US10461540B2 - Scalable flexibility control of distributed loads in a power grid - Google Patents
Scalable flexibility control of distributed loads in a power grid Download PDFInfo
- Publication number
- US10461540B2 US10461540B2 US15/462,136 US201715462136A US10461540B2 US 10461540 B2 US10461540 B2 US 10461540B2 US 201715462136 A US201715462136 A US 201715462136A US 10461540 B2 US10461540 B2 US 10461540B2
- Authority
- US
- United States
- Prior art keywords
- load
- power
- value
- condensed
- controllers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H02J3/383—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
-
- H02J13/0006—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H02J3/386—
-
- H02J2003/003—
-
- H02J2003/007—
-
- H02J2003/146—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/62—The condition being non-electrical, e.g. temperature
- H02J2310/64—The condition being economic, e.g. tariff based load management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y02E10/563—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y02E10/763—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y02E40/72—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Definitions
- This disclosure generally relates to load (demand) side power grid control.
- the power generation industry is transitioning from being mostly based on a small number of large centralized power plants to a diversified network that combines conventional power plants, renewable power generation (e.g., solar, wind and the like), energy storage and microgrids.
- renewable power generation e.g., solar, wind and the like
- energy storage and microgrids e.g., energy storage and microgrids.
- power grids have been designed to accommodate variable load demand, in which central-station power plants at a transmission level provide services down to the industrial, commercial and residential end users at a distribution level.
- the grid control system needs to provide more flexibility for power systems to compensate for the volatility of renewable energy. More particularly, due to uncertainties in renewable energy resource availability, renewable power generation cannot be accurately forecast.
- load-side control is used.
- the purpose of load-side control is to attempt to optimize the collective power consumption of the loads (such as buildings), including to accommodate uncertainties in the renewable power generation
- one or more aspects of the technology described herein are directed towards receiving respective condensed datasets representative of respective load-specific information received from respective load controllers, wherein the respective load controllers are coupled to control a power-consuming load that obtains power from a power grid, and wherein the respective condensed datasets are smaller in size than respective full datasets associated with the respective load controllers. Described herein is determining a global value and a step size based on the respective condensed datasets and a specified aggregated power level.
- aspects comprise sending the global value and the step size to the respective load controllers for use in adjusting respective local power consumptions of the respective load controllers and adjusting local control variables to satisfy the specified aggregated power level, receiving respective updated condensed datasets from the respective load controllers that update the respective condensed datasets, wherein the respective updated condensed datasets are based on the respective load-specific information associated with the power-consuming load of the respective load controllers after the adjusting of the respective local power consumptions and local control variables in respective step directions determined by the respective load controllers, and determining, from the respective updated condensed datasets, whether the respective load controllers have satisfied the specified aggregated power level to a defined extent, and in response to determining that the specified aggregated power level has not been satisfied to the defined extent.
- Other aspects comprise determining an updated global value and an updated step size based on the respective updated condensed datasets and the specified aggregated power level, and sending the updated global value and the updated step size to the respective load controllers for use in further adjusting the respective local power consumptions to satisfy the specified aggregated power level.
- FIG. 1 is an example block diagram representation of an environment in which an aggregator load structure communicates with nodes corresponding to controlled loads, according to one or more example implementations.
- FIG. 2 is an example block/data flow diagram representing a controller communicating information with an aggregator to iteratively converge towards an optimal solution, according to one or more example implementations.
- FIG. 3 is a flow diagram showing example operations of an iterative, distributed power control technology, according to one or more example implementations.
- FIGS. 4 and 5 comprise a flow diagram showing example operations of an aggregator, according to one or more example implementations.
- FIGS. 6 and 7 comprise a flow diagram showing example operations of a per-load distributed controller, according to one or more example implementations.
- FIG. 8 is a flow diagram showing example operations for controlling a discrete load, according to one or more example implementations.
- FIG. 9 is an example graph representation of a simulation demonstrating achieved power versus commanded power over time, according to one or more example implementations.
- FIG. 10 is an example graph representation of optimizations' duality gap changes over a number of iterations, which may be used to determine sufficient convergence, according to one or more example implementations.
- FIG. 11 is an example graph representation of optimizations' Lagrange multiplier value changes over a number of iterations, which may be used to determine sufficient convergence, according to one or more example implementations.
- the technology comprises a distributed optimization approach for control of an aggregation of distributed flexibility resources (DFRs, which may be referred to as nodes), such that a commanded power profile (e.g., specified by an independent service operator) is produced by aggregated loads.
- DFRs distributed flexibility resources
- the technology is based on a distributed iterative solution to solve a network utility maximization problem.
- each distributed flexibility resource node solves a local optimization problem with its own local constraints (e.g., limits on temperature of a building) and states.
- the cost function incorporates a global (that is, shared by all nodes) Lagrange multiplier to augment information from the full set of distributed nodes, to track the need for additional power (via a reserve request signal) as an aggregate entity.
- the global Lagrange multiplier is calculated at an aggregation level using information that is gathered from each node, with the newly calculated global Lagrange multiplier, associated with the constraint that requests that aggregated power needs to equal the command power generated by an independent service operator, broadcast to each node.
- each node uses the received Lagrange multiplier to perform one iteration of an optimization algorithm that calculates the search direction using the given Lagrange multiplier and sends updated information to an aggregator, which then recalculates a new Lagrange multiplier from the updated information, broadcasts the new Lagrange multiplier to the nodes for a next optimization iteration, and so on, until the aggregator determines that a sufficient level (some defined level) of convergence is reached.
- This procedure is performed at each sample time and once convergence occurs, loads apply the computed optimal control.
- the technology described herein solves the network optimization problem of power tracking of aggregated loads in a distributed fashion. More particularly, solving a large scale optimization problem arising from the optimization of (on the order of) hundreds of thousands or even millions of loads in a centralized way is computationally infeasible, whereby traditional approaches are not able to handle local constraints of the loads and achieve aggregated power tracking performance.
- the technology described herein provides an iterative, distributed way of computing optimization that makes solving such a large scale optimization problem tractable.
- any of the examples herein are non-limiting. As such, the technology described herein is not limited to any particular implementations, embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the implementations, embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the technology may be used in various ways that provide benefits and advantages in power control concepts in general.
- a number of (distributed flexibility resource) nodes 102 ( 1 )- 102 (N) are managed as described herein with respect to power control. There may be any practical number of nodes, possibly on the order of millions.
- the represented nodes 102 ( 1 )- 102 (N), comprise controllers 104 ( 1 )- 104 (N) having model predictive control algorithms 106 ( 1 )- 106 (N) and information matrixes 108 ( 1 )- 108 (N) that describe the local states and constraints of the node.
- One example state is the local weather forecast obtained from a source 114 such as the National Oceanic and Atmospheric Administration (NOAA), as the weather influences renewable power source output as well as corresponds to how much power a node is likely to need for heating or cooling, for example.
- NOAA National Oceanic and Atmospheric Administration
- Other state that may be maintained may be room temperatures, zone temperatures, heating and cooling characteristics, time of day, day of week and so on.
- the exemplified nodes 102 ( 1 )- 102 (N) are also represented in FIG. 1 as comprising loads 110 ( 1 )- 110 (N), which are further exemplified as being controllable by heating, ventilation and air conditioning (HVAC) controllers 112 ( 1 )- 112 (N), respectively.
- loads 110 ( 1 )- 110 (N) which are further exemplified as being controllable by heating, ventilation and air conditioning (HVAC) controllers 112 ( 1 )- 112 (N), respectively.
- HVAC heating, ventilation and air conditioning
- a typical example of a load is a building, however it is understood that a building or the like may correspond to multiple, separate loads (e.g., separate nodes), and/or multiple buildings or the like may correspond to a single load (node).
- the nodes 102 ( 1 )- 102 (N) are coupled via their respective controllers 104 ( 1 )- 104 (N) to an aggregator 116 .
- the aggregator 116 receives a commanded power profile from an independent service operator (ISO) 118 , and uses that information along with local load-specific information received from each controller 104 ( 1 )- 104 (N) to compute a global Lagrange multiplier 120 mathematically represented by ⁇ k (at iteration k).
- the global Lagrange multiplier 120 computed by the aggregator 116 is sent to the controllers 104 ( 1 )- 104 (N), for use by each controller in solving its local optimization problem.
- the technology is directed towards attempting to more optimally control distributed flexibility resource nodes, such that the aggregated power tracks a commanded power profile that comes from the independent service operator 118 .
- the optimization problem is solved in a distributed way, where each distributed flexibility resource node exchanges data with the aggregator and performs one optimization iteration according to the distributed optimization scheme described herein to solve the global model predictive control optimization problem in a tractable fashion.
- the modified local cost function is the sum of a local cost (local utility function) and a Lagrange multiplier times the power consumed (supplied) by the distributed flexibility resource.
- the value of the Lagrange multiplier 120 that is shared among the nodes 102 ( 1 )- 102 (N) is calculated at the aggregator level.
- the Lagrange multiplier is a function of the commanded power profile and the local data that are sent to the aggregator 116 at each iteration of optimization.
- the recalculated Lagrange multiplier is send back to the nodes to be used in the cost for next iteration, and so on. As the nodes iterate synchronously, they converge towards an acceptable solution (that is, to a defined/predetermined convergence threshold) to the network/global Model Predictive Control optimization problem through the aforementioned iterative distributed computation scheme.
- each of the controllers are initialized (represented by labeled arrows one ( 1 ) and two ( 2 ) in FIG. 2 , and also by operation 304 of FIG. 3 ).
- the controller 204 ( 1 ) sends its feasible power range to the aggregator 116 , which then uses the feasible power ranges of the various controller instances 204 ( 1 )- 204 (N) to compute a ratio (e.g., a vector r) for each controller. This ratio is used to compute an initial power vector at each load (operation 304 of FIG. 3 ).
- a ratio e.g., a vector r
- each controller solves the search direction for the local nonlinear programming problem as described below.
- a set of data comprising load-specific information (a dataset in condensed form, e.g., as scalars) is also generated and sent to the aggregator 116 (arrow three ( 3 ) in FIG. 2 , operation 308 in FIG. 3 ).
- the shared Lagrange multiplier is calculated, along with a step size. If convergence to the desired, defined level is not yet achieved (operation 312 ), the Lagrange multiplier and step size is sent to the nodes (arrow four ( 3 ) in FIG. 2 and operation 314 in FIG. 3 ).
- a new search direction and an updated dataset is calculated by iteratively returning to step 306 .
- the updated dataset is sent from the controller to the aggregator (arrow three ( 3 ) in FIG. 2 and operation 308 in FIG. 3 .
- the aggregator computation at operation 310 and the broadcast to the nodes at operation 314 is repeated and so on, until the convergence is detected at operation 312 .
- the distributed optimal control technology uses an algorithm based on a distributed computation of the Newton iteration, which provides faster convergence relative to other methods (such as alternating direction method of multipliers or sub-gradient methods).
- the distributed optimal control technology exploits a structure of the problem to calculate an exact Newton step as opposed to inexact versions that require iterations to calculate the Newton direction.
- the technology described herein coordinates loads and distributed energy resources, and exploits their flexibilities such that the aggregated energy follows the profile commanded by the ancillary services, where ancillary services are basically those functionalities provided by the power grid that support a continuous flow of power and work to guarantee that supply will meet demand.
- an optimization problem is defined essentially as a local model predictive control formulation.
- the cost represents local objectives, and constraints are determined by dynamics and other operational and quality of service (QoS) constraint or constraints on states and inputs of the systems; e.g., temperate comfort interval may be a QoS constraint.
- QoS quality of service
- the power tracking constraint is generally the only system-level constraint that couples the local subsystem-level optimization problems. Hence, it leads to a global optimization problem whose solution meets local objectives and constraints, and at the same time provides total power that follows the power profile demanded by the ancillary services.
- the solution calculates Newton steps (e.g., exact Newton steps) and step size in a distributed fashion in the sense that at the load, load-level information related to the step size is calculated and sent to the aggregator, and at the aggregator level, the step size is calculated using that information, so that while the solution enjoys fast convergence of Newton primal iterations, it is also scalable to a large number of loads
- the optimization problem defines a global model predictive control framework where the problem is solved iteratively to determine an optimal control sequence for each load such that the control sequence optimizes the local objective subject to local dynamics and constraints, while the aggregated dispatched power by the loads track the desired power profile determined by any ancillary services.
- the first element of the optimal control sequence for each load is implemented at each sample time.
- J(Y): ⁇ i F i (Y i )
- J denotes the objective function
- the scheme is based on the equality constrained Newton method, where the Newton direction and step size are calculated in a distributed fashion using data communication between an aggregator and the loads.
- ⁇ Y k ⁇ as the sequence of primal vectors and ⁇ k ⁇ the sequence of dual variables associated with constraints (eq. 5b), and ⁇ k ⁇ the sequence of dual variables associated with the power balance constraint (eq. 5c), generated by Newton iterations.
- ND Newton decrement
- ND can be written in terms of local information Y i k as
- ND ⁇ ( Y k ) ⁇ i ⁇ ⁇ ⁇ ⁇ Y i k T ⁇ H i k ⁇ ⁇ ⁇ ⁇ Y i k ( 14 )
- step size ⁇ k then is calculated as a function of ND as follows:
- ⁇ k ⁇ 1 ND ⁇ ( Y k ) + 1 if ⁇ ⁇ ND ⁇ ( Y k ) ⁇ 1 1 otherwise ⁇ ( 15 )
- the step size calculated according to (eq. 15) provides linear and then quadratic convergence to the optimal solution in two stages. Described herein is having the Newton direction Y k and step size ⁇ k calculated in a distributed fashion at the aggregator using the data gathered by communication between the aggregator and loads.
- FIGS. 1 and 2 describe the communication structure of the aggregator and nodes through which the Newton direction and step size are calculated.
- the operations occur in two general stages.
- a first stage is feasible initialization, described herein with reference to the example flow diagrams of FIG. 4 (the aggregator initialization-related operations) and FIG. 6 (the controller initialization-related operations), where each load is initialized by the power that is locally feasible and satisfies the power balance constraint (eq. 5c).
- a second stage is optimization iterations, described herein with reference to the example flow diagrams of FIG. 5 (the aggregator optimization-related operations) and FIG. 7 (the controller optimization-related operations).
- the initialization phase may, in one or more implementations, be started by the aggregator initializing itself and requesting that each controller provide power feasible information (operation 402 of FIG. 4 and operation 602 of FIG. 6 ).
- each of the loads sends its respective upper and lower limit of the power feasible range to the aggregator (operation 604 of FIG. 6 ).
- Operations 404 , 406 and 408 of FIG. 4 represent collecting the initial range information from each of the controllers.
- the value of r is then sent to the controllers, which may differ per controller. Note that the value of r corresponds to the target power obtained from the independent service operator, (operation 410 ), which may be obtained independently at any suitable time before the ratios are computed and sent (operations 412 and 414 ).
- the controlling of the load based upon this initial power vector (which is the current power vector at this time) is represented by operation 610 of FIG. 6 ).
- the optimization phase is described herein with reference to the example flow diagrams of FIG. 5 (the aggregator optimization-related operations) and FIG. 7 (the controller optimization-related operations).
- the aggregator clears its tracking information (that assures each controller reports its data) and waits for the controllers to begin sending their datasets until each is received, as represented by operations 502 , 504 , 506 and 508 of FIG. 5 .
- Each controller starts with its own initial feasible primal Y 0 (e.g., operation 700 of FIG. 7 , not part of the iterations).
- operation 702 represents updating the information matrix for that node, which may occur independent of any controller operations, e.g., as the power vector changes.
- ⁇ k and ⁇ k are received (operations 708 and 710 of FIG. 7 ), ⁇ k and ⁇ k are used to calculate the local primal variation and duals according to (eq. 11) and update the primal according to (eq. 6); (operation 712 of FIG. 7 .
- operation 710 represents receiving a “done” indication from the aggregator, which is not strictly necessary if operation 708 does not receive anything further, until operation 602 restarts the next controller initialization.
- some loads have discrete power consumption, that is, are either on or off (in contrast to loads that accept continuous values for power control).
- Described herein is an algorithm that can handle loads that only accept boundary values of the power feasible interval (assuming the interval is the range from minimum to maximum).
- the power only accepts discrete values, e.g., p i ⁇ ⁇ p min i , p max i ⁇ for the loads L i ⁇ d ⁇ .
- a general goal here is to avoid mixed-integer programming, which is often not suitable for real time optimization, especially for large scale problems.
- the optimization problem is first solved according to the algorithm assuming all the loads accept continuous values for power within the feasible interval.
- N dsc
- the following algorithm turns the value of elements of P i to p min i of p min i so that the desired power P d is tracked as close as possible while the power values closer to maximum have higher priority to be switched to p max i .
- operation 804 sorts the sequence
- operation 804 denotes the corresponding sequence of the load numbers by I.
- the effectiveness of the proposed distributed optimal control scheme may be shown via a numerical simulation, e.g., considering 100 buildings as the distributed loads. Each building is individually controlled by its own HAVC control system. Each building may have single or multiple Roof Top Units (RTUs) managed by a single controller, or multiple controllers through a Building Management System (BMS). Each building communicates with the aggregator, e.g., via a controller as described herein.
- RTUs Roof Top Units
- BMS Building Management System
- a main job of the distributed optimal controller is to compute power set points to each building such that the sum of powers consumed by the buildings track the power set point commanded by the grid independent service operator (ISO), while keeping each building temperature within the defined comfort zone to the extent possible.
- the thermal dynamics of the i-th building may be modeled using an equivalent RC circuit, as:
- the above parameters represent a nominal load model.
- the load parameters may be stochastically perturbed to account for model uncertainties in different buildings.
- this RC model captures the building dynamics well, while keeping the computations tractable for a larger number of loads. It can be reasonably assumed that the dynamics of the heating, ventilation and air conditioning (HVAC) controller is much faster than the thermal dynamics of the building, and can be neglected in this context. Further, assume the loads are of the same dynamic time scale and that the communication delays between loads and the aggregator are negligible.
- HVAC heating, ventilation and air conditioning
- VAV variable air volume
- the power set point at each instant can be any number between 0 and P max .
- the power at each instant is either 0 (OFF mode) or P max (ON mode), and there is also a hysteresis mechanism, such as with the minimum on and off times as follows:
- an interior point optimization problem is solved in a distributed fashion as described herein.
- the aggregator waits until it receives information from all loads, computes p and broadcasts back to all loads.
- the potential time differences between each load to complete one iteration of the optimization is negligible compared to the time scale of the load dynamics.
- the load temperatures remain almost constant.
- one iteration of the optimization problem may take a fraction of a second, while the thermal time constant of a building is typically several minutes up to a few hours.
- FIG. 9 shows a graph of the total sum of achieved power the (solid line) versus the commanded power (the dashed line) over time. If all active loads (loads available for control) are continuously controllable, the power command will be tracked virtually exactly, materializing the equality constraint (eq. 2). However, in the presence of discrete loads, exact tracking of the power commands may not be possible. Thus, the tracking depends on the number of loads of each type, the parameters of each load and the commanded power value.
- the power tracking requirement in this case is that the total sum of building powers tracks the power command as closely as possible without exceeding the power command.
- the discrete active loads are post-processed using the algorithm described in with reference to FIG. 8 .
- the sum of load powers never exceeds the command, which is expected.
- the RMS value of the relative power tracking error for this simulation is 2.32%.
- the number of active loads and their individual power set points are automatically computed by the optimization algorithm at each sampling time. Note that at the beginning, the discrete loads are OFF, and because they have to remain OFF to fulfill the hysteresis requirement, at the first four sampling times, only the fifty continuous loads are active.
- the technology provides an optimization algorithm for cooperation of distributed flexible power resources to provide regulation and ramping reserve as an ancillary service. This may facilitate the penetration of renewable energies.
- the distributed iterative operations make real-time distributed optimization feasible, with the target aggregated power being achieved while not significantly impacting the local operation of the distributed flexible power resources.
- the scalable optimal flexibility control distributes the computational burden of large scale optimization among loads/nodes while they communicate with the aggregator.
- the technology is highly efficient and can be implemented at the commercial aggregator level with a very large number of loads.
- One or more aspects are directed towards a load controller of distributed load controllers, the load controller coupled to manage a power-consuming load that consumes power supplied via a consumer supply device of a power grid, wherein the load controller manages the load to satisfy the load's quality of service constraint or constraints, and wherein the load controller is communicatively coupled to an aggregator that aggregates data sent by the load controller and received from one or more other distributed load controllers of the distributed load controllers, the data comprising initial data that comprises a power range.
- the load controller is configured to receive an initial ratio value from the aggregator, wherein the initial ratio value is based on the power range and other power range data from the one or more other distributed load controllers of the distributed load controllers, and wherein the load controller is further configured to use the initial ratio value to set a local power level to an initial level, and use load-specific information of the power-consuming load to determine condensed information comprising one or more scalar values that represent the load-specific information in a more compact form than the load-specific information, and to communicate the condensed information to the aggregator, wherein the local power level is local to the load controller.
- the load controller is further configured to perform iterations based on communication with the aggregator to modify the local power level to approach a specified aggregated load power consumption level until the aggregator determines that the iterations have satisfied a defined condition, and wherein the iterations are performed to receive a step size value and a global value from the aggregator, wherein the step size value and the global value are based on the condensed information and other condensed information from the one or more other distributed load controllers of the distributed load controllers, determine a step direction, control the power-consuming load with an adjustment based on the step size value and the step direction to approach the specified aggregated load power consumption level, re-determine updated condensed information that updates the condensed information and comprises one or more updated scalar values that represent the load-specific information after the adjustment, and communicate the updated condensed information to the aggregator.
- One or more aspects are directed towards receiving, by a system comprising a processor, respective condensed datasets representative of respective load-specific information received from respective load controllers, wherein the respective load controllers are coupled to control a power-consuming load that obtains power from a power grid, and wherein the respective condensed datasets are smaller in size than respective full datasets associated with the respective load controllers, and determining a global value and a step size based on the respective condensed datasets and a specified aggregated power level.
- aspects comprise sending the global value and the step size to the respective load controllers for use in adjusting respective local power consumptions of the respective load controllers to satisfy the specified aggregated power level, receiving respective updated condensed datasets from the respective load controllers that update the respective condensed datasets, wherein the respective updated condensed datasets are based on the respective load-specific information associated with the power-consuming load of the respective load controllers after the adjusting of the respective local power consumptions in respective step directions determined by the respective load controllers, and determining, from the respective updated condensed datasets, whether the respective load controllers have satisfied the specified aggregated power level to a defined extent, and in response to determining that the specified aggregated power level has not been satisfied to the defined extent.
- Other aspects comprise determining an updated global value and an updated step size based on the respective updated condensed datasets and the specified aggregated power level, and sending the updated global value and the updated step size to the respective load controllers for use in further adjusting the respective local power consumptions to satisfy the specified aggregated power level.
- One or more aspects are directed towards communicating load-related power range data to an aggregator, wherein the load-related power range data from the load controller and other load-related power range data from one or more other load controllers of the group of distributed load controllers are usable by the aggregator to determine initialization data that is to be received by the load controller in response to the communicating of the load-related power range data, and is to be sent to the one or more other load controllers.
- the condensed load-specific information from the load controller and other condensed load-specific information from the one or more other load controllers are usable by the aggregator to determine a step size and a global multiplier value that are to be received by the load controller in response to the communicating of the condensed load-specific information and are to be sent to the one or more other load controllers.
- One or more aspects comprise receiving the step size and the global multiplier value from the aggregator; based on the step size and the global multiplier value from the aggregator, determining a step direction, adjusting the load power consumption in the step direction, determining current condensed load-specific information after the adjusting of the load power consumption, and communicating the current condensed load-specific information to the aggregator, wherein the current condensed load-specific information from the load controller and other current condensed load-specific information from the one or more other load controllers are usable by the aggregator to evaluate whether aggregated power levels of the group of distributed load controllers have converged to a defined convergence level, and in response to the aggregated power levels being determined not to have converged to the defined convergence level, determining a new step size that replaces the step size and a new global multiplier value that replaces the global multiplier value based on the current condensed load-specific information and the other current load-specific information, and wherein the new step size and the new global multiplier value are to be received by
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
where Xi is the vector containing states, inputs and algebraic variables over the prediction horizon, fi is the local cost function of the optimization problem, hi and gi are the functions characterizing equality constraint containing discrete-time dynamics and other constraints imposed due to physics or stability of the load. Pi is the vector representing the power dispatched over the prediction horizon and mi is the map from Xi to Pi. The power tracking constraint
is imposed to make the aggregated power follow the target power Pd, where Pd is the vector containing the desired power profile over the prediction horizon. Local optimization problems subject to the global constraint construct the following optimization problem:
Y k+1 =Y k+αk ΔY k (6)
where 0≤αk≤1 and ΔYk is the Newton search direction given by
H k ΔY k +A T λ+C Tρ=−∇Y J(Y k)
AΔY=0
CΔY=0 (7)
where Hk:=∇2J(Yk). It is desired to solve (eq. 7) in a distributed fashion that is scalable such that it can be deployed for very large number of loads. To this end, described herein is exploiting the special sparsity of the problem to explicitly calculate the search direction. The following theorem enables the development of a distributed iterative algorithm to the calculate Newton search direction.
ρk=Γk−1 r ρ k (8)
where
is the local KKT (Karush-Kuhn-Tucker) matrix. Moreover, ΔYi k and λi k are calculated as
where the matrix and
From (eq. 12a), (eq. 12b), and the definition of the local KKT matrix Ki k, (eq. 11) results.
ND(Y k):=√{square root over (ΔYk THkΔYk)}. (13)
where rj is the j-th element of r. The value of r is then sent to the controllers, which may differ per controller. Note that the value of r corresponds to the target power obtained from the independent service operator, (operation 410), which may be obtained independently at any suitable time before the ratios are computed and sent (
These per-node dependent values are sent to the aggregator by each controller at
and denotes it by {{circumflex over (P)}i j}. Also,
where Pi is the input power, τi 0 is the ambient temperature [80° F.], Ri is the thermal resistance [2.5° C./kW ], Ci is the thermal capacitance [1.5 kW h/° C.] and Pmax
-
- MIN-OFF-TIME=4 mins
- MIN-ON-TIME=6 mins,
which means that once the HVAC is OFF is remains OFF for at least 4 minutes, and once it is turned ON, it remains ON for at least 6 minutes. In order to accommodate both newer and older buildings, in these example simulations, fifty loads are randomly selected as continuous and the remaining fifty loads as discrete. The loads are simulated with random and different initial temperatures. The thermal comfort zone is defined to be between 75° F. and 79° F. and is penalized using a log barrier in the optimization overall cost function. A load is referred to as “active” if the load is available for control. Continuous loads are virtually always available, while discrete loads are only available if their status is changeable, i.e. they are not within their time hysteresis region.
Claims (20)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/462,136 US10461540B2 (en) | 2017-03-17 | 2017-03-17 | Scalable flexibility control of distributed loads in a power grid |
CA2990795A CA2990795A1 (en) | 2017-03-17 | 2018-01-04 | Scalable flexibility control of distributed loads in a power grid |
JP2018001579A JP2018186693A (en) | 2017-03-17 | 2018-01-10 | Scalable flexibility control of distributed loads in the power grid |
EP18151437.3A EP3376630A1 (en) | 2017-03-17 | 2018-01-12 | Scalable flexibility control of distributed loads in a power grid |
MX2018000658A MX2018000658A (en) | 2017-03-17 | 2018-01-16 | Scalable flexibility control of distributed loads in a power grid. |
BR102018000902-8A BR102018000902A2 (en) | 2017-03-17 | 2018-01-16 | MACHINE READY STORAGE SYSTEM, METHOD AND MEDIA |
CN201810076309.7A CN108628162A (en) | 2017-03-17 | 2018-01-17 | Scalable flexible control of distributed loads in a power grid |
US16/527,896 US11003146B2 (en) | 2017-03-17 | 2019-07-31 | Distributed optimal control of an aircraft propulsion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/462,136 US10461540B2 (en) | 2017-03-17 | 2017-03-17 | Scalable flexibility control of distributed loads in a power grid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/527,896 Continuation-In-Part US11003146B2 (en) | 2017-03-17 | 2019-07-31 | Distributed optimal control of an aircraft propulsion system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180269687A1 US20180269687A1 (en) | 2018-09-20 |
US10461540B2 true US10461540B2 (en) | 2019-10-29 |
Family
ID=60997318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/462,136 Active 2038-05-11 US10461540B2 (en) | 2017-03-17 | 2017-03-17 | Scalable flexibility control of distributed loads in a power grid |
Country Status (7)
Country | Link |
---|---|
US (1) | US10461540B2 (en) |
EP (1) | EP3376630A1 (en) |
JP (1) | JP2018186693A (en) |
CN (1) | CN108628162A (en) |
BR (1) | BR102018000902A2 (en) |
CA (1) | CA2990795A1 (en) |
MX (1) | MX2018000658A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200033822A1 (en) * | 2018-07-30 | 2020-01-30 | Mitsubishi Electric Research Laboratories, Inc. | Symmetry Alternating Direction Method of Multipliers |
US20210365568A1 (en) * | 2020-05-22 | 2021-11-25 | Cleveland State University | Privacy preserving approach to peak load management |
US20220094163A1 (en) * | 2020-09-22 | 2022-03-24 | Energyhub, Inc. | Autonomous Electrical Grid Management |
US11726506B1 (en) | 2015-12-01 | 2023-08-15 | Energyhub, Inc. | Demand response technology utilizing a simulation engine to perform thermostat-based demand response simulations |
US11894678B1 (en) | 2017-10-17 | 2024-02-06 | Energyhub, Inc. | Load reduction optimization |
US12230958B2 (en) | 2018-09-13 | 2025-02-18 | Ge Digital Holdings Llc | Systems and methods for rapidly responding to commanded power profiles |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3071845A1 (en) * | 2017-08-03 | 2019-02-07 | Heila Technologies, Inc. | Grid asset manager |
US11594884B2 (en) * | 2018-07-02 | 2023-02-28 | Enel X North America, Inc. | Site controllers of distributed energy resources |
FR3089710B1 (en) * | 2018-12-06 | 2020-12-25 | Electricite De France | Non-intrusive decentralized power consumption management process |
CN110165651B (en) * | 2019-04-30 | 2023-02-28 | 中南大学 | Distributed cooperative control method suitable for optimization of direct-current power network |
EP3809274A1 (en) * | 2019-10-16 | 2021-04-21 | Siemens Gamesa Renewable Energy A/S | Wind turbine control architecture |
CN111242412B (en) * | 2019-12-27 | 2023-06-20 | 国网山西省电力公司大同供电公司 | A Demand Response-Based Cooperative Control Method for Thermal Control Load Clusters |
CN111290282B (en) * | 2020-03-25 | 2022-08-09 | 国家能源集团科学技术研究院有限公司 | Predictive control method for thermal power generating unit coordination system |
CN111884251A (en) * | 2020-07-22 | 2020-11-03 | 华北电力大学 | Method and device for predicting evaluation index of tie-line control performance |
CN111985598A (en) * | 2020-07-28 | 2020-11-24 | 国网山东省电力公司禹城市供电公司 | Configuration method of distributed power supply |
CN112067043B (en) * | 2020-08-14 | 2022-08-26 | 常州机电职业技术学院 | Defective degree detecting system of timber structure ancient building |
CN112180731B (en) * | 2020-10-13 | 2024-05-31 | 天津大学 | Energy equipment operation control method and system |
CN112488442B (en) * | 2020-10-29 | 2022-08-30 | 国网河南省电力公司郑州供电公司 | Power distribution network reconstruction method based on deep reinforcement learning algorithm and source load uncertainty |
JP7620712B2 (en) | 2020-12-30 | 2025-01-23 | ヘイラ テクノロジーズ インク. | Optimizing Controller for Distributed Energy Resources |
CN113381397B (en) * | 2021-05-31 | 2022-05-06 | 深圳大学 | Node level dispersion method for acquiring minimum state power flow of direct current power system |
CN113381402B (en) * | 2021-05-31 | 2022-05-06 | 深圳大学 | A Node-Level Decentralized Method for Obtaining Minimum-State Power Flows in AC Power Systems |
CN113486515B (en) * | 2021-07-06 | 2022-04-05 | 国家气候中心 | Subseasonal-seasonal-interannual-scale integrated climate model ensemble prediction system |
CN118761368B (en) * | 2024-09-09 | 2024-11-29 | 中国科学技术大学 | A circuit genetic evolution method and system, electronic device and storage medium |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4216384A (en) * | 1977-12-09 | 1980-08-05 | Directed Energy Systems, Inc. | System for monitoring and controlling electric power consumption |
US20080122518A1 (en) * | 2006-11-27 | 2008-05-29 | Besser David A | Multi-Source, Multi-Load Systems with a Power Extractor |
US20110231320A1 (en) | 2009-12-22 | 2011-09-22 | Irving Gary W | Energy management systems and methods |
CN102437653A (en) | 2011-12-28 | 2012-05-02 | 上海电力实业总公司 | Power flexible load control system and control method thereof |
US8260468B2 (en) | 2008-06-25 | 2012-09-04 | Versify Solutions, Inc. | Aggregator, monitor, and manager of distributed demand response |
US8818889B2 (en) | 2009-03-17 | 2014-08-26 | Palo Alto Research Center Incorporated | Technique for aggregating an energy service |
US20140306533A1 (en) * | 2013-04-11 | 2014-10-16 | Solantro Semiconductor Corp. | Virtual inverter for power generation units |
US20150295405A1 (en) | 2012-12-07 | 2015-10-15 | Battelle Memorial Institute | Using demand side resources to provide frequency regulation |
US20160094034A1 (en) * | 2014-04-24 | 2016-03-31 | Varentec, Inc. | Controlling demand and energy through photovoltaic inverters delivering vars |
US9411329B2 (en) | 2011-11-15 | 2016-08-09 | Palo Alto Research Center Incorporated | Hierarchical model communication and control in a managed electrical system |
WO2016172348A1 (en) | 2015-04-21 | 2016-10-27 | California Institute Of Technology | Distributed optimal power flow processes for unbalanced radial distribution networks |
US20170102726A1 (en) * | 2014-06-12 | 2017-04-13 | Steven Goldsmith | Agent-based microgrid architecture for generation following protocols |
US9819194B2 (en) * | 2011-09-26 | 2017-11-14 | Kyocera Corporation | Power management system, power management method, and upper power management apparatus |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102426689B (en) * | 2011-08-23 | 2014-11-26 | 浙江大学 | Set combination optimization method based on BPSO and Lagrange multiplier algorithm |
JP6706877B2 (en) * | 2012-09-12 | 2020-06-10 | ザ・ボーイング・カンパニーThe Boeing Company | Power management control system |
CN104113473A (en) * | 2013-04-19 | 2014-10-22 | 成都赛恩泰科技有限公司 | IP network layer power consumption optimization method based on Lagrangian relaxation |
EP2806520A1 (en) * | 2013-05-22 | 2014-11-26 | Vito NV | Power supply network control system and method |
CN104201705B (en) * | 2014-09-01 | 2016-10-05 | 中国科学院自动化研究所 | A kind of intelligent micro-grid distributed energy storage equipment controls optimization method |
CN105281327B (en) * | 2015-10-21 | 2019-02-12 | 国网内蒙古东部电力有限公司呼伦贝尔供电公司 | Optimal power flow calculation method for large-scale distribution network considering discrete and continuous decision variables |
CN105391090B (en) * | 2015-11-10 | 2017-12-08 | 南京邮电大学 | A kind of intelligent grid multiple agent multiple target uniformity optimization method |
CN105552940B (en) * | 2015-12-22 | 2018-03-13 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Distributed global optimum's EMS based on alternating direction Multiplier Algorithm |
CN106099912B (en) * | 2016-06-21 | 2018-05-29 | 东北大学 | A kind of active distribution network partial power coordinated control system and method |
CN106208102B (en) * | 2016-08-19 | 2018-08-17 | 东南大学 | A kind of active distribution network new distributed optimal reactive power based on Auxiliary Problem Principle |
CN106452920B (en) * | 2016-11-24 | 2019-07-19 | 广东电网有限责任公司电力调度控制中心 | Method and device for layout of grid data nodes based on cost optimization |
-
2017
- 2017-03-17 US US15/462,136 patent/US10461540B2/en active Active
-
2018
- 2018-01-04 CA CA2990795A patent/CA2990795A1/en not_active Abandoned
- 2018-01-10 JP JP2018001579A patent/JP2018186693A/en active Pending
- 2018-01-12 EP EP18151437.3A patent/EP3376630A1/en not_active Withdrawn
- 2018-01-16 BR BR102018000902-8A patent/BR102018000902A2/en not_active Application Discontinuation
- 2018-01-16 MX MX2018000658A patent/MX2018000658A/en unknown
- 2018-01-17 CN CN201810076309.7A patent/CN108628162A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4216384A (en) * | 1977-12-09 | 1980-08-05 | Directed Energy Systems, Inc. | System for monitoring and controlling electric power consumption |
US20080122518A1 (en) * | 2006-11-27 | 2008-05-29 | Besser David A | Multi-Source, Multi-Load Systems with a Power Extractor |
US8260468B2 (en) | 2008-06-25 | 2012-09-04 | Versify Solutions, Inc. | Aggregator, monitor, and manager of distributed demand response |
US8818889B2 (en) | 2009-03-17 | 2014-08-26 | Palo Alto Research Center Incorporated | Technique for aggregating an energy service |
US20110231320A1 (en) | 2009-12-22 | 2011-09-22 | Irving Gary W | Energy management systems and methods |
US9819194B2 (en) * | 2011-09-26 | 2017-11-14 | Kyocera Corporation | Power management system, power management method, and upper power management apparatus |
US9411329B2 (en) | 2011-11-15 | 2016-08-09 | Palo Alto Research Center Incorporated | Hierarchical model communication and control in a managed electrical system |
CN102437653A (en) | 2011-12-28 | 2012-05-02 | 上海电力实业总公司 | Power flexible load control system and control method thereof |
US20150295405A1 (en) | 2012-12-07 | 2015-10-15 | Battelle Memorial Institute | Using demand side resources to provide frequency regulation |
US20140306533A1 (en) * | 2013-04-11 | 2014-10-16 | Solantro Semiconductor Corp. | Virtual inverter for power generation units |
US20160094034A1 (en) * | 2014-04-24 | 2016-03-31 | Varentec, Inc. | Controlling demand and energy through photovoltaic inverters delivering vars |
US20170102726A1 (en) * | 2014-06-12 | 2017-04-13 | Steven Goldsmith | Agent-based microgrid architecture for generation following protocols |
WO2016172348A1 (en) | 2015-04-21 | 2016-10-27 | California Institute Of Technology | Distributed optimal power flow processes for unbalanced radial distribution networks |
Non-Patent Citations (7)
Title |
---|
Babar, et al., "The conception of the aggregator in demand side management for domestic consumers," International Journal of Smart Grid and Clean Energy, vol. 2, No. 3, Oct. 2013, 5 pages. |
Ferrarini, et al., "A Distributed Model Predictive Control approach for the integration of flexible loads, storage and renewables," 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 6 pages. |
Ghaemi, et al., "Scalable Optimal Flexibility Control of Distributed Loads in Power Grid," Last Accessed: May 2, 2017, 7 pages. |
Halvgaard, et al., "Thermal Storage Power Balancing with Model Predictive Control," 2013 European Control Conference (ECC) Jul. 17-19, 2013, Zurich, Switzerland, 6 pages. |
Loukarakis, et al., "Investigation of Maximum Possible OPF Problem Decomposition Degree for Decentralized Energy Markets," IEEE Transactions on Power Systems, © 2014 IEEE, DOI: 10.1109/TPWRS.2014.2365959, 13 pages. |
Motto, et al., "On Walrasian Equilibrium for Pool-Based Electricity Markets," IEEE Power Engineering Review, Jun. 2002, 1 page. |
Xu, et al., "Operation Strategies of the Load Aggregator with Electric Energy Storage," 2012 IEEE International Conference on Power System Technology (POWERCON), 6 pages. |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11726506B1 (en) | 2015-12-01 | 2023-08-15 | Energyhub, Inc. | Demand response technology utilizing a simulation engine to perform thermostat-based demand response simulations |
US12253867B1 (en) | 2015-12-01 | 2025-03-18 | Energyhub, Inc. | Demand response technology utilizing a simulation engine to perform thermostat-based demand response simulations |
US11894678B1 (en) | 2017-10-17 | 2024-02-06 | Energyhub, Inc. | Load reduction optimization |
US12166344B1 (en) | 2017-10-17 | 2024-12-10 | Energyhub, Inc. | Load reduction optimization |
US20200033822A1 (en) * | 2018-07-30 | 2020-01-30 | Mitsubishi Electric Research Laboratories, Inc. | Symmetry Alternating Direction Method of Multipliers |
US10795330B2 (en) * | 2018-07-30 | 2020-10-06 | Mitsubishi Electric Research Laboratories, Inc. | Symmetry alternating direction method of multipliers |
US12230958B2 (en) | 2018-09-13 | 2025-02-18 | Ge Digital Holdings Llc | Systems and methods for rapidly responding to commanded power profiles |
US20210365568A1 (en) * | 2020-05-22 | 2021-11-25 | Cleveland State University | Privacy preserving approach to peak load management |
US20220094163A1 (en) * | 2020-09-22 | 2022-03-24 | Energyhub, Inc. | Autonomous Electrical Grid Management |
US11735916B2 (en) * | 2020-09-22 | 2023-08-22 | Energyhub, Inc. | Autonomous electrical grid management |
Also Published As
Publication number | Publication date |
---|---|
JP2018186693A (en) | 2018-11-22 |
CN108628162A (en) | 2018-10-09 |
BR102018000902A2 (en) | 2019-02-19 |
EP3376630A1 (en) | 2018-09-19 |
CA2990795A1 (en) | 2018-09-17 |
MX2018000658A (en) | 2018-11-09 |
US20180269687A1 (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10461540B2 (en) | Scalable flexibility control of distributed loads in a power grid | |
US10673273B2 (en) | Distributed ledger based control of large-scale, power grid energy resources | |
US11003146B2 (en) | Distributed optimal control of an aircraft propulsion system | |
US12216452B2 (en) | High level central plant optimization | |
US11159044B2 (en) | Hierarchal framework for integrating distributed energy resources into distribution systems | |
US20210208547A1 (en) | Central plant control system with multi-level non-granular asset allocation | |
Forouzandehmehr et al. | Autonomous demand response using stochastic differential games | |
Claessens et al. | Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control | |
US20210158975A1 (en) | Building control system with smart edge devices having embedded model predictive control | |
Ma et al. | Energy management considering load operations and forecast errors with application to HVAC systems | |
US12230958B2 (en) | Systems and methods for rapidly responding to commanded power profiles | |
Darivianakis et al. | The power of diversity: Data-driven robust predictive control for energy-efficient buildings and districts | |
US20210141346A1 (en) | Building control system with features for operating under intermittent connectivity to a cloud computation system | |
US11374409B2 (en) | Power system load flexibility forecasting | |
Blaauwbroek et al. | Decentralized resource allocation and load scheduling for multicommodity smart energy systems | |
US20210041127A1 (en) | Building hvac system with modular cascaded model | |
Hu et al. | Multi-zone building control with thermal comfort constraints under disjunctive uncertainty using data-driven robust model predictive control | |
Zhang et al. | Efficient decentralized economic dispatch for microgrids with wind power integration | |
US20230228446A1 (en) | Scalable control of heat pumps with limited smart-home devices | |
Lesage-Landry et al. | Online convex optimization of multi-energy building-to-grid ancillary services | |
Benenati et al. | A tractable formulation for multi-period linearized optimal power flow in presence of thermostatically controlled loads | |
Dovrtel et al. | Multi-objective optimization of a building free cooling system, based on weather prediction | |
US10243361B2 (en) | Decentralized control of electricity passing through electrical grid | |
Telsang et al. | Stability analysis of model-free control under constrained inputs for control of building HVAC systems | |
Bianchini et al. | Receding horizon control for demand-response operation of building heating systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GHAEMI, REZA;ABBASZADEH, MASOUD;BAONE, CHAITANYA ASHOK;AND OTHERS;SIGNING DATES FROM 20170315 TO 20170316;REEL/FRAME:041618/0882 |
|
AS | Assignment |
Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:GENERAL ELECTRIC GLOBAL RESEARCH;REEL/FRAME:042685/0806 Effective date: 20170317 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GE DIGITAL HOLDINGS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:065612/0085 Effective date: 20231110 |