TWM459541U - Patch type multiband antenna module - Google Patents
Patch type multiband antenna module Download PDFInfo
- Publication number
- TWM459541U TWM459541U TW102201245U TW102201245U TWM459541U TW M459541 U TWM459541 U TW M459541U TW 102201245 U TW102201245 U TW 102201245U TW 102201245 U TW102201245 U TW 102201245U TW M459541 U TWM459541 U TW M459541U
- Authority
- TW
- Taiwan
- Prior art keywords
- radiator
- signal
- antenna module
- feed line
- frequency antenna
- Prior art date
Links
Landscapes
- Waveguide Aerials (AREA)
Description
本創作係有關一種天線,尤指一種高增益多頻段的多頻天線模組。 This creation relates to an antenna, especially a multi-band antenna module with high gain and multi-band.
隨著無線通訊科技不斷的發展下,可攜帶式的電子裝置如筆記型電腦、行動電話、平板電腦等裝置均朝向輕薄短小化進行設計開發。在此輕薄短小的電子裝置中用以收發電波訊號的天線尺寸相對縮小,或是改變天線結構型態,方可內置於電子裝置內部使用。 With the continuous development of wireless communication technology, portable electronic devices such as notebook computers, mobile phones, tablet computers and the like are designed and developed toward light and thin. In this thin and short electronic device, the size of the antenna for transmitting and receiving the electric wave signal is relatively reduced, or the antenna structure type is changed, and the built-in electronic device can be used internally.
目前市面上最常見的多頻段的多頻天線為倒F形天線(Planar Inverted-F Antenna,PIFA)。此天線採用了簡單的二維設計,透過印刷電路板(PCB)製造工藝直接將銅材質印在印刷電路板上形成一平板狀多頻段的多頻天線,或者利用沖壓技術將金屬薄片沖壓形成一具有三維設計的多頻天線。 The most common multi-band multi-frequency antenna currently on the market is the Planar Inverted-F Antenna (PIFA). The antenna adopts a simple two-dimensional design, which directly prints copper material on a printed circuit board through a printed circuit board (PCB) manufacturing process to form a flat multi-band multi-band antenna, or stamps a metal foil into a stamping technique. Multi-frequency antenna with three-dimensional design.
由於PIFA天線結構可改變印刷電路板二維或金屬薄片上的天線幾何形狀,以達到雙頻甚至三頻以上的收發效果。但是為了滿足訊號收發品質,以及避免周圍環境的影響造成其頻率協調失準,因此該印刷電路板或金屬薄片所沖壓成型的天線 勢必具有一定大小的體積,為了能夠安裝該PIFA天線結構,該電子裝置內部也必須預留一適當的空間來安置該PIFA天線結構,如此一來,會使電子裝置自身的體積變大,勢必違背電子裝置朝輕薄短小的小型化設計的需求。 Because the PIFA antenna structure can change the antenna geometry on the printed circuit board two-dimensional or metal foil to achieve dual-frequency or even three-frequency transmission and reception. However, in order to satisfy the signal transmission and reception quality and avoid the influence of the surrounding environment, the frequency coordination is not accurate, so the printed circuit board or the foil is stamped and formed. It is bound to have a certain size. In order to be able to mount the PIFA antenna structure, an appropriate space must be reserved inside the electronic device to house the PIFA antenna structure. As a result, the size of the electronic device itself becomes large, which is bound to be violated. The demand for electronic devices to be light, thin and small is miniaturized.
因此,本創作之主要目的,在於解決傳統的缺失,所以提供一種將多頻段的多頻天線的金屬圖案載設於該高介電常數之陶瓷材料製作成的陶瓷載體上,以形成一個可直接進行表面黏著工程高效率的多頻段的多頻天線。同時也形成一輕薄短小的小型化的內置式可表面貼片的多頻天線。 Therefore, the main purpose of the present invention is to solve the traditional deficiency, so that a metal pattern of a multi-band multi-frequency antenna is placed on the ceramic carrier made of the high dielectric constant ceramic material to form a direct A multi-band multi-band antenna with high efficiency for surface adhesion engineering. At the same time, a compact, small, built-in surface-mountable multi-frequency antenna is also formed.
為達上述之目的,本創作提供一種貼片式的多頻天線模組,包括:一基板,其上具有一第一表面及第二表面,該第一表面上具有一第一接地層及一第一信號饋入線,該第一信號饋入線與該第一接地層之間形成有一第一間隙,該第一接地層電性連結有一位於該第一信號饋入線左側的第二信號饋入線,該第二信號饋入線與該第一信號饋入線之間具有一第二間距,該第一接地層電性連結有一位於該第一信號饋入線右側的第三信號饋入線,該第三信號饋入線與該第一信號饋入線之間具有一第三間距;一載體,其上具有一第一輻射體、一第二輻射體、一第三輻射體及一第四輻射體,該第一輻射體與該第二輻射體呈電性 連結,該第一輻射體及第二輻射體與該第三輻射體及第四輻射體未電性連結;其中,在該載體與該基板電性連結時,該第一輻射體及該第二輻射體電性連結連結處與該第一信號饋入線電性連結,該第三輻射體與該第二信號饋入線電性連結,以及該第四輻射體與該第三信號饋入線電性連結以形成多頻段的多頻天線模組。 In order to achieve the above purpose, the present invention provides a patch type multi-frequency antenna module, comprising: a substrate having a first surface and a second surface, the first surface having a first ground layer and a first surface a first signal feeding line, a first gap is formed between the first signal feeding line and the first ground layer, and the first ground layer is electrically connected to a second signal feeding line located on the left side of the first signal feeding line. The second signal feeding line and the first signal feeding line have a second spacing. The first grounding layer is electrically connected to a third signal feeding line located on the right side of the first signal feeding line. The third signal feeding a first spacing between the incoming line and the first signal feeding line; a carrier having a first radiator, a second radiator, a third radiator and a fourth radiator, the first radiation The body and the second radiator are electrically Connecting, the first radiator and the second radiator are not electrically connected to the third radiator and the fourth radiator; wherein, when the carrier is electrically connected to the substrate, the first radiator and the second The electrical connection of the radiator is electrically connected to the first signal feeding line, the third radiator is electrically connected to the second signal feeding line, and the fourth radiator is electrically connected to the third signal feeding line. To form a multi-band multi-frequency antenna module.
其中,該第一信號饋入線上具有一前段及一後段,該前段上具有一穿孔,該前段延伸於該第一接地層中,與該第一接地層之間形成該第一間隙。 The first signal feeding line has a front section and a rear section, and the front section has a through hole extending in the first ground layer to form the first gap with the first ground layer.
其中,該第一信號饋入線的後段及該第二信號饋入線之間所形成的該第二間距寬度來調整耦合電容值,使第一接地層能形成高頻的諧振點。 The second pitch width formed between the rear portion of the first signal feed line and the second signal feed line adjusts the coupling capacitance value to enable the first ground layer to form a high frequency resonance point.
其中,該第一信號饋入線的後段及該第三信號饋入線之間所形成的該第三間距寬度來調整耦合電容值,使第一接地層能形成高頻的諧振點。 The third pitch width formed between the rear portion of the first signal feed line and the third signal feed line adjusts the coupling capacitance value to enable the first ground layer to form a high frequency resonance point.
其中,該第一表面上具有一組相對應的二固定接點,該二固定接點以電性連結該載體上的該第一輻射體及該第二輻射體。 The first surface has a corresponding set of two fixed contacts, and the two fixed contacts electrically connect the first radiator and the second radiator on the carrier.
其中,該第二表面上具有一第二接地層。 Wherein, the second surface has a second ground layer.
其中,該載體係以高介電常數的陶瓷材製成長方體。 Among them, the carrier is made of a rectangular material having a high dielectric constant ceramic material.
其中,該第一輻射體、第二輻射體、第三輻射體及第四輻射體係以不相同的矩形金屬圖案及直線條金屬圖案組成設於該載體上。 The first radiator, the second radiator, the third radiator and the fourth radiation system are disposed on the carrier by different rectangular metal patterns and linear strip metal patterns.
其中,該矩形金屬圖案及直線條金屬圖案設於該載體至少一個或兩個表面以上。 The rectangular metal pattern and the straight strip metal pattern are disposed on at least one or both surfaces of the carrier.
其中,更具有一連接器,該連接器具有一連接頭,該連接頭內具有一訊號饋入探針,該訊號饋入探針穿過該第一信號饋入線的穿孔與該第一信號饋入線電性連結。 Wherein, the connector further has a connector, the connector has a connector, the signal has a signal feeding probe, the signal feeding probe passes through the through hole of the first signal feeding line and the first signal feeding line Electrical connection.
1‧‧‧基板 1‧‧‧Substrate
11‧‧‧第一表面 11‧‧‧ first surface
12‧‧‧第二表面 12‧‧‧ second surface
13‧‧‧第一接地層 13‧‧‧First ground plane
14‧‧‧第一信號饋入線 14‧‧‧First signal feed line
141‧‧‧前段 141‧‧‧
142‧‧‧後段 142‧‧‧After
143‧‧‧穿孔 143‧‧‧Perforation
15‧‧‧第一間隙 15‧‧‧First gap
16‧‧‧第二信號饋入線 16‧‧‧Second signal feed line
17‧‧‧第二間距 17‧‧‧Second spacing
18‧‧‧第三信號饋入線 18‧‧‧ third signal feed line
19‧‧‧第三間距 19‧‧‧ third spacing
101‧‧‧固定接點 101‧‧‧Fixed joints
102‧‧‧第二接地層 102‧‧‧Second ground plane
2‧‧‧載體 2‧‧‧ Carrier
21‧‧‧第一輻射體 21‧‧‧First radiator
22‧‧‧第二輻射體 22‧‧‧Second radiator
23‧‧‧第三輻射體 23‧‧‧ Third radiator
24‧‧‧第四輻射體 24‧‧‧Fourth radiator
3‧‧‧訊號源 3‧‧‧Signal source
4‧‧‧連接器 4‧‧‧Connector
41‧‧‧訊號饋入探針 41‧‧‧ Signal Feed Probe
42‧‧‧連接頭 42‧‧‧Connecting head
43‧‧‧螺紋 43‧‧‧Thread
5‧‧‧銅軸電纜線 5‧‧‧Bronze shaft cable
51‧‧‧接頭 51‧‧‧Connectors
第一圖,係本創作之多頻天線模組分解示意圖。 The first picture is an exploded view of the multi-frequency antenna module of the present invention.
第二圖,係本創作之多頻天線模組另一視角的分解示意圖。 The second figure is an exploded view of another perspective of the multi-frequency antenna module of the present invention.
第三圖,係本創作之多頻天線模組又一視角的分解示意圖。 The third figure is an exploded view of another perspective of the multi-frequency antenna module of the present invention.
第四圖,係本創作之多頻天線模組外觀立體示意圖。 The fourth picture is a stereoscopic view of the appearance of the multi-frequency antenna module of the present invention.
第五圖,係本創作之多頻天線模組電路的線路示意圖。 The fifth picture is a schematic diagram of the circuit of the multi-frequency antenna module circuit of the present invention.
第六圖,係本創作之多頻天線模組的使用狀態示意圖。 The sixth picture is a schematic diagram of the use state of the multi-frequency antenna module of the present invention.
第七圖,第六圖的側剖視示意圖。 Figure 7 is a side cross-sectional view of the sixth figure.
第八圖A,係本創作的頻率響應曲線示意圖(一)。 Figure 8 is a schematic diagram of the frequency response curve of this creation (1).
第八圖B,係本創作的頻率響應曲線示意圖(二)。 Figure 8B is a schematic diagram of the frequency response curve of this creation (2).
第八圖C,係第八圖B的頻率響應表示意圖。 Figure 8 is a schematic diagram of the frequency response table of Figure 8B.
第九圖,係本創作之長期演進天線的峯值增益參數說明(LTE ANTENNA Peak Gain Parameter Summary)示意圖。 The ninth figure is a schematic diagram of the LTE ANTENNA Peak Gain Parameter Summary.
茲有關本創作之技術內容及詳細說明,現配合圖式說明如下:請參閱第一、二、三、四圖,係本創作之多頻天線模組分解、另一視角的分解、又一視角的分解及外觀立體示意圖。如圖所示:本創作之一種表面貼片式的多頻天線模組,包括有:一基板1及一載體2。 The technical content and detailed description of this creation are as follows: Please refer to the first, second, third and fourth figures, which is the decomposition of the multi-frequency antenna module of this creation, the decomposition of another perspective, and another perspective. A schematic view of the decomposition and appearance. As shown in the figure, a surface-mount multi-frequency antenna module of the present invention comprises: a substrate 1 and a carrier 2.
該基板1,係具有一第一表面11及第二表面12。該第一表面11上具有一第一接地層13及一第一信號饋入線14,該第一信號饋入線14具一前段141及一後段142,該前段141上具有一穿孔143,該第一信號饋入線14的前段141延伸於該第一接地層13中,並與該第一接地層13之間形成一第一間隙15。該第一接地層13的電性連結有一位於該第一信號饋入線14的後段142左側的第二信號饋入線16,該第二信號饋入線16與該第一信號饋入線14的後段142之間形成具有一第二間距17,該第一信號饋入線14的後段142及該第二信號饋入線16之間所形成的第三間距17寬度,可以來調整耦合電容值,使得第一接地層13能形成高頻的諧振點,藉以增加頻寬之用。另,該第一接地層13電性連結有一位於該第一信號饋入線14的後段142右側的第三信號饋入線18,該第三信號饋入線18與該第一信號饋入線14的後段142之間形成有一第三間距19,該第 一信號饋入線14的後段142及該第三信號饋入線18之間所形成的第三間距19寬度,可以來調整耦合電容值,使得第一接地層13能形成高頻的諧振點,藉以增加頻寬之用。又,於該第一表面11上具有一組二相對應的固定接點110,該二固定接點101用以固接該載體2。再於該第二表面12上具有一第二接地層102,該第二接地層102係供與銅軸電纜線的接頭的接地部(圖中未示)電性連結。 The substrate 1 has a first surface 11 and a second surface 12. The first surface 11 has a first grounding layer 13 and a first signal feeding line 14. The first signal feeding line 14 has a front section 141 and a rear section 142. The front section 141 has a through hole 143. The front section 141 of the signal feed line 14 extends in the first ground layer 13 and forms a first gap 15 with the first ground layer 13. The first ground layer 13 is electrically connected to a second signal feeding line 16 on the left side of the rear portion 142 of the first signal feeding line 14 , and the second signal feeding line 16 and the rear portion 142 of the first signal feeding line 14 . Forming a second pitch 17, a width of the third pitch 17 formed between the rear segment 142 of the first signal feed line 14 and the second signal feed line 16, the coupling capacitance value can be adjusted to make the first ground layer 13 can form a high-frequency resonance point, thereby increasing the bandwidth. In addition, the first ground layer 13 is electrically coupled to a third signal feeding line 18 located on the right side of the rear portion 142 of the first signal feeding line 14 , and the third signal feeding line 18 and the rear portion 142 of the first signal feeding line 14 . Forming a third spacing 19 between the The width of the third pitch 19 formed between the rear portion 142 of the signal feed line 14 and the third signal feed line 18 can adjust the coupling capacitance value so that the first ground layer 13 can form a high frequency resonance point, thereby increasing Use for bandwidth. Moreover, the first surface 11 has a pair of corresponding fixed contacts 110 for fixing the carrier 2. Further, the second surface 12 has a second ground layer 102, and the second ground layer 102 is electrically connected to a grounding portion (not shown) of the joint of the copper shaft cable.
該載體2,係以高介電常數的陶瓷材料製成一長方體,其上具有一第一輻射體21、一第二輻射體22、一第三輻射體23及一第四輻射體24。該第一輻射體21、第二輻射體22、第三輻射體23及第四輻射體24係以不相同的矩形金屬圖案及直線條金屬圖案設於該載體2的至少一個或兩個各表面以上,使得天線的體積以微型化。該第一輻射體21與該第二輻射體22呈電性連結,該第一輻射體21及第二輻射體22不與該第三輻射體23及第四輻射體24電性連結。在該載體2與該基板1電性連結時,該第一輻射體21及該第二輻射體22與該基板1的第一表面11上的二固定接點101電性連結,使該載體2可以固接於該基板1的第一表面11上。且,該第一輻射體21及該第二輻射體22的連結處與該第一信號饋入線14電性連結,該第三輻射體23與該第二信號饋入線16電性連結,以及該第四輻射體與該第三信號饋入線18電性連結組合成一多頻天線模組。 The carrier 2 is made of a high dielectric constant ceramic material having a rectangular body 21, a second radiator 22, a third radiator 23 and a fourth radiator 24. The first radiator 21, the second radiator 22, the third radiator 23, and the fourth radiator 24 are disposed on at least one or two surfaces of the carrier 2 with different rectangular metal patterns and straight strip metal patterns. Above, the volume of the antenna is miniaturized. The first radiator 21 and the second radiator 22 are electrically connected to each other, and the first radiator 21 and the second radiator 22 are not electrically connected to the third radiator 23 and the fourth radiator 24 . When the carrier 2 is electrically connected to the substrate 1 , the first radiator 21 and the second radiator 22 are electrically connected to the two fixed contacts 101 on the first surface 11 of the substrate 1 to make the carrier 2 It can be fixed to the first surface 11 of the substrate 1. The junction of the first radiator 21 and the second radiator 22 is electrically connected to the first signal feeding line 14 , the third radiator 23 is electrically connected to the second signal feeding line 16 , and the The fourth radiator is electrically coupled to the third signal feeding line 18 to form a multi-frequency antenna module.
請參閱第四、五圖,係本創作之多頻天線模組外觀立體及電路的線路示意圖。如圖所示:在該第一輻射體21及該第二輻 射體22與該第一信號饋入線14電性連結,該第一輻射體21形成第一天線,該第二輻射體22形成第二天線,該第三輻射體23與該第二信號饋入線16形成第三天線以及該第三信號饋入線18與該第四輻射體24電性連結後形成第四天線的多頻段的多頻天線模組。 Please refer to the fourth and fifth figures, which is the schematic diagram of the appearance of the multi-frequency antenna module and the circuit of the circuit. As shown in the figure: in the first radiator 21 and the second antenna The emitter 22 is electrically connected to the first signal feeding line 14 , the first radiator 21 forms a first antenna, and the second radiator 22 forms a second antenna, the third radiator 23 and the second signal The feed line 16 forms a third antenna and the third signal feed line 18 is electrically coupled to the fourth radiator 24 to form a multi-band multi-band antenna module of the fourth antenna.
當訊號源3由第一信號饋入線14輸入後,流經該第一輻射體21及第二輻射體22形成高低頻分支諧振之結構。再以該第一信號饋入線14與該第二信號饋入線16之間所形成的第二間距17寬度,可以來調整耦合電容值,使得該第一接地層13能形成高頻的諧振點,藉以增加頻寬之用。同樣地,該第一信號饋入線14與該第三信號饋入線18之間所形成的第三間距19寬度,也可以來調整耦合電容值,使得該第一接地層13能形成高頻的諧振點,藉以增加頻寬之用。 After the signal source 3 is input by the first signal feeding line 14, the first radiator 21 and the second radiator 22 are formed to form a structure of high and low frequency branch resonance. The width of the second pitch 17 formed between the first signal feed line 14 and the second signal feed line 16 can be adjusted to adjust the coupling capacitance value so that the first ground layer 13 can form a high frequency resonance point. In order to increase the bandwidth. Similarly, the width of the third spacing 19 formed between the first signal feeding line 14 and the third signal feeding line 18 can also adjust the coupling capacitance value so that the first ground layer 13 can form a high frequency resonance. Point, in order to increase the bandwidth.
請參閱第六、七圖,係本創作之多頻天線模組的使用狀態及第六圖的側剖視示意圖。如圖所示:在本創作運用時,將連結銅軸電纜線5的連接器4的訊號饋入探針41穿過該第一信號饋入線14的前段141上的穿孔143與該第一信號饋入線14電性連結。該連接器4的連接頭42與該第二接地金屬面102電性連結。 Please refer to the sixth and seventh figures, which are the use state of the multi-frequency antenna module of the present invention and the side cross-sectional view of the sixth figure. As shown in the figure, in the present application, the signal of the connector 4 connecting the copper shaft cable 5 is fed into the through hole 143 of the probe 41 passing through the front section 141 of the first signal feeding line 14 and the first signal. The feed line 14 is electrically connected. The connector 42 of the connector 4 is electrically connected to the second grounded metal surface 102.
在多頻天線模組使用時,將銅軸電纜線5的接頭51鎖接於該連接器4的連接頭42上的螺紋43,並透過該第一輻射體21、第二輻射體22、第三輻射體23及第四輻射體24來接受不同頻段的訊號,以達到可多頻段使用的多頻天線模組。 When the multi-frequency antenna module is used, the connector 51 of the copper shaft cable 5 is locked to the thread 43 on the connector 42 of the connector 4, and is transmitted through the first radiator 21, the second radiator 22, and the The three radiators 23 and the fourth radiators 24 receive signals of different frequency bands to achieve a multi-frequency antenna module that can be used in multiple frequency bands.
請參閱第八圖A~C,係本創作的頻率響應曲線示意圖(一)、(二)及第八圖A與第八圖B的頻率響應表示意圖。如圖所示:當本創作之多頻天線模組在700MHZ時,該天線的反射損耗(Return Loss)為-3.98,駐波比(SWR)為4.20。 Please refer to the eighth figure A~C, which is a schematic diagram of the frequency response curves of the frequency response curves (1), (2) and 8th and 8th B of the present example. As shown in FIG: Creation when present at many frequency antenna module 700MH Z, the antenna return loss (Return Loss) -3.98, standing wave ratio (SWR) of 4.20.
當本創作之多頻天線模組在824MHZ時,該天線的反射損耗為-11.66,駐波比為1.73。 When the present frequency antenna module in many authoring 824MH Z, the reflection loss for the antenna -11.66, VSWR is 1.73.
當本創作之多頻天線模組在960MHZ時,該天線的反射損耗為-5.57,駐波比為3.02。 When the present frequency antenna module in many authoring 960MH Z, return loss of the antenna is -5.57, 3.02 VSWR.
當本創作之多頻天線模組在1710MHZ時,該天線的反射損耗為-10.39,駐波比為1.76。 When the present frequency antenna module in many authoring 1710MH Z, the reflection loss for the antenna -10.39, VSWR is 1.76.
當本創作之多頻天線模組在2170MHZ時,該天線的反射損耗為-6.38,駐波比為2.88。 When the multi-frequency antenna module of the present invention is at 2170 MH Z , the reflection loss of the antenna is -6.38, and the standing wave ratio is 2.88.
請參閱第九圖,係本創作之長期演進天線的峯值增益參數說明(LTE ANTENNA Peak Gain Parameter Summary)示意圖。如圖所示:因此,本創作之多頻天線模組可提供目前長期演進天線(LONG TERM EVOLUTION ANTENNA,LTE ANTENNA)技術及第四代通訊系統所需的輕薄短小的小型多頻段高效率內置貼片式(SMT)的天線模組結構。且此多頻段涵蓋了700~960MHZ及1710~2170MHZ等,為LTE、全球移動通訊系統(Global System for Mobile Communications,GSM)、數位通訊系統(Digital Communications System,DCS)、個人通訊系統(Personal Communication System,PCS)、 寬頻分碼多重存取(Wideband Code Division Multiple Access,WCDMA)等系統頻段之所需。 Please refer to the ninth figure, which is a schematic diagram of the LTE ANTENNA Peak Gain Parameter Summary. As shown in the figure: Therefore, the multi-frequency antenna module of the present invention can provide the long-term and long-term evolution antenna (LONG TERM EVOLUTION ANTENNA, LTE ANTENNA) technology and the short, small and small multi-band high-efficiency built-in stickers required for the fourth-generation communication system. Chip (SMT) antenna module structure. And this multi-band covers 700~960MH Z and 1710~2170MH Z, etc. It is LTE, Global System for Mobile Communications (GSM), Digital Communication System (DCS), Personal Communication System (Personal) Communication System, PCS), Wideband Code Division Multiple Access (WCDMA) and other system frequency bands.
上述僅為本創作之較佳實施例而已,並非用來限定本創作實施之範圍。即凡依本創作申請專利範圍所做的均等變化與修飾,皆為本創作專利範圍所涵蓋。 The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. That is, the equal changes and modifications made by the patent application scope of this creation are covered by the scope of the creation patent.
1‧‧‧基板 1‧‧‧Substrate
11‧‧‧第一表面 11‧‧‧ first surface
12‧‧‧第二表面 12‧‧‧ second surface
13‧‧‧第一接地層 13‧‧‧First ground plane
14‧‧‧第一信號饋入線 14‧‧‧First signal feed line
141‧‧‧前段 141‧‧‧
142‧‧‧後段 142‧‧‧After
143‧‧‧穿孔 143‧‧‧Perforation
15‧‧‧第一間隙 15‧‧‧First gap
16‧‧‧第二信號饋入線 16‧‧‧Second signal feed line
17‧‧‧第二間距 17‧‧‧Second spacing
18‧‧‧第三信號饋入線 18‧‧‧ third signal feed line
19‧‧‧第三間距 19‧‧‧ third spacing
101‧‧‧固定接點 101‧‧‧Fixed joints
102‧‧‧第二接地層 102‧‧‧Second ground plane
2‧‧‧載體 2‧‧‧ Carrier
21‧‧‧第一輻射體 21‧‧‧First radiator
22‧‧‧第二輻射體 22‧‧‧Second radiator
23‧‧‧第三輻射體 23‧‧‧ Third radiator
24‧‧‧第四輻射體 24‧‧‧Fourth radiator
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102201245U TWM459541U (en) | 2013-01-21 | 2013-01-21 | Patch type multiband antenna module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102201245U TWM459541U (en) | 2013-01-21 | 2013-01-21 | Patch type multiband antenna module |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM459541U true TWM459541U (en) | 2013-08-11 |
Family
ID=49481106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102201245U TWM459541U (en) | 2013-01-21 | 2013-01-21 | Patch type multiband antenna module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM459541U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI563735B (en) * | 2015-10-06 | 2016-12-21 | Taoglas Ltd | Eight-frequency band antenna |
US10135129B2 (en) | 2012-10-08 | 2018-11-20 | Taoglas Group Holding Limited | Low-cost ultra wideband LTE antenna |
CN109103593A (en) * | 2018-09-21 | 2018-12-28 | 深圳华大北斗科技有限公司 | Built-in all frequency bands antenna |
US10483644B2 (en) | 2015-11-20 | 2019-11-19 | Taoglas Group Holdings Limited | Eight-frequency band antenna |
US10601135B2 (en) | 2015-11-20 | 2020-03-24 | Taoglas Group Holdings Limited | Ten-frequency band antenna |
-
2013
- 2013-01-21 TW TW102201245U patent/TWM459541U/en not_active IP Right Cessation
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11081784B2 (en) | 2012-10-08 | 2021-08-03 | Taoglas Group Holdings Limited | Ultra-wideband LTE antenna system |
US11705626B2 (en) | 2012-10-08 | 2023-07-18 | Taogals Group Holdings Limited | Ultra-wideband antenna |
US11088442B2 (en) | 2012-10-08 | 2021-08-10 | Taoglas Group Holdings Limited | Ultra-wideband LTE antenna system |
US10283854B2 (en) | 2012-10-08 | 2019-05-07 | Taoglas Group Holdings Limited | Low-cost ultra wideband LTE antenna |
US10135129B2 (en) | 2012-10-08 | 2018-11-20 | Taoglas Group Holding Limited | Low-cost ultra wideband LTE antenna |
TWI563735B (en) * | 2015-10-06 | 2016-12-21 | Taoglas Ltd | Eight-frequency band antenna |
US10483644B2 (en) | 2015-11-20 | 2019-11-19 | Taoglas Group Holdings Limited | Eight-frequency band antenna |
US11264718B2 (en) | 2015-11-20 | 2022-03-01 | Taoglas Group Holdings Limited | Eight-frequency band antenna |
US10601135B2 (en) | 2015-11-20 | 2020-03-24 | Taoglas Group Holdings Limited | Ten-frequency band antenna |
USRE49000E1 (en) | 2015-11-20 | 2022-03-29 | Taoglas Group Holdings Limited | Ten-frequency band antenna |
US11342674B2 (en) | 2015-11-20 | 2022-05-24 | Taoglas Group Holdings Limited | Ten-frequency band antenna |
US11641060B2 (en) | 2015-11-20 | 2023-05-02 | Taoglas Group Holdings Limited | Multi-frequency band antenna |
US12034231B2 (en) | 2015-11-20 | 2024-07-09 | Taoglas Group Holdings Limited | Multi-frequency band antenna |
CN109103593A (en) * | 2018-09-21 | 2018-12-28 | 深圳华大北斗科技有限公司 | Built-in all frequency bands antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI463738B (en) | Surface-mount multi-frequency antenna module | |
US8970436B2 (en) | Surface mount device multi-frequency antenna module | |
TW201433000A (en) | Antenna assembly and wireless communication device employing same | |
CN101651254B (en) | Surface Mounted Panel Antenna | |
CN201994418U (en) | Surface mount multi-frequency antenna module | |
US20100309087A1 (en) | Chip antenna device | |
TWI628849B (en) | Antenna structure and wireless communication device using with same | |
TWM397614U (en) | Plate inversed F type antenna and the antenna of wireless networks apparatus having the same | |
TWM459541U (en) | Patch type multiband antenna module | |
CN102623801A (en) | Surface-mounted multi-frequency antenna module | |
TW201517388A (en) | Antenna structure and wireless communication device using same | |
CN103794868A (en) | Antenna assembly | |
TWI573322B (en) | Antenna assembly and wireless communication device employing same | |
TWM519332U (en) | Surface-mounted type multi-frequency antenna pin design structure | |
CN100399625C (en) | Concealed antenna | |
TW201415709A (en) | Antenna assembly and wireless communication device employing same | |
TW201526390A (en) | Antenna structure and wireless communication device using the same | |
CN1964132B (en) | Hidden Multi-Band Antennas for Portable Devices | |
US8269681B2 (en) | Sheet-like dipole antenna | |
CN102918710B (en) | Antenna radiation unit, feeding method and antenna system | |
TW200929684A (en) | Electrical connector assembly with antenna function | |
CN101877431A (en) | Planar inverse F antenna and portable electronic device with same | |
JP2014093775A (en) | Antenna module | |
CN109244657B (en) | Printed antenna structure, PCB and electronic equipment | |
TWI594495B (en) | Multiband antenna and wireless communication device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4K | Expiration of patent term of a granted utility model |