五、新型說明: 【新型所屬之技術領域】 r , >ea〜一種風扇裝置,特別是一種智慧型風肩 [0001]本創作係有關於種風 裝置。 【先前技術】 _]風扇是散熱最為重要的Μ;現代電子設備或電子產品 内均有安裝風扇,以降低電子零件等等運作時所產生的 熱能;過高的溫度將造成電子設備或電子產品工作狀感 不穩定甚至損壞° _3]請參考第二圖,其係為習知風扇裝置之一實施例方塊圖 。該習知風扇裝置10Α包含一環境溫度感測單元300Α、一 線性計算單元400Α、一風扇驅動控制單元600Α及一風扇 單元700Α。該線性計算單元40〇八電連接至該環境溫度感 測單元300Α及該風扇驅動控制單元600Α ;該風扇驅動控 制單元600Α電連接至該風扇單元700Α。 [0004]該環境溫度感測單元3 0 0 Α感測環境溫度後通知該線性計 算單元400A,藉以線性計算出環境溫度所對應之該風扇 單元700A之轉速,再通知該風扇驅動控制單元600A以驅 動該風扇單元700A。請參考第三圖,其係為該習知風扇 裝置10A之環境溫度與風扇轉速曲線圖;可以看出該風扇 單元700A之轉速與環境溫度呈線性關係(溫度增加則轉 速增加;溫度降低則轉速降低),直到環境溫度超過一 特定溫度後(圖示為80至90度之間),該風扇單元700A 之轉速總疋維持在最大值。 表單编號A0101 第3頁/共19頁 M381815 [0005] 請參考第四圖,其係為習知風扇裝置之另一實施例方塊 圖。該習知風扇裝置10B包含一環境溫度感測單元300B、 一線性計算單元400B、一風扇驅動控制單元600B、一風 扇單元700B及一熱事件感測單元100B。該風扇驅動控制 單元600B係電連接至該線性計算單元400B、該熱事件感 測單元100B及該風扇單元700B ;該環境溫度感測單元 300B係電連接至該線性計算單元40QB ;該熱事件感測單 元100B尚且操作性連接至一電子元件20B,藉以偵測該電 子元件20B所發生的熱事件。 [0006] 該熱事件感測單元100B感測該電子元件20B之熱事件可為 :該電子元件20B之溫度過熱、該電子元件20B之電壓增 加、該電子元件20B之電流增加、該電子元件20B重載或 該電子元件20B過載。 [0007] 該環境溫度感測單元3 0 0 B感測環境溫度後通知該線性計 算單元400B,藉以線性計算出環境溫度所對應之該風扇 單元700B之轉速,再通知該風扇驅動控制單元600B以驅 動該風扇單元700B。此外,當該熱事件感測單元100B偵 測到該電子元件20B發生熱事件時,通知該風扇驅動控制 單元600B以驅動該風扇單元700B之轉速達到最大值。 [0008] 請參考第五圖,其係為該習知風扇裝置10B之環境溫度與 風扇轉速曲線圖;可以看出該風扇單元700B之轉速與環 境溫度在20度至50度之間呈線性關係(溫度增加則轉速 增加;溫度降低則轉速降低),直到該熱事件感測單元 100B偵測到該電子元件20B發生熱事件時(圖示約在50 度至60度之間),該風扇驅動控制單元600B驅動該風扇 表單編號A0101 第4頁/共19頁 M381815 單元700B之轉速達到最大值。 [〇_综上所述,該習知風扇裝置1GA的轉逮與環境溫度呈線性 關係,但對電子設備«子產品内特定零件㈣位沒有 偵測及對應轉速提昇的能力,因Μ熱效果並不優良。 而該習知風扇裝置10Β較該習知風屬裝置10Α改進的地方 是可對電子設備或電子產品⑽定零件或部位進行_ ’當有熱事件發生時提昇該習知風屬裝置刚之轉速至最 大值;但如此的缺點是會造成電力不必要的消耗以及風 扇噪音的過度產生。 【新型内容】 [_為改善上述習知技術之缺點,本創作之目的在於提供一 種智慧型風扇|置,藉以達到優良的散熱效果且避免電 力不必要的消耗以及風扇噪音的過度產生。V. New description: [New technical field] r , > ea ~ a fan device, especially a smart wind shoulder [0001] This creation is related to the wind plant. [Prior Art] _] Fan is the most important part of heat dissipation; modern electronic equipment or electronic products are equipped with fans to reduce the heat generated by the operation of electronic parts and the like; excessive temperature will cause electronic equipment or electronic products. The working condition is unstable or even damaged. _3] Please refer to the second figure, which is a block diagram of one embodiment of a conventional fan device. The conventional fan unit 10A includes an ambient temperature sensing unit 300A, a linear computing unit 400A, a fan drive control unit 600A, and a fan unit 700A. The linear computing unit 40 is electrically connected to the ambient temperature sensing unit 300 and the fan driving control unit 600; the fan driving control unit 600 is electrically connected to the fan unit 700A. The ambient temperature sensing unit 300 is notified of the ambient temperature, and then the linear computing unit 400A is notified to linearly calculate the rotational speed of the fan unit 700A corresponding to the ambient temperature, and then notify the fan driving control unit 600A to The fan unit 700A is driven. Please refer to the third figure, which is a graph of the ambient temperature and the fan speed of the conventional fan unit 10A; it can be seen that the speed of the fan unit 700A is linear with the ambient temperature (the speed increases when the temperature increases; the speed decreases when the temperature decreases) Lower), until the ambient temperature exceeds a certain temperature (between 80 and 90 degrees is shown), the total speed of the fan unit 700A is maintained at a maximum. Form No. A0101 Page 3 of 19 M381815 [0005] Please refer to the fourth figure, which is a block diagram of another embodiment of a conventional fan unit. The conventional fan device 10B includes an ambient temperature sensing unit 300B, a linear computing unit 400B, a fan drive control unit 600B, a fan unit 700B, and a thermal event sensing unit 100B. The fan drive control unit 600B is electrically connected to the linear calculation unit 400B, the thermal event sensing unit 100B, and the fan unit 700B; the ambient temperature sensing unit 300B is electrically connected to the linear computing unit 40QB; The measuring unit 100B is further operatively connected to an electronic component 20B to detect a thermal event occurring in the electronic component 20B. [0006] The thermal event sensing unit 100B senses that the thermal event of the electronic component 20B may be: the temperature of the electronic component 20B is overheated, the voltage of the electronic component 20B is increased, the current of the electronic component 20B is increased, and the electronic component 20B is The overload or the electronic component 20B is overloaded. [0007] The ambient temperature sensing unit 300B senses the ambient temperature and notifies the linear computing unit 400B, thereby linearly calculating the rotational speed of the fan unit 700B corresponding to the ambient temperature, and notifying the fan driving control unit 600B to The fan unit 700B is driven. Further, when the thermal event sensing unit 100B detects that a thermal event has occurred in the electronic component 20B, the fan drive control unit 600B is notified to drive the rotational speed of the fan unit 700B to a maximum value. Please refer to FIG. 5 , which is a graph of ambient temperature and fan speed of the conventional fan unit 10B. It can be seen that the speed of the fan unit 700B is linear with the ambient temperature between 20 degrees and 50 degrees. (The temperature increases when the temperature increases; the speed decreases when the temperature decreases) until the thermal event sensing unit 100B detects that the electronic component 20B has a thermal event (approximately between 50 and 60 degrees), the fan drive The control unit 600B drives the fan form number A0101. Page 4/19 pages M381815 The speed of the unit 700B reaches the maximum value. [〇_ In summary, the conventional fan device 1GA has a linear relationship with the ambient temperature, but the ability to detect and respond to the specific speed of the specific part (4) in the electronic device «sub-product is due to the heat effect. Not very good. The improvement of the conventional fan device 10Β compared to the conventional wind device 10 can be performed on a part or a part of an electronic device or an electronic product (10) _ 'when a thermal event occurs, the speed of the conventional wind device is increased. To the maximum; but such a disadvantage is that it causes unnecessary consumption of power and excessive generation of fan noise. [New content] [_ In order to improve the shortcomings of the above-mentioned prior art, the purpose of the present invention is to provide a smart fan|distribution, thereby achieving excellent heat dissipation effect and avoiding unnecessary consumption of electric power and excessive generation of fan noise.
剛為達成本創作之上述目的,本_之智慧型風扇裝置係 應用於至少-電子^件,該智慧型風扇裝置包含:至少 -熱事件感測單S,操作性連接至該電子元件;一熱事 件查詢表單元,電連接至該熱事件感測單元;一加重轉 速計算單元’電連接至該熱事件查詢表單元;一線性計 算單元,電連接至該加重轉速計算單力;一環境溫度感 測單元,電連接至該線性計算單元;一風扇驅動控制單 元,電連接至該加重轉速計算單元及該線性計算單元; 及風扇早元,電連接至該風扇.驅動控制單元。該熱事 件感測單元❹m電子元件之—熱事件發生時,通知該 熱事件查4表單元,藉以查詢並產生該熱事件所對應之 -轉速增加比例信號並傳送至該加重轉速計算單元;該 表單編號A0101 第5頁/共19頁 M381815 環境溫度感測單元感測環境溫度後通知該線性計算單元 ,並配合該風扇驅動控制單元回授之一目前轉速信號, 藉以線性計算出一線性轉速信號並傳送至該加重轉速計 算單元;該加重轉速計算單元接收該轉速增加比例信號 及該線性轉速信號後,產生一加重轉速信號至該風扇驅 動控制單元.,藉以驅動該風扇單元。 【實施方式】 [0012] 請參考第一圖,其係為本創作之智慧型風扇裝置方塊圖 ;本創作之智慧型風扇裝置10係應用於至少一電子元件 20。該智慧型風扇裝置10包含至少一熱事件感測單元100 ,操作性連接至該電子元件20 ; —熱事件查詢表單元200 ,電連接至該熱事件感測單元100 ; —加重轉速計算單元 500,電連接至該熱事件查詢表單元200 ; —線性計算單 元400,電連接至該加重轉速計算單元500 ; —環境溫度 感測單元300,電連接至該線性計算單元400 ; —風扇驅 動控制單元600,電連接至該加重轉速計算單元500及該 線性計算單元400 ;及一風扇單元700,電連接至該風扇 驅動控制單元600。 [0013] 該熱事件感測單元100感測該電子元件20之該熱事件可為 該電子元件20之溫度過熱、該電子元件20之電壓增加、 該電子元件20之電流增加、該電子元件20重載或該電子 元件20過載;該熱事件感測單元100可為熱敏電阻(感測 溫度變化)等等感測該熱事件發生之元件;該風扇驅動 控制單元600可以脈寬調變(Pulse Width Modulation , PWM) 方式控 制該風扇單元 700 。 表單編號A0101 第6頁/共19頁 [0014] 舉例來說,該熱事件感測單元100感測該電子元件20重載 時,通知該熱事件查詢表單元200 ’藉以查詢並產生該轉 速增加比例信號S1 (該轉速增加比例信號s 1例如為轉速 增加百分之十之信號)並傳送至該加重轉速計算單元5〇〇 〇 [0015] 該環境溫度感測單元3 〇 〇感測環境溫度後通知該線性計算 單元400,旅配合該風扇驅動控制單元600回授之該目前 轉速信號S2,藉以線性計算出該線性轉速信號S3並傳送 至該加重轉迷計算單元5〇〇。例如該環境溫度感測單元 300感測環境溫度為40度時,線性計算出該線性轉速信號 S3為轉速為1000RPM之信號並傳送至該加重轉速計算單 元500 » [0016] 該加重轉速計算單元接收該轉速增加比例信號S1 (例 如為轉速增加百分之十之信號)及該線性轉速信號S3 ( 例如為轉速為1000RPM之信號)後,產生該加重轉速信號 S4為1〇〇〇*(1 + 1〇%) = 11〇〇rpm之信號,並傳送至該風扇 驅動控制早元600,藉以驅動該風扇單元7〇〇之轉速為 1100RPM。所以該風扇單元700在環境溫度為4〇度且恰好 發生該電子元件20重載時之轉速為ii〇〇rpm。 [0017] 本創作之該智慧型風扇裝置1 0比該習知風扇裝置1 〇A或該 習知風扇裝置1〇β優異的地方在於:該習知風扇裝置1〇A 無法對元件所產生的熱事件作提昇轉速的反應,本創作 之該智慧型風扇裝置10可對元件所產生的熱事件作提昇 轉迷的反應,以增加散熱效果;但又不似該習知風扇裝 置10B對熱事件提昇轉速的反應是提昇至轉速最大值,本 表單編號A0101 第7頁/共19頁 M381815 創作之該智慧型風扇裝置ίο可針對不同的熱事件增加不 同的轉速比例(例如重載時增加百分之十、過載時增加 百分之二十...等等),再對現有環境溫度的線性轉速計 算出最後的轉速(現有環境溫度的線性轉速增加百分之 十或百分之二十...等等),因此不會造成電力不必要的 消耗以及風扇噪音的過度產生。 [0018] 請參考第六圖,其係為本創作之智慧型風扇之一實施例 曲線圖。在環境溫度為20度至40度時,沒有熱事件發生 ,此時該智慧型風扇裝置1 0的轉速與環境溫度呈線性關 係;當元件發生重載時(圖示為環境溫度40度時發生重 載;須知元件發生重載時與環境溫度無關,只是本圖示 恰好在環境溫度40度時發生重載),轉速將由原本40度 的線性轉速1000RPM提昇至 1 000*(1 + 1 0%) = 1100RPM ( 假設重載時轉速增加百分之十)。< [0019] 接著,在環境溫度為40度至60度時,沒有熱事件發生, 該智慧型風扇裝置10的轉速與環境溫度呈線性關係(為 原本的線性關係加上重載時增加的百分之十);當元件 發生過載時(圖示為環境溫度60度時發生過載;須知元 件發生過載時與環境溫度無關,只是本圖示恰好在環境 溫度60度時發生過載),轉速將由原本60度的線性轉速 1 300RPM提昇至 1 300* ( 1 + 20%) = 1 560RPM (假設過載時 轉速增加百分之二十)。 [0020] 接著,在環境溫度為60度至90度時,沒有熱事件發生, 該智慧型風扇裝置10的轉速與環境溫度呈線性關係(為 原本的線性關係加上重載時增加的百分之十以及過載時 表單編號A0101 第8頁/共19頁 M381815 增加的百分之二十)。 [0021] 此外,發生熱事件時所增加的轉速將不會因為環境溫度 的下降而消失或減少;若環境溫度下降以至於轉速會低 於發生熱事件時的轉速(因環境溫度下降會造成轉速也 跟著下降,此乃環境溫度與轉速之線性關係),則轉速 會維持在發生熱事件當時的轉速,以確保因熱事件引發 的增加轉速仍能對元件發生散熱效果;也因此當熱事件 _ 消失時,轉速才會下降至原本沒有發生熱事件時的轉速 [0022] 本創作之智慧型風扇裝置的特點與優點為: [0023] 1.無熱事件發生時,轉速與環境溫度呈線性關係;發生 熱事件時,可針對不同熱事件有不同比例的增加轉速( 且為相對於現有與環境溫度呈線性關係的轉速增加比例 ,故並非固定值);且不限定熱事件發生的次數,以及 不限定監測元件之數量。Just for the above purposes of the present invention, the smart fan device of the present invention is applied to at least an electronic device, the smart fan device comprising: at least a thermal event sensing unit S operatively connected to the electronic component; a thermal event lookup table unit electrically connected to the thermal event sensing unit; a weighted rotational speed calculation unit 'electrically connected to the thermal event lookup table unit; a linear computing unit electrically connected to the weighted rotational speed to calculate a single force; an ambient temperature a sensing unit electrically connected to the linear computing unit; a fan drive control unit electrically connected to the weighted rotational speed calculating unit and the linear computing unit; and a fan early element electrically connected to the fan. drive control unit. When the thermal event occurs, the thermal event sensing unit 通知m notifies the thermal event to check the 4 table unit, thereby querying and generating the rotation speed increase ratio signal corresponding to the thermal event and transmitting to the weighted rotation speed calculation unit; Form No. A0101 Page 5 of 19 M381815 The ambient temperature sensing unit notifies the linear calculation unit after sensing the ambient temperature, and cooperates with the fan drive control unit to feedback one of the current rotational speed signals, thereby linearly calculating a linear rotational speed signal. And transmitting to the weighted speed calculation unit; the weighted speed calculation unit receives the speed increase ratio signal and the linear speed signal, and generates a weighted speed signal to the fan drive control unit to drive the fan unit. [Embodiment] [0012] Please refer to the first figure, which is a block diagram of the smart fan device of the present invention; the intelligent fan device 10 of the present invention is applied to at least one electronic component 20. The smart fan device 10 includes at least one thermal event sensing unit 100 operatively coupled to the electronic component 20; a thermal event lookup table unit 200 electrically coupled to the thermal event sensing unit 100; a weighted rotational speed computing unit 500 Connected to the thermal event lookup table unit 200; - a linear calculation unit 400 electrically connected to the weighted rotational speed calculation unit 500; an ambient temperature sensing unit 300 electrically connected to the linear calculation unit 400; - a fan drive control unit 600, electrically connected to the weighted rotation speed calculation unit 500 and the linear calculation unit 400; and a fan unit 700 electrically connected to the fan drive control unit 600. [0013] The thermal event sensing unit 100 senses that the thermal event of the electronic component 20 may be that the temperature of the electronic component 20 is overheated, the voltage of the electronic component 20 increases, the current of the electronic component 20 increases, and the electronic component 20 The overload or the electronic component 20 is overloaded; the thermal event sensing unit 100 can sense an element of the occurrence of the thermal event for a thermistor (sensing temperature change) or the like; the fan drive control unit 600 can be pulse width modulated ( The fan unit 700 is controlled by Pulse Width Modulation (PWM) mode. Form No. A0101 Page 6 of 19 [0014] For example, when the thermal event sensing unit 100 senses that the electronic component 20 is overloaded, the thermal event lookup table unit 200 is notified to query and generate the rotation speed increase. The proportional signal S1 (the speed increase proportional signal s 1 is, for example, a signal of a tenth increase in the rotational speed) and transmitted to the weighted rotational speed calculation unit 5[0015] The ambient temperature sensing unit 3 〇〇 senses the ambient temperature The linear computing unit 400 is then notified to cooperate with the current rotational speed signal S2 that is fed back by the fan drive control unit 600, thereby linearly calculating the linear rotational speed signal S3 and transmitting it to the weighted and fascinating computing unit 5〇〇. For example, when the ambient temperature sensing unit 300 senses that the ambient temperature is 40 degrees, the linear rotational speed signal S3 is linearly calculated as a signal with a rotational speed of 1000 RPM and transmitted to the weighted rotational speed computing unit 500 » [0016] The weighted rotational speed computing unit receives The speed increase proportional signal S1 (for example, a signal whose rotational speed is increased by ten percent) and the linear rotational speed signal S3 (for example, a signal having a rotational speed of 1000 RPM) generates the weighted rotational speed signal S4 to be 1〇〇〇*(1 + 1〇%) = 11〇〇 rpm signal is transmitted to the fan drive control early element 600, thereby driving the fan unit 7〇〇 to a speed of 1100 RPM. Therefore, the fan unit 700 has a rotational speed of ii rpm when the ambient temperature is 4 degrees and the electronic component 20 is reloaded. [0017] The smart fan device 10 of the present invention is superior to the conventional fan device 1A or the conventional fan device 1〇β in that the conventional fan device 1A cannot produce components. The thermal event is used to increase the speed response. The intelligent fan device 10 of the present invention can react to the thermal event generated by the component to increase the heat dissipation effect; however, it does not resemble the conventional fan device 10B for the thermal event. The response to the increase in speed is increased to the maximum speed. This smart fan unit created by this model number A0101 Page 7 of 19 M381815 can increase the speed ratio for different thermal events (eg increase the percentage when reloading) Tenth, increase 20% when overloading, etc.), and then calculate the final speed of the linear speed of the existing ambient temperature (the linear speed of the existing ambient temperature increases by 10% or 20%. .. etc.), so there is no unnecessary consumption of power and excessive fan noise. [0018] Please refer to the sixth figure, which is a graph of one embodiment of the intelligent fan of the present invention. When the ambient temperature is 20 degrees to 40 degrees, no thermal event occurs. At this time, the speed of the smart fan unit 10 is linear with the ambient temperature; when the component is overloaded (the ambient temperature is 40 degrees, the figure occurs). Heavy load; it must be known that the component is overloaded with the ambient temperature, but this illustration happens to be overloaded at an ambient temperature of 40 degrees), and the speed will be increased from the original linear speed of 1000 degrees 1000RPM to 1 000* (1 + 1 0%) ) = 1100RPM (assuming a 10% increase in speed at heavy loads). [0019] Next, when the ambient temperature is 40 degrees to 60 degrees, no thermal event occurs, and the rotational speed of the smart fan device 10 is linear with the ambient temperature (the original linear relationship plus the increase at the time of heavy load) 10%); When the component is overloaded (the overload occurs when the ambient temperature is 60 degrees; it is known that the component is overloaded regardless of the ambient temperature, but this illustration happens to be overloaded at an ambient temperature of 60 degrees), the speed will be The original 60 degree linear speed of 1 300RPM is increased to 1 300* ( 1 + 20%) = 1 560RPM (assuming a 20% increase in speed when overloading). [0020] Next, when the ambient temperature is 60 degrees to 90 degrees, no thermal event occurs, and the rotational speed of the smart fan device 10 is linear with the ambient temperature (the original linear relationship plus the percentage increase at the time of heavy load) Tenth and overloaded form number A0101 Page 8 / 19 pages M381815 increased by 20%). [0021] In addition, the increased rotational speed when a thermal event occurs will not disappear or decrease due to a drop in ambient temperature; if the ambient temperature drops so that the rotational speed is lower than the rotational speed at which a thermal event occurs (the rotational speed is caused by a drop in ambient temperature) It is also followed by a drop, which is the linear relationship between ambient temperature and speed.) The speed will be maintained at the speed at which the thermal event occurred to ensure that the increased speed due to thermal events can still dissipate heat to the component; When it disappears, the speed will drop to the speed when there is no thermal event [0022] The characteristics and advantages of the intelligent fan unit of this creation are: [0023] 1. When there is no heat event, the speed is linear with the ambient temperature. In the event of a thermal event, there may be different proportions of increased speed for different thermal events (and a proportional increase in speed relative to the existing ambient temperature relationship, so it is not a fixed value); and does not limit the number of occurrences of thermal events, and The number of monitoring elements is not limited.
[0024] 2.不會造成電力不必要的消耗。 [0025] 3.不會產生過度的風扇噪音。 [0026] 4.風扇在系統内的架設將更具有彈性。 [0027] 5.風扇更適合在不同環境下作不同的溫度補償。 [0028] 6.更適用於各種不同型號特性的風扇。 [0029] 综上所述,當知本創作已具有產業利用性、新穎性與進 步性,又本創作之構造亦未曾見於同類產品及公開使用 ,完全符合新型專利申請要件,爰依專利法提出申請。 表單編號A0101 第9頁/共19頁 M381815 【圖式簡單說明】 [0030] 第一圖為本創作之智慧型風扇裝置方塊圖。 [0031] 第二圖為習知風扇裝置之一實施例方塊圖。 [0032] 第三圖為習知風扇裝置之環境溫度與風扇轉速曲線圖。 [0033] 第四圖為習知風扇裝置之另一實施例方塊圖。 [0034] 第五圖為習知風扇裝置之環境溫度與風扇轉速曲線圖。 [0035] 第六圖為本創作之智慧型風扇之一實施例曲線圖。 【主要元件符號說明】 [0036] 智慧型風扇裝置10 [0037] 電子元件20 [0038] 熱事件感測單元100 [0039] 熱事件查詢表單元200 [0040] 加重轉速計算單元500 [0041] 線性計算單元400 [0042] 環境溫度感測單元300 [0043] 風扇驅動控制單元600 [0044] 風扇單元700 [0045] 轉速增加比例信號S1 [0046] 目前轉速信號S2 [0047] 線性轉速信號S3 表單編號A0101 第10頁/共19頁 M381815[0024] 2. Does not cause unnecessary consumption of power. [0025] 3. Excessive fan noise is not generated. [0026] 4. The erection of the fan within the system will be more flexible. [0027] 5. The fan is more suitable for different temperature compensation in different environments. [0028] 6. More suitable for fans of various types of characteristics. [0029] In summary, when the knowledge creation has industrial utilization, novelty and progress, and the structure of the creation has not been seen in similar products and public use, fully comply with the requirements of the new patent application, according to the patent law Application. Form No. A0101 Page 9 of 19 M381815 [Simple Description of the Drawings] [0030] The first figure is a block diagram of the smart fan device of the creation. [0031] The second figure is a block diagram of one embodiment of a conventional fan device. [0032] The third figure is a graph of ambient temperature and fan speed of a conventional fan device. [0033] The fourth figure is a block diagram of another embodiment of a conventional fan device. [0034] The fifth figure is a graph of ambient temperature and fan speed of a conventional fan device. [0035] The sixth figure is a graph of one embodiment of the intelligent fan of the present invention. [Main Component Symbol Description] [0036] Intelligent Fan Device 10 [0037] Electronic Event Sensing Unit 100 [0039] Thermal Event Query Table Unit 200 [0040] Weighted Speed Calculation Unit 500 [0041] Linear Calculation unit 400 [0042] Ambient temperature sensing unit 300 [0043] Fan drive control unit 600 [0044] Fan unit 700 [0045] Speed increase proportional signal S1 [0046] Current speed signal S2 [0047] Linear speed signal S3 Form number A0101 Page 10 of 19 M381815
[0048] 加重轉速信號S4 [0049] 習知風扇裝置10A [0050] 環境溫度感測單元300A [0051] 線性計算單元400A [0052] 風扇驅動控制單元600A [0053] 風扇單元700A [0054] 習知風扇裝置10B [0055] 環境溫度感測單元300B [0056] 線性計算單元400B [0057] 風扇驅動控制單元600B [0058] 風扇單元700B [0059] 熱事件感測單元100B [0060] 電子元件20B 表單編號A0101 第11頁/共19頁[0048] Weighted Speed Signal S4 [0049] Conventional Fan Device 10A [0050] Ambient Temperature Sensing Unit 300A [0051] Linear Computing Unit 400A [0052] Fan Drive Control Unit 600A [0053] Fan Unit 700A [0054] Fan Device 10B [0055] Ambient Temperature Sensing Unit 300B [0056] Linear Computing Unit 400B [0057] Fan Drive Control Unit 600B [0058] Fan Unit 700B [0059] Thermal Event Sensing Unit 100B [0060] Electronic Component 20B Form Number A0101 Page 11 of 19