TWM661706U - Elastic blades and oscillating water column wave energy generation system for power generation - Google Patents
Elastic blades and oscillating water column wave energy generation system for power generation Download PDFInfo
- Publication number
- TWM661706U TWM661706U TW113207354U TW113207354U TWM661706U TW M661706 U TWM661706 U TW M661706U TW 113207354 U TW113207354 U TW 113207354U TW 113207354 U TW113207354 U TW 113207354U TW M661706 U TWM661706 U TW M661706U
- Authority
- TW
- Taiwan
- Prior art keywords
- blade
- power generation
- attack
- elastic
- angle
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000013013 elastic material Substances 0.000 claims description 28
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 8
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 230000001174 ascending effect Effects 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 230000005489 elastic deformation Effects 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 238000005381 potential energy Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 12
- 230000005611 electricity Effects 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
一種應用於發電的彈性葉片,至少包含:第一葉片體,具有葉緣;第二葉片體,第二葉片體設於葉緣之相對另一側,且第二葉片體具有二葉面;第一葉片體與第二葉片體之間以固定件結合固定;第二葉片體係選自彈性材料,使第二葉片體由原始攻角被動形變為第一攻角或第二攻角 ;藉此,選用彈性材料被動改變葉面攻角,使能量轉換更有效率,並透過彈性葉片之結構簡單化設計,能增加葉片能量擷取效率,提升位能轉換電能之效能;另結合為一種振盪水柱式波浪能發電系統,具有所述之應用於發電的彈性葉片,能有效降低成本並減少海洋污染的優勢。A flexible blade for power generation includes at least: a first blade body having a blade edge; a second blade body, the second blade body being arranged on the other side opposite to the blade edge and having two blade surfaces; the first blade body and the second blade body being fixed together by a fixing member; the second blade body being selected from a flexible material, so that the second blade body is passively deformed from an original angle of attack to a first angle of attack or a second angle of attack; thereby, the flexible material is selected to passively change the blade surface angle of attack, so that energy conversion is more efficient, and through the simplified structural design of the flexible blade, the blade energy capture efficiency can be increased, and the performance of potential energy conversion into electrical energy can be improved; in addition, a vibrating water column type wave energy power generation system is combined, which has the advantages of the flexible blade for power generation, and can effectively reduce costs and reduce marine pollution.
Description
本新型是關於一種應用於發電的彈性葉片及振盪水柱式波浪能發電系統,尤其是一種能被動改變增加攻角並減少葉片投影面積的彈性葉片以及具有彈性回復力之彈性葉片,以及具有所述彈性葉片之振盪水柱式波浪能發電系統。The present invention relates to an elastic blade and an oscillating water column wave energy power generation system used for power generation, in particular to an elastic blade that can passively change to increase the angle of attack and reduce the blade projection area, an elastic blade with elastic restoring force, and an oscillating water column wave energy power generation system having the elastic blade.
目前再生能源的技術越發多元, 常見的可再生能源種類有:太陽能發電、風能發電、水力發電、生物質能發電、地熱能發電、波浪能發電。Currently, renewable energy technologies are becoming more and more diverse. Common types of renewable energy include: solar power generation, wind power generation, hydropower generation, biomass power generation, geothermal power generation, and wave power generation.
其中,波浪能發電的發電原理是利用海水表面上下運動之高低點間的位能差,以及海水往復運動所產生的衝擊力或浮力差的動能,來驅動發電機進行發電,也就是說說,係攔截波浪並擷取其中能量再逐步轉換成電能的一種發電方式;常見的波浪能發電類型有波浪削滅式、點吸收式、波浪擺盪衝擊式、振盪水柱式、越頂式、沉浸壓差式、蛇形波浪式、轉動質量式等;其中,振盪水柱式波浪能發電系統 (Oscillating Water Column OWC)中,常見有威爾斯渦輪 (Wells Turbine)的應用,該渦輪使用之葉片形狀為對稱式翼型,使葉片在雙向流動之流場中皆能被推動,且有單一旋轉方向 ,卻也因此導致葉片攻角受 限, 能量轉換效率明顯低於單向式渦輪機。再且,威爾斯渦輪已經屬於非常成熟的技術,且大多業者皆係沿用既有的結構,因此如何能夠增加其發電效益,大多人都是針對葉片形狀、葉片迎風的固定角度等做改善,再且,現有葉片大多選用鋁質、鐵質等硬質的材料,反而使得攻角受限,不易增加葉片的轉換效率。The principle of wave power generation is to use the potential difference between the high and low points of the sea surface and the kinetic energy of the impact force or buoyancy difference generated by the reciprocating motion of the sea water to drive the generator to generate electricity. In other words, it is a way of generating electricity by intercepting waves and capturing the energy therein and then gradually converting it into electrical energy. Common types of wave power generation include wave attenuation, point absorption, wave swing impact, oscillating water column, over-the-top, immersed pressure difference, serpentine wave, rotating mass, etc. Among them, the oscillating water column wave power generation system (Oscillating Water Column OWC) is commonly seen with Wells turbines. The application of the turbine is a symmetrical airfoil blade, which can be pushed in a bidirectional flow field and has a single rotation direction. However, this also limits the blade angle of attack, and the energy conversion efficiency is significantly lower than that of a unidirectional turbine. In addition, the Wells turbine is already a very mature technology, and most companies use the existing structure. Therefore, in order to increase its power generation efficiency, most people make improvements to the blade shape and the fixed angle of the blade facing the wind. In addition, most existing blades are made of hard materials such as aluminum and iron, which limits the angle of attack and makes it difficult to increase the blade conversion efficiency.
此外,隨著氣候變遷,使用者的用電需求大增,以及環保意識的抬頭,是以能如何減少核電的使用,增加天然能源的使用,以達到永續能源的目標是各界推崇的最終目的;然而我國作為四面環海的國家,擁有豐富的海洋資源,能以海洋成為能源供應的主要來源,因此如何藉由海洋資源來加以運用並發展成國家能源供應的重要來源,以及如何有效優化現有威爾斯渦輪 (Wells Turbine)的轉換效率,是目前學界與業界都極需克服的課題。In addition, with climate change, users' electricity demand has increased significantly, and environmental awareness has risen. Therefore, how to reduce the use of nuclear power and increase the use of natural energy to achieve the goal of sustainable energy is the ultimate goal advocated by all sectors. However, as a country surrounded by the sea, Taiwan has abundant marine resources and can use the ocean as the main source of energy supply. Therefore, how to use marine resources and develop them into an important source of national energy supply, and how to effectively optimize the conversion efficiency of the existing Wells Turbine, are issues that both academia and industry need to overcome.
有鑑於此,本新型的目的即在於提供一種應用於發電的彈性葉片及,透過第二葉片體係選自彈性材料,使第二葉片體由原始攻角被動形變為第一攻角或第二攻角 ;據此,選用彈性材料被動改變葉面攻角,使能量轉換更有效率,並透過彈性葉片之結構簡單化設計,能增加葉片能量擷取效率,提升位能轉換電能之效能。In view of this, the purpose of the present invention is to provide an elastic blade for power generation, and through the second blade body being selected from an elastic material, the second blade body is passively deformed from an original angle of attack to a first angle of attack or a second angle of attack; accordingly, the blade surface angle of attack is passively changed by selecting an elastic material to make energy conversion more efficient, and through the simplified structural design of the elastic blade, the blade energy capture efficiency can be increased, thereby improving the performance of potential energy conversion into electrical energy.
本新型的次一目的係在於提供一種振盪水柱式波浪能發電系統,則係結合所述之應用於發電的彈性葉片,當透過彈性葉片提升轉換效率,同時還能有效降低成本並減少海洋污染的優勢。The second purpose of the present invention is to provide an oscillating water column wave energy power generation system, which is combined with the elastic blades used for power generation. When the elastic blades are used to improve the conversion efficiency, the cost can be effectively reduced and the marine pollution can be reduced.
可達成上述新型目的之應用於發電的彈性葉片, 該應用於發電的彈性葉片至少包含:一第一葉片體,具有一葉緣;一第二葉片體,該第二葉片體設於該葉緣之相對另一側,且該第二葉片體具有二葉面;該第一葉片體與該第二葉片體之間以一固定件結合固定;其中該第二葉片體係選自彈性材料,使該第二葉片體由一原始攻角被動形變為一第一攻角或一第二攻角。The elastic blade used for power generation can achieve the above-mentioned new purpose. The elastic blade used for power generation at least includes: a first blade body having a blade edge; a second blade body, the second blade body is arranged on the other side opposite to the blade edge, and the second blade body has two blade surfaces; the first blade body and the second blade body are connected and fixed by a fixing member; wherein the second blade body is selected from elastic material, so that the second blade body can be passively deformed from an original angle of attack to a first angle of attack or a second angle of attack.
可選地,於上述實施例中,其中該第一攻角或該第二攻角的角度係介於0度至45度之間。Optionally, in the above embodiment, the first attack angle or the second attack angle is between 0 degrees and 45 degrees.
可選地,於上述實施例中,其中該彈性材料為熱塑性聚氨酯材料(TPU)、聚烯系彈性材料(TPO)、動態加硫聚烯彈性材料(TPV)、聚苯乙烯系彈性材料(TPS/TPR)、聚苯乙烯系彈性材料(TPEE)或聚醯胺系彈性材料(TPA)其中之一或其組合。Optionally, in the above embodiments, the elastic material is one or a combination of thermoplastic polyurethane material (TPU), polyolefin elastic material (TPO), dynamically vulcanized polyolefin elastic material (TPV), polystyrene elastic material (TPS/TPR), polystyrene elastic material (TPEE) or polyamide elastic material (TPA).
可選地,於上述實施例中,其中該二葉面之各自一端分別連接於該第一葉片體,且該二葉面之各自另一端是彼此相連接,形成該第二葉片體。Optionally, in the above embodiment, one end of each of the two blade surfaces is connected to the first blade body, and the other ends of each of the two blade surfaces are connected to each other to form the second blade body.
可選地,於上述實施例中,其中該第二葉片體之該二葉面能承受一震盪氣流並形成一彈性變形力,使該原始攻角被動形變為該第一攻角或該第二攻角。Optionally, in the above-mentioned embodiment, the two blade surfaces of the second blade body can withstand a turbulent airflow and form an elastic deformation force, so that the original angle of attack is passively deformed into the first angle of attack or the second angle of attack.
可選地,於上述實施例中,其中該固定件為一第一卡合件,該第一卡合件係為一凹一凸結構卡合而成。Optionally, in the above embodiment, the fixing member is a first engaging member, and the first engaging member is formed by engaging a concave and a convex structure.
可選地,於上述實施例中,其中該固定件為一第二卡合件,該第二卡合件係為一凹一凸結構卡合而成並形成為T型結構。Optionally, in the above embodiment, the fixing member is a second engaging member, and the second engaging member is formed by engaging a concave and a convex structure to form a T-shaped structure.
可選地,於上述實施例中,其中該固定件為一第二卡合件,該第二卡合件係為一凹一凸結構卡合而成並形成為梯型結構。Optionally, in the above embodiment, the fixing member is a second engaging member, and the second engaging member is formed by engaging a concave and a convex structure to form a trapezoidal structure.
可選地,於上述實施例中,其中該葉緣係為一圓弧形之葉緣、一平面形之葉緣、一尖形之葉緣或一圓角形之葉緣其中一者。Optionally, in the above embodiments, the blade edge is one of an arc-shaped blade edge, a flat blade edge, a pointed blade edge or a rounded blade edge.
可達成上述新型目的之振盪水柱式波浪能發電系統,該振盪水柱式波浪能發電系統至少包含:一威爾斯渦輪機,具有一葉片支撐軸,該葉片支撐軸固設連接複數個如上所述之應用於發電的彈性葉片實施例,當該彈性葉片被動形變時以推動形成一作動方向;一半潛式結構體,具有一腔室,該腔室內同時具有一震盪水柱及一震盪氣流,該震盪水柱連接一注水口接受複數海浪的波浪能,該震盪氣流因該震盪水柱之上下震盪形成一上升氣流及一下降氣流,其中該腔室連通該威爾斯渦輪機之一側,該威爾斯渦輪機之另一側則開設有一通氣口;當該震盪水柱升高時,該上升氣流係依序由該腔室、該威爾斯渦輪機通過,最後由該通氣口排出;反之,當該震盪水柱下降時,該下降氣流則依序由該通氣口進入,經由該威爾斯渦輪機,最後進入該腔室,使該震盪氣流推動該威爾斯渦輪機轉動,以產生電能並提供發電。The oscillating water column wave energy power generation system can achieve the above-mentioned new purpose. The oscillating water column wave energy power generation system at least comprises: a Wells turbine having a blade support shaft, the blade support shaft is fixedly connected to a plurality of elastic blade embodiments applied to power generation as described above, and when the elastic blade is passively deformed, it pushes to form an actuation direction; a semi-submersible structure having a chamber, and the chamber has a oscillating water column and a oscillating air flow at the same time. The oscillating water column is connected to a water injection port to receive wave energy of a plurality of waves, and the oscillating air flow is oscillating due to the oscillation. The up and down vibration of the water column forms an ascending airflow and a descending airflow, wherein the chamber is connected to one side of the Wells turbine, and a vent is provided on the other side of the Wells turbine; when the vibrating water column rises, the ascending airflow passes through the chamber and the Wells turbine in sequence, and is finally discharged from the vent; conversely, when the vibrating water column descends, the descending airflow enters from the vent in sequence, passes through the Wells turbine, and finally enters the chamber, so that the vibrating airflow drives the Wells turbine to rotate, thereby generating electrical energy and providing power generation.
可選地,於上述實施例中,該半潛式結構體,至少由一海岸、一海底及一前壁圍設而成,以形成一中空結構。Optionally, in the above embodiment, the semi-submersible structure is surrounded by at least a coast, a seabed and a front wall to form a hollow structure.
可選地,於上述實施例中,該半潛式結構體更包括:一發電機,該發電機電連接該威爾斯渦輪機。Optionally, in the above embodiment, the semi-submersible structure further includes: a generator electrically connected to the Wells turbine.
可選地,於上述實施例中,該半潛式結構體更包括:一調壓通管,該調壓通管套設於該威爾斯渦輪機之外部,並與該腔室及該通氣口相連通。Optionally, in the above embodiment, the semi-submersible structure further includes: a pressure regulating pipe, the pressure regulating pipe is sleeved on the outside of the Wells turbine and is connected to the chamber and the vent.
可選地,於上述實施例中,該調壓通管係為一文氏管結構。Optionally, in the above embodiment, the pressure regulating tube is a venturi structure.
綜上所述,本新型之應用於發電的彈性葉片及振盪水柱式波浪能發電系統,透過第二葉片體係選自彈性材料,使第二葉片體由原始攻角被動形變為第一攻角或第二攻角 ;據此,選用彈性材料被動改變葉面攻角,使能量轉換更有效率,並透過彈性葉片之結構簡單化設計,能增加葉片能量擷取效率,提升位能轉換電能之效能。除此之外,本新型透過將應用於發電的彈性葉片結合於振盪水柱式波浪能發電系統,透過彈性葉片提升轉換效率,同時還能有效降低成本並減少海洋污染的優勢。In summary, the elastic blades and oscillating water column wave energy power generation system used for power generation of the present invention, through the second blade body is selected from elastic material, so that the second blade body is passively deformed from the original angle of attack to the first angle of attack or the second angle of attack; accordingly, the elastic material is selected to passively change the blade angle of attack, so that the energy conversion is more efficient, and through the simplified structural design of the elastic blade, the blade energy capture efficiency can be increased, and the efficiency of potential energy conversion to electrical energy can be improved. In addition, the present invention combines the elastic blades used for power generation with the oscillating water column wave energy power generation system, and improves the conversion efficiency through the elastic blades, while also effectively reducing costs and reducing marine pollution.
請參照圖1、圖2,圖1為本新型實施例之應用於發電的彈性葉片第一示意圖,圖2為本新型實施例之應用於發電的彈性葉片第二示意圖。如圖1、圖2所示,本新型之應用於發電的彈性葉片10包含一第一葉片體11,具有一葉緣;一第二葉片體12,該第二葉片體12設於該葉緣之相對另一側,且該第二葉片體12具有二葉面121;該第一葉片體11與該第二葉片體12之間以一固定件13結合固定;其中該第二葉片體12係選自彈性材料,使該第二葉片體12由一原始攻角θ被動形變為一第一攻角θ1或一第二攻角θ2。Please refer to Figures 1 and 2. Figure 1 is a first schematic diagram of an elastic blade for power generation according to an embodiment of the present invention, and Figure 2 is a second schematic diagram of an elastic blade for power generation according to an embodiment of the present invention. As shown in Figures 1 and 2, the
在本新型一實施例中,該第一攻角θ1或該第二攻角θ2的角度係介於0度至45度之間。在本新型另一實施例中,該彈性材料為熱塑性聚氨酯材料(TPU)、聚烯系彈性材料(TPO)、動態加硫聚烯彈性材料(TPV)、聚苯乙烯系彈性材料(TPS/TPR)、聚苯乙烯系彈性材料(TPEE)或聚醯胺系彈性材料(TPA)其中之一或其組合;在本新型一較佳實施例中,該彈性材料為熱塑性聚氨酯材料(TPU),但不以此為限;據此,選用彈性材料被動改變葉面攻角,使能量轉換更有效率,並透過彈性葉片之結構簡單化設計,能增加葉片能量擷取效率,提升位能轉換電能之效能。In one embodiment of the present invention, the first angle of attack θ1 or the second angle of attack θ2 is between 0 and 45 degrees. In another embodiment of the present invention, the elastic material is one of thermoplastic polyurethane material (TPU), polyolefin elastic material (TPO), dynamically vulcanized polyolefin elastic material (TPV), polystyrene elastic material (TPS/TPR), polystyrene elastic material (TPEE) or polyamide elastic material (TPA) or a combination thereof; in a preferred embodiment of the present invention, the elastic material is thermoplastic polyurethane material (TPU), but not limited thereto; accordingly, the elastic material is selected to passively change the blade angle of attack, so that energy conversion is more efficient, and through the simplified structural design of the elastic blade, the blade energy capture efficiency can be increased, and the performance of potential energy conversion into electrical energy can be improved.
在本新型一實施例中,該二葉面121之各自一端分別連接於該第一葉片體11,且該二葉面121 之各自另一端是彼此相連接,形成該第二葉片體12;當該應用於發電的彈性葉片10被動形變時以推動形成一作動方向S,該作動方向S係為單一旋轉方向;值得說明的是,該作動方向S係擷取通過應用於發電的彈性葉片10之雙向流動的震盪氣流A的能量進行旋轉。再且,由於雙向的震盪氣流A通過應用於發電的彈性葉片10時能改變葉面121的攻角,以增加在葉面121上產生的推力。據此,通過彈性葉片設計,可額外產生增加攻角、減少葉片投影面積 以及彈性回復力等效率增益。In an embodiment of the present invention, one end of each of the two
接著請一併參照圖3,圖3為本新型實施例之應用於發電的彈性葉片的固定件示意圖。如圖3(a)所示,在本新型一實施例中,該固定件13係為一黏著劑,但不以此為限,藉此透過黏著固定該第一葉片體11與該第二葉片體12。如圖3(b)所示,該固定件13為一第一卡合件131,該第一卡合件131係為一凹一凸結構卡合而成;也就是說,固定件可以為卡合件亦可卡合結合黏著劑一併使用,以增加第一葉片體及第二葉片體的穩固性。如圖3(c)所示,該固定件13為一第二卡合件132,該第二卡合件132係為一凹一凸結構卡合而成並形成為T型結構;透過T型結構增加接觸面積,以提高結合的穩固性。如圖3(d)所示,該固定件13為一第二卡合件132,該第二卡合件132係為一凹一凸結構卡合而成並形成為梯型結構;據此,透過不同的卡合結構來提升結合的穩固性。Next, please refer to FIG. 3, which is a schematic diagram of a fixing member of an elastic blade used for power generation in an embodiment of the present invention. As shown in FIG. 3(a), in an embodiment of the present invention, the
接著請一併參照圖3與圖4,圖4為本新型實施例之應用於發電的彈性葉片的葉緣示意圖。在本實施例中,該應用於發電的彈性葉片10之該第一葉片體11之該葉緣係為一圓弧形之葉緣11a(如圖3(a))、一平面形之葉緣11b(如圖4(e))、一尖形之葉緣11c(如圖4(f))或一圓角形之葉緣11d(如圖4(g))其中一者;舉例來說,該平面形之葉緣11b的阻力係大於該尖形之葉緣11c的阻力,該尖形之葉緣11c的阻力則係大於該圓角形葉緣11d的阻力。據此,透過所述葉緣之形狀不同以改變作動時阻力的大小的關係,能藉此改變調整轉動的效率。Please refer to Figures 3 and 4 together. Figure 4 is a schematic diagram of the blade edge of the elastic blade used for power generation in the present embodiment. In this embodiment, the blade edge of the
再請一併參照圖5至圖6,圖5為本新型實施例之應用於發電的彈性葉片結合成威爾斯渦輪機示意圖,圖6為本新型實施例之振盪水柱式波浪能發電系統的配置示意圖。Please refer to Figures 5 and 6 together. Figure 5 is a schematic diagram of the elastic blades used for power generation combined with a Wells turbine according to the new embodiment of the present invention, and Figure 6 is a schematic diagram of the configuration of the oscillating water column wave energy power generation system according to the new embodiment of the present invention.
如圖6所示,該振盪水柱式波浪能發電系統1000至少包含:一威爾斯渦輪機100(如圖5所示),具有一葉片支撐軸20,該葉片支撐軸20固設連接複數個如圖1至圖4任一實施例所述之應用於發電的彈性葉片10,當該應用於發電的彈性葉片10之該葉面121被動形變時以推動形成一作動方向S;一半潛式結構體200,具有一腔室201,該腔室201內同時具有一震盪水柱S2及一震盪氣流A,該震盪水柱S2連接一注水口202接受複數海浪S1的波浪能,該震盪氣流A因該震盪水柱S2之上下震盪形成一上升氣流A1及一下降氣流A2。較佳地,該半潛式結構體200係以鋼筋混凝土構造而成,且該威爾斯渦輪機100係建置於氣流中,使其不易受到極端天氣的影響。As shown in FIG. 6 , the oscillating water column wave energy
在本實施例中,該腔室201連通該威爾斯渦輪機100之一側,該威爾斯渦輪機100之另一側則開設有一通氣口203;當該震盪水柱S2升高時,該上升氣流A1係依序由該腔室201、該威爾斯渦輪機100通過,最後由該通氣口203排出;反之,當該震盪水柱S2下降時,該下降氣流A2則依序由該通氣口203進入,經由該威爾斯渦輪機100,最後進入該腔室201,使該震盪氣流A推動該威爾斯渦輪機100轉動,以產生電能並提供發電;值得說明的是,震盪氣流A的大小會依據腔室體積大小不同而有所改變;據此,透過波浪能轉換為位能再由位能形成氣流推動該威爾斯渦輪機轉動產生電能以形成發電。In this embodiment, the
在本新型一實施例中,該振盪水柱式波浪能發電系統1000之該半潛式結構體200,至少由一海岸SA、一海底SB及一前壁SC圍設而成,以形成一中空結構。其中該半潛式結構體200可以是浮動式、坐底式或是岸基式任一者;據此,透過半潛式結構體200之中空結構形成氣室的設計,使震盪水柱S2的震盪會產生共振,提高震盪氣流A的氣流速度,進而提升發電能力。In an embodiment of the present invention, the
在本新型一較佳實施例中,該振盪水柱式波浪能發電系統1000之該半潛式結構體200更包括一發電機204,該發電機204電連接該威爾斯渦輪機100;具體來說,該葉片支撐軸20中心係可以在穿設一轉軸(圖未標示)並電連接該發電機204,使震盪氣流A能推動該威爾斯渦輪機100轉動產生電能,進而帶動發電機發電。In a preferred embodiment of the present invention, the
在本新型另一實施例中,該振盪水柱式波浪能發電系統1000之該半潛式結構體200更包括一調壓通管205,該調壓通管205套設於該威爾斯渦輪機100之外部,並與該腔室201及該通氣口203相連通。較佳地,該調壓通管205係為一文氏管結構,透過文氏管結構設計,通過改變震盪氣流的氣流通道大小,以有效改變震盪氣流的流速,進而提升電能的發電效率;此外,當文氏管結構與腔室的比例不同,則在文氏管結構大小不變之理想狀態情況下,腔室越大則震盪氣流越大,是以,文氏管結構的設計亦可以依據腔室體積大小不同而有所改變。In another embodiment of the present invention, the
綜上所述,本新型之應用於發電的彈性葉片,透過第二葉片體係選自彈性材料,使第二葉片體由原始攻角被動形變為第一攻角或第二攻角 ;據此,選用彈性材料被動改變葉面攻角,使能量轉換更有效率,並透過彈性葉片之結構簡單化設計,能增加葉片能量擷取效率,提升位能轉換電能之效能。此外,本新型實施例之振盪水柱式波浪能發電系統,則係結合所述之應用於發電的彈性葉片,當透過彈性葉片提升轉換效率,同時還能有效降低成本並減少海洋污染的優勢者。In summary, the elastic blades used for power generation of the present invention are selected from elastic materials so that the second blade body is passively deformed from the original angle of attack to the first angle of attack or the second angle of attack; accordingly, the elastic material is selected to passively change the blade angle of attack, so that energy conversion is more efficient, and the simplified structure design of the elastic blades can increase the blade energy capture efficiency and improve the efficiency of potential energy conversion to electrical energy. In addition, the oscillating water column wave energy power generation system of the present invention is combined with the elastic blades used for power generation, and the conversion efficiency is improved through the elastic blades, while the cost can be effectively reduced and the marine pollution can be reduced.
10:應用於發電的彈性葉片
11:第一葉片體
11a、11b、11c、11d:葉緣
12:第二葉片體
121:葉面
13:固定件
131:第一卡合件
132:第二卡合件
133:第三卡合件
A:震盪氣流
S:作動方向
θ:原始攻角
θ1:第一攻角
θ2:第二攻角
20:葉片支撐軸
100:威爾斯渦輪機
1000:振盪水柱式波浪能發電系統
200:半潛式結構體
201:腔室
202:注水口
203:通氣口
204:發電機
205:調壓通管
A1:上升氣流
A2:下降氣流
SA:海岸
SB:海底
SC:前壁
S1:海浪
S2:震盪水柱
10: Elastic blades for power generation
11:
圖1為本新型實施例之應用於發電的彈性葉片第一示意圖。 圖2為本新型實施例之應用於發電的彈性葉片第二示意圖。 圖3為本新型實施例之應用於發電的彈性葉片的固定件示意圖。 圖4為本新型實施例之應用於發電的彈性葉片的葉緣示意圖。 圖5為本新型實施例之應用於發電的彈性葉片結合成威爾斯渦輪機示意圖。 圖6為本新型實施例之振盪水柱式波浪能發電系統的配置示意圖。 Figure 1 is a first schematic diagram of an elastic blade for power generation according to the present embodiment. Figure 2 is a second schematic diagram of an elastic blade for power generation according to the present embodiment. Figure 3 is a schematic diagram of a fixing member of an elastic blade for power generation according to the present embodiment. Figure 4 is a schematic diagram of a blade edge of an elastic blade for power generation according to the present embodiment. Figure 5 is a schematic diagram of an elastic blade for power generation combined with a Wells turbine according to the present embodiment. Figure 6 is a schematic diagram of the configuration of an oscillating water column wave energy power generation system according to the present embodiment.
10:應用於發電的彈性葉片 10: Elastic blades for power generation
11:第一葉片體 11: First leaf body
12:第二葉片體 12: Second leaf body
121:葉面 121: Leaf surface
13:固定件 13: Fixing parts
A:震盪氣流 A: Oscillating airflow
S:作動方向 S: Actuation direction
θ:原始攻角 θ: original angle of attack
θ1:第一攻角 θ1: first angle of attack
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW113207354U TWM661706U (en) | 2024-07-08 | 2024-07-08 | Elastic blades and oscillating water column wave energy generation system for power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW113207354U TWM661706U (en) | 2024-07-08 | 2024-07-08 | Elastic blades and oscillating water column wave energy generation system for power generation |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM661706U true TWM661706U (en) | 2024-10-11 |
Family
ID=94036616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113207354U TWM661706U (en) | 2024-07-08 | 2024-07-08 | Elastic blades and oscillating water column wave energy generation system for power generation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM661706U (en) |
-
2024
- 2024-07-08 TW TW113207354U patent/TWM661706U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1105238C (en) | Ocean wave energy extraction | |
WO2012167015A2 (en) | Offshore hybrid wind-wave power plants | |
CN105006992B (en) | Two point flexibly supports cylinder vortex-induced vibration fluid kenetic energy converting device | |
US20040183310A1 (en) | Mowll-Bernoulli wind power generator | |
CN207485595U (en) | Based on single pile formula wind energy-wave energy-tide energy integrated power generation system | |
CN111022242A (en) | Power generation device comprehensively utilizing wave energy and ocean current energy | |
CN102003326B (en) | A vertical axis rhombic fluid kinetic energy power generation conversion device | |
CN210087532U (en) | An ocean energy turbine power generation system | |
CN106801655B (en) | A kind of series connection flapping wing power generator using regenerative resource | |
TWM661706U (en) | Elastic blades and oscillating water column wave energy generation system for power generation | |
CN118582519A (en) | A method for using a reciprocating variable-circle transmission mechanism and its implementation | |
CN220036832U (en) | An integrated ocean current power generation device based on multi-machine complementation | |
CN212716987U (en) | Wind energy and wave energy integrated power generation device | |
CN116039860A (en) | Load-reducing and rolling-reducing wind energy-wave energy complementary power generation floating platform | |
CN214698154U (en) | An oscillating water column type wave energy power generation device combined with a Tesla turbine | |
GB2512562A (en) | Dynamic valvular helix turbine | |
CN201943878U (en) | Self-regulation guide vane impeller type wave energy power-generating unit | |
CN206874431U (en) | Oscillating floater TRT | |
CN106014761A (en) | Self-oscillation airfoil type generating set utilizing vortex shedding effect | |
CN104454324B (en) | Vertical axis automatic Kaplan type wave energy collection device and acquisition method | |
TWI557314B (en) | Energy conversion apparatus | |
CN111472921A (en) | Piezoelectric buoy for wave energy based on mass-spring system | |
CN120312488A (en) | Deep sea and wind wave combined power generation system based on nonlinear internal resonance principle | |
CN207620964U (en) | System for converting the total kinetic energy of sea waves into electric power by means of a unidirectional direct drive shaft converter (ODSC system) | |
CN116591883A (en) | Small multidirectional wave energy absorbing oscillation water column power generation device |