M423417 五、新型說明: 【新型所屬之技術領域】 本新型是有關於一種控制系統,且特別是有關於一種 智能家庭整合控制系統。 【先前技術】 ' 發光二極體之發光亮度主要係由輸入發光二極體之電 - 流大小所決定,在習知技術中,為調整發光二極體之發光 • 亮度,可利用一調光器先對市電輸入的交流電源進行相位 調變後輸出一相位調變交流電源控制發光二極體亮度。 一般用於燈具上的調光裝置,大多是利用閘流電晶體 來進行相位控制改變導電角的大小,達控制發光二極體亮 度之目的。若相位調變後所得到的電壓準位較小,則輸入 發光二極體的電流亦相對變小,因而使發光二極體的亮度 降低;反之若提高所得到的電壓準位,則能增加發光二極 體之亮度。 • 在傳統技術上,進行相位調光功能之發光二極體驅動 • 器是使用固定電容量的電容器來決定輸出脈衝信號之工作 - 週期。由於電容量固定,一旦調光至電壓準位較小,造成 輸出到發光二極體的電流漣波較大,會導致發光二極體光 輸出不穩定而有閃爍發光現像。此外,電容量固定更會造 成調光範圍受限。 因此,如何改良上述發光二極體驅動電路之缺點即成 為追求之目標。 ^3417 【新型内容】 佶t新型主要提供一種動態調整功因控制單元之雷六 定電容值之吓击丨 度整時 功因控制單元固 值之限制’而可有擴大整體調光範圍。 根據本新型之—態樣,主要是提供 光範圍之驅動裳置,至少包括 τ,周整調 交流電壓並將該調變後之交峨用以調變-M423417 V. New description: [New technical field] The present invention relates to a control system, and in particular to an intelligent home integrated control system. [Prior Art] 'The luminance of the light-emitting diode is mainly determined by the electric-current size of the input light-emitting diode. In the prior art, in order to adjust the light-emitting brightness of the light-emitting diode, a dimming can be utilized. The device first performs phase modulation on the AC power input from the mains, and then outputs a phase modulation AC power source to control the brightness of the LED. Generally used for dimming devices on lamps, most of them use thyristor to perform phase control to change the size of the conductive angle to control the brightness of the LED. If the voltage level obtained after the phase modulation is small, the current input to the light-emitting diode is relatively small, thereby reducing the brightness of the light-emitting diode; if the voltage level obtained is increased, the current can be increased. The brightness of the light-emitting diode. • Traditionally, a light-emitting diode driver that performs phase dimming uses a capacitor with a fixed capacitance to determine the duty-cycle of the output pulse signal. Since the capacitance is fixed, once the dimming to the voltage level is small, the current ripple to the LED is large, which may cause the light output of the LED to be unstable and flickering. In addition, the fixed capacity will result in a limited dimming range. Therefore, how to improve the shortcomings of the above-described light-emitting diode driving circuit has become a goal. ^3417 [New Content] The new type of 佶t mainly provides a dynamic adjustment of the power factor of the power factor control unit, which can be used to expand the overall dimming range. According to the aspect of the present invention, the driving range of the light range is mainly provided, and at least τ is included, and the alternating voltage is adjusted and used for modulation.
,-電壓轉換單:之以= ^電=換成-第二直流驅動電壓;一發光單元,= 第-直^驅動電壓進行發光;以及一功因控制單元,用以 控制該導通時間,其中當該第-直流驅動電壓大於—臨界 日 =值時’ f功因控制單元根據H容值控制該導通 」3 ’以及虽該第—直流㈣電壓小於該臨界電壓值時, 遠功因控制單元根據—第二電容值控制料通時間,其中 該第一電容值小於該第一電容值。 “在一實施例中,更包括一回授單元,將發光單元之發 光結果迴授給功因控制單元用以控制該導通時間。 在一實施例中,更包括一第一電容以及一第二電容, 當該第一直流驅動電壓大於該臨界電壓值時,該第一電容 與第二電容並聯來提供該第—電容值控制該導通時間,以 及當該第一直流驅動電壓小於該臨界電壓值時,截止該第 一電容與第二電容並聯,根據該第一電容提供之該第二電 容值控制該導通時間。 在一貫施例中,更包括一切換元件,其中該切換元件 之一端接地,另一端耦接該第二電容,當該第一直流驅動 5 M423417 電壓大於該臨界電壓值時,該切換元件導通,使得該第一 ’電容與該f二電容並冑,以及當-該-第一直流驅動電壓小於 該臨界電壓值時,該切換元件截止。 在一實施例中,更包括一第一電容以及一第二電容, 當該第一直流驅動電壓大於該臨界電壓值時,戴止該第一 電谷與第二電容間之連接,根據該第一電容提供之該第一 •電容值以控制該導通時間,以及當該第一直流驅動電壓小 於該臨界電壓值時,該第一電容與第二電容串聯來提供該 φ 第二電容值以控制該導通時間。 在-實施例中,更包括-切換元件,其中該切換元件 之一端接地,另一端耦接該第一電容與該第二電容之共同 接點,當該第-直流驅動電壓大於該臨界電屢值時,^切 ^件導通,使得該第-電容接地,以及當該第—直流驅 電塵小於該臨界電録時,該切換元件截止,使得該第 一電容與該第二電容串聯。 在-實施例中,其中該功因控制單元產生一脈 ·==切換一開關’來控制該電_單元,根據該導 二。夺間將該第一直流驅動電壓轉換成該第二直流驅動電 -,中’更包括—切換元件麵接該功因控制單 '、田°亥第—直流驅動電壓低於一預設電壓時,線止 提供一電源給該功因控制單元。 、、 在2施例中,該發光單元為-發光二極體單元。 在一實施例中,該電壓轉換單元為一返馳式轉換器。 本新型係藉由動態調整功因控制單元之時序電容值, 6 M423417 來調整開關式電源功率開關切換之導通時間,使得調光器 在進行亮度調整時,不受功因控制單元固定電容值之限 制,而可有擴大整體調光範圍。此外,本新型更可在亮度 被調整至一最低直時,截止功因控制單元之電源供應,來 中斷提供電源給發光單元,避免閃爍現像發生。 【實施方式】 以下為本新型較佳具體實施例以所附圖示加以詳細說 明,下列之說明及圖示使用相同之參考數字以表示相同或 類似元件,並且在重複描述相同或類似元件時則予省略。 第1圖所示為根據本新型一實施例之可動態調整調光 範圍之發光二極體驅動裝置概略圖。本新型之發光二極體 驅動裝置100包括:一調光單元101、一電壓轉換單元102、 一發光單元103、一回授單元104、一功因控制單元105、 一切換元件SW、一第一切換元件SW1、一第二切換元件 SW2、一時序電容C1以及一擴充時序電容C2。其中,外 部之交流電源AC透過調光單元101調整其電壓信號之相 位並整流成一第一直流驅動電壓VCC1,其中第一直流驅 動電壓VCC1提供至電壓轉換單元102。其中功因控制單 元105控制一切換元件SW之切換頻率及工作週期,並以 電壓轉換單元102轉換成一第二直流驅動電壓VCC2,提 供至發光單元103來驅動發光單元103發光。回授單元104 偵測此第二直流驅動電壓VCC2,並將其變化訊號提供至 功因控制單元105,功因控制單元105根據第二直流驅動 電壓VCC2之變化訊號,調節一調變信號之調整切換元件 7 M423417 sw切換頻率及工作週期,使得第_ 維持在一預定值。第一切換元杜直流驅動電壓VCC2 容C2之一端接地’當第一切拖_ π ^控制擴充時序電 』7^ 件 s 1、音 擴充時序電容C2與時序電容Cl 1導通時,會使得 功因控制單元105連接之時序電容一,並聯結構,使得與 C1,轉變為並聯之擴充時序雷交’從原本之時序電容 第二切換元件SW2用以提供功因吁=谷C1。 源,當第二切換元件SW2斷開功田制單元105之電 間之連接時,功因控制單:==元-與-電源 元件SW,使得電壓轉換單元102亦傳 不再驅動切換, - voltage conversion single: ^ ^ electric = replaced with - second DC drive voltage; an illumination unit, = first - straight ^ drive voltage for illumination; and a power factor control unit for controlling the on-time, wherein When the first DC driving voltage is greater than the -critical day = value, the 'f power factor control unit controls the conduction "3" according to the H capacitance value, and when the first DC voltage is less than the threshold voltage value, the remote power control unit The material pass time is controlled according to the second capacitance value, wherein the first capacitance value is less than the first capacitance value. In an embodiment, a feedback unit is further included, and the illumination result of the illumination unit is returned to the power control unit for controlling the on-time. In an embodiment, the method further includes a first capacitor and a second a capacitor, when the first DC driving voltage is greater than the threshold voltage, the first capacitor is connected in parallel with the second capacitor to provide the first capacitor value to control the conduction time, and when the first DC driving voltage is less than the threshold In the case of a voltage value, the first capacitor is connected in parallel with the second capacitor, and the second capacitor value is controlled according to the second capacitor value. In a consistent embodiment, a switching component is further included, wherein one end of the switching component Grounding, the other end is coupled to the second capacitor. When the voltage of the first DC drive 5 M423417 is greater than the threshold voltage, the switching component is turned on, so that the first 'capacitor and the f-capacitor are combined, and when- When the first DC driving voltage is less than the threshold voltage, the switching element is turned off. In an embodiment, the first capacitor and the second capacitor are further included when the first DC driving When the voltage is greater than the threshold voltage, the connection between the first valley and the second capacitor is blocked, the first capacitor value is provided according to the first capacitor to control the conduction time, and when the first DC driver When the voltage is less than the threshold voltage, the first capacitor is connected in series with the second capacitor to provide the second capacitance value to control the conduction time. In an embodiment, the switching element is further included, wherein one end of the switching element is grounded The other end is coupled to the common junction of the first capacitor and the second capacitor. When the first DC driving voltage is greater than the critical electrical value, the cutting component is turned on, so that the first capacitor is grounded, and when the When the first DC drive dust is less than the critical mic, the switching element is turned off, so that the first capacitor is connected in series with the second capacitor. In the embodiment, wherein the power factor control unit generates a pulse ·== switching one a switch 'to control the electric_unit, according to the second lead. The first direct current driving voltage is converted into the second direct current driving electric power, and the middle 'more includes the switching element is connected to the electric power control unit', Tian °hai first - DC drive When the voltage is lower than a predetermined voltage, the line provides a power supply to the power control unit. In the embodiment, the light unit is a light emitting diode unit. In an embodiment, the voltage converting unit It is a flyback converter. The new type adjusts the on-time of switching power supply switching by dynamically adjusting the timing capacitance value of the power factor control unit, 6 M423417, so that the dimmer is not adjusted when performing brightness adjustment. The power factor of the control unit is limited by the fixed capacitance value, and the overall dimming range can be expanded. In addition, the present invention can interrupt the power supply to the power supply of the control unit when the brightness is adjusted to a minimum straight line. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following description of the preferred embodiments of the present invention is in the It is omitted when describing the same or similar components. Fig. 1 is a schematic view showing a light-emitting diode driving device capable of dynamically adjusting a dimming range according to an embodiment of the present invention. The light-emitting diode driving device 100 of the present invention comprises: a dimming unit 101, a voltage converting unit 102, a lighting unit 103, a feedback unit 104, a power factor control unit 105, a switching element SW, and a first The switching element SW1, a second switching element SW2, a timing capacitor C1, and an extended timing capacitor C2. The external AC power source AC adjusts the phase of the voltage signal through the dimming unit 101 and rectifies into a first DC driving voltage VCC1, wherein the first DC driving voltage VCC1 is supplied to the voltage converting unit 102. The power factor control unit 105 controls the switching frequency and the duty cycle of a switching element SW, and is converted into a second DC driving voltage VCC2 by the voltage converting unit 102, and is supplied to the light emitting unit 103 to drive the light emitting unit 103 to emit light. The feedback unit 104 detects the second DC driving voltage VCC2 and supplies the change signal to the power factor control unit 105. The power factor control unit 105 adjusts the adjustment signal according to the change signal of the second DC driving voltage VCC2. The switching element 7 M423417 sw switches the frequency and duty cycle such that the _th is maintained at a predetermined value. The first switching element Du DC driving voltage VCC2 capacitor C2 one end grounding 'when the first cutting _ π ^ control expansion timing power』 7^ s 1, the sound expansion timing capacitor C2 and the timing capacitor Cl 1 conduction, will make the work Because of the timing capacitance connected by the control unit 105, the parallel structure makes the expansion timing parallel transition with C1, and the second switching element SW2 from the original timing capacitor is used to provide the power factor = valley C1. The source, when the second switching element SW2 is disconnected from the power of the power field unit 105, the power factor control unit: == yuan-and-power element SW, so that the voltage conversion unit 102 also transmits no longer drive switching.
Tit场作不真描供二亩 流驅動電壓VCC2至發光單元1〇3, u此發光單元103停 止,光。在-實_中’例如可設定—截止電壓值,當調 光單兀101進行亮度調整時,會使得調光單元1〇1輸出之 第一直流驅動電壓VCC1發生變化,此時將 動電壓VCC1與設定之截止電壓值進行比較,一旦小:此 截止電壓值’控制切換元件SW2截止,斷開功因控制單 元105之驅動電源連接。反之’若第—直流驅動電壓vcc 1 大於截止電壓值,控制切換元件SW2導通,功因控制單 元105與驅動電源保持連接。 第2圖所示為根據本新型一實施例之可動態調整調光 範圍之發光二極體驅動裝置電路圖。調光單元101更包括 一調光器1011、一電磁干擾據波器(electromagnetic interference,EMI)1012以及一整流器1013,電磁干擾濾波 器1012連接於交流電壓源AC與整流器1013之間,用以 消除交流電壓.源AC中之電磁干擾。也就是,電磁干擾濾 M423417 波斋1012會消除脈衝雜訊、諧波等。整流器1〇丨3, 為一=整,器,接收來自交流電壓源AC之交流電^如 並將父流電壓全波整流成第—直流驅動電壓vcci。 電壓轉換單元102,於-較佳實施例中為一返 換器(flybackC〇nverter)1()2卜返驰式轉換器1〇21工^ 流器1013,接收第一直流驅動電壓vcci,並將農 一第^流驅動電壓VCC2,以輸出至發光單元如。其= 發,單元103’例如為串聯之複數個發光:極體或是並 之複數個發光二極體。其中返馳式轉換器包括―: 、〜且N1、一次側繞組N2、二極體d〇以及輸出電容。' 切換元件SW控制返驰式轉換器㈣之操作。當切換元; ^導通時’第—直流驅動電壓VCC1丨產生之電流會流過 ㈣器之-次側繞組N1,而因二次側繞組N2和一次 ,m極性是相反的’所以二極體D〇會被逆向偏壓,= /又有忐量轉移到負載,此時能量將儲存在變壓器中,輸出 鳊則由輸出電容Co繼續提供能量。當切換元件Sw戴止 時,一次侧繞組N1開路,一次側電流降為零,變壓器中 的磁通密度將向負的方向改變,所以所有繞組上的電壓將 會反轉,並使得二極體Do導通,而磁化電流將會轉移至 二次側成為第二直流驅動電壓VCC2,也就是說儲存在變 壓器中的能量會經由二極體Do,傳送至輸出電容c〇與發 光單元103上,讓發光單元1〇3發光。 ^ 回授單元104係用於將發光單元1〇3之輪出電壓和電 流訊號提供至功因控制單元105,藉以調整輪出之脈波寬 度調變(Pulse Width Modulation,PWM)信號。其中回 _ 單 9 M423417 元104至少包括一電壓誤差放大器和一電流誤差放大器, 功因控制單元105 -根據回授單元104回授的電壓誤差和電 流誤差訊號,調整切換元件SW的切換頻率,使得傳送至 變壓器一次側繞組N1之第一直流驅動電壓VCC1工作週期 改變,調整輸入一次側繞組N1功率的大小,以維持第二 直流驅動電壓VCC2於一預定值。 功因控制單元105,用以產生一脈波寬度調變(Pulse Width Modulation,PWM)信號來控制切換元件SW的切換 頻率,進而達到對第一直流驅動電壓VCC1波形整形的目 的,脈波寬度調變信號控制切換元件SW將第一直流驅動 電壓VCC1切成一串電壓脈波,隨後利用電壓轉換單元102 將其轉成平滑的第二直流驅動電壓VCC2輸出給發光單元 103。 如第3圖所示,為一功因控制單元105產生脈波寬度 調變信號之概略圖。值得注意的是,於功因控制單元105 中僅繪出一比較器301,其他之元件並未繪出。切換元件 SW受控於脈衝寬度調變比較器301的VS電壓和VC電壓 的比較結果,當VS電壓大於VC電壓時,比較器輸出為高 電位,而當VS電壓小於VC電壓時,比較器輸出為低電位。 其中,VC電壓為一電壓源VDD對擴充時序電容C2和時 序電容C1進行充電時產生之電壓。在一實施例中,若切換 元件SW為一 NM0S電晶體,電路剛開始運作時,VS電 壓大於VC電壓時,比較器輸出為高電位,切換元件SW 導通,第一直流驅動電壓VCC1傳輸至電壓轉換單元102 將其轉戒平滑的第二直流驅動電壓VCC2輸出給發光單元 進行充電,VC電壓 時,比較器輸出為低 =2麵VDD _料序電容Cl 雷^升^ 1 vct壓大於vs電壓 電位,切換元件SW截止。 因此切換讀sw之切 各C1之電容值有關。若時w C1與導通時間與時序電 VDD將時序電容c 序包合01之電容值大,電壓源 之電容I + 時_長。反之,若時序電容d = 原_將時序電容。充電至… 短’因此切換元件 由於傳、峨容C1之電容值是固定的。換言=採 用J電谷值之h序電谷C卜在進行調光時,當欲將第一直 流驅動電壓VCC1調高來增加㈣單元Π)3之亮度時,由 於採用小電容值之時序電容α,造成時序電容C1被充電 至大於vs電壓所需之時間縮短,導致切換元件sw工作週 期受到限制,使得傳輸至第二直流驅動電壓VCC2功率受 限,造成發光單元103之發光亮度並未被對等增加。反之, 當採用大電容值之時序電容C1,在進行調光時,當欲將第 一直流驅動電壓VCC1調低來降低發光單元1 之亮度 時,由於採用大電容值之時序電容C1,使得切換元件;5W 導通時間和工作週期被大幅增加,使得發光單元1〇3之發 光亮度並未被對等降低。 換言之,採用固定電容值之時序電容c卜在進行調光 時,會有一定之調光範圍。因此如第3圖所示,將時序電 容C1並聯一擴充時序電容C2來擴大電容值。同時使用一 第一切換元件SW1用以控制擴充時序電容匚2是否與時序 M423417 電容Cl並聯,其中第一切換元件SW1之一端接地,另一 端與擴充時序電容C2耦接·,一控制信號控制第一切換元件 SW1之切換。當調光單元101往提高亮度之方向進行調整 時,可藉由切換第一切換元件SW1讓擴充時序電容C2與 時序電容C1並聯來增加電容值。反之,當調光單元101 往降低亮度之方向進行調整時,可藉由切換第一切換元件 SW1切斷擴充時序.電容C2與時序電容C1間之連接來降低 電容值。換言之,在此實施例中,是藉由讓擴充時序電容 C2與時序電容C1形成並聯,使原本之小電容值增加而擴 大整個調光範圍。因此本實施例,適用於原時序電容C1 具一小電容值。此外,在控制第一切換元件SW1之切換, 可設定一切換臨界電壓值,當調光單元101進行亮度調整 時,會使得調光單元101輸出之第一直流驅動電壓VCC1 發生變化,此時將此第一直流驅動電壓VCC1與設定之切 換臨界電壓值進行比較,一旦大於此切換臨界電壓值,控 制第一切換元件SW1導通,讓擴充時序電容C2與時序電 容C1並聯來增加電容值。反之,若第一直流驅動電壓VCC1 小於切換臨界電壓值,控制第一切換元件SW1截止,切斷 擴充時序電容C2與時序電容C1間之連接來降低整體電容 值0 第4圖所示為根據本新型另一實施例可擴大調光範圍 之電路結構。同樣的,於功因控制單元105中僅繪出一比 較器301,其他之元件並未繪出。一第一切換元件SW1控 制擴充時序電容C2是否與時序電容C1串聯,其中第一切 -換元件SW1之一端接地,另一端耦接於擴充時序電容C2 12 M423417 與時序電容ci之共同連接點上,一控制信號控制第一切換 元件SW1之切換。當調光單元101往提高亮度之方向進行 調整時,可藉由導通第一切換元件SW1讓時序電容C1接 地。反之,當調光單元101往降低亮度之方向進行調整時, 可藉由截止第一切換元件SW1,讓擴充時序電容C2與時 序電容C1串聯接來降低電容值。換言之,在此實施例中, 是藉由讓擴充時序電容C2與時序電容C1形成串聯,使原 本之大電容值下降來調節整個調光範圍。因此本實施例, 適用於原時序電容C1具一大電容值。相似的,在本實施例 中亦可設定一切換臨界電壓值,當調光單元101輸出之第 一直流驅動電壓VCC1發生變化,此時將此第一直流驅動 電壓VCC1與設定之切換臨界電壓值進行比較,一旦大於 此切換臨界電壓值,控制第一切換元件SW1導通,讓時序 電容C1接地來增加電容值。反之,若第一直流驅動電壓 VCC1小於切換臨界電壓值,控制第一切換元件SW1截 止,切斷擴充時序電容C2與時序電容C1間之連接來降低 整體電容值。 第5圖所示為根據本新型一實施例動態調整調光範圍 之流程圖,請參閱第2和5圖。首先於步驟501,對一交 流市電進行調整並整流成一第一直流驅動電壓。在一實施 中,一調光器1011對一交流市電進行調整藉以降低或提高 輸出至發光單元103之電流,此調整後之交流市電經由一 整流器1013,例如為一橋式整流器,全波整流成一第一直 .流驅動電壓VCC1。於步驟502,將第一直流驅動電壓VCC1 與設定.之切換臨界電壓值進行比較,.並於步驟502判斷第 13 M423417 一直流驅動電壓VCC1是否大於設定之切換臨界電壓值。 若第一直流驅動電壓VCC1大於設定之切換臨界電壓 值,於步驟504,增大電容值來擴大切換元件SW之導通時 間,在一實施例中,當調光單元101往提高亮度之方向進 行調整時,使得第一直流驅動電壓VCC1大於設定之切換 臨界電壓,可如第3圖所示藉由切換第一切換元件SW1讓 擴充時序電容C2與時序電容C1並聯來增加電容值。或於 另一實施例中,如第4圖所示,讓原本串聯之擴充時序電 容C2與時序電容C1中斷連接,來擴大整個電容值。反之, 若第一直流驅動電壓VCC1小於設定之切換臨界電壓值, 於步驟505,降低電容值來減少切換元件SW之導通時間, 在一實施例中,當調光單元101往降低亮度之方向進行調 整時,可藉由切換第一切換元件SW1切斷擴充時序電容 C2與時序電容C1間之連接來降低電容值。或於另一實施 例中,如第4圖所示,讓時序電容C1與擴充時序電容C2 進行串聯,來降低整個電容值。接著,於步驟506,根據 調整後之電容值調節一脈波寬度調變(PWM)信號。並於 步驟507,根據此脈波寬度調變信號將第一直流驅動電壓 VCC1轉換成一第二直流驅動電壓VCC2來驅動一發光單 元 103。 第6圖所示為根據本新型另一實施例動態調整調光範 圍之流程圖,請參閱第2和6圖。首先於步驟501,對一 交流市電進行調整並整流成一第一直流驅動電壓。在一實 施例中,一調光器1011對一交流市電進行調整藉以降低或 提高輸出至發光單元103之電流,此調整後之交流市電經 14 M423417 由一整流器1013,例如為一橋式整流器,全波整流成一第 ••一直流驅動電壓VCC1。接著於步驟6(Π,將此第一直流驅 . 動電壓VCC1與設定之截止電壓值進行比較,並於步驟 602,判斷此第一直流驅動電壓VCC1是否大於截止電壓 值。若第一直流驅動電壓VCC1小於此截止電壓值,則進 行步驟603,斷開功因控制單元105與一電源間之連接時。 反之,若第一直流驅動電壓VCC1大於截止電壓值,則進 行步驟502,再將第一直流驅動電壓VCC1與設定之切換 • 臨界電壓值進行比較,並於步驟502,將第一直流驅動電 ® 壓VCC1與設定之切換臨界電壓值進行比較,並於步驟502 判斷第一直流驅動電壓VCC1是否大於設定之切換臨界電 壓值。 若第一直流驅動電壓VCC1大於設定之切換臨界電壓 值,於步驟504,增大電容值來擴大切換元件SW之導通時 間,在一實施例中,當調光單元101往提高亮度之方向進 行調整時,使得第一直流驅動電壓VCC1大於設定之切換 臨界電壓,可如第3圖所示藉由切換第一切換元件SW1讓 ® 擴充時序電容C2與時序電容Cl並聯來增加電容值。或於 ' 另一實施例中,如第4圖所示,讓原本串聯之擴充時序電 容C2與時序電容C1中斷連接,來擴大整個電容值。反之, 若第一直流驅動電壓VCC1小於設定之切換臨界電壓值, 於步驟505,降低電容值來減少切換元件SW之導通時間, 在一實施例中,當調光單元101往降低亮度之方向進行調 整時,可藉由切換第一切換元件SW1切斷擴充時序電容 ..C2與時序電容C1間之連接來降低電容值。或於另一實施 15 M423417 例中,如第4圖所示,讓時序電容Cl與擴充時序電容C2 進行串聯·,來降低整個電容值。接著,於步驟506,根據· 調整後之電容值調節一脈波寬度調變(PWM)信號。並於 步驟507,根據此脈波寬度調變信號將第一直流驅動電壓 VCC1轉換成一第二直流驅動電壓VCC2來驅動一發光單 元 103。 綜合上述所言,本新型係藉由動態調整功因控制單元 之電容值,來調節開關式電源之功率開關(切換元件SW) 切換導通時間,使得調光器在進行亮度調整時,不受功因 控制單元固定電容值之限制,而可有擴大整體調光範圍。 此外,本新型更可在亮度被調整至一最低值時,截止功因 控制單元之電源供應,來中斷提供電源給發光單元,避免 閃爍現像發生。 雖然本新型已以實施方式揭露如上,然其並非用以限 定本新型,任何熟習此技藝者,在不脫離本新型之精神和 範圍内,當可作各種之更動與潤飾,因此本新型之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本新型之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖所示為根據本新型一實施例之可動態調整調光 範圍之驅動裝置概略圖。 第2圖所示為根據本新型一實施例之可動態調整調光 範圍之驅動裝置電路圖。 M423417 第3圖所示為根據本新型一實施例可擴大調光範圍之 電路結構。 .- · 第4圖所示為根據本新型另一實施例可擴大調光範圍 之電路結構。 第5圖所示為根據本新型一實施例動態調整調光範圍 之流程圖。 策6圖所示為根據本新型另一實施例動態調整調光範 圍之流程圖。 【主要元件符號說明】 1〇〇發光二極體驅動裝置 101調光單元 102電壓轉換單元 103發光單元 104回授單元 105功因控制單元 1011調光器 1012電磁干擾濾波器 1013整流器 1021返馳式轉換器 301比較器 SW切換元件 SW1第一切換元件 SW2第二切換元件 17 M423417 ci時序電容 C2擴充時序電容 AC交流電源 VCC1第一直流驅動電壓 VCC2第二直流驅動電壓 N1 —次側繞組 N2二次侧繞組The Tit field does not really describe the flow of the driving voltage VCC2 to the light-emitting unit 1〇3, and the light-emitting unit 103 stops, and the light is stopped. In the -real _ middle, for example, the off-voltage value can be set. When the dimming unit 101 performs brightness adjustment, the first DC driving voltage VCC1 outputted by the dimming unit 1〇1 is changed, and the dynamic voltage is changed at this time. VCC1 is compared with the set cutoff voltage value. Once small: the cutoff voltage value 'control switching element SW2 is turned off, the driving power supply connection of the power factor control unit 105 is turned off. On the other hand, if the first DC drive voltage vcc 1 is greater than the cutoff voltage value, the control switching element SW2 is turned on, and the power factor control unit 105 is kept connected to the drive power source. Fig. 2 is a circuit diagram of a light-emitting diode driving device capable of dynamically adjusting a dimming range according to an embodiment of the present invention. The dimming unit 101 further includes a dimmer 1011, an electromagnetic interference (EMI) 1012, and a rectifier 1013. The electromagnetic interference filter 1012 is connected between the AC voltage source AC and the rectifier 1013 to eliminate AC voltage. Electromagnetic interference in the source AC. That is, the electromagnetic interference filter M423417 Wavezhai 1012 will eliminate pulse noise, harmonics and the like. The rectifier 1〇丨3, which is a unit, receives an alternating current from the alternating current voltage source AC and rectifies the parent current voltage into a first direct current driving voltage vcci. The voltage conversion unit 102, in the preferred embodiment, is a flyback C〇nverter 1 () 2 flyback converter 1 21 device 1013, receiving the first DC drive voltage vcci, And the agricultural one is driven to drive the voltage VCC2 to output to the light-emitting unit. For example, the unit 103' is, for example, a plurality of light-emitting diodes connected in series: a polar body or a plurality of light-emitting diodes. The flyback converter includes ":, ~ and N1, primary side winding N2, diode d", and output capacitor. The switching element SW controls the operation of the flyback converter (4). When the switching element is turned on, the current generated by the first-DC driving voltage VCC1丨 flows through the secondary winding N1, and because the secondary winding N2 and the primary polarity, the polarity is opposite 'so the diode D〇 will be reverse biased, = / and there will be a transfer to the load, then the energy will be stored in the transformer, and the output 继续 will continue to provide energy from the output capacitor Co. When the switching element Sw is worn, the primary side winding N1 is open, the primary side current drop is zero, and the magnetic flux density in the transformer will change in the negative direction, so the voltage on all the windings will be reversed and the diode will be made. Do is turned on, and the magnetizing current will be transferred to the secondary side to become the second DC driving voltage VCC2, that is, the energy stored in the transformer will be transmitted to the output capacitor c〇 and the light emitting unit 103 via the diode Do, so that The light emitting unit 1〇3 emits light. The feedback unit 104 is configured to provide the wheeling voltage and current signals of the lighting unit 1〇3 to the power factor control unit 105, thereby adjusting the pulse width modulation (PWM) signal of the wheel. The _ single 9 M423417 element 104 includes at least a voltage error amplifier and a current error amplifier, and the power factor control unit 105 - adjusts the switching frequency of the switching element SW according to the voltage error and the current error signal fed back by the feedback unit 104, so that The duty ratio of the first DC driving voltage VCC1 transmitted to the primary winding N1 of the transformer is changed, and the power of the input primary winding N1 is adjusted to maintain the second DC driving voltage VCC2 at a predetermined value. The power factor control unit 105 is configured to generate a Pulse Width Modulation (PWM) signal to control the switching frequency of the switching element SW, thereby achieving the purpose of shaping the waveform of the first DC driving voltage VCC1, and the pulse width The modulation signal control switching element SW cuts the first DC driving voltage VCC1 into a series of voltage pulse waves, and then outputs it to the smoothing second DC driving voltage VCC2 by the voltage converting unit 102 to output to the light emitting unit 103. As shown in Fig. 3, a schematic diagram of the pulse width modulation signal is generated by the power factor control unit 105. It should be noted that only one comparator 301 is drawn in the power factor control unit 105, and other components are not drawn. The switching element SW is controlled by the comparison result of the VS voltage and the VC voltage of the pulse width modulation comparator 301. When the VS voltage is greater than the VC voltage, the comparator output is high, and when the VS voltage is less than the VC voltage, the comparator output is Is low. The VC voltage is a voltage generated when a voltage source VDD charges the extended timing capacitor C2 and the timing capacitor C1. In one embodiment, if the switching element SW is an NM0S transistor, when the circuit starts operating, when the VS voltage is greater than the VC voltage, the comparator output is high, the switching element SW is turned on, and the first DC driving voltage VCC1 is transmitted to The voltage conversion unit 102 outputs the smoothed second DC driving voltage VCC2 to the light-emitting unit for charging. When the VC voltage is applied, the comparator output is low=2-side VDD_sequence capacitance Cl lei^liter^1 vct pressure is greater than vs At the voltage potential, the switching element SW is turned off. Therefore, switching the read sw is related to the capacitance value of each C1. When w C1 and on-time and timing power VDD, the capacitance of sequence capacitor c is larger than 01, and the voltage of capacitor I + is _ long. Conversely, if the timing capacitor d = the original _ will be the timing capacitor. Charging to... Short' Therefore, the switching element is fixed due to the capacitance value of the transmission and capacitance C1. In other words, when the dimming of the first DC driving voltage VCC1 is used to increase the brightness of the (4) cell Π)3 when dimming is performed, the timing of using a small capacitance value is used. The capacitance α causes the time required for the timing capacitor C1 to be charged to be greater than the vs voltage to be shortened, resulting in limitation of the switching element sw duty cycle, so that the power transmitted to the second DC driving voltage VCC2 is limited, resulting in the illumination luminance of the light emitting unit 103 not being Being equalized. On the other hand, when the timing capacitor C1 with a large capacitance value is used, when the first DC driving voltage VCC1 is to be lowered to lower the luminance of the light-emitting unit 1 during dimming, the timing capacitor C1 of a large capacitance value is used. The switching element; 5W on-time and duty cycle are greatly increased, so that the luminance of the illumination unit 1〇3 is not equally reduced. In other words, a timing capacitor c with a fixed capacitance value has a certain dimming range when dimming is performed. Therefore, as shown in Fig. 3, the timing capacitor C1 is connected in parallel to expand the timing capacitor C2 to increase the capacitance value. At the same time, a first switching element SW1 is used to control whether the extended timing capacitor 匚2 is connected in parallel with the timing M423417 capacitor C1, wherein one end of the first switching element SW1 is grounded, and the other end is coupled to the extended timing capacitor C2, and a control signal is controlled. Switching of a switching element SW1. When the dimming unit 101 adjusts the direction of increasing the brightness, the capacitance value can be increased by switching the first switching element SW1 to connect the extended timing capacitor C2 in parallel with the timing capacitor C1. On the other hand, when the dimming unit 101 adjusts the direction of decreasing the brightness, the expansion timing can be cut by switching the first switching element SW1. The connection between the capacitor C2 and the timing capacitor C1 reduces the capacitance value. In other words, in this embodiment, by extending the extended timing capacitor C2 in parallel with the timing capacitor C1, the original small capacitance value is increased to expand the entire dimming range. Therefore, in this embodiment, the original timing capacitor C1 has a small capacitance value. In addition, when the switching of the first switching element SW1 is controlled, a switching threshold voltage value can be set. When the dimming unit 101 performs brightness adjustment, the first DC driving voltage VCC1 output by the dimming unit 101 is changed. The first DC driving voltage VCC1 is compared with the set switching threshold voltage value. Once greater than the switching threshold voltage value, the first switching element SW1 is controlled to be turned on, and the extended timing capacitor C2 is connected in parallel with the timing capacitor C1 to increase the capacitance value. On the other hand, if the first DC driving voltage VCC1 is less than the switching threshold voltage value, the first switching element SW1 is controlled to be turned off, and the connection between the extended timing capacitor C2 and the timing capacitor C1 is cut off to lower the overall capacitance value. Another embodiment of the present invention can expand the circuit configuration of the dimming range. Similarly, only one comparator 301 is depicted in the power factor control unit 105, and other components are not depicted. A first switching element SW1 controls whether the extended timing capacitor C2 is connected in series with the timing capacitor C1, wherein one end of the first switching-switching element SW1 is grounded, and the other end is coupled to a common connection point of the extended timing capacitor C2 12 M423417 and the timing capacitor ci. A control signal controls switching of the first switching element SW1. When the dimming unit 101 adjusts in the direction of increasing the brightness, the timing capacitor C1 can be grounded by turning on the first switching element SW1. On the other hand, when the dimming unit 101 adjusts the direction of decreasing the brightness, the expansion timing capacitor C2 and the timing capacitor C1 can be connected in series to cut the capacitance value by turning off the first switching element SW1. In other words, in this embodiment, the entire dimming range is adjusted by causing the extended timing capacitor C2 to be in series with the timing capacitor C1 to lower the original large capacitance value. Therefore, in this embodiment, the original timing capacitor C1 has a large capacitance value. Similarly, in this embodiment, a switching threshold voltage value may also be set, and when the first DC driving voltage VCC1 outputted by the dimming unit 101 changes, the switching threshold of the first DC driving voltage VCC1 and the setting is set at this time. The voltage values are compared. Once greater than the switching threshold voltage value, the first switching element SW1 is controlled to be turned on, and the timing capacitor C1 is grounded to increase the capacitance value. On the other hand, if the first DC driving voltage VCC1 is smaller than the switching threshold voltage, the first switching element SW1 is controlled to be cut off, and the connection between the extended timing capacitor C2 and the timing capacitor C1 is cut off to lower the overall capacitance value. Figure 5 is a flow chart showing the dynamic adjustment of the dimming range in accordance with an embodiment of the present invention, see Figures 2 and 5. First, in step 501, an AC mains is adjusted and rectified into a first DC drive voltage. In one implementation, a dimmer 1011 adjusts an AC mains to reduce or increase the current output to the lighting unit 103. The adjusted AC mains is rectified to a first stage via a rectifier 1013, such as a bridge rectifier. The flow drive voltage VCC1 is always applied. In step 502, the first DC driving voltage VCC1 is compared with the set switching threshold voltage value, and in step 502, it is determined whether the 13th M423417 DC driving voltage VCC1 is greater than the set switching threshold voltage value. If the first DC driving voltage VCC1 is greater than the set switching threshold voltage value, in step 504, the capacitance value is increased to increase the conduction time of the switching element SW. In an embodiment, when the dimming unit 101 is in the direction of increasing the brightness. During the adjustment, the first DC driving voltage VCC1 is made larger than the set switching threshold voltage, and the capacitance value can be increased by switching the first switching element SW1 to connect the extended timing capacitor C2 in parallel with the timing capacitor C1 as shown in FIG. Or in another embodiment, as shown in FIG. 4, the original series-connected extended timing capacitor C2 is disconnected from the timing capacitor C1 to expand the entire capacitance value. On the other hand, if the first DC driving voltage VCC1 is less than the set switching threshold voltage value, in step 505, the capacitance value is decreased to reduce the conduction time of the switching element SW. In an embodiment, when the dimming unit 101 decreases the brightness. When the adjustment is made, the capacitance value can be lowered by switching the connection between the extended timing capacitor C2 and the timing capacitor C1 by switching the first switching element SW1. Or in another embodiment, as shown in FIG. 4, the timing capacitor C1 is connected in series with the extended timing capacitor C2 to reduce the overall capacitance value. Next, in step 506, a pulse width modulation (PWM) signal is adjusted according to the adjusted capacitance value. In step 507, the first DC driving voltage VCC1 is converted into a second DC driving voltage VCC2 according to the pulse width modulation signal to drive a light emitting unit 103. Figure 6 is a flow chart showing the dynamic adjustment of the dimming range in accordance with another embodiment of the present invention, see Figures 2 and 6. First, in step 501, an AC mains is adjusted and rectified into a first DC drive voltage. In one embodiment, a dimmer 1011 adjusts an AC mains to reduce or increase the current output to the lighting unit 103. The adjusted AC mains is 14 M423417 by a rectifier 1013, such as a bridge rectifier. The wave is rectified into a •• constant current drive voltage VCC1. Next, in step 6 (Π, the first DC drive dynamic voltage VCC1 is compared with the set cutoff voltage value, and in step 602, it is determined whether the first DC drive voltage VCC1 is greater than the cutoff voltage value. When the DC driving voltage VCC1 is less than the cutoff voltage value, step 603 is performed to disconnect the power factor control unit 105 from a power source. Otherwise, if the first DC driving voltage VCC1 is greater than the cutoff voltage value, step 502 is performed. And comparing the first DC driving voltage VCC1 with the set switching threshold voltage, and in step 502, comparing the first DC driving voltage VCC1 with the set switching threshold voltage value, and in step 502 Determining whether the first DC driving voltage VCC1 is greater than a set switching threshold voltage value. If the first DC driving voltage VCC1 is greater than the set switching threshold voltage value, in step 504, increasing the capacitance value to increase the switching time of the switching element SW, In an embodiment, when the dimming unit 101 adjusts the direction of increasing the brightness, the first DC driving voltage VCC1 is greater than the set switching threshold voltage. In the figure 3, the capacitance value is increased by switching the first switching element SW1 to make the expansion timing capacitor C2 and the timing capacitor C1 in parallel. Alternatively, in another embodiment, as shown in FIG. 4, the expansion timing of the original series is extended. The capacitor C2 is disconnected from the timing capacitor C1 to expand the entire capacitance value. Conversely, if the first DC driving voltage VCC1 is less than the set switching threshold voltage value, in step 505, the capacitance value is decreased to reduce the conduction time of the switching element SW. In one embodiment, when the dimming unit 101 adjusts the direction of decreasing the brightness, the capacitance of the extended timing capacitor: C2 and the timing capacitor C1 can be cut by switching the first switching element SW1 to reduce the capacitance value. In another embodiment, in the example of M423417, as shown in Fig. 4, the timing capacitor C1 is connected in series with the extended timing capacitor C2 to reduce the entire capacitance value. Then, in step 506, the pulse value is adjusted according to the adjusted capacitance value. a wave width modulation (PWM) signal, and in step 507, the first DC driving voltage VCC1 is converted into a second DC driving voltage VCC2 according to the pulse width modulation signal to drive an illumination unit. 103. In summary, the present invention adjusts the on-time of the power switch (switching element SW) of the switching power supply by dynamically adjusting the capacitance value of the power factor control unit, so that the dimmer does not perform brightness adjustment. Due to the limitation of the fixed capacitance value of the control unit, the overall dimming range can be expanded. In addition, the present invention can interrupt the power supply to the power supply of the control unit when the brightness is adjusted to a minimum value. The illumination unit is used to avoid the occurrence of a flickering phenomenon. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make various changes without departing from the spirit and scope of the present invention. And the scope of protection of this new type is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the description of the drawings is as follows: FIG. 1 is a view of an embodiment of the present invention. A schematic diagram of a drive device that dynamically adjusts the dimming range. Fig. 2 is a circuit diagram of a driving device capable of dynamically adjusting a dimming range according to an embodiment of the present invention. M423417 Fig. 3 shows a circuit structure which can expand the dimming range according to an embodiment of the present invention. Fig. 4 is a circuit diagram showing an enlarged dimming range according to another embodiment of the present invention. Figure 5 is a flow chart showing the dynamic adjustment of the dimming range in accordance with an embodiment of the present invention. Figure 6 is a flow chart showing the dynamic adjustment of the dimming range in accordance with another embodiment of the present invention. [Main component symbol description] 1 〇〇 LED driving device 101 dimming unit 102 voltage converting unit 103 illuminating unit 104 feedback unit 105 power factor control unit 1011 dimmer 1012 electromagnetic interference filter 1013 rectifier 1021 flyback Converter 301 Comparator SW Switching Element SW1 First Switching Element SW2 Second Switching Element 17 M423417 ci Timing Capacitor C2 Expansion Timing Capacitor AC AC Power Supply VCC1 First DC Driving Voltage VCC2 Second DC Driving Voltage N1 - Secondary Side Winding N2 Secondary winding
Do二極體Do diode
Co輸出電容 501〜507步驟 601〜603步驟 18Co output capacitors 501~507 steps 601~603 steps 18