[go: up one dir, main page]

TWM497853U - Light source device with shell-core structure fluorescent material - Google Patents

Light source device with shell-core structure fluorescent material Download PDF

Info

Publication number
TWM497853U
TWM497853U TW103219997U TW103219997U TWM497853U TW M497853 U TWM497853 U TW M497853U TW 103219997 U TW103219997 U TW 103219997U TW 103219997 U TW103219997 U TW 103219997U TW M497853 U TWM497853 U TW M497853U
Authority
TW
Taiwan
Prior art keywords
fluorescent material
light
core
shell
light source
Prior art date
Application number
TW103219997U
Other languages
Chinese (zh)
Inventor
jia-hong Zeng
Yi-Zhen Qiu
song-you Cai
xian-zong Cai
Original Assignee
China Glaze Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Glaze Co Ltd filed Critical China Glaze Co Ltd
Priority to TW103219997U priority Critical patent/TWM497853U/en
Publication of TWM497853U publication Critical patent/TWM497853U/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

具殼核結構螢光材料的光源裝置Light source device with shell-core structure fluorescent material

本創作係有關於一種具殼核結構螢光材料的光源裝置,尤其是利用包含具有黃光、綠光、或紅光螢光粉的核心以及具有含錳氟化物螢光粉的殼層的殼核結構螢光材料以產生適當的放射光,而含錳氟化物螢光粉包含四價錳離子並具有化學式Ax MF6-y Zy :Mn4+ ,進而殼核結構螢光材料可接收紫外及藍光之激發光,而放射複合型光譜以具體實現具高演色性白光的光源裝置。The present invention relates to a light source device having a shell-core structured fluorescent material, in particular, a shell comprising a core having yellow, green, or red phosphor powder and a shell having a manganese fluoride-containing phosphor powder. a nuclear structure fluorescent material to generate appropriate radiation, and the manganese-containing fluoride phosphor contains tetravalent manganese ions and has the chemical formula A x MF 6-y Z y : Mn 4+ , and the core-shell structured fluorescent material can be received The excitation light of ultraviolet and blue light, and the radiation composite type spectrum to realize a light source device with high color rendering white light.

近年來,具有「節能」與「環保」雙重特性的白光發光二極體(LED),隨著其發光效率的不斷提昇,一般認為是取代熱熾燈與螢光燈的革命性光源。螢光材料為製作單晶片白光LED不可或缺的光轉換材料,攸關發光效率、安定性、演色性、色溫、使用壽命等特性,因此是單晶片白光LED系統中最重要的關鍵材料。In recent years, white light-emitting diodes (LEDs), which have the dual characteristics of "energy saving" and "environmental protection", are generally considered to be revolutionary light sources for replacing heat lamps and fluorescent lamps as their luminous efficiency continues to increase. Fluorescent materials are indispensable optical conversion materials for single-wafer white LEDs. They are the most important key materials in single-chip white LED systems due to their luminous efficiency, stability, color rendering, color temperature and lifetime.

一般來說,白光裝置需要具有高演色性以呈現物體真實色彩,然而在習知技術中,利用440~460nm藍光激發550nm Lu3 Al5 O12 :Ce+3 綠粉或560nm Y3 Al5 O12 :Ce+3 黃粉,所產生的白光演色性是介於70~75,使得藍光晶片無法搭配單一螢光粉而滿足目前光源之需求。In general, white light devices need to have high color rendering to present the true color of the object. However, in the prior art, 550 nm Lu 3 Al 5 O 12 :Ce +3 green powder or 560 nm Y 3 Al 5 O is excited by 440-460 nm blue light. 12 : Ce +3 yellow powder, the resulting white light color rendering is between 70 and 75, making the blue light wafer can not match the single fluorescent powder to meet the needs of the current light source.

因此,需要一種具殼核結構螢光材料的光源裝置,利用具有複合型光譜的殼核結構螢光材料而建構新穎的光源裝置,尤其是藉核殼結構螢光粉具有複合型光譜的特性,能以單一螢光粉封裝有效提升白光之演色性,其中殼核結構螢光材料包括具有黃光、綠光、或紅光螢光粉的核心以及具有含錳氟化物螢光粉的殼層,可吸收370nm至500nm之波長的光激發而轉換成520nm至800nm之間的發射光,且利用殼核結構螢光材料以製作光源裝置,提供具有高品質的光源,藉以解決上述習用技術的問題。Therefore, there is a need for a light source device having a shell-core structured fluorescent material, which utilizes a core-structure fluorescent material having a composite spectrum to construct a novel light source device, in particular, a phosphor-like powder having a composite spectrum characteristic. The color rendering of white light can be effectively enhanced by a single phosphor powder package, wherein the core-shell structure fluorescent material comprises a core having yellow, green or red phosphor powder and a shell layer containing manganese fluoride phosphor powder. The light that can absorb the wavelength of 370 nm to 500 nm is excited to be converted into the emitted light between 520 nm and 800 nm, and the core-structure fluorescent material is used to fabricate the light source device, thereby providing a light source with high quality, thereby solving the problems of the above-mentioned conventional techniques.

本創作之主要目的在於提供一種具殼核結構螢光材料的光源裝置,包括殼核結構螢光材料、激發光源、電氣連接線及封裝體,其中封裝體包覆激發光源及電氣連接線,以提供隔絕保護作用,而電氣連接線連接激發光源及外部電源,將外部電源的電力供應給激發光源以發射具370nm至500nm之波長的激發光,且核殼結構螢光材料是塗佈於封裝體,可接收激發光而發射出具特性光譜之放射波峰介於520nm至800nm之間的發射光。殼核結構螢光材料是塗佈於封裝體上,用以接收激發光源的原始發射光而產生高品質的放射光。尤其是,殼核結構螢光材料包括核心及殼層,且核心具有黃光、綠光、或紅光螢光粉,而殼層具有含錳氟化物螢光粉。The main purpose of the present invention is to provide a light source device with a shell-core structure fluorescent material, comprising a core-shell structure fluorescent material, an excitation light source, an electrical connection line and a package body, wherein the package body encloses the excitation light source and the electrical connection line, Providing isolation protection, and the electrical connection line is connected to the excitation light source and the external power source, and the power of the external power source is supplied to the excitation light source to emit excitation light having a wavelength of 370 nm to 500 nm, and the core-shell structured fluorescent material is coated on the package body. The excitation light can be received to emit emitted light having a radiation peak of a characteristic spectrum between 520 nm and 800 nm. The core-shell structure fluorescent material is coated on the package to receive the original emitted light of the excitation light source to generate high-quality emitted light. In particular, the core-shell structured fluorescent material comprises a core and a shell layer, and the core has yellow, green, or red phosphor powder, and the shell layer has manganese fluoride-containing phosphor powder.

具體而言,殼核結構螢光材料中殼層的含錳氟化物螢光粉包含第一元素、第二元素、氟元素、鹵素元素以及四價錳離子,且具有化學式Ax MF6-y Zy :Mn4+ ,其中A為第一元素並包含鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇以及鋅的至少其中之一,M為第二元素並包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,F為氟,Z為鹵素元素並包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。Specifically, the manganese-containing fluoride phosphor of the shell layer of the core-shell structure fluorescent material contains a first element, a second element, a fluorine element, a halogen element, and a tetravalent manganese ion, and has a chemical formula of A x MF 6-y Z y :Mn 4+ , wherein A is the first element and contains at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and zinc, and M is the second element and contains strontium and strontium. At least one of tin, titanium, zirconium, aluminum, gallium, indium, antimony, bismuth, antimony, bismuth, antimony, bismuth, and antimony, F is fluorine, Z is a halogen element, and contains at least chlorine, bromine, and iodine. One, and 0 < x ≦ 2, 0 ≦ y ≦ 6.

此外,核心是含三價鈰的金屬氧化物及含二價銪的化合物,其中含三價鈰的金屬氧化物的化學式為(Y,Gd,Tb,La,Sm,Pr,Lu)3 (Sc,Al,Ga)5 O12 :Ce+3 ,主要包含釔、釓、鋱、鑭、釤、鐠、鑥、鈧、鋁、鎵。含二價銪化合物的化學式為鍶鈣矽氮氧化物((Sr,Ca)Si2 O2 N2 :Eu+2 )、Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2 )、Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2 )、鋇鍶鈣矽酸鹽化合物((Ba,Sr,Ca)2 SiO4 :Eu2+ )、鈣鍶鋇矽氮化物((Ca,Sr,Ba)2 Si5 N8 :Eu+2 )、鈣鍶鋁矽氮化物((Ca,Sr)AlSiN3 :Eu+2 ),尤其是,核心的粒徑大小為0.01um-200um。Further, the core is a metal oxide containing trivalent europium and a compound containing divalent europium, and the chemical formula of the metal oxide containing trivalent europium is (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Sc , Al, Ga) 5 O 12 :Ce +3 , mainly comprising ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, aluminum, gallium. The chemical formula of the divalent europium compound is strontium calcium strontium oxide ((Sr, Ca)Si 2 O 2 N 2 :Eu +2 ), Alpha-矽 aluminum oxynitride (Alpha-SiAlON:Eu +2 ), Beta - bismuth oxynitride (Beta-SiAlON: Eu + 2 ), strontium calcium citrate compound ((Ba, Sr, Ca) 2 SiO 4 : Eu 2+ ), calcium strontium nitride ((Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 ), calcium barium aluminum strontium nitride ((Ca,Sr)AlSiN 3 :Eu +2 ), in particular, the core particle size is from 0.01 um to 200 um.

本創作的光源裝置可進一步包含黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,其中黃光螢光材料、綠光螢光材料、紅光螢光材料能接收激發光而分別放射黃光、綠光、紅光。再者,黃光螢光材料、綠光螢光材料、紅光螢光材料是與殼核結構螢光材料混合均勻而 塗佈於封裝體,因而能調配出具特定光譜的光源,可提供照明或顯示領域中所需的高品質光源。The light source device of the present invention may further comprise at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, wherein the yellow fluorescent material, the green fluorescent material, and the red fluorescent material can receive the excitation light. Yellow, green, and red light are emitted separately. Furthermore, the yellow fluorescent material, the green fluorescent material, and the red fluorescent material are uniformly mixed with the core-shell fluorescent material. It is applied to the package and can be formulated with a specific spectrum of light source to provide the high quality light source required in the field of illumination or display.

進一步而言,黃光螢光材料包括含三價鈰的釔鋁氧化物(Y3 Al5 O12 :Ce+3 )、含二價銪的Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2 )以及鋇鍶鈣矽酸鹽化合物(Ba,Sr,Ca)2 SiO4 :Eu+2 ),綠光螢光材料包括含三價鈰的鑥鋁氧化物(Lu3 Al5 O12 :Ce+3 )、含二價銪的Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2 )以及鍶鈣矽氮氧化物((Sr,Ca)Si2 O2 N2 :Eu+2 ),而紅光螢光材料包括含二價銪的鋇鍶鈣矽氮化合物((Ba,Sr,Ca)2 Si5 N8 :Eu+2 )、鈣鍶鋁矽氮化合物((Ca,Sr)AlSiN3 :Eu+2 )。Further, the yellow fluorescent material comprises trivalent europium-containing yttrium aluminum oxide (Y 3 Al 5 O 12 :Ce +3 ), divalent europium-containing Alpha-yttrium aluminum oxynitride (Alpha-SiAlON:Eu +2) And strontium calcium citrate compound (Ba, Sr, Ca) 2 SiO 4 :Eu +2 ), the green fluorescent material includes yttrium aluminum oxide containing trivalent lanthanum (Lu 3 Al 5 O 12 :Ce + 3 ) Beta-tellurium oxynitride (Beta-SiAlON:Eu +2 ) containing divalent europium and strontium calcium strontium oxide ((Sr,Ca)Si 2 O 2 N 2 :Eu +2 ) The red fluorescent material includes a barium-strontium-strontium-containing nitrogen compound containing divalent europium ((Ba, Sr, Ca) 2 Si 5 N 8 :Eu +2 ), and a calcium barium aluminum barium nitrogen compound ((Ca,Sr)AlSiN 3 ) :Eu +2 ).

1‧‧‧光源裝置1‧‧‧Light source device

2‧‧‧殼核結構螢光材料2‧‧‧Shelf core structure fluorescent material

1‧‧‧殼核結構螢光材料1‧‧‧Shelf core structure fluorescent material

2‧‧‧光源裝置2‧‧‧Light source device

10‧‧‧核心10‧‧‧ core

20‧‧‧殼層20‧‧‧ shell

22‧‧‧黃光螢光材料22‧‧‧Yellow fluorescent material

24‧‧‧綠光螢光材料24‧‧‧Green fluorescent material

26‧‧‧紅光螢光材料26‧‧‧Red light fluorescent material

A‧‧‧局部放大區A‧‧‧Local enlargement area

B‧‧‧封裝體B‧‧‧Package

CN‧‧‧電氣連接線CN‧‧‧Electrical cable

E‧‧‧激發光源E‧‧‧Excited light source

L1‧‧‧激發光L1‧‧‧Excited light

L3‧‧‧發射光源L3‧‧‧ emitting light source

LB‧‧‧發射光LB‧‧‧ emit light

PLE‧‧‧激發光譜PLE‧‧‧excitation spectroscopy

PL‧‧‧放射光譜PL‧‧‧radiation spectrum

第一圖為依據本創作實施例具殼核結構螢光材料的光源裝置的示意圖。The first figure is a schematic diagram of a light source device with a shell-core structured fluorescent material according to the present embodiment.

第二圖為第一圖中局部放大區A以顯示殼核結構螢光材料混合黃光螢光材料、綠光螢光材料、紅光螢光材料後的示意圖。The second figure is a schematic view of the partial enlarged area A in the first figure to show the phosphorescent material of the core-shell structure mixed with the yellow fluorescent material, the green fluorescent material, and the red fluorescent material.

第三圖為本創作殼核結構螢光材料的示意圖。The third figure is a schematic diagram of the fluorescent material of the core-shell structure.

第四圖為實例1的Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 核殼結構螢光粉元素分析。The fourth figure is the elemental analysis of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured phosphor powder of Example 1.

第五圖為實例1的Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 核殼螢光粉之激發及放射光譜圖。The fifth figure is an excitation and emission spectrum of the Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 1.

第六圖為不同濃度之K2 SiF6 :Mn+4 前驅物合成之Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 核殼結構螢光粉螢光的放射光譜圖。The sixth figure shows the emission spectrum of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured phosphor powder synthesized by different concentrations of K 2 SiF 6 :Mn +4 precursor. .

第七圖為實例2的Beta-SiAlON/K2 SiF6 :Mn+4 核殼螢光粉之激發及放射光譜圖。The seventh figure is the excitation and emission spectrum of the Beta-SiAlON/K 2 SiF 6 :Mn +4 core-shell phosphor of Example 2.

第八圖為不同濃度之K2 SiF6 :Mn+4 前驅物所合成之Beta-SiAlON/K2 SiF6 :Mn+4 核殼結構螢光粉螢光放射光譜圖。The eighth figure shows the fluorescence emission spectrum of Beta-SiAlON/K 2 SiF 6 :Mn +4 core-shell structured fluorescent powder synthesized by different concentrations of K 2 SiF 6 :Mn +4 precursor.

第九圖為實例3的Y3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 核殼螢光粉之激發及放射光譜圖。The picture shows a ninth example of Y 3 3 Al 5 O 12: Ce +3 / K 2 SiF 6: Mn +4 nucleocapsid phosphor excitation and emission spectrum of FIG.

第十圖為實例4的(Ba,Sr,Ca)2 SiO4 :Eu+2 /K2 SiF6 :Mn+4 核殼螢光粉激發及放 射光譜圖。The tenth graph is the excitation and radiation spectrum of the (Ba, Sr, Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 4.

第十一圖為實例5的(Sr,Ca)Si2 O2 N2 :Eu+2 /K2 SiF6 :Mn+4 核殼螢光粉激發及放射光譜圖。Figure 11 is an excitation and emission spectrum of the (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 5.

第十二圖為實例6的(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn+4 核殼螢光粉激發及放射光譜圖。Figure 12 is an excitation and emission spectrum of the (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell fluorescing powder of Example 6.

第十三圖為實例7的(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 核殼螢光粉激發及放射光譜圖。The thirteenth image is an excitation and emission spectrum of the (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 7.

以下配合圖示及元件符號對本創作之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。The implementation of the present invention will be described in more detail below with reference to the drawings and component symbols, so that those skilled in the art can implement the present specification after studying the present specification.

請參閱第一圖,本創作實施例具殼核結構螢光材料的光源裝置的示意圖。如第一圖所示,本創作具殼核結構螢光材料的光源裝置1包含殼核結構螢光材料2、激發光源E、電氣連接線CN及封裝體B,其中電氣連接線CN輸入電源以供應激發光源E,進而產生發射光L1,而殼核結構螢光材料2是塗佈於封裝體B上,用以接收激發光源的原始發射光L1而產生高品質的發射光源L3,比如白光。封裝體B包覆激發光源E及電氣連接線CN,以提供隔絕保護作用,通常可利用高透光率且電氣絕緣的樹脂或玻璃構成。Please refer to the first figure, a schematic diagram of a light source device with a core-shell structured fluorescent material according to the present embodiment. As shown in the first figure, the light source device 1 of the present invention has a core-shell structure fluorescent material 2, an excitation light source E, an electrical connection line CN and a package B, wherein the electrical connection line CN is input to the power source. The excitation light source E is supplied to generate the emitted light L1, and the core-shell structured fluorescent material 2 is coated on the package B for receiving the original emitted light L1 of the excitation light source to generate a high-quality emission light source L3, such as white light. The package B encloses the excitation light source E and the electrical connection line CN to provide isolation protection, and is generally constructed of a resin or glass that is highly transparent and electrically insulating.

進一步同時參考第二圖及第三圖,其中第二圖為第一圖的局部放大區A之示意圖,顯示殼核結構螢光材料2均勻混合黃光螢光材料22、綠光螢光材料24、紅光螢光材料26,而第三圖為本創作殼核結構螢光材料的示意圖。Referring to the second and third figures, the second figure is a schematic view of the partial enlarged area A of the first figure, showing that the core structure fluorescent material 2 uniformly mixes the yellow fluorescent material 22, the green fluorescent material 24, and the red The light fluorescent material 26, and the third figure is a schematic view of the fluorescent material of the core-shell structure.

殼核結構螢光材料2主要是形成顆粒狀或粉體狀的螢光體,包括核心10及殼層20,其中核心10具有0.01um-200um的粒徑大小,並包含黃光、綠光或紅光螢光粉,而殼層20是披覆於核心10,具有含錳氟化物螢光粉。整體而言,本創作的殼核結構螢光材料2可經370nm至500nm之波長的激發光L1激發後,放射出波峰介於520nm至800nm之間的發射光 LB,很適合當作照明或顯示裝置所需的光源。The core-shell structure fluorescent material 2 is mainly formed into a granular or powdery phosphor, and includes a core 10 and a shell layer 20, wherein the core 10 has a particle size of 0.01 um to 200 um and contains yellow light, green light or The red phosphor powder, while the shell 20 is coated on the core 10, has a manganese-containing fluoride phosphor. In general, the core-shell structure fluorescent material 2 of the present invention can emit light having a peak between 520 nm and 800 nm after being excited by the excitation light L1 of a wavelength of 370 nm to 500 nm. LB is ideal for use as a light source for lighting or display devices.

此外,核心10的黃光、綠光或紅光螢光粉可包含三價鈰的金屬氧化物與含二價銪的化合物。其中含三價鈰的金屬氧化物的化學式為(Y,Gd,Tb,La,Sm,Pr,Lu)3 (Sc,Al,Ga)5 O12 :Ce+3 ,主要包含釔、釓、鋱、鑭、釤、鐠、鑥、鈧、鋁、鎵。含二價銪化合物的化學式為鍶鈣矽氮氧化物((Sr,Ca)Si2 O2 N2 :Eu+2 )、Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2 )、Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2 )、鋇鍶鈣矽酸鹽化合物((BaSr,Ca)2 SiO4 :Eu2+ )、鈣鍶鋇矽氮化物((Ca,Sr,Ba)2 Si5 N8 :Eu+2 )、或鈣鍶鋁矽氮化物((Ca,Sr)AlSiN3 :Eu+2 )。Further, the yellow, green or red phosphor of the core 10 may comprise a metal oxide of a trivalent europium and a compound containing a divalent europium. The metal oxide containing trivalent europium has the chemical formula (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Sc, Al, Ga) 5 O 12 : Ce +3 , mainly containing lanthanum, cerium, lanthanum , 镧, 钐, 鐠, 鑥, 钪, aluminum, gallium. The chemical formula of the divalent europium compound is strontium calcium strontium oxide ((Sr, Ca)Si 2 O 2 N 2 :Eu +2 ), Alpha-矽 aluminum oxynitride (Alpha-SiAlON:Eu +2 ), Beta - bismuth oxynitride (Beta-SiAlON: Eu + 2 ), strontium calcium citrate compound ((BaSr, Ca) 2 SiO 4 : Eu 2+ ), calcium strontium nitride ((Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 ), or calcium barium aluminum strontium nitride ((Ca,Sr)AlSiN 3 :Eu +2 ).

殼層20的含錳氟化物螢光粉主要是包含第一元素A、第二元素M、氟元素F、鹵素元素Z以及四價錳離子,且具有化學式Ax MF6-y Zy :Mn4+ ,其中第一元素A包含鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇以及鋅的至少其中之一,第二元素M包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,鹵素元素Z包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。The manganese-containing fluoride phosphor of the shell layer 20 mainly contains the first element A, the second element M, the fluorine element F, the halogen element Z, and the tetravalent manganese ion, and has the chemical formula A x MF 6-y Z y : Mn 4+ , wherein the first element A comprises at least one of lithium, sodium, potassium, rubidium, strontium, magnesium, calcium, strontium, barium, and zinc, and the second element M comprises bismuth, antimony, tin, titanium, zirconium, aluminum At least one of gallium, indium, antimony, bismuth, antimony, bismuth, antimony, bismuth and antimony, the halogen element Z comprises at least one of chlorine, bromine and iodine, and 0<x≦2,0≦y≦ 6.

本創作可進一步包括黃光螢光材料22、綠光螢光材料24、紅光螢光材料26的至少其中之一,其中黃光螢光材料22、綠光螢光材料24及紅光螢光材料26可接收該發光L1並分別放射黃光、綠光及紅光,可用以調整發射光LB以混光形成具有特定光譜的色光,比如白光。The present invention may further include at least one of a yellow fluorescent material 22, a green fluorescent material 24, and a red fluorescent material 26, wherein the yellow fluorescent material 22, the green fluorescent material 24, and the red fluorescent material 26 are receivable. The light emission L1 emits yellow light, green light, and red light, respectively, and can be used to adjust the emitted light LB to mix light to form a color light having a specific spectrum, such as white light.

更加具體而言,上述的黃光螢光材料22可包括含三價鈰的釔鋁氧化物、含二價銪的Alpha-矽鋁氧氮化合物以及鋇鍶鈣矽酸鹽化合物,且三價鈰的釔鋁氧化物的化學式為Y3 Al5 O12 :Ce+3 ,含二價銪的Alpha-矽鋁氧氮化合物化學式為Alpha-SiAlON:Eu+2 、鋇鍶鈣矽酸鹽化合物的化學式為(Ba,Sr,Ca)2 SiO4 :Eu+2More specifically, the yellow fluorescent material 22 may include a trivalent europium-containing lanthanum aluminum oxide, a divalent europium-containing Alpha-lanthanum aluminide compound, and a barium calcium telluride compound, and a trivalent europium compound. The chemical formula of aluminum oxide is Y 3 Al 5 O 12 :Ce +3 , and the chemical formula of Alpha-SiAlON:Eu +2 and strontium calcium citrate compound containing divalent europium is ( Ba, Sr, Ca) 2 SiO 4 :Eu +2 .

綠光螢光材料24包括含三價鈰的鑥鋁氧化物、含二價銪Beta-矽鋁氧氮化合物以及鍶鈣矽氮氧化物,且含三價鈰的鑥鋁氧化物的化學式為Lu3 Al5 O12 :Ce+3 ,而含二價銪的Beta-矽鋁氧氮化合物的化學式為Beta-SiAlON:Eu+2 、鍶鈣矽氮氧化物的化學式為((Sr,Ca)Si2 O2 N2 :Eu+2 )。The green fluorescent material 24 includes a trivalent europium-containing lanthanum aluminum oxide, a divalent europium Beta-yttrium aluminum oxynitride compound, and a lanthanum calcium lanthanum oxide, and the chemical formula of the lanthanum aluminum oxide containing trivalent europium is Lu. 3 Al 5 O 12 :Ce +3 , and the chemical formula of Beta-yttrium aluminum oxynitride containing divalent europium is Beta-SiAlON:Eu +2 , and the chemical formula of lanthanum strontium oxynitride is ((Sr,Ca)Si 2 O 2 N 2 :Eu +2 ).

此外,紅光螢光材料26包括含二價銪的鋇鍶鈣矽氮化合 物、鈣鍶鋁矽氮化合物,且二價銪的鋇鍶鈣矽氮化合物化學式為(Ba,Sr,Ca)2 Si5 N8 :Eu+2 ,鈣鍶鋁矽氮化合物化學式為(Ca,Sr)AlSiN3 :Eu+2In addition, the red phosphor material 26 includes a barium-strontium-strontium-nitrogen compound containing divalent europium, a calcium-strontium-aluminum-niobium compound, and the chemical formula of the barium-strontium-niobium compound of the divalent europium is (Ba, Sr, Ca) 2 Si. 5 N 8 :Eu +2 , the chemical formula of the calcium lanthanum lanthanum nitrogen compound is (Ca,Sr)AlSiN 3 :Eu +2 .

因此,本創作光源裝置1所產生的發射光源L3可當作照明或顯示裝置所需的光源。Therefore, the light source L3 generated by the present light source device 1 can be used as a light source required for an illumination or display device.

此外,上述的激發光源E可包含發光二極體(light emitting diode、LED)、雷射二極體(laser diode、LD)、有機發光二極體(organic light emitting diode、OLED)、冷陰極燈管(cold cathode fluorescent lamp、CCFL)或外部電極螢光燈管(external electrode fluorescent lamp、EEFL)。In addition, the excitation light source E may include a light emitting diode (LED), a laser diode (LD), an organic light emitting diode (OLED), and a cold cathode lamp. Cold cathode fluorescent lamp (CCFL) or external electrode fluorescent lamp (EEFL).

為進一步清楚說明本創作所展現的特點,尤其是不同成分的核心10及殼層20所組成的殼核結構螢光材料2,對於波長370nm至500nm的激發光L1之整體光源裝置1的螢光作用及功效,下文將利用特定的實例1~10以詳細說明不同具體實施手段及技術內容。然而,要注意的是,所列舉的實例都只是方便說明而已,並非用以限定本創作的範圍。In order to further clarify the characteristics exhibited by the present invention, in particular, the core-shell structure fluorescent material 2 composed of the core 10 and the shell 20 of different compositions, and the fluorescence of the entire light source device 1 for the excitation light L1 having a wavelength of 370 nm to 500 nm Functions and effects, specific examples 1 to 10 will be used below to explain different specific implementation means and technical contents. However, it is to be noted that the examples are merely illustrative and are not intended to limit the scope of the present invention.

首先,實例1所使用的殼核結構螢光材料主要是包含Lu3 Al5 O12 :Ce+3 的核心10以及包含K2 SiF6 :Mn+4 的殼體20,其合成方式是以特定化學劑量比例取出100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g Lu3 Al5 O12 :Ce+3 螢光粉,再加入20~50g K2 MnO4 粉末,直到溶液從透明變成深紫色後,利用10~60mL H2 O2 滴定至出現橘黃色粉末為止。其後進行各項必要分析及測試,包括附件一的SEM圖、第四圖的元素分析,以及第五圖的激發光譜PLE及放射光譜PL。如附件一所示,殼核結構螢光材料為顆粒為15-30um之不規則粉末,第四圖顯示具有Lu、Al、O、Ce、K、Si、F、Mn元素,而第五圖顯示為Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 核殼結構螢光粉螢光的螢光激發放射光譜,其中激發光譜是由介於300到535nm之間波段的雙峰所構成,適合目前普遍使用之440~460nm藍光激發光L1,而由Lu3 Al5 O12 :Ce+3 及K2 SiF6 :Mn+4 所產生的發射光LB,其中的紅光部分光譜為殼層20的K2 SiF6 :Mn+4 所貢獻,其放射波段位在600-700nm,且最高峰值位在630nm,為線性紅光,因此是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的Lu3 Al5 O12 :Ce+3 所貢獻,其放光位在480-750nm,是最高位置在550nm之綠光材料。First, the core-shell structure fluorescent material used in Example 1 is mainly a core 10 containing Lu 3 Al 5 O 12 :Ce +3 and a shell 20 containing K 2 SiF 6 :Mn +4 , which is synthesized in a specific manner. Take 100mL~1L HF solution in the chemical dose ratio, then add 5~10g SiO 2 powder and 5~10g Lu 3 Al 5 O 12 :Ce +3 phosphor powder, then add 20~50g K 2 MnO 4 powder until the solution is from After the transparency became dark purple, it was titrated with 10 to 60 mL of H 2 O 2 until an orange powder appeared. Thereafter, various necessary analyses and tests are performed, including the SEM image of Annex I, the elemental analysis of the fourth figure, and the excitation spectrum PLE and the emission spectrum PL of the fifth figure. As shown in Annex 1, the core-shell structured fluorescent material is an irregular powder with particles of 15-30um, and the fourth figure shows elements of Lu, Al, O, Ce, K, Si, F, and Mn, and the fifth figure shows Fluorescence excitation spectrum of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent powder, wherein the excitation spectrum is a doublet between 300 and 535 nm The composition is suitable for the currently used 440-460 nm blue light excitation L1, and the emitted light LB produced by Lu 3 Al 5 O 12 :Ce +3 and K 2 SiF 6 :Mn +4 , wherein the red light partial spectrum Contributing to K 2 SiF 6 :Mn +4 of shell layer 20, the emission band is at 600-700 nm, and the highest peak position is at 630 nm, which is linear red light, so it is a fluorescent material with high saturation red light. The part of the green light in the spectrum is contributed by Lu 3 Al 5 O 12 :Ce +3 of the core 10, and its light-emitting position is 480-750 nm, which is the green light material with the highest position at 550 nm.

此外,第六圖為製備不同濃度的K2 SiF6 :Mn+4 前驅物0.2M、0.4M、0.8M放射光譜圖,結果顯示可利用不同濃度的前驅物調整所需之發光光譜,達成藍光LED搭配單一螢光材料之高演色性需求。In addition, the sixth figure shows the emission spectra of 0.2M, 0.4M, and 0.8M precursors of different concentrations of K 2 SiF 6 :Mn +4 precursors. The results show that the required luminescence spectra can be adjusted with different concentrations of precursors to achieve blue light. LEDs with high color rendering requirements for single fluorescent materials.

在實例2中,核心10為Beta-SiAlON:Eu+2 ,而殼體為K2 SiF6 :Mn+4 。其合成方式是以化學劑量比例取出100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g Beta-SiAlON:Eu+2 螢光粉,再加入20~50g K2 MnO4 粉末,直到溶液從透明變成深紫色後,再以10~60mL H2 O2 滴定至出現橘黃色粉末為止。其後,進行各項必要分析及測試。第七圖為Beta-SiAlON/K2 SiF6 :Mn+4 核殼結構螢光粉的螢光激發及放射光譜,而激發光譜是由雙峰所構成,其波段介於300到535nm之間,也同樣適合目前普遍使用之440~460nm藍光激發,放射光譜由Beta-SiAlON:Eu+2 及K2 SiF6 :Mn+4 之放射光所組成,紅光部分光譜為殼層20的K2 SiF6 :Mn+4 所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的Beta-SiAlON:Eu+2 放射光譜所貢獻,其為放光位在480-750nm,最高位置在540nm之綠光材料。In Example 2, the core 10 is Beta-SiAlON:Eu +2 and the shell is K 2 SiF 6 :Mn +4 . The synthesis method is to take 100mL~1L HF solution at a stoichiometric ratio, then add 5~10g SiO 2 powder and 5~10g Beta-SiAlON:Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder until After the solution turned from transparent to dark purple, it was titrated with 10 to 60 mL of H 2 O 2 until an orange-yellow powder appeared. Thereafter, perform the necessary analysis and testing. The seventh picture shows the fluorescence excitation and emission spectra of Beta-SiAlON/K 2 SiF 6 :Mn +4 core-shell structured phosphor, and the excitation spectrum is composed of double peaks with a wavelength range of 300 to 535 nm. It is also suitable for the 440~460nm blue excitation currently used. The emission spectrum is composed of Beta-SiAlON:Eu +2 and K 2 SiF 6 :Mn +4 . The red part spectrum is the K 2 SiF of the shell 20. 6 : Mn +4 contribution, its emission band is at 600-700nm, the highest peak position is linear red light at 630nm, it is a fluorescent material with high saturation red light, and the part of green light in the spectrum is core 10 Beta-SiAlON: contributed by the emission spectrum of Eu + 2 , which is a green light material with a light-emitting position of 480-750 nm and a highest position of 540 nm.

此外,第八圖為製備不同濃度的K2 SiF6 :Mn+4 前驅物0.2M、0.4M、0.6M、0.8M、1.0M、1.2M放射光譜圖,結果顯示可利用不同濃度的前驅物調整所需之發光光譜,達成藍光LED搭配單一螢光材料之高演色性需求。In addition, the eighth figure shows the emission spectra of different concentrations of K 2 SiF 6 :Mn +4 precursors 0.2M, 0.4M, 0.6M, 0.8M, 1.0M, 1.2M. The results show that different concentrations of precursors can be used. Adjust the required luminescence spectrum to achieve the high color rendering requirements of blue LEDs with a single fluorescent material.

實例3是由Y3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 組合的殼核結構螢光材料,其合成是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g Y3 Al5 O12 :Ce+3 螢光粉,再加入20~50g K2 MnO4 粉末,直到溶液從透明變成深紫色後,再以10~60mL H2 O2 滴定至出現橘黃色粉末為止。其後進行各項必要分析及測試。第九圖為Y3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 殼核結構螢光材料的激發及發射光光譜,其中激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,而發射光譜是由Y3 Al5 O12 :Ce+3 及K2 SiF6 :Mn+4 之放射光所組成,紅光部分光譜為殼層20的K2 SiF6 :Mn+4 所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10 的Y3 Al5 O12 :Ce+3 放射光譜所貢獻,其為放光位在480-750nm,最高位置在560nm之黃光材料。Example 3 is a core-shell structured fluorescent material composed of Y 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 , which is synthesized by taking a 100 mL~1 L HF solution in a stoichiometric ratio, and then adding 5~ 10g SiO 2 powder and 5~10g Y 3 Al 5 O 12 :Ce +3 phosphor powder, then add 20~50g K 2 MnO 4 powder, until the solution turns from transparent to dark purple, then 10~60mL H 2 O 2 Titrate until an orange powder appears. Subsequent analysis and testing are performed. The ninth picture shows the excitation and emission spectra of the Y 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material, in which the excitation spectrum is composed of double peaks and the band is between 300 and Between 535nm, it is suitable for the 440~460nm blue light excitation currently used, and the emission spectrum is composed of the radiation of Y 3 Al 5 O 12 :Ce +3 and K 2 SiF 6 :Mn +4 . The shell layer 20 is contributed by K 2 SiF 6 : Mn +4 , and its emission band is located at 600-700 nm, and the highest peak position is linear red light at 630 nm. It is a fluorescent material with high saturation red light, and the spectrum is green. The portion of the light is contributed by the X 3 Al 5 O 12 :Ce +3 emission spectrum of the core 10, which is a yellow light material having a light-emitting position at 480-750 nm and a highest position at 560 nm.

實例4的核心10/殼體20組合為(Ba,Sr,Ca)2 SiO4 :Eu+2 /K2 SiF6 :Mn+4 ,其合成是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g(Ba,Sr,Ca)2 SiO4 :Eu+2 螢光粉,再加入20~50g K2 MnO4 粉末,至溶液從透明變成深紫色,之後以10~60mL H2 O2 滴定而出現橘黃色粉末。第十圖為(Ba,Sr,Ca)2 SiO4 :Eu+2 /K2 SiF6 :Mn+4 殼核結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ba,Sr,Ca)2 SiO4 :Eu+2 及K2 SiF6 :Mn+4 之放射光所組成,紅光部分光譜為殼層20的K2 SiF6 :Mn+4 所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的(Ba,Sr,Ca)2 SiO4 :Eu+2 放射光譜所貢獻,其為放光位在480-750nm,最高位置在570nm之黃光材料。The core 10/shell 20 of Example 4 is combined into (Ba, Sr, Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 , and the synthesis thereof is taken in a stoichiometric ratio of 100 mL to 1 L of HF solution, followed by Add 5~10g SiO 2 powder and 5~10g (Ba,Sr,Ca) 2 SiO 4 :Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder until the solution turns from transparent to deep purple, then 10~60mL H 2 O 2 was titrated and an orange powder appeared. The tenth picture shows the excitation and emission spectra of (Ba,Sr,Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material. The excitation spectrum is composed of double peaks. Between 300 and 535 nm, suitable for the currently widely used 440-460 nm blue light excitation, the emission spectrum consists of (Ba, Sr, Ca) 2 SiO 4 :Eu +2 and K 2 SiF 6 :Mn +4 . The red light partial spectrum is contributed by K 2 SiF 6 :Mn +4 of the shell layer 20, and its emission band is at 600-700 nm, and the highest peak position is linear red light at 630 nm, which is a fluorescent material with high saturation red light. The portion of the green light in the spectrum is contributed by the (Ba, Sr, Ca) 2 SiO 4 :Eu +2 emission spectrum of the core 10, which is a yellow light material having a light-emitting position at 480-750 nm and a highest position at 570 nm.

實例5為(Sr,Ca)Si2 O2 N2 :Eu+2 /K2 SiF6 :Mn+4 的核心10/殼體20組合,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g(Sr,Ca)Si2 O2 N2 :Eu+2 螢光粉,再加入20~50g K2 MnO4 粉末,使溶液從透明變成深紫色,之後以10~60mL H2 O2 滴定出現橘黃色粉末。第十一圖為(Sr,Ca)Si2 O2 N2 :Eu+2 /K2 SiF6 :Mn+4 核殼結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Sr,Ca)Si2 O2 N2 :Eu+2 及K2 SiF6 :Mn+4 之放射光所組成,紅光部分光譜為殼層20的K2 SiF6 :Mn+4 所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的(Sr,Ca)Si2 O2 N2 :Eu+2 放射光譜所貢獻,其為放光位在480-750nm,最高位置在545nm之黃光材料。Example 5 is a core 10/shell 20 combination of (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 , taking a 100 mL~1 L HF solution at a stoichiometric ratio, followed by 5~10g SiO 2 powder and 5~10g (Sr,Ca)Si 2 O 2 N 2 :Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder to make the solution change from transparent to deep purple, then An orange powder appeared in the titration of 10~60mL H 2 O 2 . The eleventh image shows the excitation and emission spectra of (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material, and the excitation spectrum is composed of double peaks. The wavelength range is between 300 and 535 nm, which is suitable for the 440-460 nm blue light excitation currently used. The emission spectrum is emitted by (Sr, Ca)Si 2 O 2 N 2 :Eu +2 and K 2 SiF 6 :Mn +4 . The red light partial spectrum is contributed by K 2 SiF 6 :Mn +4 of the shell layer 20, and the emission band is at 600-700 nm, and the highest peak position is linear red light at 630 nm, which is a high saturation red light. Fluorescent material, and the part of the green light in the spectrum is contributed by the (Sr,Ca)Si 2 O 2 N 2 :Eu +2 emission spectrum of the core 10, which is the luminescence position at 480-750 nm and the highest position at 545 nm. Yellow light material.

實例6的核心10/殼體20組合為(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn4+ ,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g(Ca,Sr,Ba)2 Si5 N8 :Eu+2 核結構螢光粉,再加入20~50g K2 MnO4 粉末,溶液從透明變成深紫色,之後以10~60mL H2 O2 滴定出現橘黃色粉末。 其後,進行各項必要分析及測試:第十二圖為(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn4+ 殼核結構螢光材料激發及放射光譜,其中激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ca,Sr,Ba)2 Si5 N8 :Eu+2 及K2 SiF6 :Mn+4 之放射光所組成,其放射光譜位在500-750nm,最高位置在630nm。The core 10/shell 20 of Example 6 is combined into (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn 4+ , and a 100 mL to 1 L HF solution is taken in a stoichiometric ratio, followed by Add 5~10g SiO 2 powder and 5~10g (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 core structure phosphor powder, then add 20~50g K 2 MnO 4 powder, the solution changes from transparent to deep purple Then, an orange powder appeared by titration with 10 to 60 mL of H 2 O 2 . Thereafter, various necessary analyses and tests were carried out: the twelfth picture shows (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn 4+ core-structure fluorescent material excitation and emission The spectrum, in which the excitation spectrum is composed of double peaks, the wavelength range is between 300 and 535 nm, suitable for the currently widely used 440-460 nm blue light excitation, and the emission spectrum is (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 And K 2 SiF 6 : Mn +4 composed of radiation, the emission spectrum is located at 500-750nm, the highest position is 630nm.

實例7的核心10/殼體20組合為(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 ,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2 粉末與5~10g(Ca,Sr)AlSiN3 :Eu+2 核結構螢光粉,再加入20~50g K2 MnO4 粉末,溶液從透明變成深紫色,之後以10~60mL H2 O2 滴定出現橘黃色粉末。第十三圖為(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 殼核結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ca,Sr)AlSiN3 :Eu+2 及K2 SiF6 :Mn+4 之放射光所組成,其放射光譜位在500-750nm,最高位置在630nm。The core 10/shell 20 of Example 7 is combined into (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , which is a stoichiometric ratio of 100 mL to 1 L of HF solution, followed by 5 to 10 g of SiO. 2 powder and 5~10g (Ca,Sr)AlSiN 3 :Eu +2 core structure phosphor powder, then add 20~50g K 2 MnO 4 powder, the solution changes from transparent to deep purple, then 10~60mL H 2 O 2 An orange powder appeared in the titration. The thirteenth picture shows the excitation and emission spectra of (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent materials. The excitation spectrum consists of double peaks with a band of 300. Between 535nm, it is suitable for the 440~460nm blue excitation currently used. The emission spectrum is composed of (Ca, Sr)AlSiN 3 :Eu +2 and K 2 SiF 6 :Mn +4 . The emission spectrum is at 500-750nm, the highest position is 630nm.

實例8為(Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn4+ )組合的封裝結果。Example 8 is the encapsulation result for the combination of (Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn 4+ ).

以下的表1為螢光材料封裝測試結果,其中的比較例1~5是以460nm藍光晶片分別搭配Lu3 Al5 O12 :Ce+3 、Y3 Al5 O12 :Ce+3 、(Sr,Ca)Si2 O2 N2 :Eu+2 、(Ba,Sr,Ca)2 SiO4 :Eu+2 及Beta-SiAlON:Eu+2 而進行單一螢光粉封裝,而實例8是利用實例1中提到之核殼結構螢光材料Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn+4 ,搭配460nm藍光晶片以進行封裝。Table 1 below shows the results of the fluorescent material packaging test. Comparative Examples 1 to 5 are 460 nm blue wafers with Lu 3 Al 5 O 12 :Ce +3 , Y 3 Al 5 O 12 :Ce +3 , (Sr , Ca)Si 2 O 2 N 2 :Eu +2 , (Ba,Sr,Ca) 2 SiO 4 :Eu +2 and Beta-SiAlON:Eu +2 for single phosphor powder encapsulation, and Example 8 is an example of utilization The core-shell structured fluorescent material Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 mentioned in 1 is packaged with a 460 nm blue light wafer.

結果顯示,比較例1~5封裝體所得到的演色性(color rendering index,CRI)是在60-75之間,而利用Lu3 Al5 O12 :Ce+3 /K2 SiF6 :Mn4+ 的核殼結構螢光材料的單一螢光粉之封裝體其演色性(CRI)可提升至80。The results showed that the color rendering index (CRI) obtained in the comparative examples 1 to 5 package was between 60 and 75, and Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn 4 was used. + The single-fluorescent powder package of the core-shell structured phosphor material has a color rendering (CRI) of up to 80.

此外,實例9是(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn+4 的核殼結構螢光材料的封裝結果,如表2所示。Further, Example 9 is a result of encapsulation of a core-shell structured fluorescent material of (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 , as shown in Table 2.

在表2的螢光材料封裝測試結果中,比較例6是以460nm藍光晶片搭配Lu3 Al5 O12 :Ce+3 螢光粉與(Ca,Sr,Ba)2 Si5 N8 :Eu+2 螢光粉而進行封裝,實例9是利用實例6中提到之(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn+4 的核殼結構螢光材料,搭配Lu3 Al5 O12 :Ce+3 螢光粉與460nm藍光晶片而進行封裝。結果顯示,比較例6之封裝體的演色性為84,而利用(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn+4 之核殼結構螢光材料與Lu3 Al5 O12 :Ce+3 螢光粉之封裝體的演色性為87,因此,(Ca,Sr,Ba)2 Si5 N8 :Eu+2 /K2 SiF6 :Mn+4 之核殼結構螢光材料可使演色性顯著提升。In the fluorescent material packaging test results of Table 2, Comparative Example 6 is a 460 nm blue light wafer with Lu 3 Al 5 O 12 :Ce +3 phosphor powder and (Ca,Sr,Ba) 2 Si 5 N 8 :Eu + 2 fluorescent powder for encapsulation, Example 9 is a core-shell structured fluorescent material using (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 mentioned in Example 6. It is packaged with Lu 3 Al 5 O 12 :Ce +3 phosphor and 460 nm blue wafer. The results show that the color rendering of the package of Comparative Example 6 is 84, and the core-shell structured fluorescent material using (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 The color rendering property of the package of Lu 3 Al 5 O 12 :Ce +3 phosphor powder is 87, therefore, (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 The core-shell structured fluorescent material can significantly improve color rendering.

最後,實例10是核殼結構螢光材料(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 的封裝結果,如表3所示。Finally, Example 10 is the encapsulation result of the core-shell structured fluorescent material (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , as shown in Table 3.

比較例7是以460nm藍光晶片搭配Lu3 Al5 O12 :Ce+3 螢光粉與(Ca,Sr)AlSiN3 :Eu+2 螢光粉而進行封裝,實例10是利用實例7中提到之(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 的核殼結構螢光材料,搭配Lu3 Al5 O12 :Ce+3 螢光粉與460nm藍光晶片而進行封裝。結果顯示,比較例7封裝體的演色性為85,利用(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 核殼結構螢光材料與Lu3 Al5 O12 :Ce+3 螢光粉之封裝體的演色性為88。因此,(Ca,Sr)AlSiN3 :Eu+2 /K2 SiF6 :Mn+4 核殼結構螢光材料可顯著提升演色性。Comparative Example 7 was packaged with a 460 nm blue wafer with Lu 3 Al 5 O 12 :Ce +3 phosphor powder and (Ca,Sr)AlSiN 3 :Eu +2 phosphor powder. Example 10 is referred to in Example 7 A core-shell structured fluorescent material of (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , packaged with Lu 3 Al 5 O 12 :Ce +3 phosphor and 460 nm blue wafer . The results show that the color rendering property of the package of Comparative Example 7 is 85, using (Ca, Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material and Lu 3 Al 5 O 12 :Ce The color rendering of the +3 phosphor powder package is 88. Therefore, the (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material can significantly improve color rendering.

綜上所述,本創作的主要特點在於利用包含核心及殼層的殼核結構螢光材料以達到調整螢光作用及功效的目的,尤其是核心具有黃光、綠光、或紅光螢光粉,而殼層是具有含錳氟化物螢光粉。還可進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,其中黃光、綠光及紅光螢光材料可接收該發光並分別放射黃光、綠光及紅光,進而調整發射光,藉以混光成具有特定光譜的高品質色光,比如白光。此外,本創作的另一特點在於利用殼核結構螢光材料以製作可產生高演色性光源的光源裝置,可提供照明或顯示領域中所需的原始光源。In summary, the main feature of this creation is to use the core-shell and shell-shell phosphorescent materials to achieve the purpose of adjusting the fluorescence and efficacy, especially the core has yellow, green, or red fluorescent Powder, while the shell layer has fluorinated powder containing manganese fluoride. The method further includes at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, wherein the yellow, green, and red fluorescent materials can receive the light and emit yellow, green, and Red light, which in turn adjusts the emitted light, to be mixed into a high-quality color light with a specific spectrum, such as white light. In addition, another feature of the present invention is the use of a core-shell structured phosphor material to create a light source device that produces a high color rendering light source that provides the original source of light required in the field of illumination or display.

由於本創作的技術內並未見於已公開的刊物、期刊、雜誌、媒體、展覽場,因而具有新穎性,且能突破目前的技術瓶頸而具體實施, 確實具有進步性。此外,本創作能解決習用技術的問題,改善整體使用效率,而能達到具產業利用性的價值。Because the technology of this creation is not found in published publications, journals, magazines, media, and exhibition venues, it is novel and can be implemented by breaking through the current technical bottlenecks. It is indeed progressive. In addition, this creation can solve the problems of the conventional technology, improve the overall use efficiency, and achieve the value of industrial utilization.

以上所述者僅為用以解釋本創作之較佳實施例,並非企圖據以對本創作做任何形式上之限制,是以,凡有在相同之創作精神下所作有關本創作之任何修飾或變更,皆仍應包括在本創作意圖保護之範疇。The above description is only for the purpose of explaining the preferred embodiment of the present invention, and is not intended to impose any form of limitation on the creation, so that any modification or alteration of the creation made in the same creative spirit is provided. , should still be included in the scope of protection of this creative intent.

1‧‧‧光源裝置1‧‧‧Light source device

A‧‧‧局部放大區A‧‧‧Local enlargement area

B‧‧‧封裝體B‧‧‧Package

CN‧‧‧電氣連接線CN‧‧‧Electrical cable

E‧‧‧激發光源E‧‧‧Excited light source

L1‧‧‧激發光L1‧‧‧Excited light

L3‧‧‧發射光源L3‧‧‧ emitting light source

Claims (5)

一種具殼核結構螢光材料的光源裝置,包括:一激發光源,用以發射具370nm至500nm之波長的激發光;一核殼結構螢光材料,用以經370nm至500nm之波長的光激發後,放射出波峰介於520nm至800nm之間的發射光;一電氣連接線,用以連接該激發光源及一外部電源,將該外部電源的電力輸入該激發光源以產生該激發光;以及一封裝體,用以包覆該激發光源及該電氣連接線,以提供隔絕保護作用,且該核殼結構螢光材料是塗佈於該封裝體,用以接收該激發光而發射出該發射光,其中該核殼結構螢光材料包括一核心及一殼層,該核心具有黃光、綠光或紅光螢光粉,而該殼層係披覆於該核心,並具有含錳氟化物螢光粉。A light source device with a shell-core structured fluorescent material, comprising: an excitation light source for emitting excitation light having a wavelength of 370 nm to 500 nm; and a core-shell structured fluorescent material for excitation by light of a wavelength of 370 nm to 500 nm And emitting an emission light having a peak between 520 nm and 800 nm; an electrical connection line for connecting the excitation light source and an external power source, and inputting the power of the external power source to the excitation light source to generate the excitation light; a package body for covering the excitation light source and the electrical connection line to provide isolation protection, and the core-shell structure fluorescent material is coated on the package body for receiving the excitation light to emit the emitted light The core-shell structured fluorescent material comprises a core and a shell layer, the core having yellow, green or red fluorescent powder, and the shell layer is coated on the core and has a manganese fluoride fluoride Light powder. 依據申請專利範圍第1項之光源裝置,其中該激發光源包含發光二極體(light emitting diode、LED)、雷射二極體(laser diode、LD)、有機發光二極體(organic light emitting diode、OLED)、冷陰極燈管(cold cathode fluorescent lamp、CCFL)或外部電極螢光燈管(external electrode fluorescent lamp、EEFL)。The light source device of claim 1, wherein the excitation light source comprises a light emitting diode (LED), a laser diode (LD), an organic light emitting diode (organic light emitting diode) , OLED), cold cathode fluorescent lamp (CCFL) or external electrode fluorescent lamp (EEFL). 依據申請專利範圍第1項之光源裝置,其中該殼層的含錳氟化物螢光粉包含第一元素、第二元素、氟元素、鹵素元素以及四價錳離子,且具有化學式Ax MF6-y Zy :Mn4+ ,其中A為第一元素並包含鋰、鈉、鉀、銣、銫、鎂、 鈣、鍶、鋇以及鋅的至少其中之一,M為第二元素並包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,F為氟,Z為鹵素元素並包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。The light source device of claim 1, wherein the Mn-containing fluoride phosphor of the shell layer comprises a first element, a second element, a fluorine element, a halogen element, and a tetravalent manganese ion, and has the chemical formula A x MF 6 -y Z y :Mn 4+ , wherein A is the first element and contains at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and zinc, and M is the second element and contains strontium At least one of bismuth, antimony, tin, titanium, zirconium, aluminum, gallium, indium, antimony, bismuth, antimony, bismuth, antimony, bismuth, and antimony, F is fluorine, Z is a halogen element and contains chlorine, bromine, and iodine. At least one of them, and 0 < x ≦ 2, 0 ≦ y ≦ 6. 依據申請專利範圍第1項之光源裝置,進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,係與該核殼結構螢光材料混合而塗佈至該封裝體,其中該黃光螢光材料的黃光、該綠光螢光材料的綠光、該紅光螢光材料的紅光係用以調合該發射光而具有特定光譜的色光,且該色光包含白光。 The light source device according to claim 1, further comprising at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, which is mixed with the core-shell fluorescent material and applied to the package. a body, wherein the yellow light of the yellow fluorescent material, the green light of the green fluorescent material, and the red light of the red fluorescent material are used to blend the emitted light to have a specific spectrum of colored light, and the colored light comprises white light. 依據申請專利範圍第4項之光源裝置,其中該黃光螢光材料包括含三價鈰的釔鋁氧化物、含二價銪的Alpha-矽鋁氧氮化合物以及鋇鍶鈣矽酸鹽化合物,且該三價鈰的釔鋁氧化物的化學式為Y3 Al5 O12 :Ce+3 ,含二價銪的Alpha-矽鋁氧氮化合物的化學式為Alpha-SiAlON:Eu+2 、鋇鍶鈣矽酸鹽化合物的化學式為((Ba,Sr,Ca)2 SiO4 :Eu+2 ),該綠光螢光材料包括含三價鈰的鑥鋁氧化物、Beta-矽鋁氮氧化物以及含二價銪的鋇鍶鈣矽氮氧化物,且該含三價鈰的鑥鋁氧化物的化學式為Lu3 Al5 O12 :Ce+3 ,該Beta-矽鋁氮氧化物的化學式為Beta-SiAlON,而該含二價銪的鋇鍶鈣矽氮氧化物的化學式為(Ba,Sr,Ca)Si2 O2 N2 :Eu+2 ,該紅光螢光材料包括含二價銪的鋇鍶鈣矽氮化合物、鈣鍶鋁矽氮化合物,且該二價銪的鋇鍶鈣矽氮化合物化學式為(Ba,Sr,Ca)2 Si5 N8 :Eu+2 ,該鈣鍶鋁矽氮化合物化學式為(Ca,Sr)AlSiN3 :Eu+2The light source device of claim 4, wherein the yellow fluorescent material comprises trivalent europium-containing lanthanum aluminum oxide, divalent europium-containing Alpha-tellurium oxynitride compound, and barium calcium citrate compound, and The chemical formula of trivalent europium yttrium aluminum oxide is Y 3 Al 5 O 12 :Ce +3 , and the chemical formula of the Alpha-tellurium oxynitride containing divalent europium is Alpha-SiAlON:Eu +2 , strontium calcium citrate The chemical formula of the salt compound is ((Ba,Sr,Ca) 2 SiO 4 :Eu +2 ), and the green fluorescent material includes yttrium aluminum oxide containing trivalent cerium, Beta-cerium aluminum oxynitride and divalent chemical formula europium strontium barium calcium silicon oxynitride, and the trivalent cerium oxide is aluminum Lu Lu 3 Al 5 O 12: Ce +3, chemical formula Beta- silicon aluminum oxynitride of Beta-SiAlON, The chemical formula of the divalent europium-containing barium calcium strontium oxide is (Ba, Sr, Ca)Si 2 O 2 N 2 :Eu +2 , and the red fluorescent material comprises barium calcium containing divalent europium. silicon nitrogen compounds, calcium strontium aluminum silicon nitrogen compound, and the divalent europium-barium-strontium-calcium silicon nitrogen compound of the formula (Ba, Sr, Ca) 2 Si 5 N 8: Eu +2, the calcium strontium aluminosilicate nitrogen compounds As (Ca, Sr) AlSiN 3: Eu +2.
TW103219997U 2014-11-11 2014-11-11 Light source device with shell-core structure fluorescent material TWM497853U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103219997U TWM497853U (en) 2014-11-11 2014-11-11 Light source device with shell-core structure fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103219997U TWM497853U (en) 2014-11-11 2014-11-11 Light source device with shell-core structure fluorescent material

Publications (1)

Publication Number Publication Date
TWM497853U true TWM497853U (en) 2015-03-21

Family

ID=53188363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103219997U TWM497853U (en) 2014-11-11 2014-11-11 Light source device with shell-core structure fluorescent material

Country Status (1)

Country Link
TW (1) TWM497853U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582216B (en) * 2014-11-11 2017-05-11 Shell core structure fluorescent material and its light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582216B (en) * 2014-11-11 2017-05-11 Shell core structure fluorescent material and its light source device

Similar Documents

Publication Publication Date Title
JP5375906B2 (en) Fluoride phosphor and light emitting device using the same
CN110234926B (en) Narrow-Band Red Phosphors for LED Lamps
JP6682433B2 (en) Blue-green phosphor, light emitting device package including the same, and lighting device
KR101971752B1 (en) Phosphor materials and related devices
TWI655253B (en) Phosphor compositions and lighting apparatus thereof
US9758721B2 (en) Core-shell fluorescent material and a light source device including the same
US9890328B2 (en) Phosphor compositions and lighting apparatus thereof
KR102503519B1 (en) Oxyfluoride phosphor compositions and lighting apparatus thereof
CN105482814A (en) Manganese-containing linear red-light fluorescent material and light source device thereof
CN103074062B (en) Phosphor and light emitting device using the same
TWM497853U (en) Light source device with shell-core structure fluorescent material
TWI582216B (en) Shell core structure fluorescent material and its light source device
US20090026918A1 (en) Novel phosphor and fabrication of the same
JP2019533629A (en) Mn4 + activated luminescent material as conversion phosphor for LED solid state light source
JP6640753B2 (en) Phosphor composition and lighting fixture comprising the same
KR101409489B1 (en) Silicon oxynitride phosphor and light device having the same
TWI592466B (en) Manganese linear red fluorescent material and its light source device
KR102662497B1 (en) Phosphor compositions and lighting devices thereof
TWM493550U (en) Light source device containing manganese linear red fluorescent material
CN104152146A (en) Rare earth oxysalt red phosphor and its application