M425339 « ·M425339 « ·
一感應電極沿一第一方向形成於基板表面。各第二感應電 極包括數個第二感應單元及數條第三感應線,第二感應電 極沿一第二方向形成於基板表面。絕緣塊隔離第一感應線 與第一感應、線。各第一感應線包括數條第一子感應線及數 條第二子感應線’第_子感應線形成於基板表面各第二 子感應線跨過對應之絕緣塊*連接相鄰二第—感應翠元。 各第二感應線包括數條第三子感縣及祕帛四子感應 線,第二子感應線形成於基板表面,各第四子感應線跨過 對應之絕緣塊而連接相鄰二第二感應單元。 根據本創作之另一方面,提出一種觸控式顯示面板。 ,控式顯7F面板包括—顯示面板及—電容式觸控面板。電 谷式觸控面板鄰近顯示面板配置。電容式觸控面板包括一 .’’I不面板& t谷摘控面板。電容式觸控面板鄰近顯示 面板配置。電容式觸控面板包括—基板、數個第—感應電 極、數個第二感應電極及數個絕緣塊。基板具有一基板表 面。各第-感應電極包括數個第_感應單元及數條第一感 應線’該些第-感應電極沿1_方向形成於基板表面。 各第二感應電極包括數個第二感應單元及數條第二感應 線第一感應電極沿-第二方向形成於基板表面。絕緣塊 隔離第-感應線與第二感應線。各第—感應線包括數條第 -子感應線及數條第三子感應線,第—子感應線形成於基 ^表面’各第二子感應線跨過對應之絕緣塊而連接相鄰二 ^ -感應早%。各第二感應線包括數條第三子感應線及數 i、第四子感應線’第二子感應線形成於基板表面,各第四 子感應線跨骑應之_塊而軸㈣二第二感應單元。 M425339 為讓本創作之上述内容能更明顯易懂,下文特舉實施 例,並配合所附圖式,作詳細說明如下: 【實施方式】 請參照第1及2圖,第1圖繪示依照本創作一實施例 之電容式觸控面板的上視圖,第2圖繪示第1圖中局部2’ 的上視圖。 如第1圖所示,電容式觸控面板100包括基板110、 數條第一感應電極120、數條第二感應電極130、數個絕緣 塊140 (繪示於第2圖)及數條訊號傳輸線150 (繪示於第 2圖)。 第一感應電極120、第二感應電極130、絕緣塊140 及訊號傳輸線150可形成於同一基板110中,而構成一單 件式電容式觸控面板(Direct patterned Window,DPW )。 基板110例如是透光基板,其材質包括高透光率的絕 緣性材料,例如是玻璃、聚碳酸S旨(Polycarbonate,PC)、 聚酉旨(Polythylene terephthalate,PET )、聚甲基丙稀酸曱醋 (Polymethylmethacrylate,PMMA )或環嫦烴共聚合物 (Cyclic Olefin Copolymer)等材料。 該些第一感應電極120及該些第二感應電極130的形 成區域定義一感應區。該些訊號傳輸線150連接該些第一 感應電極120及該些第二感應電極130’各訊號傳輸線150 連接對應之第一感應電極120或對應之第二感應電極 130。第一感應電極120及第二感應電極130可接收來自於 手指或觸控筆的觸控指令,然後經由訊號傳輸線15〇將觸 M425339 * · 控指令之訊號傳輸至軟性電路板180 ° 如第2圖所示,第一感應電極120沿第一方向D1排 列於基板110之基板表面110u上。各第一感應電極120包 括數個第一感應單元121及數條第一感應線122。第一感 應線122連接相鄰二第一感應單元121。上述第一方向D1 例如是X轴向。此外,第一感應草元121及部分之第一感 應線122形成於基板表面ll〇u上。 、 請繼續參照第2圖,第二感應電極130沿第二方向D2 _ 排列於基板表面110u上。各第二感應電極13〇包括數個第 二感應單元131及數條第二感應線132。第二感應線132 連接相鄰二第二感應單元131。上述第二方向D1可實質上 垂直於第一方向D1,例如,第二方向D1係Y軸向。此外’ 第二感應單元131及部分之第二感應線丨32形成於基板表 面110u上。 絕緣塊140可以是透光或非透光材質。絕緣塊140隔 離或電性隔離第一感應線122與第二感應線132。絕緣塊 φ 140絕緣塊140的尺寸可小至第〆感應線122與第二感應 線132之重疊區域的範圍,在此情況下’絕緣塊140仍可 隔離第一感應線122與第二感應線132 ’然此非用以限制 本創作。此外,絕緣塊140可採用印刷(print)技術形成。 各第一感應線122包括數條第一子感應線122t及數條 第二子感應線122m ’第一子感應線I22t形成於基板表面 110u,第二子感應線122m跨過對應之絕緣塊140而連接 相鄰二第一感應單元121。每條第二感應線132包括數條 第三子感應線132t及數條第四子感應線132m。第三子感 7 M425339 應線132t形成於基板表面110u,第四子感應線132m跨過 對應之絕緣塊140而連接相鄰二第二感應單元131。 第一子感應線122t及第三子感應線132t分別沿不同 方向(即第一方向D1及第二方向D2)排列,而第二子感 應線122m及第四子感應線132m分別沿不同方向(即第一 方向D1及第二方向D2)排列,如此可構成多種不同之排 列型態。例如,本實施例中,第一感應線122中相鄰二子 感應線係第一子感應線122t及第二子感應線122m。另一 實施例中,第一感應線122中相鄰二子感應線可以是二第 一子感應線122t或二第二子感應線122m。相似地,第二 感應線132中相鄰二子感應線可以是第三子感應線132t與 第四子感應線132m、二第三子感應線132t或二第四子感 應線132m。其它實施例中,第一子感應線122t、第二子感 應線122m、第三子感應線132t及第四子感應線132m也可 隨機分佈;換句話說,在可達成或在不影響電容式觸控面 板100的觸控功能或觸控需求的情況下,第一子感應線 122t、第二子感應線122m、第三子感應線132t及第四子感 應線132m可任意配置,本創作並不限定第一子感應線 122t、第二子感應線122m、第三子感應線132t及第四子感 應線132m的排列方式。 此外,第一子感應線122t、第三子感應線132t、第一 感應單元121及第二感應單元131的材質可以是相同材 質,例如是透明銦錫氧化物(Tin-doped Indium Oxide, IT0)。第二子感應線122m及第四子感應線132m的材質可 以是相同材質,例如是金屬,較佳但非限定地,該金屬係 M425339 • 導電性佳的金屬。一實施例中,金屬的材質係選自於如銅、 銀、金及其組合所構成的群組。一實施例中,訊號傳輸線 150與第二子感應線122m及第四子感應線132m的材質也 可以是相同材質,如金屬。 本實施例中,第一感應單元12卜第二感應單元131、 第一子感應線122t及第三子感應線132t皆形成於基板110 之同一面(如基板表面110u)。第一感應單元121、第二感 應單元131、第一子感應線122t及第三子感應線132t可於 I 同一製程中以相同材質一併形成。例如,先以滅鑛 (sputtering )技術形成一導電材料,然後再以微影製程 (如:曝光、顯影及/或蝕刻)圖案化該導電材料,以形成 如第2圖所示之第一感應單元12卜第二感應單元131、第 一子感應線122t及第三子感應線132t。於其它實施例中, 第一感應單元121、第二感應單元131、第一子感應線122t 及第三子感應線132t亦可於不同製程中分別形成。 此外,第二子感應線122m、第四子感應線132m及訊 φ 號傳輸線150可於另一相同製程中以相同材質一併形成。 例如,先以濺鍍技術形成一導電材料,然後再以微影技術 圖案化該導電材料,以形成如第2圖所示之第二子感應線 122m、第四子感應線132m及訊號傳輸線150。於其它實 施例中,第二子感應線122m、第四子感應線132m及訊號 傳輸線150亦可於不同製程中分別形成。 請同時參照第2、3及4圖,第3圖繪示第2圖中沿 方向3-3’的剖視圖,第4圖繪示第2圖中沿方向4-4’的剖 視圖。電容式觸控面板100更包括遮光層160。遮光層160 M425339 之材質例如是金屬鉻(Cr)、光阻材料、黑色樹脂(resin)、 鎳/鎢(Ni/W)或油墨。 遮光層160形成於基板之邊緣’例如是形成於基 板表面110u的邊緣。由於基板表面110u的邊緣係非感應 區或非可視區,故遮光層160在對應基板11〇之邊緣形成· 的情況下,並不影響感應區内的感應功能或晝面顯示(當 電容式觸控面板1〇〇與顯示面板搭配時’可透過電容式觸 控面板100觀看顯示晝面)。此外,訊號傳輸線150延伸至 基板表面110u之邊緣並與遮光層160重疊。由於訊號傳輸 線150與遮光層160重疊,因此在外觀上不易察覺出訊號 傳輸線150。 如第3及4圖所示,遮光層160具有斜側壁160s及上 表面160u。訊號傳輸線150延伸至與遮光層160重疊。例 如,訊號傳輸線150經過斜側壁160s延伸至遮光層160之 上表面160u上而與遮光層160重疊。 如第3圖所示,由於斜側壁16〇s之斜度,使訊號傳輸 線150不易發生斷線問題。進一步地說,一般來講,遮光 層160的高度H1約2微米(um),第一感應單元12ι的厚 度H2約0.07 um,而訊號傳輸線15〇的厚度H3約〇 3 um。 相較於第一感應單元121的厚度H2及訊號傳輸線15〇的 厚度H3,遮光層160的高度H1甚高。在遮光層16〇沒有 斜侧壁之設計下,後續形成之訊號傳輸線15〇要爬過遮光 層160 +甚高的垂直側壁(沒有斜度之側壁)係相當不易, 因此訊號傳輸線15G常常發生斷線的不良問題。反觀本實 施例,由於遮光層160之斜側壁l6〇s的設計,訊號傳輪線 M425339 150緩和地爬升,可減少或甚至避免斷線不^門題 遮光層160之斜側壁160s與基板表面^^間的角 度介於約1度與89度之間,較佳地係約介於15至度之 間。此至40度的角度範圍可使形成於斜側壁論:上 表面160u之轉折部上的訊號傳輸線15〇,其厚度仍係均勻。 如第3及4圖所示’位於第一感應電極二之一端的 •第—感應單元⑵,’其侧面121s與遮光層⑽相隔一間距 .s卜然於其它實施例中,第-感應單元121,可直接接觸於 籲遮光層160。如此一來’可減少訊號傳輸、線15〇中未與遮 2層16〇重叠之部分⑽的長度L1,亦即可減少訊號傳 輪線υο從外觀上露出的部分(即未與遮光層16〇重疊之 ,分)。相似地,位於第二感應電極13〇之一端的第二感應 單元,其側面可與遮光層160相隔—間距或直接接觸。 一此外,電容式觸控面板100更包括透光保護層170(繪 示於第7圖)’其可覆蓋第一感應電極12〇、第二感應電極 13〇、絕緣塊140、訊號傳輪線15〇及遮光層16〇,藉以保 ,°蔓第一感應電極120、第二感應電極130、絕緣塊140、訊 錄傳輸線150及遮光層160。 以下係說明電容式觸控面板之多種製造方法的其中 〜種。電容式觸控面板100的製造方法可包括:提供基板 110 ;然後’形成遮光層160;然後,形成第一感應單元12卜 第二感應單元131、第一子感應線122t及第三子感應線132t 於基板110上,然後,形成絕緣塊14〇至少覆蓋第一子感 應線122t及第二子感應線I32t ;然後,形成第二子感應線 122m、第四子感應線132m及訊號傳輸線15〇 ;然後,形 11 M425339 成透光保護層170 (透光保護層17〇繪示於第7圖)覆蓋 第-感應電極120、第二感應電極m、絕緣塊刚、訊號 傳輸線150及遮光層16〇。 若形成第-感應電極120及第二感應電極13〇的製程 ,度係南的(例如’在形成第—感應單幻21及第二感應 單兀131之雜製程中,贿溫度通常高於攝氏200度的 高溫)’則遮光層160較佳地是耐高溫的遮光層如金屬 絡光阻材料、黑色树脂或鎳/鎢,如此可避免遮光層議 受到高溫影響而溶化或軟化。—實施例中,若遮光層· 採用耐高溫或高熔點材質,則遮光層16〇可於第一感應電 極120及第二感應電極130之前或之後形成,或是在第一 感應早元121及第_一感應早元131之前或之後形成,也就 是說,遮光層160的形成時機不受到第—感應電極12〇及 第二感應電極130的影響。 另一實施例中,若遮光層160採用不耐高溫或低炫點 材質(如油墨),則遮光層160可於第一感應單元121及第 二感應單元131之後形成。相較於第一感應單元121及第 二感應單元131之濺艘溫度,訊號傳輸線150的藏鍍溫度 較低’故當遮光層16〇採用不耐高溫或低熔點材質時,即 使訊號傳輸線150於遮光層160之後形成,遮光層160亦 不致被炫化或軟化。 請參照第5及6圖,第5圖繪示依照本創作另一實施 例之電容式觸控面板的上視圖’第6圖綠示第5圖中沿方 向6-6’的剖視圖。電容式觸控面板2〇〇包括基板210、第 一感應電極120 (未繪示)、第二感應電極130 (未繪示)、 12 M425339 絕緣塊140 (未繪示)、訊號傳輸線150 (未繪示)及遮光 層 260。 基板210的材質可相似於基板110,容此不再贅述。 基板210之邊緣定義標記區210a及遮光區210b。遮光層 260對應遮光區210b形成於基板210之邊緣。電容式觸控 面板200之軟性電路板180可對應遮光區210b的區域配 置,如第5圖所示。 電容式觸控面板200更包括透光保護層270及標記 φ 280。透光保護層270對應標記區210a形成於基板210之 邊緣。標記280形成於對應至標記區210a之透光保護層 270上。標記280例如是產品型號或商標圖案,如第5圖 所示之”ABCD”。此外,標記280可採用印刷技術形成。標 記280的材質例如是金屬鉻、光阻材料、黑色樹脂、鎳/鎢 或油墨。一實施例中,由於標記280之後無高工作溫度的 製程,故標記280可以是不耐高溫的材質’如低熔點油墨。 在電容式觸控面板200的製造過程中,標記280可於透光 φ 保護層27〇形成後形成。 如第6圖所示,標記280與遮光層260係位於同一基 板210之同一側。標記280係可彈性地以及選擇性地形成。 配合不同客戶的需求可形成不同圖案的標記280。 此外,透光保護層270更可覆蓋第一感應電極120(未 繪示)、第二感應電極130 (未繪示)、絕緣塊140 (未繪示) 及訊號傳輸線150 (未繪示),藉以保護第一感應電極120、 第二感應電極130、絕緣塊140、訊號傳輸線150及遮光層 260。 260。M425339 請參照第7圖,其繪示依照本創作一實施例之觸控式 顯不面板的剖視圖。觸控式顯示面板3〇〇包括顯示面板 39〇、框架320及電容式觸控面板1〇〇或2〇〇。電容式觸控 面板100鄰近或平行顯示面板390配置,且可透過黏膠380 黏結於顯示面板390。框架32〇包覆顯示面板39〇及電容 式觸控面板1〇(^電容式觸控面板1〇〇之基板11〇從框架 320露出,以接受來自於手指或觸控筆的觸控指令。本實 %例中,電容式觸控面板之基板110的觸控面110b未 被框架320遮蓋而整個從框架32〇露出,其中觸控面下表 面ll〇b相對於基板表面110u。 本創作上述實施例所揭露之電容式觸控面板及應用 其之觸控顯示面板,具有多項特徵,列舉部份特徵說明如 下: (1) .遮光層可以是耐高溫的遮光層’使得在形成第一 感應電極及第二感應電極的高溫製程中,耐高溫的遮光層 可避免受到高溫影響而熔化或軟化。 (2) ·由於斜側壁之斜度,使訊號傳輸線不易發生斷線 問題。 (3) .位於感應電極之一端的感應單元,其側面可與遮 光層相隔一間距或直接接觸。 (4) .電容式觸控面板之標記可以採用低炼點的油墨 形成,其可於感應電極形成後形成。 (5) .標記與遮光層可位於同一基板之同一側。 综上所述’雖然本創作已以實施例揭露如上,然其並A sensing electrode is formed on the surface of the substrate along a first direction. Each of the second sensing electrodes includes a plurality of second sensing units and a plurality of third sensing lines, and the second sensing electrodes are formed on the surface of the substrate along a second direction. The insulating block isolates the first sensing line from the first sensing line. Each of the first sensing lines includes a plurality of first sub-inductive lines and a plurality of second sub-inductive lines. The first sub-inductive line is formed on the surface of the substrate. Each of the second sub-inductive lines crosses the corresponding insulating block* to connect adjacent two-- Inductive Cuiyuan. Each of the second sensing lines includes a plurality of third sub-sensitivity and four sub-sensing lines, wherein the second sub-inductive lines are formed on the surface of the substrate, and each of the fourth sub-inductive lines crosses the corresponding insulating block to connect adjacent two second Sensing unit. According to another aspect of the present invention, a touch display panel is proposed. The control display 7F panel includes a display panel and a capacitive touch panel. The valley touch panel is adjacent to the display panel. The capacitive touch panel includes a ''un-panel& t-grain pick-up panel. The capacitive touch panel is adjacent to the display panel configuration. The capacitive touch panel includes a substrate, a plurality of first sensing electrodes, a plurality of second sensing electrodes, and a plurality of insulating blocks. The substrate has a substrate surface. Each of the first sensing electrodes includes a plurality of first sensing electrodes and a plurality of first sensing lines. The first sensing electrodes are formed on the surface of the substrate in the 1_ direction. Each of the second sensing electrodes includes a plurality of second sensing units and a plurality of second sensing lines. The first sensing electrodes are formed on the surface of the substrate along the second direction. The insulating block isolates the first sensing line from the second sensing line. Each of the first sensing lines includes a plurality of first sub-inductive lines and a plurality of third sub-inductive lines, wherein the first sub-inductive lines are formed on the base surface, and each of the second sub-inductive lines crosses the corresponding insulating block to connect adjacent two ^ - Induction early %. Each of the second sensing lines includes a plurality of third sub sensing lines and a number i, a fourth sub sensing line 'the second sub sensing line is formed on the surface of the substrate, and each of the fourth sub sensing lines straddles the block and the axis (four) two Two sensing units. M425339 In order to make the above content of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings will be described in detail as follows: [Embodiment] Please refer to Figures 1 and 2, and Figure 1 A top view of a capacitive touch panel in accordance with an embodiment of the present invention, and a second view of a portion 2' in FIG. 1 is shown in FIG. As shown in FIG. 1 , the capacitive touch panel 100 includes a substrate 110 , a plurality of first sensing electrodes 120 , a plurality of second sensing electrodes 130 , a plurality of insulating blocks 140 (shown in FIG. 2 ), and a plurality of signals. Transmission line 150 (shown in Figure 2). The first sensing electrode 120, the second sensing electrode 130, the insulating block 140 and the signal transmission line 150 can be formed in the same substrate 110 to form a single-piece capacitive touch panel (DPW). The substrate 110 is, for example, a light-transmitting substrate, and the material thereof includes an insulating material having high light transmittance, such as glass, polycarbonate (PC), polythylene terephthalate (PET), polymethyl methacrylate. Materials such as Polymethylmethacrylate (PMMA) or Cyclic Olefin Copolymer. The forming regions of the first sensing electrodes 120 and the second sensing electrodes 130 define a sensing region. The signal transmission lines 150 are connected to the first sensing electrodes 120 and the second sensing electrodes 130'. The signal transmission lines 150 are connected to the corresponding first sensing electrodes 120 or the corresponding second sensing electrodes 130. The first sensing electrode 120 and the second sensing electrode 130 can receive the touch command from the finger or the stylus, and then transmit the signal of the M425339* control command to the flexible circuit board 180° via the signal transmission line 15 As shown, the first sensing electrodes 120 are arranged on the substrate surface 110u of the substrate 110 along the first direction D1. Each of the first sensing electrodes 120 includes a plurality of first sensing units 121 and a plurality of first sensing lines 122. The first sensing line 122 is connected to the adjacent two first sensing units 121. The first direction D1 is, for example, the X axis. Further, the first sensing grass 121 and a portion of the first sensing line 122 are formed on the substrate surface 11u. Referring to FIG. 2, the second sensing electrodes 130 are arranged on the substrate surface 110u in the second direction D2_. Each of the second sensing electrodes 13A includes a plurality of second sensing units 131 and a plurality of second sensing lines 132. The second sensing line 132 is connected to the adjacent two second sensing units 131. The second direction D1 may be substantially perpendicular to the first direction D1, for example, the second direction D1 is the Y-axis. Further, the second sensing unit 131 and a portion of the second sensing coil 32 are formed on the substrate surface 110u. The insulating block 140 may be a light transmissive or non-transparent material. The insulating block 140 isolates or electrically isolates the first sensing line 122 from the second sensing line 132. The size of the insulating block φ 140 insulating block 140 can be as small as the overlapping area of the second sensing line 122 and the second sensing line 132. In this case, the insulating block 140 can still isolate the first sensing line 122 from the second sensing line. 132 'This is not intended to limit this creation. Additionally, the insulating block 140 can be formed using a print technique. Each of the first sensing lines 122 includes a plurality of first sub sensing lines 122t and a plurality of second sub sensing lines 122m. The first sub sensing lines I22t are formed on the substrate surface 110u, and the second sub sensing lines 122m are disposed across the corresponding insulating blocks 140. The two adjacent first sensing units 121 are connected. Each of the second sensing lines 132 includes a plurality of third sub sensing lines 132t and a plurality of fourth sub sensing lines 132m. The third sub-sensation 7 M425339 is formed on the substrate surface 110u, and the fourth sub-induction line 132m is connected to the adjacent two second sensing units 131 across the corresponding insulating block 140. The first sub-induction line 122t and the third sub-induction line 132t are respectively arranged in different directions (ie, the first direction D1 and the second direction D2), and the second sub-induction line 122m and the fourth sub-induction line 132m are respectively in different directions ( That is, the first direction D1 and the second direction D2) are arranged, so that a plurality of different alignment patterns can be formed. For example, in this embodiment, the adjacent two sub sensing lines in the first sensing line 122 are the first sub sensing line 122t and the second sub sensing line 122m. In another embodiment, the adjacent two sub sensing lines of the first sensing line 122 may be two first sub sensing lines 122t or two second sub sensing lines 122m. Similarly, the adjacent two sub sensing lines in the second sensing line 132 may be the third sub sensing line 132t and the fourth sub sensing line 132m, the second third sub sensing line 132t or the second fourth sub sensing line 132m. In other embodiments, the first sub-induction line 122t, the second sub-induction line 122m, the third sub-induction line 132t, and the fourth sub-induction line 132m may also be randomly distributed; in other words, the capacitance can be achieved or not affected. In the case of the touch function or the touch requirement of the touch panel 100, the first sub-sensing line 122t, the second sub-sensing line 122m, the third sub-sensing line 132t, and the fourth sub-sensing line 132m can be arbitrarily configured. The arrangement of the first sub-sensing line 122t, the second sub-sensing line 122m, the third sub-sensing line 132t, and the fourth sub-sensing line 132m is not limited. In addition, the materials of the first sub sensing line 122t, the third sub sensing line 132t, the first sensing unit 121, and the second sensing unit 131 may be the same material, for example, Tin-doped Indium Oxide (IT0). . The material of the second sub-induction line 122m and the fourth sub-induction line 132m may be the same material, for example, a metal, preferably but not limited to, the metal system M425339 • a metal having good conductivity. In one embodiment, the material of the metal is selected from the group consisting of copper, silver, gold, and combinations thereof. In one embodiment, the material of the signal transmission line 150 and the second sub-induction line 122m and the fourth sub-induction line 132m may also be the same material, such as metal. In this embodiment, the first sensing unit 12, the second sensing unit 131, and the third sub sensing line 132t are formed on the same surface of the substrate 110 (such as the substrate surface 110u). The first sensing unit 121, the second sensing unit 131, the first sub-inductive line 122t, and the third sub-inductive line 132t may be formed by the same material in the same process. For example, a conductive material is first formed by a sputtering technique, and then the conductive material is patterned by a lithography process (eg, exposure, development, and/or etching) to form a first sensing as shown in FIG. The unit 12 includes a second sensing unit 131, a first sub sensing line 122t and a third sub sensing line 132t. In other embodiments, the first sensing unit 121, the second sensing unit 131, the first sub sensing line 122t, and the third sub sensing line 132t may also be formed in different processes. In addition, the second sub-sensing line 122m, the fourth sub-sensing line 132m, and the φ-number transmission line 150 may be formed together in the same material in the same material. For example, a conductive material is first formed by a sputtering technique, and then the conductive material is patterned by lithography to form a second sub-induction line 122m, a fourth sub-induction line 132m, and a signal transmission line 150 as shown in FIG. . In other embodiments, the second sub-sensing line 122m, the fourth sub-sensing line 132m, and the signal transmission line 150 may also be formed separately in different processes. Please refer to Figs. 2, 3 and 4 at the same time, Fig. 3 is a cross-sectional view taken along line 3-3' in Fig. 2, and Fig. 4 is a cross-sectional view taken along line 4-4' in Fig. 2. The capacitive touch panel 100 further includes a light shielding layer 160. The material of the light shielding layer 160 M425339 is, for example, metallic chromium (Cr), photoresist, black resin, nickel/tungsten (Ni/W) or ink. The light shielding layer 160 is formed at the edge of the substrate, e.g., at the edge of the substrate surface 110u. Since the edge of the substrate surface 110u is a non-sensing area or a non-visible area, the light-shielding layer 160 does not affect the sensing function or the surface display in the sensing area when the edge of the corresponding substrate 11 is formed (when capacitive touch When the control panel 1 is matched with the display panel, 'the display surface can be viewed through the capacitive touch panel 100. Further, the signal transmission line 150 extends to the edge of the substrate surface 110u and overlaps with the light shielding layer 160. Since the signal transmission line 150 overlaps with the light shielding layer 160, the signal transmission line 150 is not easily perceived in appearance. As shown in Figures 3 and 4, the light shielding layer 160 has oblique sidewalls 160s and an upper surface 160u. The signal transmission line 150 extends to overlap the light shielding layer 160. For example, the signal transmission line 150 extends over the oblique sidewall 160s to the upper surface 160u of the light shielding layer 160 to overlap the light shielding layer 160. As shown in Fig. 3, the signal transmission line 150 is less prone to disconnection due to the slope of the inclined side wall 16 〇s. Further, in general, the height H1 of the light shielding layer 160 is about 2 micrometers (um), the thickness H2 of the first sensing unit 12i is about 0.07 um, and the thickness H3 of the signal transmission line 15A is about 3 um. The height H1 of the light shielding layer 160 is very high compared to the thickness H2 of the first sensing unit 121 and the thickness H3 of the signal transmission line 15A. In the design that the light shielding layer 16 has no oblique side walls, the subsequently formed signal transmission line 15 is required to climb over the light shielding layer 160 + the very high vertical side wall (the side wall without the slope) is relatively difficult, so the signal transmission line 15G often breaks. Bad problems with the line. In contrast, in the present embodiment, due to the design of the oblique side wall 16 〇 s of the light shielding layer 160, the signal transmission line M425339 150 gently climbs, which can reduce or even avoid the disconnection of the oblique side wall 160s of the light shielding layer 160 and the surface of the substrate. The angle between ^ is between about 1 degree and 89 degrees, preferably between about 15 degrees. This angular range of up to 40 degrees can be formed on the oblique side wall: the signal transmission line 15 turns on the turning portion of the upper surface 160u, and its thickness is still uniform. As shown in Figures 3 and 4, the first sensing unit (2) located at one end of the first sensing electrode 2 has a side surface 121s spaced apart from the light shielding layer (10). In other embodiments, the first sensing unit 121, can directly contact the light shielding layer 160. In this way, the length L1 of the portion (10) which is not overlapped with the cover layer 16 〇 in the line transmission 、 can be reduced, and the portion of the signal transmission line υ ο which is exposed from the appearance can be reduced (ie, not with the light shielding layer 16). 〇 overlap, sub). Similarly, the second sensing unit located at one end of the second sensing electrode 13 can be laterally spaced from or in direct contact with the light shielding layer 160. In addition, the capacitive touch panel 100 further includes a transparent protective layer 170 (shown in FIG. 7 ) that can cover the first sensing electrode 12 , the second sensing electrode 13 , the insulating block 140 , and the signal transmission line The first sensing electrode 120, the second sensing electrode 130, the insulating block 140, the recording transmission line 150, and the light shielding layer 160 are provided. The following describes some of the various manufacturing methods of the capacitive touch panel. The manufacturing method of the capacitive touch panel 100 may include: providing a substrate 110; then forming a light shielding layer 160; then, forming a first sensing unit 12, a second sensing unit 131, a first sub sensing line 122t, and a third sub sensing line 132t is formed on the substrate 110, and then the insulating block 14 is formed to cover at least the first sub-induction line 122t and the second sub-induction line I32t; then, the second sub-induction line 122m, the fourth sub-induction line 132m, and the signal transmission line 15 are formed. Then, the shape 11 M425339 is formed into a transparent protective layer 170 (the transparent protective layer 17 is shown in FIG. 7) covering the first sensing electrode 120, the second sensing electrode m, the insulating block, the signal transmission line 150, and the light shielding layer 16. Hey. If the process of forming the first-sensing electrode 120 and the second sensing electrode 13〇, the degree is south (for example, in the process of forming the first-inductive single-magic 21 and the second-inducing single-single 131, the bribe temperature is usually higher than the Celsius The high temperature of 200 degrees] is that the light shielding layer 160 is preferably a high temperature resistant light shielding layer such as a metal photoresist material, a black resin or a nickel/tungsten, so that the light shielding layer is prevented from being melted or softened by the influence of high temperature. In the embodiment, if the light shielding layer is made of a high temperature resistant or high melting point material, the light shielding layer 16 can be formed before or after the first sensing electrode 120 and the second sensing electrode 130, or in the first sensing element 121 and The first sensing element is formed before or after the early element 131, that is, the timing of forming the light shielding layer 160 is not affected by the first sensing electrode 12A and the second sensing electrode 130. In another embodiment, if the light shielding layer 160 is made of a material that is not resistant to high temperature or low glare (such as ink), the light shielding layer 160 may be formed after the first sensing unit 121 and the second sensing unit 131. Compared with the splash temperature of the first sensing unit 121 and the second sensing unit 131, the signal transmission line 150 has a lower plating temperature. Therefore, when the light shielding layer 16 is made of a material that is not resistant to high temperature or low melting, even if the signal transmission line 150 is After the light shielding layer 160 is formed, the light shielding layer 160 is not stunned or softened. Referring to FIGS. 5 and 6, FIG. 5 is a cross-sectional view of the capacitive touch panel according to another embodiment of the present invention. FIG. 6 is a cross-sectional view taken along line 6-6' of the green diagram. The capacitive touch panel 2 includes a substrate 210, a first sensing electrode 120 (not shown), a second sensing electrode 130 (not shown), a 12 M425339 insulating block 140 (not shown), and a signal transmission line 150 (not shown). Illustrated) and a light shielding layer 260. The material of the substrate 210 can be similar to the substrate 110, and will not be described again. The edge of the substrate 210 defines a mark area 210a and a light blocking area 210b. The light shielding layer 260 is formed on the edge of the substrate 210 corresponding to the light shielding region 210b. The flexible circuit board 180 of the capacitive touch panel 200 can be configured corresponding to the area of the light shielding area 210b, as shown in FIG. The capacitive touch panel 200 further includes a light transmissive protective layer 270 and a mark φ 280. The light-transmissive protective layer 270 is formed on the edge of the substrate 210 corresponding to the mark region 210a. A mark 280 is formed on the light-transmissive protective layer 270 corresponding to the mark area 210a. The mark 280 is, for example, a product model number or a trademark pattern, as shown in Fig. 5, "ABCD". Additionally, indicia 280 can be formed using printing techniques. The material of the mark 280 is, for example, metallic chromium, a photoresist material, a black resin, nickel/tungsten or ink. In one embodiment, the mark 280 may be a material that is not resistant to high temperatures, such as a low melting point ink, due to the absence of a high operating temperature process after the mark 280. In the manufacturing process of the capacitive touch panel 200, the mark 280 may be formed after the light-transmitting φ protective layer 27 is formed. As shown in Fig. 6, the mark 280 and the light shielding layer 260 are located on the same side of the same substrate 210. The marker 280 is elastically and selectively formed. Different patterns of markings 280 can be formed to meet the needs of different customers. In addition, the transparent protective layer 270 can cover the first sensing electrode 120 (not shown), the second sensing electrode 130 (not shown), the insulating block 140 (not shown), and the signal transmission line 150 (not shown). The first sensing electrode 120, the second sensing electrode 130, the insulating block 140, the signal transmission line 150, and the light shielding layer 260 are protected. 260. M425339 Please refer to FIG. 7 , which is a cross-sectional view of a touch display panel according to an embodiment of the present invention. The touch display panel 3A includes a display panel 39A, a frame 320, and a capacitive touch panel 1 or 2A. The capacitive touch panel 100 is disposed adjacent to or parallel to the display panel 390 and can be bonded to the display panel 390 via the adhesive 380. The frame 32 covers the display panel 39 and the capacitive touch panel 1 (the substrate 11 of the capacitive touch panel 1 ) is exposed from the frame 320 to receive touch commands from a finger or a stylus. In the present embodiment, the touch surface 110b of the substrate 110 of the capacitive touch panel is not covered by the frame 320 and is entirely exposed from the frame 32, wherein the lower surface of the touch surface 〇b is opposite to the substrate surface 110u. The capacitive touch panel disclosed in the embodiment and the touch display panel using the same have a plurality of features, and some of the features are as follows: (1) The light shielding layer may be a high temperature resistant light shielding layer, so that the first sensing is formed. In the high temperature process of the electrode and the second sensing electrode, the high temperature resistant light shielding layer can be prevented from being melted or softened by the influence of high temperature. (2) · Due to the slope of the oblique side wall, the signal transmission line is less prone to disconnection. (3) . The sensing unit located at one end of the sensing electrode may have a side or a direct contact with the light shielding layer. (4) The marking of the capacitive touch panel may be formed by using a low-refining ink, which can be formed on the sensing electrode. Is formed. (5) may be labeled with a light shielding layer on the same side of the same substrate. Conclusion 'Creation While the embodiment has been disclosed in the above embodiment, and then it