M318282 八、新型說明: 【技術領域】 本發明涉及無線通信系統。特別地,本發明涉及的是 用於在基於單隧道通用封包無線服務(GPRS)的無線通信 系統中支援路由區域更新的設備。 【背景技術】 第1圖顯示的是習用的GPRS/第三代(3G)無線通信 系統架構100,其中顯示了不同的介面/協定以及處於不同 網路實體之間的使用者資料傳送介面。無線通信系統1〇〇 包括至少一個服務GPRS支援節點(SGSNy 1〇5以及至少 一個閘道GPRS支持節點(GGSN) 110。該無線通信系統 100還包括通用陸地無線存取網路(UTRAN) 115,該網路 包括一個或多個無線存取網(RAN)、基地台系統(BSS) 以及無線網路控制器(RNC)(未顯示)。系統1〇〇還包括 多個無線傳送/接收單元(WTRU) 12〇,其中每一個都包括 與行動終端(MT) 130相耦合的終端設備(TE) ι25。無 線通信系統100中的移動性可以借助下列操作來促進:在 GGSN110上固定網際網路協定(Ip)會話,以及通過支援 SGSN 105所提供的用於Ip和非Ip訊務/服務的行動性管理 (MM)協定而對多級行動性加以考慮。 第2A圖顯示的是如何在第1圖的習用無線通信系統 100中建立雙隨道,以便為使用者平面訊務提供ιρ連接性。 如第2A圖所示,GPRS隧道協定(GTp)使用者平面 (GTP-U)随道220是在GGSN2〇5與SGSN21〇之間建立 M318282 的’並且在SGSN 210與無線網路控制器(rj^c) 215之間 建立了第二使用者平面隧道225。這兩條隧道都是專用於同 一個使用者的。GTP隧道220具有使用者平面和控制平面。 使用者随道225則是IP隧道,它具有使用者平面以及用於 控制訊息傳遞的RAN應用部分(RANAp)控制平面。 一路由區域更新(RAU)被用於賴分為㈣的無線通 信系統内部的尋呼訊務量減至最少。每個叢集都包含了一 組^區(Node-B)。並且每個叢集都是由唯一的辨識符(也 就是路由區域辨識符(ID))定義的。對無線通信系統中這 些穿越叢集邊界的资肌來說,它們必須執行名為路由區 域更新的註冊處理。在RAU中,WTRU會向核⑵網告知其 在系統哪-個區域中運行。如果WTRU接收到被叫,那麼 核心網會在最後一個已知的路由區域中尋呼該WTRU。這 樣做可以消除在整個系統中發送用於WTRU的尋呼訊息的 需要,而這轉而會顯著減少純中的發信數量。由此^更 多的處理功率可以分配給使用者訊務 。RAU有可能需要在 GGSN與新的姻c之間建立新的連接。與雙随道方法中已 有的處理和訊息格式概,相道方法錢新的處理和訊 見〇 在向全IP網路(AIPN)的演進中,大多數服務和應 都會遷移到基於Ip的平臺。這種遷移需要正連接性,並 所產生的訊務私在SGSN赌。因此,單贼功能㊉ 少SGSN上的延遲和處理功料言是轉理糾。/ 【創作内容】 M318282 本發明涉及一種用於在GPRS/3G網路以及後續網路中 通過使用單隧道來支援路由區域更新的設備。無線傳送/接 收單元(WTRU)經由RNC向SGSN發送啟動封包資料協 定(PDP)上下文請求,並且SGSN向GGSN發送建立PDp 上下文請求。所述建立PDP上下文請求包括PDP類型、pDp 位址、存取點名稱(APN)、單隧道請求、RNC隨道端點標 識(TEID)以及服務品質(Q〇S)資料,由此在(}〇汹與 RNC之間建立了單隧道。 在一個實施例中,WTRU經由RNC向SGSN發送路由 區域更新請求訊息。SGSN則向GGSN發送更新PDP上下 文請求訊息。GGSN向SGSN發送更新PDP上下文回應訊 息。SGSN則向RNC發送隧道建立請求訊息,並且在欣c 與GGSN之間建立了單隧道。對切換操作來說,在與 另一個RNC之間業已建立的先前的單隧道將被釋放,並且 路由區域更新將被接受和完成。 【具體實施方式】 當下文引用時,術語“無線傳送/接收單元(WTRU),, 包括但不局限於使用者設備(UE)、行動站、固定或行動使 用者單元、尋呼機、行動電話、個人數位助理(PDA)、電 腦或是能在無線環境中工作的其他類型的使用者設備。當 下文引用時’術語“基地台”包括但不局限KN〇de_B、站 點控制器、存取點(AP)或是其他任何能在無線環境中工 作的周邊設備。 本發明的特徵既可以引入積體電路(IC),也可以配置 8 M318282 在包含眾多互連元件的電路中。 根據本發明,GPRS (3G或後續)系統中的行動性可 以借助下列操作來促進:在歸屬GGSN上錨定IP會話,對 夕級行動性加以考慮,以及支援SGSN所提供的用於非ip 訊務/服務的現有MM協定。 弟2B圖顯示的是根據本發明的單使用者平面隨道方 法。單使用者平面隧道230被用於減少SGSN 210,的延遲 和處理功率。在第2A圖顯示的雙隧道方法中,SGSN 210 終止了連至RNC 215的〇丁?隧道220以及使用者平面隧道 225,這意味著8〇观210對在兩個方向上傳播的封包進行 了解碼,並且將其轉換成了兩個隧道22〇和225所具有的 不同協定格式。在第2B圖所示的單隧道方法中,SGSN21〇, 僅僅經由兩個分離的介面/協定(ranapw以及GTp_c) 而在GGSN 205,與RNC 215,之間建立了隧道。在單隧道方 法中,SGSN210,不再與使用者平面訊務有關。由此,使用 者訊務在兩個方向上都會無變化地(也就是未改變)穿過 SGSN 210’。此外,SGSN 210’也不再與使用者平面處理有 關。只有RNC215’和GGSN205,才被允許執行/作用於使用 者平面訊務。SGSN 210’則僅僅管理與使用者及其基於正 的訊務相關聯的控制訊務,這其中包括MM、RAU等等。 SGSN 210’通過使用GTP控制平面與GGSN 2〇5,進行通信 以及使用RANAP控制平面與聰c 215,進行通信來連接 RNC 215’以及GGSN 205’。當在rnc之間進行切換時, SGSN 210’負責為GGSN 205’提供新的rnc TEID資訊以 M318282 及單隨道230的建立。 第3圖顯示的是根據現有GPRS協定的現有技術中的 随道協定堆疊。GTP-U隧道在UTRAN (包括RAN、BSS 以及 RNC)與 3G-SGSN 之間以及 3G-SGSN 與 3G-GGSN 之間傳送(也就是隧道傳輸)使用者資料。 弟4圖顯示的是根據本發明的單隧道協定堆疊中的使 用者平面,其中來自UTRAN的使用者平面隧道不會在 3G-SGSN終結。取而代之的是,UTRAN會在3G-GGSN終 結。UTRAN和〇081\[中顯示的正隨道可以基於(3丁卩,或 疋任何普通的ιρ隧道。在一個較佳實施例中,其中使用了 GTP-U隧道作為ip隧道。 弟5圖是根據本發明的單隧道建立的發信圖。單随道 功旎通過減少RNC與GGSN介面之間的協定轉換的需要, 以及在封包交換(PS)域的内部在反^/^^與⑻撕之 間啟動直接使用者平面隧道,從而減少SGSN上的延遲和 處理功率。然而,單隧道方法不會消除由SGSN來為基於 IP的篇務管理其控制訊務的需要。對控制平面發信、 以及呼叫/會話管理而言,SGSN仍蕾是必需的,並且 SGSN 將會判定何時建立單隧道而不是雙隧道。 就單隨道而曰’SGSN應该通過向随道的每個端點通知 另一個端點的相應TEID (也就是向GGSN通知聰c ΤΕΠ) 以及向RNC通知GGSN TEID)來為使用者平面連接 RAN/RNC TEID以及GGSN TEID。域在rnc之間進行 切換,那麼RNC將會負責更新並且為⑽观提供新的 M318282 TEID資訊以及單隧道建立。 第5圖顯示的是根據本發明而在無線通信系統中實施 的單隧道建立過程(封包資料協定(PDP)上下文啟動), 其中該系統包括WTRU 505、無線存取網路(ran) /無線 網路控制器(RNc ) 510、SGSN 515 以及 GGSN 520。WTRU 505向SGSN 515發送啟動PDP上下文請求,該請求包含 了 PDP類型^顶位址^州^服務品質⑴⑻資料等 等(步驟525 )。SGSN 515驗證該啟動PDP上下文請求, 選擇APN,並且將APN缺射到GGSN 520(步驟530> SGSN 515確定是否支持和/或請求單隧道,並且記錄存在rnc TEID (步驟530)。SGSN 515建立PDP上下文請求,該請 求包含了 PDP類型、PDP位址、APN、單隧道請求、rnc TEID、Q〇S等等(步驟535 )。GGSN 520則創建PDP上下 文回應,該回應包含了 PDP類型、PDP位址、APN、表明 許可單隧道的指示符、GGSN TEID、QoS等等(步驟540 )。 WTRU 5〇5和RAN/RNC 510則建立無線存取承載(rab) (步驟 545 )。在步驟 550,SGSN515 和 RAN/RNC 510 交 換隧道設置發信,該發信包含了行動站國際使用者名錄號 碼(MSISDN)、PDP位址以及〇〇81^£;0>,而 8〇8化15 則在接收到來自GGSN的隧道建立接受指示之後,向 RAN/RNC 510發送随道建立資訊。SGSN 515向GGSN 520 發送更新PDP上下文請求(步驟560 ),以便通過將關聯於 該請求的RNC TEID告知GGSN 520來建立新的隨道,並 且GGSN 520向SGSN515發送用以確認/拒絕隧道建立及相 M318282 關屬性(RNC TEID、PDP類型、PDP位址、使用者ID等 等)的更新PDP上下文回應(步驟565)。SGSN 515則將 GGSN位址插入其PDP上下文,發送接收自GGSN的PDP 位址(步驟570),並且預備下發至WTRU505的回應。由 此,如有必要,SGSN 515將會更新GGSN 520中的PDP 上下文,以便反應步驟545的RAB建立所造成的QoS屬性 變化。在RAN/RNC 510與GGSN 520之間將會交換隧道建 立發信’這其中包括MSISDN、PDP位址、RNC TEID以 及 GGSN TEID (步驟 575)。SGSN 515 會向 WTRU505 發 送表明存在單隧道的啟動PDP上下文接受信號(步驟580)。 第6圖顯示的根據本發明而在無線通信系統中實施的 單隧道的SGSN内部RNC之間路由區域更新過程,其中該 系統包括WTRU 605、舊的基地台系統(BSS) /RNC 610、 新的 BSS/RNC 615、SGSN 620、GGSN 625 以及歸屬位置 暫存器(HLR) 030 〇 仍舊參考第6圖,舊的隧道是在舊的bss/RNC610與 GGSN 625之間建立的(步驟635)。WTRU 6〇5向新的 BSS/RNC 610以及SGSN 620發送路由區域更新(RAU) 請求,該請求可以包括封包臨時移動使用者標識 (P-TMSI)、舊的路由區域標識(raj )、舊的卜1]^1簽名、 更新類型等等(步驟640)。更新類型表示路由區域更新是 否為週期性的。然後,在WTRU 605、SGSN 620以及HLR 630之間將會建立安全功能(步驟65〇 >SGSN 62〇向GGSN 625發送更新PDP上下文請求(步驟655 )。然後,GGSN 625 12 M318282 向SGSN 620發送更新PDP上下文回應(步驟660)。SGSN 620向新的BSS/RNC 615發送隧道建立請求(步驟665)。 在步驟655 ’ SGSN 620通過在步驟660的更新PDP上下文 請求中向GGSN 625發送新的BSS/RNC 615的TEID而在 GGSN 625與新的388/^(: 615之間建立新的隧道。如果 許可該請求,那麼GGSN 625會在步驟660中向SGSN620 反向確認該請求。在步驟665,SGSN 620借助隧道建立訊 息而向新的BSS/RNC 615發送GGSN 625的TEID,由此建 立新的BSS/RNC 615的隧道的另一端。在步驟670, BSS/RNC 615將會確認該請求,並且向SGSN 62〇指示操 作成功。現在,在步驟675中建立了新的隧道。作為選擇, 在這裏也可以存在附加的更新PDP上下文請求,並且該請 求取決於QoS屬性的最終設置。然後,新的bss/RNC 615 會向SGSN 620發送隧道建立回應(步驟67〇)。由此,在 新的BSS/RNC 615與GGSN 625之間建立了新的随道(步 驟675)。一旦新的隧道成功建立,那麼SGSN 62〇會在步 驟680中通過向舊的BSS/RNC 61〇發送釋放請求,從而釋 放舊的随道。而舊的BSS/RNC 610則會向SGSN 62〇發送 釋放回應(步驟685)。該SGSN620會向新的bss/RNC 615 以及WTRU605發送路由區域更新接受(步驟69〇)。然後, WTRU 605會向新的BSS/RNC 615以及SGSN 62〇發送路 由區域更新完成訊息(步驟695)。 第7A圖和第7B圖共同顯示了根據本發明而在無線通 信系統中實施的單隧道的SGSN之間(intre_SGSN)路由區 13 M318282 域更新過程,其中該系統包括WTRU 705、舊的BSS/RNC 710、新的 BSS/RNC715、新的 SGSN720、舊的 SGSN725、 GGSN 728 以及 HLR 730。 參考第7A圖,在舊的BSS/RNC 710與GGSN 728之 間建立了舊的隧道(步驟732)。WTRU 705向新的BSS/RNC 734以及新的SGSN 720發送路由區域更新請求,該請求可 以包括P-TMSI、舊的RAI、舊的P_TMSI簽名、更新類型 等等(步驟734)。該更新類型表明該路由區域更新是否為 週期性的。新的SGSN 720會向舊的SGSN 725發送SGSN 上下文請求(步驟736)。舊的SGSN 725則向新的SGSN 720 發送SGSN上下文響應(步驟738)。然後,在WTRU 705、 新的SGSN 720以及HLR 730之間將會建立安全功能(步 驟740 )。新的SGSN 620向舊的SGSN 725發送SGSN上 下文確認訊息(步驟742),並且會向GGSN 728發送更新 PDP上下文請求(步驟655),其中該請求指示的是單随道 以及新的BSS/RNC 715的TEID。然後,GGSN 728向新的 SGSN 720發送更新PDP上下文響應(步驟746 )。新的sgsn 720則向新的BSS/RNC 715發送隧道設置訊息,該訊息指 示的是MSISDN、PDP位址以及〇〇81^£10(步驟748 )。 然後,新的BSS/RNC 715向新的808>^發送隧道設置確認 訊息(步驟750)。由此,在新的BSS/RNC 715與GGSN 728 之間將會建立新的隧道(步驟752)。 對使用舊隧道的系統中的未決訊務來說,出於服務連 續性的考慮,這些訊務會從舊的BSS/RNC 610轉發到新的 M318282 BSS/RNC 615。參考第7B圖,在建立了新的隧道之後,轉 發封包將會從新的SGSN 720發送到舊的SGSN 725 (步驟 754)。在步驟754,轉發封包將會從新的犯观72〇發送到 舊的SGSN 725 (步驟754)。在步驟756,轉發封包將會從 舊的SGSN 725發送到舊的BSS/RNC 710。在步驟758,封 包將會從舊的BSS/RNC 710轉發到新的BSS/RNC715。在 步驟760,舊的 BSS/RNC 710 會向舊的SGSN 725 發送轉 發封包確認訊息。在步驟762,舊的SGSN 725會向新的 SGSN 720發送轉發封包碟認訊息。在步驟764,新的SGSN 會向HLR 730發送更新位置訊息。在步驟766,hlr 73〇 向舊的SGSN 725發送取消位置訊息。在步驟768,在舊的 BSS/RNC 710與舊的SGSN 725之間將會交換釋放發信(例 如釋放請求訊息和釋放回應訊息)。在步驟770,從SGSN 725以及HLR 730發送取消位置確認訊息。在步驟772, HLR 730會向新的SGSN 720發送插入使用者資料。在步驟 774,新的8〇8怀720會向111儿730發送插入使用者資料確 認訊息。在步驟776,HLR 730會向新的SGSN 720發送更 新位置碟認訊息。在步驟778,新的SGSN 720會向新的 BSS/RNC 715以及WTRU 705發送路由區域更新接受訊 息。在步驟780,WTRU 705會向新的388舰(3以及新的 SGSN 720發送路由區域更新完成訊息。 雖然本發明的特徵和元素在較佳的實施方式中以特定 的結合進行了描述,但每個特徵或元素可以在沒有該較佳 實施方式的其他特徵和元素的情況下單獨使用,或在與或 15 M318282 不與本發明的其他特徵和元素結合的各種情況下使用。本 發明提供的方法或流程圖可以在由通用電腦或處理器執行 的電腦程式、軟體或韌體中實施,其中所述電腦程式、軟 體或韌體是以有形的方式包含在電腦可讀儲媒體中的。關 於電腦可讀儲存媒體的實例包括唯讀記憶體(R〇Mh隨機 存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體 設備、内部硬碟和可移動磁碟之類的磁性媒體、磁光媒體 以及CD-ROM碟片和數位通用光碟(DVD )之類的光媒體。 舉例來說,恰當的處理器包括··通用處理器、專用處 理器、習用處理器、數位信號處理器(DSp)、多個微處理 器、與DSP核心相關聯的一個或多個微處理器、控制器、 微控制器、特定功能積體電路(ASIC)、現場可編程閘陣列 (FPGA)電路、任何一種積體電路㈤)和/或狀態機。 與軟體相關聯的處理器可以用於實現一個射頻收發 機,以便在無線傳送接收單元乂WTRU)、使用者設備、終 端、基地台、無線網路控制器或是任何主機電腦中加以使 用。WTRU可以與採用硬體和/或軟體形式實施的模組結合 使用’例如相機、攝像機模組、視訊電話、喇σ八擴音器、 振動裝置、揚聲器、麥克風、電視收發機、免提耳機、鍵 盤、藍牙⑧模組、調頻(FM)無線單元、液晶顯示器(lcd) 顯示單元、有機發光二極體(0LED)顯示單元、數位音樂 播放器、媒體播放器、視訊遊戲機模組、網際網路流覽器 和/或任何無線區域網(WLAN)模組。 M318282 【圖式簡單說明】 從以下關於具體實施方式的描述以更〒地瞭解 f明,這些較佳實施例是作為實例給出的 個或多個附圖而被理解的,其中:业疋、、 f 1圖顯示的是習用的GPRS和3G無線通信系統; 第2A圖顯示的是雙隧道的習用建立· 第2B圖顯示的是根據本發明的單隧道的建立; 第3圖顯示的是現有技術中的隧道協定堆疊卜^ 第4圖顯示的是根據本發明配置的單隧道協定堆疊; 第5圖顯示的是根據本發明實施的單隧道建立過程(1>〇1> 上下文啟動); 第6圖顯示的是根據本發明一個實施例的翠随道的 SGSN内部RNC之間路由區域更新過程;以及 第7A圖和第7B圖共同顳示的是根據本發明另一個實施 例的單隧道的SGSN之間(intre-SGSN)路由區域更新過程。 17 M318282M318282 VIII. New Description: TECHNICAL FIELD The present invention relates to a wireless communication system. In particular, the present invention relates to an apparatus for supporting routing area updates in a single tunnel general packet radio service (GPRS) based wireless communication system. BACKGROUND OF THE INVENTION Figure 1 shows a conventional GPRS/third generation (3G) wireless communication system architecture 100 in which different interfaces/protocols and user data transfer interfaces between different network entities are shown. The wireless communication system 1 includes at least one serving GPRS support node (SGSNy 1〇5 and at least one gateway GPRS support node (GGSN) 110. The wireless communication system 100 also includes a universal terrestrial radio access network (UTRAN) 115, The network includes one or more Radio Access Network (RAN), Base Station System (BSS), and Radio Network Controller (RNC) (not shown). System 1 also includes a plurality of WTRUs ( The WTRUs are 12", each of which includes a terminal device (TE) ι 25 coupled to a mobile terminal (MT) 130. Mobility in the wireless communication system 100 can be facilitated by: securing an internet protocol on the GGSN 110 (Ip) sessions, and consideration of multi-level mobility by supporting the Mobile Management (MM) protocol for Ip and non-Ip traffic/services provided by the SGSN 105. Figure 2A shows how the first is A dual track is established in the conventional wireless communication system 100 of the figure to provide ιρ connectivity for the user plane traffic. As shown in FIG. 2A, the GPRS Tunneling Protocol (GTp) User Plane (GTP-U) is provided with the track 220. At GGSN2〇5 and SGSN A second user plane tunnel 225 is established between the SGSN 210 and the radio network controller (rj^c) 215. Both tunnels are dedicated to the same user. The GTP tunnel 220 has a user plane and a control plane. The user channel 225 is an IP tunnel with a user plane and a RAN Application Part (RANAp) control plane for controlling message delivery. A Routing Area Update (RAU) is The amount of paging traffic within the wireless communication system used for the subdivision (4) is minimized. Each cluster contains a set of Node-Bs, and each cluster is uniquely identified (also It is defined by the Routing Area Identifier (ID). For these muscles that pass through the cluster boundary in the wireless communication system, they must perform a registration process called routing area update. In the RAU, the WTRU will inform the core (2) network. It operates in which area of the system. If the WTRU receives the called, the core network will page the WTRU in the last known routing area. This will eliminate the transmission of paging for the WTRU throughout the system. News The need, and this in turn will significantly reduce the number of purely sent messages. Thus more processing power can be allocated to the user traffic. RAU may need to establish a new connection between the GGSN and the new marriage c With the existing processing and message formats in the dual-channel method, the new method of processing and the information in the evolution to the all-IP network (AIPN), most services and should be migrated to Ip-based Platform. This migration requires positive connectivity and the resulting traffic is privately gambling at the SGSN. Therefore, the single thief has fewer functions on the SGSN and the processing power is correct. / [Creation Content] M318282 The present invention relates to an apparatus for supporting routing area update by using a single tunnel in a GPRS/3G network and subsequent networks. The WTRU transmits a Start Packet Data Association (PDP) Context Request to the SGSN via the RNC, and the SGSN sends a Setup PDp Context Request to the GGSN. The establishing PDP context request includes a PDP type, a pDp address, an access point name (APN), a single tunnel request, an RNC Random Endpoint Identifier (TEID), and a Quality of Service (Q〇S) data, thereby A single tunnel is established between the R&S and the RNC. In one embodiment, the WTRU sends a Routing Area Update Request message to the SGSN via the RNC. The SGSN sends an Update PDP Context Request message to the GGSN. The GGSN sends an Update PDP Context Response message to the SGSN. Then, a tunnel establishment request message is sent to the RNC, and a single tunnel is established between the xinc and the GGSN. For the handover operation, the previous single tunnel that has been established with another RNC will be released, and the routing area is updated. Will be accepted and completed. [0012] The term "wireless transmitting/receiving unit (WTRU), including but not limited to user equipment (UE), mobile station, fixed or mobile user unit, Pager, mobile phone, personal digital assistant (PDA), computer or other type of user device that can work in a wireless environment. The base station includes, but is not limited to, a KN〇de_B, a site controller, an access point (AP), or any other peripheral device capable of operating in a wireless environment. Features of the present invention can be incorporated into an integrated circuit (IC). The 8 M318282 can also be configured in a circuit that includes numerous interconnect elements.According to the present invention, mobility in a GPRS (3G or subsequent) system can be facilitated by: anchoring an IP session on the home GGSN, acting at the eve level Considering the nature and supporting the existing MM agreement for non-ip services/services provided by the SGSN. Figure 2B shows a single user plane channel method in accordance with the present invention. A single user plane tunnel 230 is used. The delay and processing power of the SGSN 210 is reduced. In the dual tunneling method shown in Figure 2A, the SGSN 210 terminates the Kenting Tunnel 220 and the User Plane Tunnel 225 connected to the RNC 215, which means that the pair 202 The packets propagating in both directions are decoded and converted into different protocol formats for the two tunnels 22〇 and 225. In the single tunnel method shown in Figure 2B, SGSN21〇, only A tunnel is established between the GGSN 205 and the RNC 215 by two separate interfaces/protocols (ranapw and GTp_c). In the single tunneling method, the SGSN 210 is no longer associated with user plane traffic. The traffic will pass through the SGSN 210' unchanged in both directions (ie, unchanged). In addition, the SGSN 210' is no longer related to user plane processing. Only the RNC215' and GGSN205 are allowed to execute/ Acts on user plane traffic. The SGSN 210' then manages only the control messages associated with the user and its positive traffic, including MM, RAU, and the like. The SGSN 210' connects to the RNC 215' and the GGSN 205' by communicating with the GGSN 2〇5 using the GTP control plane and communicating with the RANAP control plane using the RANAP control plane. When switching between rnc, the SGSN 210' is responsible for providing the GGSN 205' with new rnc TEID information to establish M318282 and the single track 230. Figure 3 shows the prior art stacking protocol in accordance with the existing GPRS protocol. The GTP-U tunnel transmits (ie, tunnels) user data between the UTRAN (including the RAN, BSS, and RNC) and the 3G-SGSN and between the 3G-SGSN and the 3G-GGSN. Figure 4 shows the user plane in a single tunnel protocol stack in accordance with the present invention in which the user plane tunnel from the UTRAN is not terminated at the 3G-SGSN. Instead, UTRAN will end up at 3G-GGSN. The UTRAN and 〇081\[shown in the positive track can be based on (3 卩, or 普通 any ordinary ιρ tunnel. In a preferred embodiment, the GTP-U tunnel is used as the ip tunnel. A single tunnel-established signaling map according to the present invention. The single-channel power scheme reduces the need for protocol conversion between the RNC and the GGSN interface, and tears in the interior of the packet-switched (PS) domain in the opposite direction. Direct user plane tunneling is initiated to reduce latency and processing power on the SGSN. However, the single tunneling approach does not eliminate the need for the SGSN to manage its control traffic for IP-based profiles. As well as call/session management, the SGSN is still required, and the SGSN will determine when to establish a single tunnel instead of a dual tunnel. As with the single channel, the SGSN should notify each endpoint of the channel by The corresponding TEID of an endpoint (ie, notifying the GGSN) and the GGSN TEID are notified to the user plane to connect the RAN/RNC TEID and the GGSN TEID. The domain switches between rnc, then the RNC will be responsible for updating and providing new M318282 TEID information and single tunnel establishment for (10) view. Figure 5 shows a single tunnel setup procedure (Packet Data Protocol (PDP) context initiation) implemented in a wireless communication system in accordance with the present invention, wherein the system includes a WTRU 505, a wireless access network (ran)/wireless network Road controller (RNc) 510, SGSN 515, and GGSN 520. The WTRU 505 sends a Start PDP Context Request to the SGSN 515, the request including the PDP Type ^ Top Address ^ State ^ Service Quality (1) (8) Profile, etc. (step 525). The SGSN 515 verifies the initiating PDP context request, selects the APN, and routes the APN to the GGSN 520 (step 530). The SGSN 515 determines whether to support and/or request a single tunnel, and records the presence of the rnc TEID (step 530). The SGSN 515 establishes a PDP. Context request, the request includes a PDP type, a PDP address, an APN, a single tunnel request, a rnc TEID, a Q 〇 S, etc. (step 535). The GGSN 520 creates a PDP context response, which includes the PDP type and the PDP bit. Address, APN, indicator indicating the license ticket tunnel, GGSN TEID, QoS, etc. (step 540) The WTRU 5〇5 and RAN/RNC 510 then establish a radio access bearer (rab) (step 545). The SGSN515 and RAN/RNC 510 exchange tunnel settings are sent, including the Mobile Station International Subscriber Directory Number (MSISDN), the PDP address, and the ^81^£;0>, while the 8〇8 is received. After the tunnel establishment acceptance indication from the GGSN, the channel setup information is sent to the RAN/RNC 510. The SGSN 515 sends an Update PDP Context Request to the GGSN 520 (step 560) to inform the GGSN 520 by the RNC TEID associated with the request. set up And the GGSN 520 sends an Update PDP Context Response to the SGSN 515 to confirm/reject the tunnel establishment and the M318282 off attribute (RNC TEID, PDP Type, PDP Address, User ID, etc.) (step 565). 515 then inserts the GGSN address into its PDP context, transmits the PDP address received from the GGSN (step 570), and prepares a response to the WTRU 505. Thus, if necessary, the SGSN 515 will update the PDP in the GGSN 520. Context, in order to react to changes in QoS attributes caused by RAB establishment in step 545. An exchange tunnel will be established between RAN/RNC 510 and GGSN 520. This includes MSISDN, PDP address, RNC TEID, and GGSN TEID (steps) 575) The SGSN 515 sends a WTRU 505 an Initiation PDP Context Accept signal indicating the presence of a single tunnel (step 580). Figure 6 shows a routing area between internal RNCs of a single tunnel SGSN implemented in a wireless communication system in accordance with the present invention. The update process, wherein the system includes a WTRU 605, an old base station system (BSS) / RNC 610, a new BSS/RNC 615, an SGSN 620, a GGSN 625, and a home location register (HLR) 030 Still Still referring to Figure 6, the old tunnel was established between the old bss/RNC 610 and the GGSN 625 (step 635). The WTRU 6〇5 sends a Routing Area Update (RAU) request to the new BSS/RNC 610 and the SGSN 620, which may include a Packet Temporary Mobile Subscriber Identity (P-TMSI), an old Routing Area Identity (raj), an old one. Bu 1] ^ 1 signature, update type, etc. (step 640). The update type indicates whether the routing area update is periodic. Then, a security function will be established between the WTRU 605, the SGSN 620, and the HLR 630 (step 65 〇 > the SGSN 62 sends an Update PDP Context Request to the GGSN 625 (step 655). Then, the GGSN 625 12 M 318 282 sends the SGSN 620 The PDP context response is updated (step 660). The SGSN 620 sends a tunnel establishment request to the new BSS/RNC 615 (step 665). At step 655 'SGSN 620 sends a new BSS to the GGSN 625 in the update PDP context request of step 660. The TEID of the /RNC 615 establishes a new tunnel between the GGSN 625 and the new 388/^(: 615. If the request is granted, the GGSN 625 will reverse acknowledge the request to the SGSN 620 in step 660. In step 665, The SGSN 620 transmits the TEID of the GGSN 625 to the new BSS/RNC 615 by means of the tunnel setup message, thereby establishing the other end of the tunnel of the new BSS/RNC 615. At step 670, the BSS/RNC 615 will acknowledge the request and The operation is indicated to the SGSN 62. The new tunnel is now established in step 675. Alternatively, there may be additional update PDP context requests here, and the request depends on the final setting of the QoS attributes. The new bss/RNC 615 will then send a tunnel setup response to the SGSN 620 (step 67A). Thus, a new pimple is established between the new BSS/RNC 615 and the GGSN 625 (step 675). Once new The tunnel is successfully established, then the SGSN 62 will release the old channel by sending a release request to the old BSS/RNC 61 in step 680. The old BSS/RNC 610 will send a release response to the SGSN 62. (Step 685) The SGSN 620 sends a Routing Area Update Accept to the new bss/RNC 615 and the WTRU 605 (step 69A). The WTRU 605 then sends a Routing Area Update Complete message to the new BSS/RNC 615 and SGSN 62. (Step 695). Figures 7A and 7B collectively show a single tunnel SGSN (intre_SGSN) routing area 13 M318282 domain update procedure implemented in a wireless communication system in accordance with the present invention, wherein the system includes a WTRU 705, Old BSS/RNC 710, new BSS/RNC 715, new SGSN 720, old SGSN 725, GGSN 728, and HLR 730. Referring to Figure 7A, an old tunnel is established between the old BSS/RNC 710 and the GGSN 728 ( Step 732). The WTRU 705 sends a Routing Area Update Request to the new BSS/RNC 734 and the new SGSN 720, which may include P-TMSI, old RAI, old P_TMSI signature, update type, etc. (step 734). This update type indicates whether the routing area update is periodic. The new SGSN 720 will send an SGSN Context Request to the old SGSN 725 (step 736). The old SGSN 725 sends an SGSN Context Response to the new SGSN 720 (step 738). A security function will then be established between the WTRU 705, the new SGSN 720, and the HLR 730 (step 740). The new SGSN 620 sends an SGSN Context Acknowledgement message to the old SGSN 725 (step 742) and sends an Update PDP Context Request to the GGSN 728 (step 655), where the request indicates a single track and a new BSS/RNC 715 TEID. The GGSN 728 then sends an Update PDP Context Response to the new SGSN 720 (step 746). The new sgsn 720 sends a tunnel setup message to the new BSS/RNC 715 indicating the MSISDN, PDP address, and 〇〇81^£10 (step 748). The new BSS/RNC 715 then sends a tunnel setup confirmation message to the new 808> (step 750). Thus, a new tunnel will be established between the new BSS/RNC 715 and the GGSN 728 (step 752). For pending traffic in systems using old tunnels, these services are forwarded from the old BSS/RNC 610 to the new M318282 BSS/RNC 615 for service continuity considerations. Referring to Figure 7B, after a new tunnel is established, the forwarding packet will be sent from the new SGSN 720 to the old SGSN 725 (step 754). At step 754, the forwarded packet will be sent from the new squad 72 to the old SGSN 725 (step 754). At step 756, the forwarded packet will be sent from the old SGSN 725 to the old BSS/RNC 710. At step 758, the packet will be forwarded from the old BSS/RNC 710 to the new BSS/RNC 715. At step 760, the old BSS/RNC 710 sends a Forward Packet Acknowledgement message to the old SGSN 725. At step 762, the old SGSN 725 sends a forward packet discuring message to the new SGSN 720. At step 764, the new SGSN sends an update location message to the HLR 730. At step 766, hlr 73 sends a cancel location message to the old SGSN 725. At step 768, a release call (e.g., a release request message and a release response message) will be exchanged between the old BSS/RNC 710 and the old SGSN 725. At step 770, a cancel location confirmation message is sent from SGSN 725 and HLR 730. At step 772, the HLR 730 sends the inserted user profile to the new SGSN 720. In step 774, the new 8 〇 8 720 will send a user data confirmation message to the 111 730. At step 776, the HLR 730 sends a new location rep. message to the new SGSN 720. At step 778, the new SGSN 720 sends a Routing Area Update Accept message to the new BSS/RNC 715 and the WTRU 705. At step 780, the WTRU 705 sends a Routing Area Update Complete message to the new 388 ship (3 and the new SGSN 720. Although the features and elements of the present invention are described in a particular combination in the preferred embodiment, each The features or elements may be used alone without the other features and elements of the preferred embodiment, or in various instances that are not combined with other features and elements of the present invention or 15 M318282. The method provided by the present invention Or the flowchart can be implemented in a computer program, software or firmware executed by a general purpose computer or processor, wherein the computer program, software or firmware is tangibly embodied in a computer readable storage medium. Examples of readable storage media include read-only memory (R〇Mh random access memory (RAM), scratchpad, cache memory, semiconductor memory device, internal hard disk, and removable disk. Media, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVDs). For example, the right processor includes a general-purpose processor and a dedicated processor. Processor, conventional processor, digital signal processor (DSp), multiple microprocessors, one or more microprocessors, controllers, microcontrollers, specific function integrated circuits (ASICs) associated with the DSP core Field Programmable Gate Array (FPGA) circuit, any integrated circuit (5)) and/or state machine. The processor associated with the software can be used to implement a radio frequency transceiver for transmitting the receiving unit (WTRU), Used in user equipment, terminals, base stations, wireless network controllers, or any host computer. The WTRU may be used in conjunction with a module implemented in hardware and/or software, such as a camera, a camera module, a videophone, a megaphone, a vibrating device, a speaker, a microphone, a television transceiver, a hands-free headset, Keyboard, Bluetooth 8 module, FM radio unit, LCD display unit, organic light emitting diode (0LED) display unit, digital music player, media player, video game console module, internet Road browser and / or any wireless area network (WLAN) module. M318282 [Brief Description of the Drawings] From the following description of the specific embodiments, the preferred embodiments are understood as one or more of the accompanying drawings, in which: Figure 1 shows a conventional GPRS and 3G wireless communication system; Figure 2A shows the establishment of a dual tunnel; Figure 2B shows the establishment of a single tunnel according to the present invention; Figure 3 shows the existing Tunneling Protocol Stacking in the Technology FIG. 4 shows a single tunnel protocol stack configured in accordance with the present invention; FIG. 5 is a single tunnel establishing process (1>〇1> context initiation) according to an embodiment of the present invention; 6 is a diagram showing a routing area update process between internal RNCs of an SGSN according to an embodiment of the present invention; and FIG. 7A and FIG. 7B collectively showing a single tunnel according to another embodiment of the present invention. Routing area update process between SGSNs (intre-SGSN). 17 M318282
【主要元件符號說明】 APN 存取點名稱 BSS 基地台系統 GGSN 閘道GPRS支援節點 GTP-U 使用者平面 HLR 位置暫存器 IP 互聯網協定 MSISDN 移動站國際使甩者目錄號 MT 移動終端 PDP 封包貧料協定 PDCP 包資料集中協定 RAN 無線電存取網路 RNC 無線電網路控制器 SRNS 服務無線電網路子系統 SGSN 支持節點 TE 終端設備 TEID 隧道終點身份 UTRAN 通用陸地無線電存取網路 WTRU 無線傳輸/接收單元 18[Main component symbol description] APN access point name BSS base station system GGSN gateway GPRS support node GTP-U user plane HLR location register IP Internet protocol MSISDN mobile station international directory number MT mobile terminal PDP package poor Material Agreement PDCP Packet Data Central Agreement RAN Radio Access Network RNC Radio Network Controller SRNS Service Radio Network Subsystem SGSN Support Node TE Terminal Equipment TEID Tunnel Endpoint Identity UTRAN Universal Terrestrial Radio Access Network WTRU Radio Transmission/Reception Unit 18