a storage management system |
US20160285906A1 (en) | 2015-03-23 | 2016-09-29 | Empire Technology Development Llc | Virtual machine placement |
US9461996B2 (en) | 2010-05-07 | 2016-10-04 | Citrix Systems, Inc. | Systems and methods for providing a single click access to enterprise, SAAS and cloud hosted application |
US20160294614A1 (en) | 2014-07-07 | 2016-10-06 | Symphony Teleca Corporation | Remote Embedded Device Update Platform Apparatuses, Methods and Systems |
US20160292016A1 (en) | 2015-04-02 | 2016-10-06 | Microsoft Technology Licensing, Llc | Complex event processor for historic/live/replayed data |
US20160301739A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
WO2016164638A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20160306613A1 (en) | 2013-12-03 | 2016-10-20 | Hewlett Packard Enterprise Development Lp | Code routine performance prediction using test results from code integration tool |
US9489227B2 (en) | 2013-06-10 | 2016-11-08 | Electronics And Telecommunications Research Institute | Apparatus and method for virtual desktop service |
US9497136B1 (en) | 2011-09-28 | 2016-11-15 | Emc Corporation | Method and system for providing usage metrics to manage utilzation of cloud computing resources |
US9501345B1 (en) | 2013-12-23 | 2016-11-22 | Intuit Inc. | Method and system for creating enriched log data |
US20160350099A1 (en) | 2015-05-29 | 2016-12-01 | Hewlett Packard Enterprise Development Lp | Application deployment to virtual machines |
US9514037B1 (en) | 2015-12-16 | 2016-12-06 | International Business Machines Corporation | Test program scheduling based on analysis of test data sets |
US20160357536A1 (en) | 2015-06-05 | 2016-12-08 | Apple Inc. | Capability attributes based application packaging |
US20160364265A1 (en) | 2015-06-15 | 2016-12-15 | International Business Machines Corporation | Managed services coordinator |
US20160371156A1 (en) | 2015-06-16 | 2016-12-22 | Mongodb, Inc. | System and method for facilitating replication in a distributed database |
US20160371127A1 (en) | 2015-06-19 | 2016-12-22 | Vmware, Inc. | Resource management for containers in a virtualized environment |
US20160378449A1 (en) | 2015-06-24 | 2016-12-29 | Vmware, Inc. | Artifact manager for release automation |
US20160378554A1 (en) | 2015-06-29 | 2016-12-29 | Vmware, Inc. | Parallel and Distributed Computing Using Multiple Virtual Machines |
US20170041309A1 (en) | 2015-08-06 | 2017-02-09 | International Business Machines Corporation | Authenticating application legitimacy |
US9575798B2 (en) | 2013-02-25 | 2017-02-21 | Hitachi, Ltd. | Method of managing tenant network configuration in environment where virtual server and non-virtual server coexist |
US20170060615A1 (en) | 2015-08-28 | 2017-03-02 | Vmware, Inc. | Hybrid infrastructure provisioning framework tethering remote datacenters |
US20170060621A1 (en) | 2015-08-28 | 2017-03-02 | Vmware, Inc. | Hybrid task framework |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
US20170068574A1 (en) | 2014-02-25 | 2017-03-09 | Hewlett Packard Enterprise Development Lp | Multiple pools in a multi-core system |
US9596350B1 (en) | 2016-07-21 | 2017-03-14 | Genesys Telecommunications Laboratories, Inc. | Virtual interactions in contact center operations |
US9594590B2 (en) | 2011-06-29 | 2017-03-14 | Hewlett Packard Enterprise Development Lp | Application migration with dynamic operating system containers |
US20170075749A1 (en) | 2015-09-14 | 2017-03-16 | Dynatrace Llc | Method And System For Real-Time Causality And Root Cause Determination Of Transaction And Infrastructure Related Events Provided By Multiple, Heterogeneous Agents |
US20170083381A1 (en) | 2015-09-21 | 2017-03-23 | Alibaba Group Holding Limited | System and method for processing task resources |
US20170085591A1 (en) | 2015-09-23 | 2017-03-23 | Ca, Inc. | Fetching a policy definition library from a policy server at mobile device runtime of an application package to control access to mobile device resources |
US20170085447A1 (en) | 2015-09-21 | 2017-03-23 | Splunk Inc. | Adaptive control of data collection requests sent to external data sources |
US20170093920A1 (en) | 2014-03-18 | 2017-03-30 | British Telecommunications Public Limited Company | User authentication |
US20170093684A1 (en) | 2015-09-28 | 2017-03-30 | Wipro Limited | System and method for improving integration testing in a cloud computing environment |
US20170090961A1 (en) | 2015-09-30 | 2017-03-30 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US9635132B1 (en) | 2011-12-15 | 2017-04-25 | Amazon Technologies, Inc. | Service and APIs for remote volume-based block storage |
US9654508B2 (en) | 2012-10-15 | 2017-05-16 | Citrix Systems, Inc. | Configuring and providing profiles that manage execution of mobile applications |
US9652617B1 (en) | 2013-06-25 | 2017-05-16 | Amazon Technologies, Inc. | Analyzing security of applications |
US9661011B1 (en) | 2014-12-17 | 2017-05-23 | Amazon Technologies, Inc. | Techniques for data routing and management using risk classification and data sampling |
US9678773B1 (en) | 2014-09-30 | 2017-06-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US9678778B1 (en) | 2014-05-07 | 2017-06-13 | Google Inc. | Virtual cluster as a service (VCIaaS) |
US20170177413A1 (en) | 2015-12-21 | 2017-06-22 | Amazon Technologies, Inc. | Code execution request routing |
US9703681B2 (en) | 2014-05-29 | 2017-07-11 | Microsoft Technology Licensing, Llc | Performance optimization tip presentation during debugging |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20170230499A1 (en) | 2016-02-08 | 2017-08-10 | Kirusa, Inc. | Placement Of A Missed Call |
US9733967B2 (en) | 2015-02-04 | 2017-08-15 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9767271B2 (en) | 2010-07-15 | 2017-09-19 | The Research Foundation For The State University Of New York | System and method for validating program execution at run-time |
US20170272462A1 (en) | 2016-03-15 | 2017-09-21 | Carbon Black, Inc. | System and Method for Process Hollowing Detection |
US20170286143A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US20170286156A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
WO2017172440A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on-demand code execution environment |
US9787779B2 (en) | 2015-12-21 | 2017-10-10 | Amazon Technologies, Inc. | Analyzing deployment pipelines used to update production computing services using a live pipeline template process |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US20170371703A1 (en) | 2016-06-28 | 2017-12-28 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US20180004572A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US20180004553A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US9864636B1 (en) | 2014-12-10 | 2018-01-09 | Amazon Technologies, Inc. | Allocating processor resources based on a service-level agreement |
US20180046453A1 (en) | 2016-08-10 | 2018-02-15 | Bank Of America Corporation | Application Programming Interface for Providing Access to Computing Platform Definitions |
US20180046482A1 (en) | 2016-08-09 | 2018-02-15 | International Business Machines Corporation | Expediting the provisioning of virtual machines based on cached repeated portions of a template |
US20180060221A1 (en) | 2016-08-24 | 2018-03-01 | Google Inc. | Multi-layer test suite generation |
US20180067841A1 (en) | 2016-09-08 | 2018-03-08 | At&T Intellectual Property I, L.P. | Method and apparatus for determining a performance impact by a software upgrade of a mobile user endpoint device |
US9921864B2 (en) | 2015-02-26 | 2018-03-20 | Vmware, Inc. | Dynamic host performance tuning of a network stack |
US9930133B2 (en) | 2014-10-23 | 2018-03-27 | Netapp, Inc. | System and method for managing application performance |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US9929916B1 (en) | 2013-05-02 | 2018-03-27 | Aspen Technology, Inc. | Achieving stateful application software service behavior in distributed stateless systems |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US9979817B2 (en) | 2012-12-05 | 2018-05-22 | Future Dial, Inc. | Using automatically collected device problem information to route and guide users' requests |
US9977691B2 (en) | 2016-06-29 | 2018-05-22 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions based on communication between frontends |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US10013267B1 (en) | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US10048974B1 (en) | 2014-09-30 | 2018-08-14 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US20180239636A1 (en) | 2017-02-22 | 2018-08-23 | Nutanix, Inc. | Task execution framework using idempotent subtasks |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US10067801B1 (en) | 2015-12-21 | 2018-09-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US20180253333A1 (en) | 2017-03-03 | 2018-09-06 | Microsoft Technology Licensing Llc | Cross-device task registration and resumption |
US20180275987A1 (en) | 2017-03-21 | 2018-09-27 | Nokia Solutions And Networks Oy | Optimization of a software image layer stack |
US10102040B2 (en) | 2016-06-29 | 2018-10-16 | Amazon Technologies, Inc | Adjusting variable limit on concurrent code executions |
US10139876B2 (en) | 2016-06-23 | 2018-11-27 | Vmware Inc. | Efficient reboot of an operating system executed in a virtual machine |
US20190072529A1 (en) | 2017-09-06 | 2019-03-07 | Green Ocean Sciences, Inc. | Mobile integrated device and electronic data platform for chemical analysis |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
US10445140B1 (en) | 2017-06-21 | 2019-10-15 | Amazon Technologies, Inc. | Serializing duration-limited task executions in an on demand code execution system |
US20190391834A1 (en) | 2018-06-25 | 2019-12-26 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US20190391841A1 (en) | 2018-06-25 | 2019-12-26 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
WO2020005764A1 (en) | 2018-06-25 | 2020-01-02 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
WO2020069104A1 (en) | 2018-09-27 | 2020-04-02 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US20200104378A1 (en) | 2018-09-27 | 2020-04-02 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US10649749B1 (en) | 2018-06-26 | 2020-05-12 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US20200192707A1 (en) | 2018-12-13 | 2020-06-18 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5069730B2 (en) * | 2009-09-15 | 2012-11-07 | ヤフー株式会社 | Event notification function providing device, event notification function providing method, and event notification function providing program |
US8424026B1 (en) * | 2011-10-03 | 2013-04-16 | Cisco Technology, Inc. | Execution of applications distributed across a plurality of computing devices |
-
2014
- 2014-09-30 US US14/502,648 patent/US9323556B2/en active Active
-
2015
- 2015-09-29 CN CN201580053157.3A patent/CN107111508B/en active Active
- 2015-09-29 JP JP2017516160A patent/JP6352535B2/en active Active
- 2015-09-29 CA CA2962633A patent/CA2962633C/en active Active
- 2015-09-29 WO PCT/US2015/052838 patent/WO2016053973A1/en active Application Filing
- 2015-09-29 US US14/869,879 patent/US9652306B1/en active Active
- 2015-09-29 EP EP15847202.7A patent/EP3201768B1/en active Active
- 2015-09-29 EP EP19199402.9A patent/EP3633506B1/en active Active
-
2016
- 2016-04-22 US US15/136,602 patent/US9760387B2/en active Active
-
2017
- 2017-05-15 US US15/595,774 patent/US10824484B2/en active Active
Patent Citations (573)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949254A (en) | 1988-09-29 | 1990-08-14 | Ibm Corp. | Method to manage concurrent execution of a distributed application program by a host computer and a large plurality of intelligent work stations on an SNA network |
US5283888A (en) | 1991-08-27 | 1994-02-01 | International Business Machines Corporation | Voice processing interface unit employing virtual screen communications for accessing a plurality of primed applications |
US5970488A (en) | 1997-05-05 | 1999-10-19 | Northrop Grumman Corporation | Real-time distributed database system and method |
US6385636B1 (en) | 1997-07-30 | 2002-05-07 | International Business Machines Corporation | Distributed processing system and client node, server node and distributed processing method |
US6463509B1 (en) | 1999-01-26 | 2002-10-08 | Motive Power, Inc. | Preloading data in a cache memory according to user-specified preload criteria |
US6501736B1 (en) | 1999-03-19 | 2002-12-31 | Lucent Technologies Inc. | System for increasing the call capacity of a wireless communication system |
US6523035B1 (en) | 1999-05-20 | 2003-02-18 | Bmc Software, Inc. | System and method for integrating a plurality of disparate database utilities into a single graphical user interface |
US20020120685A1 (en) | 1999-06-01 | 2002-08-29 | Alok Srivastava | System for dynamically invoking remote network services using service descriptions stored in a service registry |
US6708276B1 (en) | 1999-08-03 | 2004-03-16 | International Business Machines Corporation | Architecture for denied permissions in Java |
US20050027611A1 (en) | 1999-08-26 | 2005-02-03 | Wharton Brian K. | Electronic commerce systems and methods providing multiple-vendor searches |
US20050132368A1 (en) | 1999-10-21 | 2005-06-16 | Harlan Sexton | Using a virtual machine instance as the basic unit of user execution in a server environment |
US7036121B1 (en) | 1999-12-01 | 2006-04-25 | International Business Machines Corporation | Method and system for maintaining software via network |
US20010044817A1 (en) | 2000-05-18 | 2001-11-22 | Masayasu Asano | Computer system and a method for controlling a computer system |
US20040098154A1 (en) | 2000-10-04 | 2004-05-20 | Mccarthy Brendan | Method and apparatus for computer system engineering |
JP2002287974A (en) | 2001-03-26 | 2002-10-04 | Ricoh Co Ltd | Method and device related to control for registering and starting application program |
US20020172273A1 (en) | 2001-05-21 | 2002-11-21 | Baker Albert D. | Adaptive resource management in a communication system |
US20030084434A1 (en) | 2001-07-16 | 2003-05-01 | Yuqing Ren | Embedded software update system |
US20040205493A1 (en) | 2001-08-08 | 2004-10-14 | Simpson Shell S. | Web based imaging application that creates customized content based on user selections |
US20060123066A1 (en) | 2001-08-30 | 2006-06-08 | Bea Systems, Inc. | Cluster caching with concurrency checking |
US20030071842A1 (en) | 2001-10-12 | 2003-04-17 | National Instruments Corporation | Dynamic and user-defined events for a graphical program |
US20150058914A1 (en) | 2002-02-01 | 2015-02-26 | Satyendra Yadav | Integrated network intrusion detection |
US20030191795A1 (en) | 2002-02-04 | 2003-10-09 | James Bernardin | Adaptive scheduling |
US20120197795A1 (en) | 2002-05-06 | 2012-08-02 | Bottomline Technologies (De) Inc. | Integrated Payment System |
US20030229794A1 (en) | 2002-06-07 | 2003-12-11 | Sutton James A. | System and method for protection against untrusted system management code by redirecting a system management interrupt and creating a virtual machine container |
US20040003087A1 (en) | 2002-06-28 | 2004-01-01 | Chambliss David Darden | Method for improving performance in a computer storage system by regulating resource requests from clients |
US20040044721A1 (en) | 2002-08-12 | 2004-03-04 | Yu Song | Application mobility service |
US20120222038A1 (en) | 2002-08-29 | 2012-08-30 | Qst Holdings, Llc | Task definition for specifying resource requirements |
US20040049768A1 (en) | 2002-09-09 | 2004-03-11 | Fujitsu Limited | Method and program for compiling processing, and computer-readable medium recoding the program thereof |
US20140019523A1 (en) | 2002-12-02 | 2014-01-16 | Sap Ag | Session-return enabling stateful web applications |
US20040158551A1 (en) | 2003-02-06 | 2004-08-12 | International Business Machines Corporation | Patterned based query optimization |
US7774191B2 (en) | 2003-04-09 | 2010-08-10 | Gary Charles Berkowitz | Virtual supercomputer |
US20050193113A1 (en) | 2003-04-14 | 2005-09-01 | Fujitsu Limited | Server allocation control method |
US20040249947A1 (en) | 2003-05-22 | 2004-12-09 | Hewlett-Packard Development Company, L.P. | Concurrent cluster environment |
US20040268358A1 (en) | 2003-06-30 | 2004-12-30 | Microsoft Corporation | Network load balancing with host status information |
US20050257051A1 (en) | 2003-08-18 | 2005-11-17 | Philippe Richard | Adaptive data transformation engine |
US20050120160A1 (en) * | 2003-08-20 | 2005-06-02 | Jerry Plouffe | System and method for managing virtual servers |
US20050044301A1 (en) * | 2003-08-20 | 2005-02-24 | Vasilevsky Alexander David | Method and apparatus for providing virtual computing services |
US20050132167A1 (en) | 2003-12-10 | 2005-06-16 | Giuseppe Longobardi | Workload scheduler with cumulative weighting indexes |
US20050149535A1 (en) | 2003-12-30 | 2005-07-07 | Frey Gregor K. | Log configuration and online deployment services |
US20050193283A1 (en) | 2003-12-30 | 2005-09-01 | Reinhardt Steven K. | Buffering unchecked stores for fault detection in redundant multithreading systems using speculative memory support |
US20050237948A1 (en) | 2004-01-09 | 2005-10-27 | Ntt Docomo, Inc. | Network topology configuring method and node |
US7665090B1 (en) | 2004-03-08 | 2010-02-16 | Swsoft Holdings, Ltd. | System, method, and computer program product for group scheduling of computer resources |
US20100031274A1 (en) | 2004-05-10 | 2010-02-04 | Siew Yong Sim-Tang | Method and system for real-time event journaling to provide enterprise data services |
JP2007538323A (en) | 2004-05-20 | 2007-12-27 | エスアーペー アーゲー | Program, method and apparatus for sharing objects in a runtime system |
US20060184669A1 (en) | 2004-08-13 | 2006-08-17 | Kalyanaraman Vaidyanathan | Monitoring system-calls to identify runaway processes within a computer system |
US20060080678A1 (en) | 2004-09-07 | 2006-04-13 | Bailey Mark W | Task distribution method for protecting servers and tasks in a distributed system |
US8146073B2 (en) | 2004-09-30 | 2012-03-27 | Microsoft Corporation | Updating software while it is running |
JP2006107599A (en) | 2004-10-04 | 2006-04-20 | Sekisui Chem Co Ltd | Optical disk |
US20060129684A1 (en) | 2004-11-10 | 2006-06-15 | Chutney Technologies, Inc. | Apparatus and method for distributing requests across a cluster of application servers |
US8321554B2 (en) | 2004-12-17 | 2012-11-27 | International Business Machines Corporation | System and program to automatically identify a server on which to deploy an application |
US20060200668A1 (en) | 2005-02-04 | 2006-09-07 | Jean Hybre | Process for the secure management of the execution of an application |
US20090177860A1 (en) | 2005-02-23 | 2009-07-09 | Yaolong Zhu | Data management method for network storage system and the network storage system built thereof |
US9112813B2 (en) | 2005-03-16 | 2015-08-18 | Adaptive Computing Enterprises, Inc. | On-demand compute environment |
US8631130B2 (en) | 2005-03-16 | 2014-01-14 | Adaptive Computing Enterprises, Inc. | Reserving resources in an on-demand compute environment from a local compute environment |
US20060212332A1 (en) | 2005-03-16 | 2006-09-21 | Cluster Resources, Inc. | Simple integration of on-demand compute environment |
US20060242647A1 (en) | 2005-04-21 | 2006-10-26 | Kimbrel Tracy J | Dynamic application placement under service and memory constraints |
US20060248195A1 (en) | 2005-04-27 | 2006-11-02 | Kunihiko Toumura | Computer system with a packet transfer device using a hash value for transferring a content request |
US7707579B2 (en) | 2005-07-14 | 2010-04-27 | International Business Machines Corporation | Method and system for application profiling for purposes of defining resource requirements |
US20070033085A1 (en) | 2005-08-04 | 2007-02-08 | Johnson Jeffrey K | System and method for managing data within a calendaring framework |
US20090222922A1 (en) | 2005-08-18 | 2009-09-03 | Stylianos Sidiroglou | Systems, methods, and media protecting a digital data processing device from attack |
US7730464B2 (en) | 2005-09-14 | 2010-06-01 | Microsoft Corporation | Code compilation management service |
US20140040343A1 (en) | 2005-09-15 | 2014-02-06 | Peter Nickolov | Globally Distributed Utility Computing Cloud |
US20070094396A1 (en) | 2005-10-20 | 2007-04-26 | Hitachi, Ltd. | Server pool management method |
US20070130341A1 (en) | 2005-12-06 | 2007-06-07 | Cisco Technology, Inc. | System for power savings in server farms |
US7590806B2 (en) | 2005-12-07 | 2009-09-15 | Microsoft Corporation | Filtering of transactional memory operations using associative tables |
US20070174419A1 (en) | 2006-01-23 | 2007-07-26 | O'connell Brian M | JavaScript error determination and reporting |
US8051180B2 (en) | 2006-01-24 | 2011-11-01 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US20070199000A1 (en) | 2006-02-03 | 2007-08-23 | Microsoft Corporation | Software system with controlled access to objects |
US20070192082A1 (en) | 2006-02-13 | 2007-08-16 | Maria Gaos | System and method for generating and executing a platform emulation based on a selected application |
US20070220009A1 (en) | 2006-03-15 | 2007-09-20 | Morris Robert P | Methods, systems, and computer program products for controlling access to application data |
US20150033241A1 (en) | 2006-03-16 | 2015-01-29 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US20100312871A1 (en) | 2006-03-31 | 2010-12-09 | Amazon Technologies, Inc. | Executing Programs Based on User-Specified Constraints |
US20130283176A1 (en) | 2006-03-31 | 2013-10-24 | Amazon Technologies, Inc. | Managing communications between computing nodes |
US20070240160A1 (en) | 2006-03-31 | 2007-10-11 | Amazon Technologies, Inc. | Managing execution of programs by multiple computing systems |
US8095931B1 (en) | 2006-04-27 | 2012-01-10 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US20070255604A1 (en) | 2006-05-01 | 2007-11-01 | Seelig Michael J | Systems and methods to automatically activate distribution channels provided by business partners |
US8046765B2 (en) | 2006-07-25 | 2011-10-25 | Hewlett-Packard Development Company, L.P. | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US20080028409A1 (en) | 2006-07-25 | 2008-01-31 | Ludmila Cherkasova | System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance |
US8209695B1 (en) | 2006-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Reserving resources in a resource-on-demand system for user desktop utility demand |
US20080052401A1 (en) | 2006-08-22 | 2008-02-28 | Bugenhagen Michael K | Pin-hole firewall for communicating data packets on a packet network |
US7823186B2 (en) | 2006-08-24 | 2010-10-26 | Novell, Inc. | System and method for applying security policies on multiple assembly caches |
US20080052725A1 (en) | 2006-08-28 | 2008-02-28 | International Business Machines Corporation | Runtime code modification in a multi-threaded environment |
US20080126486A1 (en) | 2006-09-15 | 2008-05-29 | Bea Systems, Inc. | Personal messaging application programming interface for integrating an application with groupware systems |
US20080082977A1 (en) | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Automatic load and balancing for virtual machines to meet resource requirements |
US8010990B2 (en) | 2006-10-26 | 2011-08-30 | Intel Corporation | Acceleration of packet flow classification in a virtualized system |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US20080127125A1 (en) | 2006-10-27 | 2008-05-29 | Microsoft Corporation | Virtualization For Diversified Tamper Resistance |
US20080104247A1 (en) | 2006-10-31 | 2008-05-01 | Sun Microsystems, Inc. | Adaptive management of computing resources |
US20080147893A1 (en) | 2006-10-31 | 2008-06-19 | Marripudi Gunneswara R | Scsi i/o coordinator |
US20080115143A1 (en) | 2006-11-10 | 2008-05-15 | International Business Machines Corporation | Job Execution Method, Job Execution System, and Job Execution Program |
US20080126110A1 (en) | 2006-11-27 | 2008-05-29 | Tilmann Haeberle | Integrated software support for a distributed business application with seamless backend communications |
US8024564B2 (en) | 2006-12-06 | 2011-09-20 | International Business Machines Corporation | Automating configuration of software applications |
US20100031325A1 (en) | 2006-12-22 | 2010-02-04 | Virtuallogix Sa | System for enabling multiple execution environments to share a device |
US20100058342A1 (en) | 2007-01-11 | 2010-03-04 | Fumio Machida | Provisioning system, method, and program |
US20080189468A1 (en) | 2007-02-02 | 2008-08-07 | Vmware, Inc. | High Availability Virtual Machine Cluster |
US20080195369A1 (en) | 2007-02-13 | 2008-08-14 | Duyanovich Linda M | Diagnostic system and method |
US20080201568A1 (en) | 2007-02-15 | 2008-08-21 | Microsoft Corporation | Version-resilient loader for custom code runtimes |
US20080201711A1 (en) | 2007-02-15 | 2008-08-21 | Amir Husain Syed M | Maintaining a Pool of Free Virtual Machines on a Server Computer |
US8065682B2 (en) | 2007-02-27 | 2011-11-22 | Microsoft Corporation | Enforcing system resource usage limits on query requests based on grouping query requests into workgroups and assigning workload groups to resource pools |
US20080209423A1 (en) | 2007-02-27 | 2008-08-28 | Fujitsu Limited | Job management device, cluster system, and computer-readable medium storing job management program |
US20090125902A1 (en) | 2007-03-01 | 2009-05-14 | Ghosh Anup K | On-demand disposable virtual work system |
WO2008114454A1 (en) | 2007-03-20 | 2008-09-25 | Fujitsu Limited | Renewing system, program executing device, and computer program |
US8065676B1 (en) | 2007-04-24 | 2011-11-22 | Hewlett-Packard Development Company, L.P. | Automated provisioning of virtual machines for a virtual machine buffer pool and production pool |
US8051266B2 (en) | 2007-06-11 | 2011-11-01 | International Business Machines Corporation | Automatic memory management (AMM) |
US20120166624A1 (en) | 2007-06-22 | 2012-06-28 | Suit John M | Automatic determination of required resource allocation of virtual machines |
US20090006897A1 (en) | 2007-06-27 | 2009-01-01 | Microsoft Corporation | Automated service testing |
US20090013153A1 (en) | 2007-07-04 | 2009-01-08 | Hilton Ronald N | Processor exclusivity in a partitioned system |
US20090025009A1 (en) | 2007-07-18 | 2009-01-22 | Frank Brunswig | Co-execution of objects from divergent runtime environments |
US20090055810A1 (en) | 2007-08-21 | 2009-02-26 | Nce Technologies Inc. | Method And System For Compilation And Execution Of Software Codes |
US8219987B1 (en) | 2007-08-24 | 2012-07-10 | Vmware, Inc. | Optimized virtual machine specification for provisioning application specific runtime environment |
US20090055829A1 (en) | 2007-08-24 | 2009-02-26 | Gibson Gary A | Method and apparatus for fine grain performance management of computer systems |
US8171473B2 (en) | 2007-08-31 | 2012-05-01 | International Business Machines Corporation | Method and apparatus for determining a service cluster topology based on static analysis |
US20090070355A1 (en) | 2007-09-11 | 2009-03-12 | International Business Machines Corporation | Transitioning between historical and real time data streams in the processing of data change messages |
US20090077569A1 (en) | 2007-09-14 | 2009-03-19 | Chris Appleton | Network management system event notification shortcut |
US20090193410A1 (en) | 2007-09-28 | 2009-07-30 | Xcerion Aktiebolag | Network operating system |
US8166304B2 (en) | 2007-10-02 | 2012-04-24 | International Business Machines Corporation | Support for multiple security policies on a unified authentication architecture |
US20090204964A1 (en) | 2007-10-12 | 2009-08-13 | Foley Peter F | Distributed trusted virtualization platform |
US8127284B2 (en) | 2007-10-16 | 2012-02-28 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US8806468B2 (en) | 2007-10-16 | 2014-08-12 | Microsoft Corporation | On-demand loading of types of software code of a program executing on a computing device |
US8566835B2 (en) | 2007-12-13 | 2013-10-22 | Hewlett-Packard Development Company, L.P. | Dynamically resizing a virtual machine container |
US20090158275A1 (en) | 2007-12-13 | 2009-06-18 | Zhikui Wang | Dynamically Resizing A Virtual Machine Container |
US20110040812A1 (en) | 2007-12-20 | 2011-02-17 | Virtual Computer, Inc. | Layered Virtual File System |
US20090183162A1 (en) | 2008-01-15 | 2009-07-16 | Microsoft Corporation | Priority Based Scheduling System for Server |
US20090198769A1 (en) | 2008-02-01 | 2009-08-06 | Microsoft Corporation | Virtual Application Server With Version Control |
US20140081984A1 (en) | 2008-02-11 | 2014-03-20 | Nuix Pty Ltd. | Systems and methods for scalable delocalized information governance |
US20090204960A1 (en) | 2008-02-12 | 2009-08-13 | Shmuel Ben-Yehuda | System, method and computer program product for accessing a memory space allocated to a virtual machine |
US8387075B1 (en) | 2008-03-28 | 2013-02-26 | Emc Corporation | Common scheduling and synchronization primitives |
US7886021B2 (en) | 2008-04-28 | 2011-02-08 | Oracle America, Inc. | System and method for programmatic management of distributed computing resources |
US20090271472A1 (en) | 2008-04-28 | 2009-10-29 | Scheifler Robert W | System and Method for Programmatic Management of Distributed Computing Resources |
US20090288084A1 (en) | 2008-05-02 | 2009-11-19 | Skytap | Multitenant hosted virtual machine infrastructure |
WO2009137567A1 (en) | 2008-05-08 | 2009-11-12 | Google Inc. | Method for safely executing an untrusted native code module on a computing device |
US20090300599A1 (en) | 2008-05-30 | 2009-12-03 | Matthew Thomas Piotrowski | Systems and methods of utilizing virtual machines to protect computer systems |
JP2010026562A (en) | 2008-07-15 | 2010-02-04 | Konica Minolta Business Technologies Inc | Relay server, relay method and relay program |
US20100023940A1 (en) | 2008-07-28 | 2010-01-28 | Fujitsu Limited | Virtual machine system |
US20100036925A1 (en) | 2008-08-07 | 2010-02-11 | Tactara, Llc | Alias management platforms |
US20100058351A1 (en) | 2008-09-01 | 2010-03-04 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US20100070725A1 (en) | 2008-09-05 | 2010-03-18 | Anand Prahlad | Systems and methods for management of virtualization data |
US20100094816A1 (en) | 2008-09-09 | 2010-04-15 | Lockheed Martin Corporation | Safety-Critical Data Checking In Object-Oriented Systems |
US20100064299A1 (en) | 2008-09-09 | 2010-03-11 | Kace Networks, Inc. | Deployment and Management of Virtual Containers |
US20100070678A1 (en) | 2008-09-12 | 2010-03-18 | Vmware, Inc. | Saving and Restoring State Information for Virtualized Computer Systems |
US20100122343A1 (en) | 2008-09-12 | 2010-05-13 | Anup Ghosh | Distributed Sensor for Detecting Malicious Software |
US8352608B1 (en) | 2008-09-23 | 2013-01-08 | Gogrid, LLC | System and method for automated configuration of hosting resources |
US20100106926A1 (en) | 2008-10-25 | 2010-04-29 | International Business Machines Corporation | Second failure data capture problem determination using user selective memory protection to trace application failures |
US20100114825A1 (en) | 2008-10-27 | 2010-05-06 | Vmware, Inc. | Version control environment for virtual machines |
US20100115098A1 (en) | 2008-11-04 | 2010-05-06 | Novell, Inc. | Dynamic and automatic colocation and combining of service providers and service clients in a grid of resources |
US20100131959A1 (en) | 2008-11-26 | 2010-05-27 | Spiers Adam Z | Proactive application workload management |
US20100131936A1 (en) | 2008-11-26 | 2010-05-27 | Optumsoft, Inc. | Efficient automated translation of procedures in an constraint-based programming language implemented with notification and callback |
US8336079B2 (en) | 2008-12-31 | 2012-12-18 | Hytrust, Inc. | Intelligent security control system for virtualized ecosystems |
US20100186011A1 (en) | 2009-01-20 | 2010-07-22 | Oracle International Corporation | Methods and systems for implementing transcendent page caching |
US20100198972A1 (en) | 2009-02-04 | 2010-08-05 | Steven Michael Umbehocker | Methods and Systems for Automated Management of Virtual Resources In A Cloud Computing Environment |
US20100199285A1 (en) | 2009-02-05 | 2010-08-05 | Vmware, Inc. | Virtual machine utility computing method and system |
US20110010722A1 (en) | 2009-03-12 | 2011-01-13 | Canon Kabushiki Kaisha | Memory swap management method and apparatus, and storage medium |
US20120011496A1 (en) | 2009-03-30 | 2012-01-12 | Nec Corporation | Service providing apparatus, service providing system, method of processing data in service providing apparatus, and computer program |
US8321558B1 (en) | 2009-03-31 | 2012-11-27 | Amazon Technologies, Inc. | Dynamically monitoring and modifying distributed execution of programs |
US20100257116A1 (en) | 2009-04-06 | 2010-10-07 | Accenture Global Services, Gmbh | Estimating a computing job complexity |
US20100269109A1 (en) | 2009-04-17 | 2010-10-21 | John Cartales | Methods and Systems for Evaluating Historical Metrics in Selecting a Physical Host for Execution of a Virtual Machine |
US20110029984A1 (en) | 2009-06-16 | 2011-02-03 | David Everton Norman | Counter and timer constraints |
US20100325727A1 (en) | 2009-06-17 | 2010-12-23 | Microsoft Corporation | Security virtual machine for advanced auditing |
US8700768B2 (en) | 2009-06-24 | 2014-04-15 | Red Hat Israel, Ltd. | Scheduling timelines of virtual machines |
US8799879B2 (en) | 2009-06-30 | 2014-08-05 | Oracle America, Inc. | Method and apparatus for protecting translated code in a virtual machine |
US20110029970A1 (en) | 2009-07-31 | 2011-02-03 | International Business Machines Corporation | Optimizing on demand allocation of virtual machines using a stateless preallocation pool |
US20110055396A1 (en) | 2009-08-31 | 2011-03-03 | Dehaan Michael Paul | Methods and systems for abstracting cloud management to allow communication between independently controlled clouds |
US20110055378A1 (en) | 2009-08-31 | 2011-03-03 | James Michael Ferris | Methods and systems for metering software infrastructure in a cloud computing environment |
US20110055683A1 (en) | 2009-09-02 | 2011-03-03 | Facebook Inc. | Page caching for rendering dynamic web pages |
US8448165B1 (en) | 2009-09-15 | 2013-05-21 | Symantec Corporation | System and method for logging operations of virtual machines |
US20110078679A1 (en) | 2009-09-30 | 2011-03-31 | International Business Machines Corporation | Provisioning virtual machine placement |
US20110099551A1 (en) | 2009-10-26 | 2011-04-28 | Microsoft Corporation | Opportunistically Scheduling and Adjusting Time Slices |
US20110099204A1 (en) | 2009-10-26 | 2011-04-28 | Sony Computer Entertainment America Llc. | File input/output scheduler using immediate data chunking |
US20110131572A1 (en) | 2009-11-30 | 2011-06-02 | Vitaly Elyashev | Controlling permissions in virtualization environment using hierarchical labeling |
US20110134761A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110141124A1 (en) | 2009-12-14 | 2011-06-16 | David Halls | Methods and systems for securing sensitive information using a hypervisor-trusted client |
US20110153727A1 (en) | 2009-12-17 | 2011-06-23 | Hong Li | Cloud federation as a service |
US20120192184A1 (en) | 2009-12-18 | 2012-07-26 | International Business Machines Corporation | Virtual image deployment with a warm cache |
US20110153838A1 (en) | 2009-12-18 | 2011-06-23 | Microsoft Corporation | Session monitoring of virtual desktops in a virtual machine farm |
US20110154353A1 (en) | 2009-12-22 | 2011-06-23 | Bmc Software, Inc. | Demand-Driven Workload Scheduling Optimization on Shared Computing Resources |
US20120131379A1 (en) | 2010-01-05 | 2012-05-24 | Hitachi, Ltd. | Computer system and availability method thereof |
US8874952B2 (en) | 2010-01-05 | 2014-10-28 | Hitachi, Ltd. | Computer system and availability method thereof |
US20110179162A1 (en) | 2010-01-15 | 2011-07-21 | Mayo Mark G | Managing Workloads and Hardware Resources in a Cloud Resource |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US20110225277A1 (en) | 2010-03-11 | 2011-09-15 | International Business Machines Corporation | Placement of virtual machines based on server cost and network cost |
US20110231680A1 (en) | 2010-03-22 | 2011-09-22 | Microsoft Corporation | Energy savings for a networked computer |
US20130198748A1 (en) | 2010-03-30 | 2013-08-01 | Richard Sharp | Storage optimization selection within a virtualization environment |
US20110247005A1 (en) | 2010-03-31 | 2011-10-06 | International Business Machines Corporation | Methods and Apparatus for Resource Capacity Evaluation in a System of Virtual Containers |
US20110265164A1 (en) | 2010-04-26 | 2011-10-27 | Vmware, Inc. | Cloud platform architecture |
JP2011233146A (en) | 2010-04-26 | 2011-11-17 | Vmware Inc | Cloud platform architecture |
US20110271276A1 (en) * | 2010-04-28 | 2011-11-03 | International Business Machines Corporation | Automated tuning in a virtual machine computing environment |
US9461996B2 (en) | 2010-05-07 | 2016-10-04 | Citrix Systems, Inc. | Systems and methods for providing a single click access to enterprise, SAAS and cloud hosted application |
US20110276945A1 (en) | 2010-05-07 | 2011-11-10 | Salesforce.Com, Inc. | Validating Visual Components |
US20120054744A1 (en) | 2010-05-10 | 2012-03-01 | Manbinder Pal Singh | Redirection of Information from Secure Virtual Machines to Unsecure Virtual Machines |
JP2011257847A (en) | 2010-06-07 | 2011-12-22 | Nippon Telegr & Teleph Corp <Ntt> | Communication system and communication system update method |
US20110314465A1 (en) | 2010-06-17 | 2011-12-22 | Timothy Smith | Method and system for workload distributing and processing across a network of replicated virtual machines |
US20110321033A1 (en) | 2010-06-24 | 2011-12-29 | Bmc Software, Inc. | Application Blueprint and Deployment Model for Dynamic Business Service Management (BSM) |
US20110321051A1 (en) | 2010-06-25 | 2011-12-29 | Ebay Inc. | Task scheduling based on dependencies and resources |
US8719415B1 (en) | 2010-06-28 | 2014-05-06 | Amazon Technologies, Inc. | Use of temporarily available computing nodes for dynamic scaling of a cluster |
US20140282629A1 (en) | 2010-06-30 | 2014-09-18 | Amazon Technologies, Inc. | Managing requests for computing capacity |
US20120011511A1 (en) | 2010-07-08 | 2012-01-12 | Microsoft Corporation | Methods for supporting users with task continuity and completion across devices and time |
US20120016721A1 (en) | 2010-07-15 | 2012-01-19 | Joseph Weinman | Price and Utility Optimization for Cloud Computing Resources |
US9767271B2 (en) | 2010-07-15 | 2017-09-19 | The Research Foundation For The State University Of New York | System and method for validating program execution at run-time |
US20120041970A1 (en) | 2010-08-12 | 2012-02-16 | Cdnetworks Co., Ltd. | Distributed data cache for on-demand application acceleration |
US8490088B2 (en) | 2010-09-10 | 2013-07-16 | International Business Machines Corporation | On demand virtual machine image streaming |
US20140180862A1 (en) | 2010-09-14 | 2014-06-26 | Amazon Technologies, Inc. | Managing operational throughput for shared resources |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20120072914A1 (en) | 2010-09-17 | 2012-03-22 | Canon Kabushiki Kaisha | Cloud computing system and method for controlling same |
WO2012039834A1 (en) | 2010-09-21 | 2012-03-29 | Amazon Technologies, Inc. | Methods and systems for dynamically managing requests for computing capacity |
US20120072762A1 (en) | 2010-09-21 | 2012-03-22 | Atchison Lee A | Methods and systems for dynamically managing requests for computing capacity |
US20120079004A1 (en) | 2010-09-23 | 2012-03-29 | Salesforce.Com, Inc. | Business networking information feed alerts |
WO2012050772A1 (en) | 2010-09-30 | 2012-04-19 | Amazon Technologies, Inc. | Virtual resource cost tracking with dedicated implementation resources |
US20130227534A1 (en) | 2010-10-12 | 2013-08-29 | Fujitsu Limited | Simulation apparatus, method and medium |
US20120096468A1 (en) | 2010-10-13 | 2012-04-19 | Microsoft Corporation | Compute cluster with balanced resources |
US20120096271A1 (en) | 2010-10-15 | 2012-04-19 | Microsoft Corporation | Remote Access to Hosted Virtual Machines By Enterprise Users |
US20120102307A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus including architecture for protecting sensitive code and data |
US20120102333A1 (en) | 2010-10-20 | 2012-04-26 | Advanced Micro Devices, Inc. | Method and apparatus for including architecture for protecting multi-user sensitive code and data |
US20120102493A1 (en) | 2010-10-20 | 2012-04-26 | Microsoft Corporation | Ordered scheduling of suspended processes based on resumption events |
US20120102481A1 (en) | 2010-10-22 | 2012-04-26 | Microsoft Corporation | Coordinated Upgrades In Distributed Systems |
US20120110570A1 (en) | 2010-10-27 | 2012-05-03 | Microsoft Corporation | Stateful applications operating in a stateless cloud computing environment |
US20130275975A1 (en) | 2010-10-27 | 2013-10-17 | Hitachi, Ltd. | Resource management server, resource management method and storage medium in which resource management program is stored |
US8756696B1 (en) | 2010-10-30 | 2014-06-17 | Sra International, Inc. | System and method for providing a virtualized secure data containment service with a networked environment |
US20120110588A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Unified resource manager providing a single point of control |
US20120110155A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Management of a data network of a computing environment |
US20120110164A1 (en) | 2010-11-02 | 2012-05-03 | International Business Machines Corporation | Managing a workload of a plurality of virtual servers of a computing environment |
US20120144290A1 (en) | 2010-12-02 | 2012-06-07 | Adobe Systems Incorporated | Integrated Native HTML Rendering |
US20150235144A1 (en) | 2010-12-10 | 2015-08-20 | Salesforce.Com, Inc. | Methods and systems for making effective use of system resources |
US20140283045A1 (en) | 2010-12-29 | 2014-09-18 | Amazon Technologies, Inc. | Managing virtual computing testing |
US20120197958A1 (en) | 2011-01-31 | 2012-08-02 | Microsoft Corporation | Parallel Serialization of Request Processing |
US20120198442A1 (en) | 2011-01-31 | 2012-08-02 | Vivek Kashyap | Virtual Container |
US8555281B1 (en) | 2011-02-16 | 2013-10-08 | Google Inc. | Scheduling of tasks based upon historical execution times |
US20130311650A1 (en) | 2011-02-28 | 2013-11-21 | Amazon Technologies, Inc. | Managing allocation of computing capacity |
US9268586B2 (en) | 2011-03-08 | 2016-02-23 | Rackspace Us, Inc. | Wake-on-LAN and instantiate-on-LAN in a cloud computing system |
US20160072727A1 (en) | 2011-03-08 | 2016-03-10 | Rackspace Us, Inc. | Pluggable Allocation in a Cloud Computing System |
US9141410B2 (en) | 2011-03-08 | 2015-09-22 | Rackspace Us, Inc. | Pluggable allocation in a cloud computing system |
US20120233464A1 (en) | 2011-03-11 | 2012-09-13 | Resource Interactive, Llc | Pci dss compliant proxy service |
US8429282B1 (en) | 2011-03-22 | 2013-04-23 | Amazon Technologies, Inc. | System and method for avoiding system overload by maintaining an ideal request rate |
US20150046926A1 (en) | 2011-04-29 | 2015-02-12 | Netapp Inc. | Virtual machine dependency |
US20140129667A1 (en) | 2011-06-14 | 2014-05-08 | Nec Corporation | Content delivery system, controller and content delivery method |
US9223561B2 (en) | 2011-06-27 | 2015-12-29 | Orange | Method for providing an on-demand software execution service |
US20120331113A1 (en) | 2011-06-27 | 2012-12-27 | Microsoft Corporation | Resource management for cloud computing platforms |
US9594590B2 (en) | 2011-06-29 | 2017-03-14 | Hewlett Packard Enterprise Development Lp | Application migration with dynamic operating system containers |
US9086897B2 (en) | 2011-07-01 | 2015-07-21 | Electronics And Telecommunications Research Institute | Method and architecture for virtual desktop service |
US20130014101A1 (en) | 2011-07-06 | 2013-01-10 | Microsoft Corporation | Offering Network Performance Guarantees in Multi-Tenant Datacenters |
US8819679B2 (en) | 2011-07-28 | 2014-08-26 | International Business Machines Corporation | Methods and systems for on-boarding applications to a cloud |
US20130042234A1 (en) | 2011-08-09 | 2013-02-14 | International Business Machines Corporation | Virtual machine management |
US9152406B2 (en) | 2011-08-22 | 2015-10-06 | International Business Machines Corporation | Rapid provisioning of virtual machines based on multi-dimensional user request patterns in a cloud |
US20130055262A1 (en) | 2011-08-25 | 2013-02-28 | Vincent G. Lubsey | Systems and methods of host-aware resource management involving cluster-based resource pools |
US20130054804A1 (en) | 2011-08-25 | 2013-02-28 | At&T Intellectual Property I, L.P. | System for Consolidating Heterogeneous Data Centers Through Virtualization of Services |
US20150205596A1 (en) | 2011-08-26 | 2015-07-23 | Vmware, Inc. | Management of software updates in a datacenter |
JP2014525624A (en) | 2011-08-30 | 2014-09-29 | マイクロソフト コーポレーション | Cloud-based build service |
US20130054927A1 (en) | 2011-08-30 | 2013-02-28 | Bipul Raj | System and method for retaining deduplication in a storage object after a clone split operation |
US20130061220A1 (en) | 2011-09-06 | 2013-03-07 | Xerox Corporation | Method for on-demand inter-cloud load provisioning for transient bursts of computing needs |
US20130061208A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Transformational context-aware data source management |
US20130346964A1 (en) | 2011-09-08 | 2013-12-26 | Hitachi Solutions, Ltd. | OSGi PROGRAM, OSGi SYSTEM |
US20130067494A1 (en) | 2011-09-09 | 2013-03-14 | Microsoft Corporation | Resuming Applications and/or Exempting Applications from Suspension |
US8839035B1 (en) | 2011-09-14 | 2014-09-16 | Amazon Technologies, Inc. | Cloud-based test execution |
US8825863B2 (en) | 2011-09-20 | 2014-09-02 | International Business Machines Corporation | Virtual machine placement within a server farm |
US20130080641A1 (en) | 2011-09-26 | 2013-03-28 | Knoa Software, Inc. | Method, system and program product for allocation and/or prioritization of electronic resources |
US8825964B1 (en) | 2011-09-26 | 2014-09-02 | Emc Corporation | Adaptive integration of cloud data services with a data storage system |
US9497136B1 (en) | 2011-09-28 | 2016-11-15 | Emc Corporation | Method and system for providing usage metrics to manage utilzation of cloud computing resources |
US20130097601A1 (en) | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Optimizing virtual machines placement in cloud computing environments |
US20130111032A1 (en) | 2011-10-28 | 2013-05-02 | International Business Machines Corporation | Cloud optimization using workload analysis |
US20130111469A1 (en) | 2011-10-30 | 2013-05-02 | Kamath Harish B | Service provider management of virtual instances corresponding to hardware resources managed by other service providers |
US20130124807A1 (en) | 2011-11-14 | 2013-05-16 | Eric H. Nielsen | Enhanced Software Application Platform |
US20140304815A1 (en) | 2011-11-15 | 2014-10-09 | Japan Science And Technology Agency | Program analysis/verification service provision system, control method for same, control program, control program for directing computer to function, program analysis/verification device, program analysis/verification tool management device |
US20130132942A1 (en) | 2011-11-22 | 2013-05-23 | Huawei Technologies Co., Ltd. | Application software installation method and application software installation apparatus |
US20130152047A1 (en) | 2011-11-22 | 2013-06-13 | Solano Labs, Inc | System for distributed software quality improvement |
US20130139166A1 (en) | 2011-11-24 | 2013-05-30 | Alibaba Group Holding Limited | Distributed data stream processing method and system |
US20130139152A1 (en) | 2011-11-29 | 2013-05-30 | International Business Machines Corporation | Cloud provisioning accelerator |
US20130151648A1 (en) | 2011-12-07 | 2013-06-13 | Seven Networks, Inc. | Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic allieviation |
US8769519B2 (en) | 2011-12-08 | 2014-07-01 | Microsoft Corporation | Personal and pooled virtual machine update |
US8694996B2 (en) | 2011-12-14 | 2014-04-08 | International Business Machines Corporation | Application initiated negotiations for resources meeting a performance parameter in a virtualized computing environment |
US9635132B1 (en) | 2011-12-15 | 2017-04-25 | Amazon Technologies, Inc. | Service and APIs for remote volume-based block storage |
US20130227641A1 (en) | 2012-01-06 | 2013-08-29 | Optio Labs, LLC | Systems and methods to enforce security policies on the loading, linking, and execution of native code by mobile applications running inside of virtual machines |
US20130179574A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corportaion | Assignment of resources in virtual machine pools |
WO2013106257A1 (en) | 2012-01-09 | 2013-07-18 | Microsoft Corporation | Assignment of resources in virtual machine pools |
US20130179894A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Platform as a service job scheduling |
US20130179895A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Paas hierarchial scheduling and auto-scaling |
US20130179881A1 (en) | 2012-01-09 | 2013-07-11 | Microsoft Corporation | Decoupling paas resources, jobs, and scheduling |
US8904008B2 (en) | 2012-01-09 | 2014-12-02 | Microsoft Corporation | Assignment of resources in virtual machine pools |
US20130185729A1 (en) | 2012-01-13 | 2013-07-18 | Rutgers, The State University Of New Jersey | Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures |
US20130185719A1 (en) * | 2012-01-17 | 2013-07-18 | Microsoft Corporation | Throttling guest write ios based on destination throughput |
US9208007B2 (en) | 2012-01-18 | 2015-12-08 | International Business Machines Corporation | Open resilience framework for simplified and coordinated orchestration of multiple availability managers |
US20130191924A1 (en) | 2012-01-25 | 2013-07-25 | Gianni Tedesco | Approaches for Protecting Sensitive Data Within a Guest Operating System |
US20130198743A1 (en) | 2012-01-26 | 2013-08-01 | Empire Technology Development Llc | Data center with continuous world switch security |
US20130198319A1 (en) | 2012-01-31 | 2013-08-01 | Vmware, Inc. | Elastic allocation of computing resources to software applications |
US20130198763A1 (en) | 2012-01-31 | 2013-08-01 | Red Hat Inc. | Connection management for an application in a computing platform |
JP2013156996A (en) | 2012-01-31 | 2013-08-15 | Vmware Inc | Elastic assignment of computing resource to software application |
US20130205092A1 (en) | 2012-02-06 | 2013-08-08 | Empire Technology Development Llc | Multicore computer system with cache use based adaptive scheduling |
US20130219390A1 (en) | 2012-02-21 | 2013-08-22 | Hon Hai Precision Industry Co., Ltd. | Cloud server and method for creating virtual machines |
US20130227710A1 (en) | 2012-02-27 | 2013-08-29 | Computer Associates Think, Inc. | System and method for securing leased images in a cloud environment |
US20130227563A1 (en) | 2012-02-29 | 2013-08-29 | Michael P. McGrath | Mechanism for Creating and Maintaining Multi-Tenant Applications in a Platform-as-a-Service (PaaS) Environment of a Cloud Computing System |
US20130232480A1 (en) | 2012-03-02 | 2013-09-05 | Vmware, Inc. | Single, logical, multi-tier application blueprint used for deployment and management of multiple physical applications in a cloud environment |
US20130239125A1 (en) | 2012-03-06 | 2013-09-12 | Francesco Iorio | Application level speculative processing |
US8725702B1 (en) | 2012-03-15 | 2014-05-13 | Symantec Corporation | Systems and methods for repairing system files |
US20130262556A1 (en) | 2012-03-28 | 2013-10-03 | Microsoft Corporation | Enhanced Computer Cluster Operation Using Resource Allocation Requests |
US20130263117A1 (en) | 2012-03-28 | 2013-10-03 | International Business Machines Corporation | Allocating resources to virtual machines via a weighted cost ratio |
US20130275969A1 (en) | 2012-04-17 | 2013-10-17 | Vencislav Dimitrov | Application installation management |
US20130275376A1 (en) | 2012-04-17 | 2013-10-17 | Igt | Cloud based virtual environment validation |
US8997093B2 (en) | 2012-04-17 | 2015-03-31 | Sap Se | Application installation management by selectively reuse or terminate virtual machines based on a process status |
US20130275958A1 (en) | 2012-04-17 | 2013-10-17 | Radoslav Ivanov | Automatic identification of services |
US9183019B2 (en) | 2012-04-25 | 2015-11-10 | Empire Technology Development Llc | Certification for flexible resource demand applications |
US20130290538A1 (en) | 2012-04-27 | 2013-10-31 | Daniel Juergen Gmach | Evaluation of cloud computing services |
US20130291087A1 (en) | 2012-04-30 | 2013-10-31 | Zscaler, Inc. | Systems and methods for integrating cloud services with information management systems |
US20150081885A1 (en) | 2012-04-30 | 2015-03-19 | Jeffery Darrel Thomas | Automated event management |
US20130297964A1 (en) | 2012-05-03 | 2013-11-07 | Vmware, Inc. | Virtual Machine Placement With Automatic Deployment Error Recovery |
US20140040857A1 (en) | 2012-05-04 | 2014-02-06 | International Business Machines Corporation | Instrumentation of software applications for configuration thereof |
EP2663052A1 (en) | 2012-05-09 | 2013-11-13 | Netflix, Inc. | API Platform That Includes Server-Executed Client-Based Code |
US9098528B2 (en) | 2012-05-15 | 2015-08-04 | Hitachi, Ltd. | File storage system and load distribution method |
US20130326506A1 (en) | 2012-05-30 | 2013-12-05 | Michael P. McGrath | Mechanism for Controlling Capacity in a Multi-Tenant Platform-as-a-Service (Paas) Environment in a Cloud Computing System |
US8850432B2 (en) | 2012-05-30 | 2014-09-30 | Red Hat, Inc. | Controlling utilization in a multi-tenant platform-as-a-service (PaaS) environment in a cloud computing system |
US8799236B1 (en) | 2012-06-15 | 2014-08-05 | Amazon Technologies, Inc. | Detecting duplicated content among digital items |
US9317689B2 (en) | 2012-06-15 | 2016-04-19 | Visa International Service Association | Method and apparatus for secure application execution |
US20140304698A1 (en) | 2012-06-18 | 2014-10-09 | Tellabs Operations, Inc. | Methods and Apparatus for Performing In-Service Software Upgrade for a Network Device Using System Virtulization |
US20130339950A1 (en) | 2012-06-19 | 2013-12-19 | Microsoft Corporation | Intermediary virtual machine task management |
US20130346994A1 (en) | 2012-06-20 | 2013-12-26 | Platform Computing Corporation | Job distribution within a grid environment |
US20130346946A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | System for hosted, shared, source control build |
US20130346987A1 (en) | 2012-06-21 | 2013-12-26 | Kristopher Len Raney | Systems and methods for distributing tasks and/or processing recources in a system |
US20130347095A1 (en) | 2012-06-25 | 2013-12-26 | International Business Machines Corporation | Isolation and security hardening among workloads in a multi-tenant networked environment |
US20130346470A1 (en) | 2012-06-26 | 2013-12-26 | Juniper Networks, Inc. | Distributed processing of network device tasks |
US20140007097A1 (en) | 2012-06-29 | 2014-01-02 | Brocade Communications Systems, Inc. | Dynamic resource allocation for virtual machines |
US20140019735A1 (en) | 2012-07-13 | 2014-01-16 | Jaikrishnan Menon | Computer Processor Providing Exception Handling with Reduced State Storage |
US20140019965A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for automated assignment of virtual machines and physical machines to hosts with right-sizing |
US20140019966A1 (en) | 2012-07-13 | 2014-01-16 | Douglas M. Neuse | System and method for continuous optimization of computing systems with automated assignment of virtual machines and physical machines to hosts |
US20140040880A1 (en) | 2012-08-02 | 2014-02-06 | International Business Machines Corporation | Application deployment in heterogeneous environments |
US20140059226A1 (en) | 2012-08-21 | 2014-02-27 | Rackspace Us, Inc. | Multi-Level Cloud Computing System |
US20140059552A1 (en) | 2012-08-24 | 2014-02-27 | International Business Machines Corporation | Transparent efficiency for in-memory execution of map reduce job sequences |
US20140059209A1 (en) | 2012-08-27 | 2014-02-27 | Microsoft Corporation | State maintenance as a service |
US20140068568A1 (en) | 2012-09-04 | 2014-03-06 | Salesforce.Com, Inc. | System and method for dynamically debugging data in a multi-tenant database environment |
US20140068611A1 (en) | 2012-09-06 | 2014-03-06 | Michael P. McGrath | Mechanism for Automatic Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) Environment in a Cloud Computing System |
US20140082201A1 (en) | 2012-09-11 | 2014-03-20 | Vmware, Inc. | Resource allocation diagnosis on distributed computer systems based on resource hierarchy |
US20140082165A1 (en) | 2012-09-20 | 2014-03-20 | Michael David Marr | Automated profiling of resource usage |
US20160140180A1 (en) | 2012-09-28 | 2016-05-19 | Oracle International Corporation | Hybrid execution of continuous and scheduled queries |
US20140101649A1 (en) | 2012-10-05 | 2014-04-10 | International Business Machines Corporation | Virtual machine based controller and upgrade mechanism |
US8613070B1 (en) | 2012-10-12 | 2013-12-17 | Citrix Systems, Inc. | Single sign-on access in an orchestration framework for connected devices |
US9654508B2 (en) | 2012-10-15 | 2017-05-16 | Citrix Systems, Inc. | Configuring and providing profiles that manage execution of mobile applications |
US20140108722A1 (en) | 2012-10-15 | 2014-04-17 | Red Hat Israel, Ltd. | Virtual machine installation image caching |
US20140109087A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Virtual machine provisioning using replicated containers |
US20140109088A1 (en) | 2012-10-17 | 2014-04-17 | Microsoft Corporation | Augmented allocation of virtual machines for application |
US20160019536A1 (en) | 2012-10-17 | 2016-01-21 | Royal Bank Of Canada | Secure processing of data |
US20140130040A1 (en) | 2012-11-02 | 2014-05-08 | The Boeing Company | Systems and methods for migrating virtual machines |
US20150289220A1 (en) | 2012-11-05 | 2015-10-08 | Lg Electronics Inc. | Method and apparatus for generating synchronous signal in wireless access system for supporting super-high frequency band |
US9038068B2 (en) | 2012-11-15 | 2015-05-19 | Bank Of America Corporation | Capacity reclamation and resource adjustment |
US20140137110A1 (en) | 2012-11-15 | 2014-05-15 | Bank Of America Corporation | Capacity reclamation and resource adjustment |
US20150256621A1 (en) | 2012-11-19 | 2015-09-10 | Hitachi, Ltd. | Management system and management method |
US9052935B1 (en) | 2012-11-27 | 2015-06-09 | Symantec Corporation | Systems and methods for managing affinity rules in virtual-machine environments |
US9092837B2 (en) | 2012-11-29 | 2015-07-28 | International Business Machines Corporation | Use of snapshots to reduce risk in migration to a standard virtualized environment |
US9979817B2 (en) | 2012-12-05 | 2018-05-22 | Future Dial, Inc. | Using automatically collected device problem information to route and guide users' requests |
US9218190B2 (en) | 2012-12-17 | 2015-12-22 | International Business Machines Corporation | Hybrid virtual machine configuration management |
US20140173614A1 (en) | 2012-12-18 | 2014-06-19 | International Business Machines Corporation | Sending tasks between virtual machines based on expiration times |
US20140173616A1 (en) | 2012-12-19 | 2014-06-19 | International Business Machines Corporation | Adaptive resource usage limits for workload management |
US20140189677A1 (en) | 2013-01-02 | 2014-07-03 | International Business Machines Corporation | Effective Migration and Upgrade of Virtual Machines in Cloud Environments |
US20140201735A1 (en) | 2013-01-16 | 2014-07-17 | VCE Company LLC | Master automation service |
US20140207912A1 (en) | 2013-01-18 | 2014-07-24 | Limelight Networks, Inc. | Selective content pre-warming in content delivery networks based on user actions and content categorizations |
US20140215073A1 (en) | 2013-01-28 | 2014-07-31 | International Business Machines Corporation | Computing optimized virtual machine allocations using equivalence combinations |
US20140229221A1 (en) | 2013-02-11 | 2014-08-14 | Amazon Technologies, Inc. | Cost-minimizing task scheduler |
US9575798B2 (en) | 2013-02-25 | 2017-02-21 | Hitachi, Ltd. | Method of managing tenant network configuration in environment where virtual server and non-virtual server coexist |
US20140245297A1 (en) | 2013-02-27 | 2014-08-28 | International Business Machines Corporation | Managing allocation of hardware resources in a virtualized environment |
US9027087B2 (en) | 2013-03-14 | 2015-05-05 | Rackspace Us, Inc. | Method and system for identity-based authentication of virtual machines |
US20140282559A1 (en) | 2013-03-14 | 2014-09-18 | Samsung Electronics Co., Ltd. | Computing system with task transfer mechanism and method of operation thereof |
US8677359B1 (en) | 2013-03-14 | 2014-03-18 | Joyent, Inc. | Compute-centric object stores and methods of use |
US20140279581A1 (en) | 2013-03-14 | 2014-09-18 | Rockethouse, Llc | Rendering |
US20140282615A1 (en) | 2013-03-15 | 2014-09-18 | Mark Cavage | Versioning schemes for compute-centric object stores |
US20140280325A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Suspending and resuming continuous queries over data streams |
US20140289286A1 (en) | 2013-03-25 | 2014-09-25 | Salesforce.Com, Inc. | System and method for performance tuning of garbage collection algorithms |
US20140298295A1 (en) | 2013-04-02 | 2014-10-02 | Apple Inc. | Dynamic program evaluation for system adaptation |
US20160048606A1 (en) | 2013-04-13 | 2016-02-18 | Kiss Digital Media Pty Ltd. | Methods, Systems, Apparatus, Products, Articles and Data Structures for Cross-Platform Digital Content |
US20140317617A1 (en) | 2013-04-23 | 2014-10-23 | Sap Ag | Optimized Deployment of Data Services on the Cloud |
US9929916B1 (en) | 2013-05-02 | 2018-03-27 | Aspen Technology, Inc. | Achieving stateful application software service behavior in distributed stateless systems |
US9628332B2 (en) | 2013-05-20 | 2017-04-18 | Microsoft Technology Licensing, Llc | Resource allocation to game titles in a remote gaming environment |
US20140344736A1 (en) | 2013-05-20 | 2014-11-20 | Citrix Systems, Inc. | Bound Based Contextual Zoom |
US20140344457A1 (en) | 2013-05-20 | 2014-11-20 | Microsoft Corporation | Resource allocation to game titles in a remote gaming environment |
US9110732B1 (en) | 2013-06-07 | 2015-08-18 | Amazon Technologies, Inc. | Proxy for injecting configuration information |
US9489227B2 (en) | 2013-06-10 | 2016-11-08 | Electronics And Telecommunications Research Institute | Apparatus and method for virtual desktop service |
US20140380085A1 (en) | 2013-06-23 | 2014-12-25 | Willam C. Rash | Machine check architecture execution environment for non-microcoded processor |
US9652617B1 (en) | 2013-06-25 | 2017-05-16 | Amazon Technologies, Inc. | Analyzing security of applications |
US20150039891A1 (en) | 2013-08-02 | 2015-02-05 | Ologn Technologies Ag | Secure Server on a System with Virtual Machines |
US20150040229A1 (en) | 2013-08-05 | 2015-02-05 | Netflix, Inc. | Dynamic security testing |
US9111037B1 (en) | 2013-08-21 | 2015-08-18 | Ca, Inc. | Method and apparatus to enable mainframe computer testing for software testing management platform |
US20150067830A1 (en) | 2013-08-28 | 2015-03-05 | Amazon Technologies, Inc. | Dynamic application security verification |
US20150074659A1 (en) | 2013-09-06 | 2015-03-12 | Vmware, Inc. | Methods and Apparatus to Perform Web-Based Installations and/or Upgrade Architectures for Enterprise Software |
US9298633B1 (en) | 2013-09-18 | 2016-03-29 | Emc Corporation | Adaptive prefecth for predicted write requests |
US20150106805A1 (en) | 2013-10-15 | 2015-04-16 | Cisco Technology, Inc. | Accelerated instantiation of cloud resource |
US20150120928A1 (en) | 2013-10-24 | 2015-04-30 | Vmware, Inc. | Container virtual machines for hadoop |
US20150134626A1 (en) | 2013-11-11 | 2015-05-14 | Amazon Technologies, Inc. | Partition-based data stream processing framework |
US20150135287A1 (en) | 2013-11-13 | 2015-05-14 | Evident.io, Inc. | Automated sdk ingestion |
US20150142952A1 (en) | 2013-11-19 | 2015-05-21 | International Business Machines Corporation | Maintaining virtual machines for cloud-based operators in a streaming application in a ready state |
US20150143381A1 (en) | 2013-11-20 | 2015-05-21 | International Business Machines Corporation | Computing session workload scheduling and management of parent-child tasks |
WO2015078394A1 (en) | 2013-11-29 | 2015-06-04 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for scheduling blocking tasks |
US20160306613A1 (en) | 2013-12-03 | 2016-10-20 | Hewlett Packard Enterprise Development Lp | Code routine performance prediction using test results from code integration tool |
US9164754B1 (en) | 2013-12-18 | 2015-10-20 | Amazon Technologies, Inc. | Runtime patching of native-code programs |
US20150178110A1 (en) | 2013-12-20 | 2015-06-25 | Vmware, Inc. | State Customization of Forked Virtual Machines |
US9501345B1 (en) | 2013-12-23 | 2016-11-22 | Intuit Inc. | Method and system for creating enriched log data |
US20150188775A1 (en) | 2013-12-31 | 2015-07-02 | Vmware,Inc. | Intuitive gui for creating and managing hosts and virtual machines |
US20150186129A1 (en) | 2014-01-02 | 2015-07-02 | International Business Machines Corporation | Method and system for deploying a program module |
US20150199218A1 (en) | 2014-01-10 | 2015-07-16 | Fujitsu Limited | Job scheduling based on historical job data |
WO2015108539A1 (en) | 2014-01-20 | 2015-07-23 | Hewlett-Packard Development Company, L.P. | Determining a permission of a first tenant with respect to a second tenant |
US20150227598A1 (en) | 2014-02-13 | 2015-08-13 | Amazon Technologies, Inc. | Log data service in a virtual environment |
US20170068574A1 (en) | 2014-02-25 | 2017-03-09 | Hewlett Packard Enterprise Development Lp | Multiple pools in a multi-core system |
US20150242225A1 (en) | 2014-02-26 | 2015-08-27 | Red Hat Israel, Ltd. | Execution of a script based on properties of a virtual device associated with a virtual machine |
US9110770B1 (en) | 2014-03-04 | 2015-08-18 | Amazon Technologies, Inc. | Assessing quality of code in an open platform environment |
US20150254248A1 (en) | 2014-03-07 | 2015-09-10 | Printeron Inc. | System for suggesting network resource for use by a network terminal based on network resource ranking |
US20150261578A1 (en) | 2014-03-17 | 2015-09-17 | Ca, Inc. | Deployment of virtual machines to physical host machines based on infrastructure utilization decisions |
US20170093920A1 (en) | 2014-03-18 | 2017-03-30 | British Telecommunications Public Limited Company | User authentication |
US20150309923A1 (en) | 2014-04-28 | 2015-10-29 | Fujitsu Limited | Storage control apparatus and storage system |
US9223966B1 (en) | 2014-05-04 | 2015-12-29 | Symantec Corporation | Systems and methods for replicating computing system environments |
US20150319160A1 (en) | 2014-05-05 | 2015-11-05 | Microsoft Corporation | Secure Management of Operations on Protected Virtual Machines |
US9678778B1 (en) | 2014-05-07 | 2017-06-13 | Google Inc. | Virtual cluster as a service (VCIaaS) |
US20150324229A1 (en) | 2014-05-09 | 2015-11-12 | International Business Machines Corporation | Propagation of task progress through the use of coalesced time intervals |
US20150332195A1 (en) | 2014-05-13 | 2015-11-19 | Linkedln Corporation | Facilitating performance monitoring for periodically scheduled workflows |
US9250893B2 (en) | 2014-05-14 | 2016-02-02 | Western Digital Technologies, Inc. | Virtualized and automated software build system |
US20150332048A1 (en) | 2014-05-15 | 2015-11-19 | Lynx Software Technologies, Inc. | Systems and Methods Involving Features of Hardware Virtualization, Hypervisor, APIs of Interest, and/or Other Features |
US20150350701A1 (en) | 2014-05-28 | 2015-12-03 | Verizon Patent And Licensing Inc. | Methods and Systems for Managing Storage of Media Program Copies Within a Network Digital Video Recording System |
US9703681B2 (en) | 2014-05-29 | 2017-07-11 | Microsoft Technology Licensing, Llc | Performance optimization tip presentation during debugging |
US20150356294A1 (en) | 2014-06-09 | 2015-12-10 | Lehigh University | Methods for enforcing control flow of a computer program |
US20150370560A1 (en) | 2014-06-09 | 2015-12-24 | Lehigh University | Methods for enforcing control flow of a computer program |
US20150363181A1 (en) | 2014-06-13 | 2015-12-17 | International Business Machines Corporation | Software deployment in a distributed virtual machine environment |
US20150371244A1 (en) | 2014-06-23 | 2015-12-24 | Ca, Inc. | Forecasting information technology workload demand |
US20150379167A1 (en) * | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Crowd-sourced operational metric analysis of virtual appliances |
US20150378765A1 (en) | 2014-06-26 | 2015-12-31 | Vmware, Inc. | Methods and apparatus to scale application deployments in cloud computing environments using virtual machine pools |
US9361145B1 (en) | 2014-06-27 | 2016-06-07 | Amazon Technologies, Inc. | Virtual machine state replication using DMA write records |
US20150378764A1 (en) | 2014-06-30 | 2015-12-31 | Bmc Software, Inc. | Capacity risk management for virtual machines |
US20150378762A1 (en) | 2014-06-30 | 2015-12-31 | Vmware, Inc. | Monitoring and dynamic configuration of virtual-machine memory-management |
US20160294614A1 (en) | 2014-07-07 | 2016-10-06 | Symphony Teleca Corporation | Remote Embedded Device Update Platform Apparatuses, Methods and Systems |
US20160011901A1 (en) | 2014-07-09 | 2016-01-14 | Google Inc. | Dynamic Shard Allocation Adjustment |
US20160012099A1 (en) | 2014-07-14 | 2016-01-14 | Oracle International Corporation | Age-based policies for determining database cache hits |
US20160026486A1 (en) | 2014-07-25 | 2016-01-28 | Soft Machines, Inc. | An allocation and issue stage for reordering a microinstruction sequence into an optimized microinstruction sequence to implement an instruction set agnostic runtime architecture |
US20160077901A1 (en) | 2014-09-17 | 2016-03-17 | StrongLoop, Inc | Dynamic Determination of Local and Remote API Calls |
US9436555B2 (en) | 2014-09-22 | 2016-09-06 | Commvault Systems, Inc. | Efficient live-mount of a backed up virtual machine in a storage management system |
US20150052258A1 (en) | 2014-09-29 | 2015-02-19 | Weaved, Inc. | Direct map proxy system and protocol |
US20180143865A1 (en) | 2014-09-30 | 2018-05-24 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US20190155629A1 (en) | 2014-09-30 | 2019-05-23 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US10108443B2 (en) | 2014-09-30 | 2018-10-23 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US10140137B2 (en) | 2014-09-30 | 2018-11-27 | Amazon Technologies, Inc. | Threading as a service |
US20180039506A1 (en) | 2014-09-30 | 2018-02-08 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9483335B1 (en) | 2014-09-30 | 2016-11-01 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
WO2016053968A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9323556B2 (en) | 2014-09-30 | 2016-04-26 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US20170116051A1 (en) | 2014-09-30 | 2017-04-27 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US10162688B2 (en) | 2014-09-30 | 2018-12-25 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US20190196884A1 (en) | 2014-09-30 | 2019-06-27 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US9760387B2 (en) | 2014-09-30 | 2017-09-12 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US20190108058A1 (en) | 2014-09-30 | 2019-04-11 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US9715402B2 (en) | 2014-09-30 | 2017-07-25 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US20170199766A1 (en) | 2014-09-30 | 2017-07-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
JP2017534107A (en) | 2014-09-30 | 2017-11-16 | アマゾン テクノロジーズ インコーポレイテッド | Dynamic code deployment and versioning |
US20170192804A1 (en) | 2014-09-30 | 2017-07-06 | Amazon Technologies, Inc. | Threading as a service |
US10048974B1 (en) | 2014-09-30 | 2018-08-14 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US20190171470A1 (en) | 2014-09-30 | 2019-06-06 | Amazon Technologies, Inc. | Threading as a service |
WO2016053950A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Threading as a service |
JP2017534967A (en) | 2014-09-30 | 2017-11-24 | アマゾン テクノロジーズ インコーポレイテッド | Programmatic event detection and message generation for requests to execute program code |
US9678773B1 (en) | 2014-09-30 | 2017-06-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
WO2016053973A1 (en) | 2014-09-30 | 2016-04-07 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US10592269B2 (en) | 2014-09-30 | 2020-03-17 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9652306B1 (en) | 2014-09-30 | 2017-05-16 | Amazon Technologies, Inc. | Event-driven computing |
US9146764B1 (en) | 2014-09-30 | 2015-09-29 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US9600312B2 (en) | 2014-09-30 | 2017-03-21 | Amazon Technologies, Inc. | Threading as a service |
US20160098285A1 (en) | 2014-10-02 | 2016-04-07 | Vmware, Inc. | Using virtual machine containers in a virtualized computing platform |
US20160100036A1 (en) | 2014-10-06 | 2016-04-07 | VMFive Inc. | System, method, server and device for trial use of application software |
US20160117254A1 (en) | 2014-10-22 | 2016-04-28 | Netapp, Inc. | Cache optimization technique for large working data sets |
US9930133B2 (en) | 2014-10-23 | 2018-03-27 | Netapp, Inc. | System and method for managing application performance |
US20160124665A1 (en) | 2014-11-04 | 2016-05-05 | Rubrik, Inc. | Management of virtual machine snapshots |
US20190384647A1 (en) | 2014-12-05 | 2019-12-19 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US9537788B2 (en) | 2014-12-05 | 2017-01-03 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
JP2018503896A (en) | 2014-12-05 | 2018-02-08 | アマゾン テクノロジーズ インコーポレイテッド | Automatic management of resource sizing |
WO2016090292A1 (en) | 2014-12-05 | 2016-06-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US9413626B2 (en) | 2014-12-05 | 2016-08-09 | Amazon Technologies, Inc. | Automatic management of resource sizing |
US10353746B2 (en) | 2014-12-05 | 2019-07-16 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US20170206116A1 (en) | 2014-12-05 | 2017-07-20 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US9864636B1 (en) | 2014-12-10 | 2018-01-09 | Amazon Technologies, Inc. | Allocating processor resources based on a service-level agreement |
US9661011B1 (en) | 2014-12-17 | 2017-05-23 | Amazon Technologies, Inc. | Techniques for data routing and management using risk classification and data sampling |
US20160191420A1 (en) | 2014-12-27 | 2016-06-30 | Intel Corporation | Mitigating traffic steering inefficiencies in distributed uncore fabric |
US20160212007A1 (en) | 2015-01-15 | 2016-07-21 | International Business Machines Corporation | Distributed map reduce network |
US9733967B2 (en) | 2015-02-04 | 2017-08-15 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9471775B1 (en) | 2015-02-04 | 2016-10-18 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US20170177391A1 (en) | 2015-02-04 | 2017-06-22 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10387177B2 (en) | 2015-02-04 | 2019-08-20 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10552193B2 (en) | 2015-02-04 | 2020-02-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
WO2016126731A1 (en) | 2015-02-04 | 2016-08-11 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
JP2018512087A (en) | 2015-02-04 | 2018-05-10 | アマゾン テクノロジーズ インコーポレイテッド | Security protocol for low-latency execution of program code |
US20180203717A1 (en) | 2015-02-04 | 2018-07-19 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9921864B2 (en) | 2015-02-26 | 2018-03-20 | Vmware, Inc. | Dynamic host performance tuning of a network stack |
US20160285906A1 (en) | 2015-03-23 | 2016-09-29 | Empire Technology Development Llc | Virtual machine placement |
US20160292016A1 (en) | 2015-04-02 | 2016-10-06 | Microsoft Technology Licensing, Llc | Complex event processor for historic/live/replayed data |
US20160301739A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US20180121245A1 (en) | 2015-04-08 | 2018-05-03 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US20180309819A1 (en) | 2015-04-08 | 2018-10-25 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US20160299790A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
WO2016164633A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US9930103B2 (en) | 2015-04-08 | 2018-03-27 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
WO2016164638A1 (en) | 2015-04-08 | 2016-10-13 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US10623476B2 (en) | 2015-04-08 | 2020-04-14 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US20160350099A1 (en) | 2015-05-29 | 2016-12-01 | Hewlett Packard Enterprise Development Lp | Application deployment to virtual machines |
US20160357536A1 (en) | 2015-06-05 | 2016-12-08 | Apple Inc. | Capability attributes based application packaging |
US20160364265A1 (en) | 2015-06-15 | 2016-12-15 | International Business Machines Corporation | Managed services coordinator |
US20160371156A1 (en) | 2015-06-16 | 2016-12-22 | Mongodb, Inc. | System and method for facilitating replication in a distributed database |
US20160371127A1 (en) | 2015-06-19 | 2016-12-22 | Vmware, Inc. | Resource management for containers in a virtualized environment |
US20160378449A1 (en) | 2015-06-24 | 2016-12-29 | Vmware, Inc. | Artifact manager for release automation |
US20160378554A1 (en) | 2015-06-29 | 2016-12-29 | Vmware, Inc. | Parallel and Distributed Computing Using Multiple Virtual Machines |
US20170041309A1 (en) | 2015-08-06 | 2017-02-09 | International Business Machines Corporation | Authenticating application legitimacy |
US20170060615A1 (en) | 2015-08-28 | 2017-03-02 | Vmware, Inc. | Hybrid infrastructure provisioning framework tethering remote datacenters |
US20170060621A1 (en) | 2015-08-28 | 2017-03-02 | Vmware, Inc. | Hybrid task framework |
US20170075749A1 (en) | 2015-09-14 | 2017-03-16 | Dynatrace Llc | Method And System For Real-Time Causality And Root Cause Determination Of Transaction And Infrastructure Related Events Provided By Multiple, Heterogeneous Agents |
US20170083381A1 (en) | 2015-09-21 | 2017-03-23 | Alibaba Group Holding Limited | System and method for processing task resources |
US20170085447A1 (en) | 2015-09-21 | 2017-03-23 | Splunk Inc. | Adaptive control of data collection requests sent to external data sources |
US20170085591A1 (en) | 2015-09-23 | 2017-03-23 | Ca, Inc. | Fetching a policy definition library from a policy server at mobile device runtime of an application package to control access to mobile device resources |
US20170093684A1 (en) | 2015-09-28 | 2017-03-30 | Wipro Limited | System and method for improving integration testing in a cloud computing environment |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
WO2017059248A1 (en) | 2015-09-30 | 2017-04-06 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US20170090961A1 (en) | 2015-09-30 | 2017-03-30 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US10042660B2 (en) | 2015-09-30 | 2018-08-07 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
JP2018536213A (en) | 2015-09-30 | 2018-12-06 | アマゾン テクノロジーズ インコーポレイテッド | Management of periodic requests for computing ability |
US20180157568A1 (en) | 2015-12-16 | 2018-06-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9514037B1 (en) | 2015-12-16 | 2016-12-06 | International Business Machines Corporation | Test program scheduling based on analysis of test data sets |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10365985B2 (en) | 2015-12-16 | 2019-07-30 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10437629B2 (en) | 2015-12-16 | 2019-10-08 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10013267B1 (en) | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US10067801B1 (en) | 2015-12-21 | 2018-09-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US20180210760A1 (en) | 2015-12-21 | 2018-07-26 | Amazon Technologies, Inc. | Code execution request routing |
US9787779B2 (en) | 2015-12-21 | 2017-10-10 | Amazon Technologies, Inc. | Analyzing deployment pipelines used to update production computing services using a live pipeline template process |
US10248467B2 (en) | 2015-12-21 | 2019-04-02 | Amazon Technologies, Inc. | Code execution request routing |
US20190227849A1 (en) | 2015-12-21 | 2019-07-25 | Amazon Technologies, Inc. | Code execution request routing |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US10691498B2 (en) | 2015-12-21 | 2020-06-23 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
US9910713B2 (en) | 2015-12-21 | 2018-03-06 | Amazon Technologies, Inc. | Code execution request routing |
US20170177413A1 (en) | 2015-12-21 | 2017-06-22 | Amazon Technologies, Inc. | Code execution request routing |
US20190102231A1 (en) | 2015-12-21 | 2019-04-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
WO2017112526A1 (en) | 2015-12-21 | 2017-06-29 | Amazon Technologies, Inc. | Code execution request routing |
US20170230499A1 (en) | 2016-02-08 | 2017-08-10 | Kirusa, Inc. | Placement Of A Missed Call |
US20170272462A1 (en) | 2016-03-15 | 2017-09-21 | Carbon Black, Inc. | System and Method for Process Hollowing Detection |
WO2017172440A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on-demand code execution environment |
US10162672B2 (en) | 2016-03-30 | 2018-12-25 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US20170286143A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US20170286156A1 (en) | 2016-03-30 | 2017-10-05 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US10139876B2 (en) | 2016-06-23 | 2018-11-27 | Vmware Inc. | Efficient reboot of an operating system executed in a virtual machine |
US20170371703A1 (en) | 2016-06-28 | 2017-12-28 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US10402231B2 (en) | 2016-06-29 | 2019-09-03 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US10102040B2 (en) | 2016-06-29 | 2018-10-16 | Amazon Technologies, Inc | Adjusting variable limit on concurrent code executions |
US20200057680A1 (en) | 2016-06-29 | 2020-02-20 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US9977691B2 (en) | 2016-06-29 | 2018-05-22 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions based on communication between frontends |
US10277708B2 (en) | 2016-06-30 | 2019-04-30 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10203990B2 (en) | 2016-06-30 | 2019-02-12 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US20180004553A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US20180004572A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US9596350B1 (en) | 2016-07-21 | 2017-03-14 | Genesys Telecommunications Laboratories, Inc. | Virtual interactions in contact center operations |
US20180046482A1 (en) | 2016-08-09 | 2018-02-15 | International Business Machines Corporation | Expediting the provisioning of virtual machines based on cached repeated portions of a template |
US20180046453A1 (en) | 2016-08-10 | 2018-02-15 | Bank Of America Corporation | Application Programming Interface for Providing Access to Computing Platform Definitions |
US20180060221A1 (en) | 2016-08-24 | 2018-03-01 | Google Inc. | Multi-layer test suite generation |
US20180067841A1 (en) | 2016-09-08 | 2018-03-08 | At&T Intellectual Property I, L.P. | Method and apparatus for determining a performance impact by a software upgrade of a mobile user endpoint device |
US20190205171A1 (en) | 2016-09-23 | 2019-07-04 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US10528390B2 (en) | 2016-09-23 | 2020-01-07 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US20180239636A1 (en) | 2017-02-22 | 2018-08-23 | Nutanix, Inc. | Task execution framework using idempotent subtasks |
US20180253333A1 (en) | 2017-03-03 | 2018-09-06 | Microsoft Technology Licensing Llc | Cross-device task registration and resumption |
US20180275987A1 (en) | 2017-03-21 | 2018-09-27 | Nokia Solutions And Networks Oy | Optimization of a software image layer stack |
US10445140B1 (en) | 2017-06-21 | 2019-10-15 | Amazon Technologies, Inc. | Serializing duration-limited task executions in an on demand code execution system |
US20190072529A1 (en) | 2017-09-06 | 2019-03-07 | Green Ocean Sciences, Inc. | Mobile integrated device and electronic data platform for chemical analysis |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
WO2020005764A1 (en) | 2018-06-25 | 2020-01-02 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US20190391841A1 (en) | 2018-06-25 | 2019-12-26 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US20190391834A1 (en) | 2018-06-25 | 2019-12-26 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10649749B1 (en) | 2018-06-26 | 2020-05-12 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
WO2020069104A1 (en) | 2018-09-27 | 2020-04-02 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US20200104198A1 (en) | 2018-09-27 | 2020-04-02 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US20200104378A1 (en) | 2018-09-27 | 2020-04-02 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US20200192707A1 (en) | 2018-12-13 | 2020-06-18 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
Non-Patent Citations (76)
Title |
---|
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, "AWS Lambda: Developer Guide", Retrieved from the Internet, Apr. 30, 2016, URL: http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf., 346 pages. |
Amazon, "AWS Lambda: Developer Guide", Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf. |
Anonymous: "Docker run reference", Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., "Deconstructing Amazon EC2 Spot Instance Pricing", ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019. |
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine,'JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020. |
Extended Search Report in European Application No. dated May 3, 2018. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012. |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015. |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/Error,va123, 2014. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., "VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing", Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
KRSUL I., GANGULY A., JIAN ZHANG, FORTES J.A.B., FIGUEIREDO R.J.: "VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing", SUPERCOMPUTING, 2004. PROCEEDINGS OF THE ACM/IEEE SC2004 CONFERENCE PITTSBURGH, PA, USA 06-12 NOV. 2004, PISCATAWAY, NJ, USA,IEEE, 1730 MASSACHUSETTS AVE., NW WASHINGTON, DC 20036-1992 USA, 6 November 2004 (2004-11-06) - 12 November 2004 (2004-11-12), 1730 Massachusetts Ave., NW Washington, DC 20036-1992 USA, pages 7 - 7, XP010780332, ISBN: 978-0-7695-2153-4, DOI: 10.1109/SC.2004.67 |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, "Docker: Lightweight Linux Containers for Consistent Development and Deployment", Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications, Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Sakamoto, et al. "Platform for Web Services using Proxy Server"; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Tange, "GNU Parallel: The Command-Line Power Tool", vol. 36, No. 1, Jan. 1, 1942, pp. 42-47. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Wang et al., "Improving utilization through dynamic VM resource allocation in hybrid cloud environment", Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages. |
Wikipedia "API" pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en.wildpedia.org/wiki/Application_programming_interface. |
Wikipedia List_of_HTTP status_codes web page, retrieved from https;//en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019. |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015. |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al, "Model-based resource selection for efficient virtual cluster deployment", Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11263034B2 (en) | 2014-09-30 | 2022-03-01 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US11561811B2 (en) | 2014-09-30 | 2023-01-24 | Amazon Technologies, Inc. | Threading as a service |
US11467890B2 (en) | 2014-09-30 | 2022-10-11 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US11126469B2 (en) | 2014-12-05 | 2021-09-21 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US11461124B2 (en) | 2015-02-04 | 2022-10-04 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US11360793B2 (en) | 2015-02-04 | 2022-06-14 | Amazon Technologies, Inc. | Stateful virtual compute system |
US11132213B1 (en) | 2016-03-30 | 2021-09-28 | Amazon Technologies, Inc. | Dependency-based process of pre-existing data sets at an on demand code execution environment |
US11354169B2 (en) | 2016-06-29 | 2022-06-07 | Amazon Technologies, Inc. | Adjusting variable limit on concurrent code executions |
US11875173B2 (en) | 2018-06-25 | 2024-01-16 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US11146569B1 (en) | 2018-06-28 | 2021-10-12 | Amazon Technologies, Inc. | Escalation-resistant secure network services using request-scoped authentication information |
US11836516B2 (en) | 2018-07-25 | 2023-12-05 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US11943093B1 (en) | 2018-11-20 | 2024-03-26 | Amazon Technologies, Inc. | Network connection recovery after virtual machine transition in an on-demand network code execution system |
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11861386B1 (en) | 2019-03-22 | 2024-01-02 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11714675B2 (en) | 2019-06-20 | 2023-08-01 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11119809B1 (en) | 2019-06-20 | 2021-09-14 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
US11714682B1 (en) | 2020-03-03 | 2023-08-01 | Amazon Technologies, Inc. | Reclaiming computing resources in an on-demand code execution system |
US11550713B1 (en) | 2020-11-25 | 2023-01-10 | Amazon Technologies, Inc. | Garbage collection in distributed systems using life cycled storage roots |
US11593270B1 (en) | 2020-11-25 | 2023-02-28 | Amazon Technologies, Inc. | Fast distributed caching using erasure coded object parts |
US11388210B1 (en) | 2021-06-30 | 2022-07-12 | Amazon Technologies, Inc. | Streaming analytics using a serverless compute system |
US11968280B1 (en) | 2021-11-24 | 2024-04-23 | Amazon Technologies, Inc. | Controlling ingestion of streaming data to serverless function executions |
US12015603B2 (en) | 2021-12-10 | 2024-06-18 | Amazon Technologies, Inc. | Multi-tenant mode for serverless code execution |
Also Published As
Publication number | Publication date |
---|---|
EP3201768A4 (en) | 2018-10-03 |
EP3633506A1 (en) | 2020-04-08 |
EP3633506B1 (en) | 2024-07-24 |
US9652306B1 (en) | 2017-05-16 |
US20170371724A1 (en) | 2017-12-28 |
CN107111508A (en) | 2017-08-29 |
JP2017534967A (en) | 2017-11-24 |
US20160092251A1 (en) | 2016-03-31 |
US9760387B2 (en) | 2017-09-12 |
US9323556B2 (en) | 2016-04-26 |
WO2016053973A1 (en) | 2016-04-07 |
EP3201768A1 (en) | 2017-08-09 |
CA2962633A1 (en) | 2016-04-07 |
WO2016053973A9 (en) | 2017-05-18 |
US20160239318A1 (en) | 2016-08-18 |
EP3201768B1 (en) | 2019-12-04 |
CN107111508B (en) | 2020-12-11 |
JP6352535B2 (en) | 2018-07-04 |
CA2962633C (en) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10824484B2 (en) | Event-driven computing | |
US11561811B2 (en) | Threading as a service | |
US11467890B2 (en) | Processing event messages for user requests to execute program code | |
US11360793B2 (en) | Stateful virtual compute system | |
US20220391238A1 (en) | Low latency computational capacity provisioning | |
US11461124B2 (en) | Security protocols for low latency execution of program code | |
US11126469B2 (en) | Automatic determination of resource sizing | |
US10248467B2 (en) | Code execution request routing | |
US9928108B1 (en) | Metaevent handling for on-demand code execution environments | |
US10884787B1 (en) | Execution guarantees in an on-demand network code execution system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |