US10385823B2 - Composite component having safety edge - Google Patents
Composite component having safety edge Download PDFInfo
- Publication number
- US10385823B2 US10385823B2 US15/500,340 US201515500340A US10385823B2 US 10385823 B2 US10385823 B2 US 10385823B2 US 201515500340 A US201515500340 A US 201515500340A US 10385823 B2 US10385823 B2 US 10385823B2
- Authority
- US
- United States
- Prior art keywords
- edging
- resin
- laminate
- composite component
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F03D1/0683—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/02—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
- B29C70/028—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/302—Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
- B29C70/342—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/72—Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/74—Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
- B29C70/76—Moulding on edges or extremities of the preformed part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/78—Moulding material on one side only of the preformed part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0025—Producing blades or the like, e.g. blades for turbines, propellers, or wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/062—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
- B29L2031/082—Blades, e.g. for helicopters
- B29L2031/085—Wind turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/08—Closed cell foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2603/00—Vanes, blades, propellers, rotors with blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/221—Rotors for wind turbines with horizontal axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/301—Cross-section characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6003—Composites; e.g. fibre-reinforced
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6012—Foam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6015—Resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y02E10/721—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y02P70/523—
Definitions
- the invention relates to composite components having a safety edge to facilitate handling, and to methods of manufacturing such components.
- the invention has particular application to composite components used in the manufacture of wind turbine blades.
- FIG. 1 illustrates in perspective view a prior art wind turbine blade 10 .
- the wind turbine blade 10 extends longitudinally from a generally cylindrical root 11 to a tip 13 .
- the root end 11 of the blade 10 is attached to a hub of a wind turbine (not shown).
- the blade 10 transitions from a circular profile at the root 11 to an airfoil profile at the widest part of the blade 10 , which is known as the ‘shoulder’ 15 .
- the blade has an airfoil profile that steadily decreases in thickness and chord moving towards the tip 13 .
- FIG. 2 illustrates the blade 10 in cross-section and reveals that the blade 10 comprises an outer shell 12 , which is fabricated from two half shells: a leeward shell 14 and a windward shell 16 .
- the shells 14 , 16 are moulded from glass-fibre reinforced plastic (GRP).
- GRP glass-fibre reinforced plastic
- Parts of the outer shell 12 are of sandwich panel construction and comprise a core 18 of lightweight foam (e.g. polyurethane), which is sandwiched between inner and outer GRP layers 20 , 22 or ‘skins’.
- foam e.g. polyurethane
- the blade 10 comprises first and second pairs of spar caps 24 , 26 , 28 , 30 arranged between sandwich panel regions of the outer shell 12 .
- One spar cap of each pair 24 , 28 is integrated with the windward shell 16 and the other spar cap of each pair 26 , 30 is integrated with the leeward shell 14 .
- the spar caps 24 , 26 , 28 , 30 of the respective pairs are mutually opposed and extend longitudinally along the length of the blade 10 .
- a first longitudinally-extending shear web 32 bridges the first pair of spar caps 24 , 26 and a second longitudinally-extending shear web 34 bridges the second pair of spar caps 28 , 30 .
- the shear webs 32 , 34 in combination with the spar caps 24 , 26 , 28 , 30 form a pair of I-beam structures, which transfer loads effectively from the rotating blade 10 to the hub of the wind turbine (not shown).
- the spar caps 24 , 26 , 28 , 30 in particular transfer tensile and compressive bending loads, whilst the shear webs 32 , 34 transfer shear stresses in the blade 10 .
- the shear webs 32 , 34 are made in a vacuum-assisted resin transfer moulding process (VARTM).
- VARTM vacuum-assisted resin transfer moulding process
- FIG. 3 shows only a bottom part of the web.
- Layers of glass fibre fabric 40 are laid up on the surface of a mould tool 50 . Edges 42 of the layers are aligned to define an edge 43 of the shear web 32 , 34 .
- the layers 40 are enclosed by a vacuum bag 46 to define a sealed area around the layers 40 . Air is then removed from the bag 46 by a vacuum pump, and resin is introduced into the bag 46 .
- the resin infuses between and into the glass fibre layers 40 .
- the mould tool 50 is then heated to cure the resin, and once the resin is cured, the component is demoulded.
- the resulting shear web 32 , 34 has an edge 43 that is defined by the aligned edges 42 of the glass fibre layers 40 and the cured resin in the region of those edges 42 . It is difficult to align the edges 42 accurately when the layers 40 are laid on the mould tool 50 , and so the edge 43 tends to be uneven. Furthermore, uneven amounts of excess resin tend to be present at the edge 43 of the shear web 32 , 34 after the resin infusion. The result is that after the resin has been cured, the edge 43 of the shear web 32 , 34 tends to be rough, with the hard cured resin at the edge 43 forming serrations. The rough edge 43 may therefore present a safety hazard making the shear web 32 , 34 difficult and potentially unsafe to handle.
- the potentially hazardous rough edge 43 can be removed post-fabrication by trimming the edge of the component.
- the cured resin is very hard, and a diamond cutting saw is required to cut through the component to trim the edge, making the trimming an expensive and time-consuming process.
- the edge 43 can be neatened prior to the curing process by folding over edges of the glass fibre layers 40 when they are laid in the mould tool 50 ; however this only partially mitigates the problem, and in practice trimming is still required post-fabrication.
- the edge 43 can also be neatened by providing the mould tool with an abutment piece in the form of a metal bar or strip, and laying the glass fibre layers 40 against the abutment piece. When the component is de-moulded, the resulting edge is neater. However, even in this case the roughness remain to some extent, and the act of de-moulding the component still tends to leave fractured regions of resin that present sharp and hazardous edges.
- the invention resides in a method of making a composite component for a wind turbine blade, the composite component having a safety edge, and the method comprising: arranging one or more fibrous layers in a mould such that the layers define a laminate edge; arranging an edging adjacent to the laminate edge; integrating the fibrous layers and the edging by means of resin; substantially preventing the resin from permeating into the edging; and removing a portion of the edging to reveal a substantially resin-free exposed surface of the edging that defines a safety edge of the component.
- the method of the invention provides a simple and efficient means for providing a hand-safe edge on a composite component for a wind turbine blade, without the need for lengthy and expensive processing after the component has been fabricated.
- the edging is integrated into the component during fabrication, and the substantially resin-free exposed surface of the edging is easily provided by removing a portion of the edging. Because resin has not been allowed to permeate into the edging, the core of the edging is free from hardened resin, and a portion of the edging can therefore be removed quickly and easily, without the need for elaborate tools.
- the step of removing a portion of the edging may comprise severing the edging along a severance line spaced apart from the laminate edge, and removing a sacrificial portion of the edging outboard of the severance line such that a shield portion of the edging inboard of the severance line remains integrated with the laminate and includes the substantially resin-free exposed surface defining the safety edge of the component.
- Severing the edging at the severance line provides a particularly simple method of removing part of the edging.
- the severing process can be carried out by hand, for example using a hand-held cutting tool, or the severing process could be mechanised.
- the edging may be made from substantially resin impermeable material such that the resin is substantially prevented from permeating into the edging.
- substantially resin impermeable material is particularly advantageous as it means that no additional measures are necessary to prevent resin permeating into the edging.
- the method may further comprise arranging a plurality of fibrous layers, one on top of the other, in the mould to form the laminate.
- the method may comprise removably fixing the edging to the mould.
- the edging can be fixed in place to define a secure border, and the fibrous layer(s) can be securely placed up against the edging as they are laid without moving the edging out of its correct position.
- removably fixing the edging to the mould means that the edging is not moved away from its correct position when a vacuum is applied, or during the resin infusion or curing process. When the forming process is complete, the edging can be unfixed from the mould as the component is de-moulded.
- the method may comprise arranging a peel ply layer on the mould, and arranging the fibrous layers and the edging over the peel ply layer.
- a peel ply layer is provided on the undersurface of the component and extends over both the fibrous layers and the edging.
- the peel ply layer can subsequently be removed to provide a roughened surface on both the fibrous layers and the edging.
- the method may comprise arranging a peel ply layer over the fibrous layers and the edging, so as to provide a peel ply layer on the upper surface of the component that extends over both the fibrous layers and the edging.
- An initial thickness of the edging may be equal to or greater than an initial combined thickness of the fibrous layer(s), and the method may further comprise compressing the fibrous layer(s) and the edging during a vacuum-assisted moulding process such that the edging has a final thickness that is substantially the same as a final combined thickness of the fibrous layer(s). In this way, both the fibrous layers and the edging may be compressed to substantially the same thickness, so as to provide a continuous upper surface across the fibrous layers and to the edging.
- the method may further comprise supplying liquid resin to the mould.
- the fibrous layers may be pre-impregnated with resin.
- the method may further comprise integrating the fibrous layers and the edging by curing the resin.
- the invention extends to a composite component made according to the method of the invention described above, and to a shear web made according to the method of the invention described above.
- the invention also extends to a wind turbine blade comprising the shear web, and to a wind turbine comprising such a wind turbine blade.
- the invention extends further to a composite component for a wind turbine blade comprising a laminate formed from one or more fibrous layers and a resin, the laminate having a laminate edge defined by an edge of the one or more fibrous layers and an edging located adjacent to the laminate edge and integrated with the laminate by the resin.
- the edging has a substantially resin-free exposed surface that defines a safety edge of the composite component.
- the edging acts as a buffer that shields the edges of the fibrous layer(s) which would otherwise form sharp, serrated edges. In this way, the edge of the laminate component that is the substantially resin-free exposed surface of the edging, rather than serrated edges of the fibrous layers.
- the exposed surface of the edging is substantially resin-free, the exposed surface is free from excess resin that would otherwise form uneven, sharp edges and pose a safety hazard to those handling the composite component.
- the substantial absence of hard resin from the edge of the component provides a hand-safe edge that makes the component relatively safe to handle.
- the invention provides a hand-safe edge on a composite component for a wind turbine blade, without the need for lengthy and expensive processing after the component has been fabricated.
- the edging may be made from substantially resin impermeable material.
- the inside core of the edging is kept substantially free from cured resin during fabrication of the component, making the edging relatively easy to cut to reveal the exposed surface.
- the edging may comprise foam, balsa and/or polystyrene, and/or may be made from a closed-cell foam to avoid resin permeation.
- the edging may be in the form of a strip. In this way, the edging can extend along a length of the edge of the component, and can bend to accommodate the shape of the edge. If necessary, multiple strips can be placed end-to-end to cover the full length of the edge.
- the edging may be made from a compressible material. This is particularly beneficial when a vacuum stage is involved in the composite-forming process. When the fibrous layers of the composite component are placed under vacuum they are compressed. The compressibility of the edging means that the edging is also compressed when a vacuum is applied, so as to match the compression of the laminate layers, thereby providing a continuous surface across the laminate and the edging.
- the edging in the finished composite component the edging may be in a compressed state.
- the composite component may comprise a peel ply layer arranged over the laminate and the edging.
- the peel ply layer may be removed to reveal a roughened surface on both the laminate and the edging, to facilitate bonding of both the laminate and the edging to another surface.
- the safety edge of the composite component may be formed by severing the edging along a severance line and removing a sacrificial portion of the edging outboard of the severance line to reveal the substantially resin-free exposed surface of the edging. In this way, the substantially resin-free exposed surface can be formed quickly and easily, without the need for elaborate tools.
- the component may be formed by means of VARTM.
- the composite component may be a shear web.
- the composite component may be another component for a wind turbine, such as a bulkhead, a flange or a platform.
- the invention also extends to a wind turbine blade comprising a composite component according to the invention described above, and to a wind turbine comprising such a wind turbine blade.
- laminate as used herein is intended to encompass parts made up from one or more layers, and hence includes parts made from a single layer within its scope.
- FIGS. 1 and 2 which illustrate a wind turbine blade in perspective and cross-sectional views respectively, and FIG. 3 which illustrates a method of making a shear web, have already been described above by way of background to the present invention.
- FIGS. 1 and 2 which illustrate a wind turbine blade in perspective and cross-sectional views respectively
- FIG. 3 which illustrates a method of making a shear web
- FIG. 4 is a schematic partial perspective view of a composite component according to an embodiment of the invention.
- FIGS. 5A to 5I illustrate stages in a method of making the composite component of FIG. 4 ;
- FIGS. 6A and 6B are a perspective view and partial enlarged cross-sectional view respectively of a composite component made by the method of FIGS. 5A to 5I ;
- FIG. 7 is a cross-sectional view of a wind turbine blade incorporating the composite component of FIG. 6 .
- FIG. 4 illustrates a composite component 130 for a wind turbine blade.
- the composite component 130 is a shear web
- FIG. 4 illustrates the bottom part of the shear web only.
- the shear web 130 comprises a laminate 44 formed by a plurality of laminate layers 40 , for example glass-fibre fabric layers, which are integrated together by cured resin. Edges 42 of the laminate layers 40 define a laminate edge 48 .
- a strip of foam 60 extends alongside the laminate edge 48 and is integrated with the laminate 44 by the cured resin. As will be described in further detail later, the strip of foam 60 defines a hand safe edge of the shear web 130 , allowing the shear web 130 to be safely handled in use.
- a mould tool 50 is provided, which has a mould surface 51 corresponding in shape to the outer contour of the shear web 130 to be formed in the mould 50 .
- a release film (not shown) is applied over the surface 51 of the mould tool 50 .
- a first or lower peel ply layer 52 is arranged in the mould 50 , over the release film.
- the laminate layers 40 are laid over the peel ply layer 52 .
- the laminate 44 may include other layers or components, for example the shear web 130 may be of sandwich panel construction in which case core material such as foam or balsa may be provided between the fibrous layers 40 .
- the edges 42 of the fibrous layers 40 are aligned in the mould tool 50 , and are optionally trimmed once aligned.
- the edges 42 of the layers 40 define the laminate edge 48 .
- an edging 60 is arranged in the mould 50 alongside the laminate edge 48 .
- the edging 60 is suitably formed from resin-impermeable and preferably compressible material.
- the edging 60 is a strip of closed-cell foam made of expanded neoprene or silicone. The closed cells of the foam substantially prevent resin from infusing into the bulk of the edging strip 60 during the subsequent resin infusion process.
- the edging 60 has a width w of between approximately 5 mm and approximately 10 mm, and a thickness t of between approximately 3 mm and approximately 8 mm.
- the edging 60 is preferably at least as thick as the laminate 44 prior to consolidation of the laminate during the vacuum bagging process.
- the edging 60 is slightly thicker than the laminate 44 prior to consolidation.
- the compressibility of the edging 40 enables it to be compressed during consolidation in step with the laminate 44 such that it ultimately has the same thickness as the consolidated laminate 44 in the finished component.
- an underside 62 of the edging strip 60 is pre-coated with an adhesive layer, and covered with a peelable protective layer (not illustrated). Before the strip 60 is placed on the mould tool 50 , the protective layer is removed to expose the adhesive layer. The edging 60 is laid alongside the laminate edge 48 with the underside 62 facing downwardly towards the mould tool 50 , such that the edging 60 is fixed to the mould tool 50 via the peel ply layer 52 to keep the edging 60 in place during subsequent processing steps.
- a second or upper peel ply layer 54 is laid over the laminate 44 and the edging 60 .
- a vacuum channel 70 is then laid on top of the peel ply layer 54 outboard of the edging 60 and the peel ply layer 54 is folded around the vacuum channel 70 .
- the vacuum channel 70 will later be used to evacuate air from the components in the mould tool 50 .
- a layer of release film 56 is laid over the laminate 44 , and a layer of transfer mesh 58 , which facilitates resin infusion, is laid over the release film 56 .
- a vacuum bag 72 is covered by a vacuum bag 72 .
- the vacuum bag 72 is sealed to the mould tool 50 using butyl rubber sealing tape 74 to create a sealed region around the components.
- Air is then evacuated from the sealed region via the vacuum channel 70 .
- the pressure differential between the inside and the outside of the vacuum bag 72 causes the vacuum bag to bear against and compress the fibrous layers 40 .
- the edging 60 is also compressible under the vacuum pressure, and compresses along with the fibrous layers 40 as air is removed from the sealed region. During this consolidation process, the edging 60 is compressed such that it has a thickness corresponding to the thickness of the compressed laminate 44 .
- resin is introduced into the sealed region.
- the resin infuses into and between the fibrous layers 40 , and between the laminate edge 48 and the edging 60 . Because the edging 60 is substantially resin impermeable, the resin does not appreciably infuse into the bulk or ‘core’ of the edging 60 . Accordingly, the core of the edging 60 remains substantially resin free.
- the resin is then cured by heating. As the resin cures, the edging 60 is integrated with the laminate 44 , and is bonded to the laminate 44 along the laminate edge 48 .
- the resulting shear web 130 is demoulded: the vacuum bag 72 is removed, the release film 56 and transfer mesh 58 are peeled away, the shear web 130 is removed from the mould tool 50 and the peel ply layers 52 , 54 are trimmed (as shown in FIG. 5H ).
- FIG. 5I this illustrates the finishing stage of the process.
- the full outline of the edging 60 is shown, although it will be appreciated that in reality the upper surface of the edging 60 would be covered by the upper peel ply layer 54 , and so would not be visible.
- the edging 60 is severed along a severance line 62 .
- the severance line 62 is spaced apart from the laminate edge 48 by a distance d, which is between approximately 2 mm and approximately 5 mm. In this way, a sacrificial portion 60 a of the edging 60 outboard of the severance line 62 is removed from the component 130 , and a shield portion 60 b of the edging 60 inboard of the severance line 62 remains integrated with the laminate 44 .
- a thin layer of cured resin covers the outside of the edging 60 following the moulding process.
- the impermeable nature of the closed-cell foam means that resin is substantially absent from the bulk/core of the edging 60 .
- a clean (i.e. resin-free) surface 64 (see FIG. 6A ) of the shield portion 60 b is exposed; this surface defines a hand-safe edge 64 of the shear web 130 .
- the substantial absence of hard resin from this edge 64 makes it relatively safe to handle.
- the absence of resin from the core of the edging 60 also advantageously makes the edging 60 relatively easy to cut. For example it can be cut easily by hand using a knife, which is particularly convenient.
- FIGS. 6A and 6B illustrate the finished shear web 130 .
- the shield portion 60 b is integrated with the laminate 44 by the cured resin and shields the laminate edge 48 creating a hand-safe edge 64 .
- the shield portion 60 b is in a compressed state in which its thickness t is substantially equal to the thickness of the consolidated laminate 44 .
- the peel ply layers 52 , 54 extend over both the laminate 44 and the shield portion 60 b of the shear web 130 .
- the peel ply layers 52 , 54 are removed to leave a roughened keying surface on both the laminate 44 and the shield portion 60 b .
- Adhesive is applied to this keying surface in order to bond the shear web 130 to the spar caps 24 , 26 , 28 , 30 (see FIG. 7 ), with the roughness of the surface serving to improve the adhesion.
- the shield portion 60 b does not significantly affect the physical properties of the shear web 130 .
- the shield portion 60 b is securely integrated with the laminate 44 by the cured resin, and the fact that the shield portion 60 b is provided with peel ply layers 52 , 54 in the same way as the laminate 44 means that the surface of the shield portion 60 b can be securely adhered to the wind turbine blade 110 .
- the shear web 130 when the shear web 130 is incorporated into the wind turbine blade 110 , the shear web 130 is disposed entirely in the interior of the blade 110 . Thus, the edges 64 of the shear webs 130 are not visible. In the finished wind turbine blade 110 , the appearance of the edges 64 is therefore unimportant.
- the composite component is a shear web
- the composite component may be, for example, a bulkhead, flange or platform.
- the edging need not be made of a foam material, but may be made of any suitable material, examples of which include fibrous material, honeycomb, rubber, balsa, and polystyrene.
- the edging need not be adhered to the mould tool by an adhesive layer, but may be fixed in place by any suitable means, or may simply lie on the mould tool without being fixed in place.
- any or all of the peel ply layers, the release film and/or the transfer mesh may be omitted if required. Additional components may also be laid up in the mould before the vacuum bag is arranged in place.
- the fibrous layers are dry fibrous layers, and resin is infused into the layers in a resin-infusion process
- the fibrous layers may be pre-preg layers that are impregnated with resin before being arranged in the mould tool.
- the resin-infusion step may be omitted.
- the edging is severed by hand using a knife.
- the edging may be severed by any suitable means, for example a saw or laser.
- the severing process may be either manual or automated. Although there is no need for subsequent machining after the severing process in order to provide a hand-safe edge, further machining and finishing stages may nonetheless be employed if desired.
- the edging may be grinded or sanded to reveal a substantially resin-free exposed surface.
- the edging is preferably made from substantially resin impermeable material, in other examples resin may be prevented from permeating into the bulk of the edging in other ways.
- the edging may be encapsulated within a resin-impermeable film such as a plastics film. In such cases, the bulk of the edging need not necessarily be made from resin-impermeable material.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims (25)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1413551.1A GB2528852A (en) | 2014-07-31 | 2014-07-31 | Composite component having a safety edge |
GB1413551.1 | 2014-07-31 | ||
PCT/DK2015/050229 WO2016015735A1 (en) | 2014-07-31 | 2015-07-29 | Composite component having a safety edge |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170211543A1 US20170211543A1 (en) | 2017-07-27 |
US10385823B2 true US10385823B2 (en) | 2019-08-20 |
Family
ID=51587509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/500,340 Active 2036-06-25 US10385823B2 (en) | 2014-07-31 | 2015-07-29 | Composite component having safety edge |
Country Status (5)
Country | Link |
---|---|
US (1) | US10385823B2 (en) |
EP (1) | EP3174695B1 (en) |
CN (1) | CN106715097A (en) |
GB (1) | GB2528852A (en) |
WO (1) | WO2016015735A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230166472A1 (en) * | 2020-05-25 | 2023-06-01 | Lm Wind Power A/S | Method for manufacturing a wind turbine blade and wind turbine blade obtained thereby |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528852A (en) * | 2014-07-31 | 2016-02-10 | Vestas Wind Sys As | Composite component having a safety edge |
CA2971066C (en) * | 2017-06-16 | 2024-05-28 | Hutchinson Aeronautique & Industrie Ltee | Fabrication process for a composite panel |
WO2020119870A1 (en) * | 2018-12-10 | 2020-06-18 | Vestas Wind Systems A/S | Improvements relating to wind turbine blade manufacture |
ES2967599T3 (en) * | 2018-12-20 | 2024-05-03 | Vestas Wind Sys As | Improvements regarding the manufacturing of wind turbine blades |
CN113423948B (en) * | 2018-12-20 | 2023-10-20 | 维斯塔斯风力系统有限公司 | Improvements relating to wind turbine blade manufacture |
ES2951637T3 (en) * | 2019-10-09 | 2023-10-24 | Siemens Gamesa Renewable Energy As | Method for manufacturing a structural element of a wind turbine blade, method for manufacturing a wind turbine blade, structural element of a wind turbine blade and wind turbine blade |
WO2022100803A1 (en) * | 2020-11-12 | 2022-05-19 | Vestas Wind Systems A/S | Wind turbine blade with improved adhesive joint between shear web and shell |
CN114536806B (en) * | 2021-12-24 | 2023-04-07 | 江苏海锋能源科技有限公司 | Resin flow guide trimming-free process |
CN116061351B (en) * | 2022-12-05 | 2025-02-21 | 中材科技风电叶片股份有限公司 | A novel method for manufacturing a megawatt-class wind turbine blade trailing edge pasting corner mold |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040140587A1 (en) * | 2002-12-13 | 2004-07-22 | Hadley Philip C. | Control of resin flow during molding of composite articles |
US20080159871A1 (en) * | 2005-02-03 | 2008-07-03 | Anton Bech | Method of Manufacturing a Wind Turbine Blade Shell Member |
WO2011113812A1 (en) | 2010-03-15 | 2011-09-22 | Vestas Wind Systems A/S | Improved wind turbine blade spar |
US20120034833A1 (en) | 2009-04-14 | 2012-02-09 | Gummiwerk Kraiburg Gmbh & Co. Kg | Composite components and heat-curing resins and elastomers |
EP2716904A1 (en) | 2012-10-04 | 2014-04-09 | Areva Blades GmbH | Composite spar cap for a rotor blade of a wind turbine and method of manufacturing the composite spar cap |
US20140301859A1 (en) * | 2011-12-16 | 2014-10-09 | Vestas Wind Systems A/S | Wind turbine blades |
US20150252779A1 (en) * | 2014-03-04 | 2015-09-10 | Siemens Energy, Inc. | Wind turbine blade with viscoelastic damping |
US20160160092A1 (en) * | 2013-07-26 | 2016-06-09 | Zephyros Inc | Thermosetting adhesive films including a fibrous carrier |
US20160177916A1 (en) * | 2013-08-02 | 2016-06-23 | Vestas Wind Systems A/S | A blade for a wind turbine and a method for manufacturing a blade for a wind turbine |
US20170211543A1 (en) * | 2014-07-31 | 2017-07-27 | Vestas Wind Systems A/S | Composite component having a safety edge |
US20170252984A1 (en) * | 2014-09-15 | 2017-09-07 | Envision Energy (Denmark) Aps | Wind Turbine Blade with Customised Chord Length |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2716904A (en) * | 1953-04-15 | 1955-09-06 | Schwitzer Cummins Company | Damper assembly |
US7740453B2 (en) * | 2007-12-19 | 2010-06-22 | General Electric Company | Multi-segment wind turbine blade and method for assembling the same |
-
2014
- 2014-07-31 GB GB1413551.1A patent/GB2528852A/en not_active Withdrawn
-
2015
- 2015-07-29 US US15/500,340 patent/US10385823B2/en active Active
- 2015-07-29 CN CN201580049586.3A patent/CN106715097A/en active Pending
- 2015-07-29 EP EP15744480.3A patent/EP3174695B1/en active Active
- 2015-07-29 WO PCT/DK2015/050229 patent/WO2016015735A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040140587A1 (en) * | 2002-12-13 | 2004-07-22 | Hadley Philip C. | Control of resin flow during molding of composite articles |
US20080159871A1 (en) * | 2005-02-03 | 2008-07-03 | Anton Bech | Method of Manufacturing a Wind Turbine Blade Shell Member |
US20120034833A1 (en) | 2009-04-14 | 2012-02-09 | Gummiwerk Kraiburg Gmbh & Co. Kg | Composite components and heat-curing resins and elastomers |
WO2011113812A1 (en) | 2010-03-15 | 2011-09-22 | Vestas Wind Systems A/S | Improved wind turbine blade spar |
US20140301859A1 (en) * | 2011-12-16 | 2014-10-09 | Vestas Wind Systems A/S | Wind turbine blades |
EP2716904A1 (en) | 2012-10-04 | 2014-04-09 | Areva Blades GmbH | Composite spar cap for a rotor blade of a wind turbine and method of manufacturing the composite spar cap |
US20160160092A1 (en) * | 2013-07-26 | 2016-06-09 | Zephyros Inc | Thermosetting adhesive films including a fibrous carrier |
US20160177916A1 (en) * | 2013-08-02 | 2016-06-23 | Vestas Wind Systems A/S | A blade for a wind turbine and a method for manufacturing a blade for a wind turbine |
US20150252779A1 (en) * | 2014-03-04 | 2015-09-10 | Siemens Energy, Inc. | Wind turbine blade with viscoelastic damping |
US20170211543A1 (en) * | 2014-07-31 | 2017-07-27 | Vestas Wind Systems A/S | Composite component having a safety edge |
US20170252984A1 (en) * | 2014-09-15 | 2017-09-07 | Envision Energy (Denmark) Aps | Wind Turbine Blade with Customised Chord Length |
Non-Patent Citations (2)
Title |
---|
European Patent Office, International Search Report and Written Opinion in PCT Application No. PCT/DK2015/050229, dated Oct. 16, 2015. |
Intellectual Property Office, Search and Examination Report in GB1413551.1, dated Mar. 2, 2015. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230166472A1 (en) * | 2020-05-25 | 2023-06-01 | Lm Wind Power A/S | Method for manufacturing a wind turbine blade and wind turbine blade obtained thereby |
US12226974B2 (en) * | 2020-05-25 | 2025-02-18 | Lm Wind Power A/S | Method for manufacturing a wind turbine blade and wind turbine blade obtained thereby |
Also Published As
Publication number | Publication date |
---|---|
WO2016015735A1 (en) | 2016-02-04 |
GB2528852A (en) | 2016-02-10 |
EP3174695B1 (en) | 2020-09-02 |
EP3174695A1 (en) | 2017-06-07 |
GB201413551D0 (en) | 2014-09-17 |
CN106715097A (en) | 2017-05-24 |
US20170211543A1 (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10385823B2 (en) | Composite component having safety edge | |
EP3288750B1 (en) | Method for manufacturing a reinforcing structure for a wind turbine blade and reinforcing structure obtained thereby | |
EP2855130B1 (en) | Manufacture of wind turbine blades | |
US10590909B2 (en) | Method of manufacturing a wind turbine blade by embedding a layer of pre-cured fibre reinforced resin | |
US10232528B2 (en) | Wind turbine blades | |
US10723438B2 (en) | System and methods of constructing composite assemblies | |
US20120175824A1 (en) | Method of and Apparatus for Making a Composite Material | |
CA2658240A1 (en) | Composite wing slat for aircraft | |
EP2228198A1 (en) | A method of strengthening a wind turbine blade and the strengthened blade | |
EP2886311A1 (en) | Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same | |
EP2388477A1 (en) | Blade of a wind turbine | |
GB2490469A (en) | Cutting of preforms prior to RTM injection by means of a water jet and cryonics | |
US11235541B2 (en) | Method for the adaptive filling of rigid tool cavities | |
US9579855B2 (en) | Secondary groove for work piece retention during machining | |
EP3328618B1 (en) | Wind turbine blade bondlines | |
US20240051244A1 (en) | Manufacturing methods of net stiffeners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VESTAS WIND SYSTEMS A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANDERCOCK, STEPHEN;WARDROPPER, STEVE;SIGNING DATES FROM 20170222 TO 20170227;REEL/FRAME:041679/0387 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |