[go: up one dir, main page]

TWI876385B - Resistive random-access memory devices with compound non-reactive electrodes - Google Patents

Resistive random-access memory devices with compound non-reactive electrodes Download PDF

Info

Publication number
TWI876385B
TWI876385B TW112122820A TW112122820A TWI876385B TW I876385 B TWI876385 B TW I876385B TW 112122820 A TW112122820 A TW 112122820A TW 112122820 A TW112122820 A TW 112122820A TW I876385 B TWI876385 B TW I876385B
Authority
TW
Taiwan
Prior art keywords
layer
metal
electrode
metal nitride
oxide
Prior art date
Application number
TW112122820A
Other languages
Chinese (zh)
Other versions
TW202434069A (en
Inventor
民憲 張
明哲 吳
寧 葛
Original Assignee
美商特憶智能科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/163,272 external-priority patent/US20230413697A1/en
Application filed by 美商特憶智能科技公司 filed Critical 美商特憶智能科技公司
Publication of TW202434069A publication Critical patent/TW202434069A/en
Application granted granted Critical
Publication of TWI876385B publication Critical patent/TWI876385B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本發明涉及電阻式隨機存取存儲(RRAM)器件。在一些實施例中,所述RRAM器件包括第一電極、包括第一導電材料的第二電極和位於所述第一電極和所述第二電極之間的切換氧化物層。所述切換氧化物層包括至少一種過渡性金屬氧化物。所述第一電極包括包含金屬氮化物的金屬氮化物層和製造於所述金屬氮化物層上的金屬層。所述金屬層包括不與所述至少一種過渡性金屬氧化物反應的金屬。在一些實施例中,第一電極中的金屬氮化物包括氮化鈦和/或氮化鉭。所述金屬層包括貴金屬層,例如鉑、鈀、銥或釕等。The present invention relates to a resistive random access memory (RRAM) device. In some embodiments, the RRAM device includes a first electrode, a second electrode including a first conductive material, and a switching oxide layer located between the first electrode and the second electrode. The switching oxide layer includes at least one transitional metal oxide. The first electrode includes a metal nitride layer including a metal nitride and a metal layer fabricated on the metal nitride layer. The metal layer includes a metal that does not react with the at least one transitional metal oxide. In some embodiments, the metal nitride in the first electrode includes titanium nitride and/or tantalum nitride. The metal layer includes a noble metal layer, such as platinum, palladium, iridium, or ruthenium.

Description

具有化合物非反應性電極的電阻式隨機存取存儲器件Resistive random access memory device with compound non-reactive electrode

本發明實施方式通常關於一種電阻式隨機存取存儲器(RRAM),更為具體地、關於一種具有化合物非反應性電極的RRAM器件。Embodiments of the present invention generally relate to a resistive random access memory (RRAM), and more particularly, to a RRAM device having a compound non-reactive electrode.

RRAM器件是一種具有可調且非易失性電阻的雙端無源器件。通過向所述RRAM器件施加合適的編程信號,所述RRAM器件的電阻可以在高阻態(HRS)和低阻態(LRS)之間進行電切換。RRAM器件可以被用於形成交叉陣列,所述交叉陣列可以用於實現內存內計算應用、非易失性固態存儲器、圖像處理應用、神經網絡等。RRAM devices are two-terminal passive devices with adjustable and non-volatile resistance. The resistance of the RRAM device can be electrically switched between a high resistance state (HRS) and a low resistance state (LRS) by applying a suitable programming signal to the RRAM device. RRAM devices can be used to form a crossbar array, which can be used to implement in-memory computing applications, non-volatile solid-state storage, image processing applications, neural networks, etc.

以下是本發明的簡要發明內容,用於提供對本發明的一些方面的基本理解。發明內容不是本發明的廣泛概述。發明內容並非旨在識別本發明的關鍵或重要要素,也並非旨在說明本發明的特定實現的任何範圍或者申請專利範圍的任何範圍。發明內容的唯一目的是作為後續呈現的更詳細描述的語言簡化呈現本發明的一些概念。The following is a brief summary of the invention, which is used to provide a basic understanding of some aspects of the invention. The invention content is not a broad overview of the invention. The invention content is not intended to identify the key or important elements of the invention, nor is it intended to illustrate any scope of a specific implementation of the invention or any scope of the scope of the patent application. The sole purpose of the invention content is to simplify some concepts of the invention as a language for a more detailed description presented later.

根據本發明的一個或多個方面,電阻式隨機存取存儲(RRAM)器件包括:第一電極,包括第一導電材料的第二電極;和位於所述第一電極和所述第二電極之間的切換氧化物層。所述第一電極包括包含金屬氮化物的金屬氮化物層和製造於所述金屬氮化物層上的金屬層。所述切換氧化物層包括至少一種過渡性金屬氧化物。在一些實施例中,所述金屬層包括不與所述至少一種過渡性金屬氧化物反應的金屬。According to one or more aspects of the present invention, a resistive random access memory (RRAM) device includes: a first electrode, a second electrode including a first conductive material; and a switching oxide layer located between the first electrode and the second electrode. The first electrode includes a metal nitride layer including a metal nitride and a metal layer fabricated on the metal nitride layer. The switching oxide layer includes at least one transitional metal oxide. In some embodiments, the metal layer includes a metal that does not react with the at least one transitional metal oxide.

在一些實施例中,所述金屬氮化物包括氮化鈦或氮化鉭中的至少一種。In some embodiments, the metal nitride includes at least one of titanium nitride or titanium nitride.

在一些實施例中,所述不與所述至少一種過渡性金屬氧化物發生反應的金屬包括鉑、鈀、銥或釕中的至少一種。In some embodiments, the metal that does not react with the at least one transition metal oxide includes at least one of platinum, palladium, iridium, or ruthenium.

在一些實施例中,所述金屬層比所述金屬氮化物層薄。In some embodiments, the metal layer is thinner than the metal nitride layer.

在一些實施例中,所述金屬層的厚度在3nm和10nm之間。In some embodiments, the thickness of the metal layer is between 3 nm and 10 nm.

在一些實施例中,所述所述金屬氮化物層的厚度在20nm和50nm之間。In some embodiments, the thickness of the metal nitride layer is between 20 nm and 50 nm.

在一些實施例中,所述至少一種過渡性金屬氧化物包括HfOx或TaOy中的至少一種,其中x≤2.0且y≤2.5。In some embodiments, the at least one transitional metal oxide includes at least one of HfOx or TaOy, where x≤2.0 and y≤2.5.

在一些實施例中,所述第二電極中的導電材料包括鉭。In some embodiments, the conductive material in the second electrode includes tantalum.

在一些實施例中,所述RRAM器件進一步包括位於所述切換氧化物層和所述第二電極之間的界面層。在一些實施例中,所述界面層包括氧化鋁。In some embodiments, the RRAM device further comprises an interface layer between the switching oxide layer and the second electrode. In some embodiments, the interface layer comprises aluminum oxide.

在一些實施例中,所述RRAM器件進一步包括選自鈦或鉭中的至少一種的黏合層,其中所述金屬氮化物層是製造於所述黏合層上。In some embodiments, the RRAM device further includes an adhesion layer of at least one selected from titanium or tantalum, wherein the metal nitride layer is fabricated on the adhesion layer.

根據本發明披露的一個或多個方法,一種製造電阻式隨機存取存儲(RRAM)器件的方法包括:製造第一電極;在所述第一電極上製造所述切換氧化物層;和在所述切換氧化物層上製造包括導電材料的第二電極。所述切換氧化物層包括至少一種過渡性金屬氧化物。所述第一電極包括:金屬氮化物層和金屬層。所述金屬氮化物層包括金屬氮化物。所述金屬層製造於所述金屬氮化物層之上。在一些實施例中,所述金屬層包括不與所述至少一種過渡性金屬氧化物發生反應的金屬。According to one or more methods disclosed in the present invention, a method for manufacturing a resistive random access memory (RRAM) device includes: manufacturing a first electrode; manufacturing the switching oxide layer on the first electrode; and manufacturing a second electrode including a conductive material on the switching oxide layer. The switching oxide layer includes at least one transitional metal oxide. The first electrode includes: a metal nitride layer and a metal layer. The metal nitride layer includes a metal nitride. The metal layer is manufactured on the metal nitride layer. In some embodiments, the metal layer includes a metal that does not react with the at least one transitional metal oxide.

在一些實施例中,所述金屬氮化物包括氮化鈦或氮化鉭中的至少一種。In some embodiments, the metal nitride includes at least one of titanium nitride or titanium nitride.

在一些實施例中,所述不與所述至少一種過渡性金屬氧化物發生反應的金屬包括鉑、鈀、銥或釕中的至少一種。In some embodiments, the metal that does not react with the at least one transition metal oxide includes at least one of platinum, palladium, iridium, or ruthenium.

在一些實施例中,所述金屬層比所述金屬氮化物層薄。In some embodiments, the metal layer is thinner than the metal nitride layer.

在一些實施例中,所述金屬層的厚度在3nm和10nm之間。In some embodiments, the thickness of the metal layer is between 3 nm and 10 nm.

在一些實施例中,所述金屬氮化物層的厚度在20nm和50nm之間。In some embodiments, the thickness of the metal nitride layer is between 20 nm and 50 nm.

在一些實施例中,所述至少一種過渡性金屬氧化物包括HfOx或TaOy中的至少一種,其中x≤2.0且y≤2.5。In some embodiments, the at least one transitional metal oxide includes at least one of HfOx or TaOy, where x≤2.0 and y≤2.5.

在一些實施例中,所述方法進一步包括在所述切換氧化物層上製造界面層,其中所述界面層位於所述切換氧化物層和所述第二電極之間,且所述界面層包括氧化鋁。In some embodiments, the method further includes fabricating an interface layer on the switching oxide layer, wherein the interface layer is located between the switching oxide layer and the second electrode, and the interface layer includes aluminum oxide.

在一些實施例中,所述方法進一步包括製造包含鈦或鉭中的至少一種的黏合層,其中所述金屬氮化物層製造於所述黏合層上。In some embodiments, the method further includes fabricating an adhesion layer comprising at least one of titanium or tantalum, wherein the metal nitride layer is fabricated on the adhesion layer.

根據本發明的一個或多個方面,一種製造非反應性電極的方法包括:製造包括鈦或鉭中的至少一種的黏合層;在黏合層上製造包括至少一種金屬氮化物的金屬氮化物層,其中所述金屬氮化物包括氮化鈦或氮化鉭中的至少一種;在所述金屬氮化物層上製造包括貴金屬的金屬層;和選擇性去除所述黏合層、所述金屬氮化物層和所述金屬層中的一個或多個部分以製造所述非反應性電極。According to one or more aspects of the present invention, a method for manufacturing a non-reactive electrode includes: manufacturing an adhesion layer including at least one of titanium or tantalum; manufacturing a metal nitride layer including at least one metal nitride on the adhesion layer, wherein the metal nitride includes at least one of titanium nitride or tantalum nitride; manufacturing a metal layer including a noble metal on the metal nitride layer; and selectively removing one or more portions of the adhesion layer, the metal nitride layer, and the metal layer to manufacture the non-reactive electrode.

本發明的各個方面提供了RRAM器件和製作RRAM器件的方法。一個RRAM器件是具有可調電阻的兩端無源器件。所述RRAM器件可以包括第一電極、第二電極和位於所述第一電極和所述第二電極之間的切換氧化物層。在一些實施例中,所述第一電極和所述第二電極可以分別是所述RRAM器件的底電極和頂電極。在一些實施例中,所述第一電極和所述第二電極可以分別是所述RRAM器件的頂電極和底電極。所述第一電極可以包括非反應性金屬,例如鉑(Pt)、鈀(Pd)、釕(Ru)等。所述第二電極可以包括反應性金屬,例如鉭(Ta)。包括非反應性金屬的電極還可以被稱為“非反應性電極”。包括反應性金屬的電極還可以被稱為“反應性電極”。所述切換氧化物層可以包括過渡金屬氧化物,例如氧化鉿(HfOx)或氧化鉭(TaOx)。所述RRAM器件可以處於初始狀態或原始狀態,並且在其收到適當的電刺激(例如,施加到RRAM器件上的電壓或電流信號)之前有一個初始高電阻。所述RRAM器件可以通過形成過程從原始狀態轉換到低阻態,或通過設置過程從高阻態切換到低阻態。所述形成過程是指從原始狀態開始對器件進行編程。所述設置過程是指從高阻態(HRS)開始對器件進行編程。在所述反應性金屬電極沉積在所述切換氧化物上後,所述反應性金屬可以吸收來自於切換氧化物層的氧離子,在所述切換氧化物層中創造氧空位,氧離子可以通過空位機制在所述切換氧化物中遷移。在形成過程中,施加到所述RRAM器件上的適當的編程信號(例如,電壓或電流信號)可以引起氧離子漂移,從所述切換氧化物遷移到反應性電極。因此,導電信道或導電絲可以穿過所述切換氧化物層(例如,從反應性電極到非反應性電極)。然後,可以通過向所述RRAM器件施加一個複位信號(例如,電壓信號、電流信號),將所述RRAM器件複位至高阻態。向所述RRAM器件施加所述複位信號可以使得氧離子遷移回切換氧化物層,從而可能中斷導電絲。通過向所述RRAM器件施加適當的編程信號(例如,電壓信號、電流信號),所述RRAM器件可以在高阻態和低阻態之間進行電切換。在交叉陣列電路中,所述編程信號可以通過選擇器,例如晶體管或二極管,提供給指定的RRAM器件。Various aspects of the present invention provide RRAM devices and methods for making RRAM devices. An RRAM device is a two-terminal passive device with adjustable resistance. The RRAM device may include a first electrode, a second electrode, and a switching oxide layer located between the first electrode and the second electrode. In some embodiments, the first electrode and the second electrode may be the bottom electrode and the top electrode of the RRAM device, respectively. In some embodiments, the first electrode and the second electrode may be the top electrode and the bottom electrode of the RRAM device, respectively. The first electrode may include a non-reactive metal, such as platinum (Pt), palladium (Pd), ruthenium (Ru), etc. The second electrode may include a reactive metal, such as tantalum (Ta). An electrode including a non-reactive metal may also be referred to as a "non-reactive electrode". Electrodes comprising reactive metals may also be referred to as "reactive electrodes". The switching oxide layer may include a transition metal oxide, such as tantalum oxide (HfOx) or tantalum oxide (TaOx). The RRAM device may be in an initial state or a primitive state and have an initial high resistance before it receives an appropriate electrical stimulus (e.g., a voltage or current signal applied to the RRAM device). The RRAM device may be converted from the primitive state to a low resistance state by a formation process, or may be switched from a high resistance state to a low resistance state by a setup process. The formation process refers to programming the device from the primitive state. The setup process refers to programming the device from a high resistance state (HRS). After the reactive metal electrode is deposited on the switching oxide, the reactive metal can absorb oxygen ions from the switching oxide layer, creating oxygen vacancies in the switching oxide layer, and the oxygen ions can migrate in the switching oxide through a vacancy mechanism. During the formation process, an appropriate programming signal (e.g., a voltage or current signal) applied to the RRAM device can cause the oxygen ions to drift from the switching oxide to the reactive electrode. As a result, a conductive channel or conductive filament can pass through the switching oxide layer (e.g., from the reactive electrode to the non-reactive electrode). Then, the RRAM device can be reset to a high-resistance state by applying a reset signal (e.g., a voltage signal, a current signal) to the RRAM device. Applying the reset signal to the RRAM device can cause the oxygen ions to migrate back to the switching oxide layer, thereby possibly interrupting the conductive filament. By applying an appropriate programming signal (e.g., a voltage signal, a current signal) to the RRAM device, the RRAM device can be electrically switched between a high resistance state and a low resistance state. In a crossbar array circuit, the programming signal can be provided to a designated RRAM device through a selector, such as a transistor or a diode.

在非反應性電極中含有鉑(Pt)的RRAM器件可以提供RRAM高性能,例如可靠性、耐久性、多級性、保持性等。在一種包括含有鉑的底電極、包括氧化鉭的切換氧化物層和包括Ta的RRAM器件(還可以被稱為“Pt/TaOx/Ta系統”),TaOx中的Ta絲表現出卓越的線性、模擬性、保持和耐用性等性能。在一個Pt/HfOx/Ta系統中,Ta可以遷移到HfOx中從而在HfOx中形成富含Ta的細絲,並且在IMC應用中表現出了卓越的線性、模擬、保持和耐用性。然而,鉑的材料和加工成本很高,且主要製造工廠可能還沒有準備好在其生產工藝中加入鉑。RRAM devices containing platinum (Pt) in a non-reactive electrode can provide RRAM high performance, such as reliability, durability, multi-level, retention, etc. In an RRAM device including a bottom electrode containing platinum, a switching oxide layer including tantalum oxide, and Ta (also referred to as a "Pt/TaOx/Ta system"), Ta filaments in TaOx exhibit excellent linearity, analog, retention, and durability. In a Pt/HfOx/Ta system, Ta can migrate into HfOx to form Ta-rich filaments in HfOx, and exhibit excellent linearity, analog, retention, and durability in IMC applications. However, the material and processing costs of platinum are high, and major manufacturers may not be ready to incorporate platinum in their production processes.

根據本發明一些實施例,RRAM器件的化合物非反應性電極可以包括金屬氮化物層和金屬層。所述金屬氮化物層可以包括一種或多種金屬氮化物,例如TiN、TaN等。所述金屬層可以包括非反應性金屬,例如Pt、Pd、Ru、Ir等。所述金屬層可以比金屬氮化物薄的多。例如,在一些實施例中,所述金屬氮化物層可以在大約20nm到25nm之間,所述金屬層可以在大約3nm和大約8nm之間。According to some embodiments of the present invention, the compound non-reactive electrode of the RRAM device may include a metal nitride layer and a metal layer. The metal nitride layer may include one or more metal nitrides, such as TiN, TaN, etc. The metal layer may include a non-reactive metal, such as Pt, Pd, Ru, Ir, etc. The metal layer may be much thinner than the metal nitride. For example, in some embodiments, the metal nitride layer may be between about 20nm and 25nm, and the metal layer may be between about 3nm and about 8nm.

TiN和TaN都是導電材料,且也與CMOS工藝兼容,可以批量生產,並且生產成本比Pt低得多。在非反應性電極中含有TiN或TaN的RRAM器件可以呈現出IMC應用所需要的特定特性,例如多級開關電阻和/或模擬行為。與具有單獨包括TiN或TaN的非反應性電極的RRAM器件相比,具有包含Pt的非反應性電極的RRAM器件可以具有更好的性能,但是可能會更昂貴。通過結合金屬氮化物層和相比金屬氮化物層薄的多的金屬層(例如,Pt、Pd、Ru、Ir等層),本文所描述的製造化合物非反應性電極提供了製造具有期望開關和模擬電阻行為的RRAM器件的經濟高效的解決方案。Both TiN and TaN are conductive materials and are also compatible with CMOS processes, can be mass-produced, and have a much lower production cost than Pt. RRAM devices containing TiN or TaN in non-reactive electrodes can exhibit specific characteristics required for IMC applications, such as multi-level switching resistance and/or analog behavior. RRAM devices with non-reactive electrodes containing Pt can have better performance than RRAM devices with non-reactive electrodes that include TiN or TaN alone, but may be more expensive. By bonding a metal nitride layer and a metal layer that is much thinner than the metal nitride layer (e.g., a layer of Pt, Pd, Ru, Ir, etc.), the manufacturing compound non-reactive electrode described in this article provides an economical and efficient solution for manufacturing RRAM devices with desired switching and analog resistance behavior.

與使用基於Pt的非反應性電極的傳統RRAM器件相比,本發明所述的使用化合物非反應性電極的RRAM器件擁有更低的材料和製作成本,可用於CMOS工藝,且可以批量生產。本文發明的RRAM器件在多級切換和模擬行為上呈現了適當的性能和能力。Compared with conventional RRAM devices using Pt-based non-reactive electrodes, the RRAM device using compound non-reactive electrodes of the present invention has lower material and manufacturing costs, can be used in CMOS processes, and can be mass-produced. The RRAM device of the present invention exhibits appropriate performance and capabilities in multi-level switching and analog behavior.

圖1是示出了根據本發明一些實施例中交叉開關電路的示例100的示意圖。如圖所示,交叉開關電路100可以包括用於n行乘m列的交叉陣列的多個互聯導電線,例如一個或多個行線111a、111b、…、111i、…、111n,和列線113a、113b、…、113j、…、113m。所述交叉開關電路100可以進一步包括交叉點器件120a、120b、…、120z等。每個交叉點器件可以連接行線和列線。例如,交叉點器件120ij可以連接行線111i和列線113j。在一些實施例中,交叉開關電路100可以進一步包括數模轉換器(DAC,未顯示),模數轉換器(ADC,未顯示)、開關(未顯示)和一個或多個用於實施基於交叉開關的裝置的適當的電路組件。列線113a-m的數量和行線111a-n的數量可以相同,也可以不相同。Fig. 1 is a schematic diagram showing an example 100 of a crossover switch circuit according to some embodiments of the present invention. As shown in the figure, the crossover switch circuit 100 may include a plurality of interconnected conductive lines for a crossover array of n rows by m columns, such as one or more row lines 111a, 111b, ..., 111i, ..., 111n, and column lines 113a, 113b, ..., 113j, ..., 113m. The crossover switch circuit 100 may further include crosspoint devices 120a, 120b, ..., 120z, etc. Each crosspoint device may connect a row line and a column line. For example, a crosspoint device 120ij may connect a row line 111i and a column line 113j. In some embodiments, the crossbar switch circuit 100 may further include a digital-to-analog converter (DAC, not shown), an analog-to-digital converter (ADC, not shown), a switch (not shown), and one or more appropriate circuit components for implementing a crossbar-based device. The number of column lines 113a-m and the number of row lines 111a-n may be the same or different.

行線111可以包括第一行線111a、第二行線111b、…、111i、…和第n行線111n。每個行線111a、…、111n可以是和/或包括任何合適的導電材料。在一些實施例中,每個行線111a-n可以是金屬線。The row lines 111 may include a first row line 111a, a second row line 111b, ..., 111i, ..., and an nth row line 111n. Each row line 111a, ..., 111n may be and/or include any suitable conductive material. In some embodiments, each row line 111a-n may be a metal line.

列線113可以包括第一列線113a、第二列線113b、…和第m列線113m。每個列線113a-m可以是和/或包括任何合適的導電材料。在一些實施例中,每個列線113a-m可以是金屬線。The column lines 113 may include a first column line 113a, a second column line 113b, ... and an mth column line 113m. Each column line 113a-m may be and/or include any suitable conductive material. In some embodiments, each column line 113a-m may be a metal line.

每個交叉點器件120可以是和/或包括具有可調電阻的任何合適的器件,例如憶阻器、相變存儲器(PCM)器件、浮柵、自旋電子器件、電阻式隨機存取存儲器(RRAM)、靜態隨機存取存儲器(SRAM)等。在一些實施例中,交叉點器件120中的一個或多個可以包括如結合圖3A-9C所描述的RRAM器件。Each cross-point device 120 may be and/or include any suitable device having an adjustable resistance, such as a memory resistor, a phase change memory (PCM) device, a floating gate, a spintronic device, a resistive random access memory (RRAM), a static random access memory (SRAM), etc. In some embodiments, one or more of the cross-point devices 120 may include an RRAM device as described in conjunction with FIGS. 3A-9C .

交叉開關電路100可以執行並行加權的電壓相乘和電流求和。例如,可以將輸入電壓信號施加到交叉開關電路100的一行或多行(例如,一個或多個選擇行)。所述輸入信號可以流經所述交叉開關電路100的行的交叉點器件。所述交叉點器件的電導可以調節至一個特定值(也可以被稱為“加權值”)。根據歐姆定律,輸入電壓乘以交叉點電導,並生成流經交叉點器件的電流。通過基爾霍夫定律,通過每一列上的器件的電流的總和生成電流作為輸出信號,該輸出信號可以從列中讀取(例如,ADC的輸出)。根據歐姆定律和基爾霍夫電流定律,交叉陣列的輸入-輸出關係可以表示為I=VG,其中I為輸出信號矩陣,表示為電流;V為輸入信號矩陣,表示為電壓;G為交叉點器件的電導矩陣。因此,輸入信號根據歐姆定律在每個交叉點器件處被其電導進行加權。加權後的電流通過每個列線輸出,並根據基爾霍夫電流定律進行累積。這可以通過實施在交叉陣列中的並行乘法和求和來實現內存內計算(IMC)。The cross-switch circuit 100 can perform parallel weighted voltage multiplication and current summation. For example, an input voltage signal can be applied to one or more rows (e.g., one or more selected rows) of the cross-switch circuit 100. The input signal can flow through the cross-point devices of the rows of the cross-switch circuit 100. The conductance of the cross-point device can be adjusted to a specific value (also referred to as a "weighted value"). According to Ohm's law, the input voltage is multiplied by the cross-point conductance and generates a current flowing through the cross-point device. Through Kirchhoff's law, the sum of the currents through the devices on each column generates a current as an output signal, which can be read from the column (e.g., the output of an ADC). According to Ohm's law and Kirchhoff's current law, the input-output relationship of the crossbar array can be expressed as I=VG, where I is the output signal matrix, expressed as current; V is the input signal matrix, expressed as voltage; and G is the conductivity matrix of the crosspoint device. Therefore, the input signal is weighted by its conductivity at each crosspoint device according to Ohm's law. The weighted current is output through each column line and accumulated according to Kirchhoff's current law. This can be achieved by implementing in-memory computing (IMC) through parallel multiplication and summation in the crossbar array.

圖2是示出了根據本發明實施例的交叉點器件的示例200的示意圖。如圖所示,交叉點器件200可以連接位線(BL)211、選線(SEL)213和字線(WL)215。所示位線211和字線215可以分別是如圖1所述的列線和行線。FIG2 is a schematic diagram showing an example 200 of a cross-point device according to an embodiment of the present invention. As shown, the cross-point device 200 can connect a bit line (BL) 211, a select line (SEL) 213, and a word line (WL) 215. The bit line 211 and the word line 215 shown can be a column line and a row line as described in FIG1, respectively.

交叉點器件200可以包括RRAM器件201和晶體管203。晶體管是一種三端器件,可以分別標記為柵極(G)、源極(S)和漏極(D)。晶體管203可以串聯連接到RRAM器件201。如圖2所示,所述RRAM器件201的第一電極可以被連接至所述晶體管203的漏極。RRAM器件201的第二電極可以被連接至位線211。所述晶體管203的源極可以被連接至字線215。所述晶體管203的柵極可以被連接至選線213。RRAM器件201可以包括結合如下圖3A-9C所描述的一個或多個RRAM器件。交叉點器件200還可以被稱為一晶體管一電阻器(1T1R)配置。所述晶體管203可以用作選擇器以及電流控制器,其可以在編程期間設置RRAM器件201的電流順應性。晶體管203的柵極電壓可以在編程期間設置交叉點器件200的電流順應性,並因此控制交叉點器件200的電導和模擬行為。例如,當交叉點器件200從高阻態設置為低阻態時,設置信號(例如,電壓信號、電流信號)可以通過位線(BL)211提供。另一個電壓,也被稱為選擇電壓或柵極電壓,可以通過選線(SEL)213施加到晶體管柵極以打開柵極並設置電流順應性,而字線(WL)215可以設置為接地。當交叉點器件200從低阻態複位至高阻態時,柵極電壓可以通過選線213施加到晶體管的柵極以打開晶體管柵極。同時,複位信號可以通過字線215發送給RRAM器件201,而位線211可以設置為接地。The cross-point device 200 may include a RRAM device 201 and a transistor 203. A transistor is a three-terminal device that may be labeled as a gate (G), a source (S), and a drain (D). The transistor 203 may be connected in series to the RRAM device 201. As shown in FIG. 2 , a first electrode of the RRAM device 201 may be connected to a drain of the transistor 203. A second electrode of the RRAM device 201 may be connected to a bit line 211. A source of the transistor 203 may be connected to a word line 215. A gate of the transistor 203 may be connected to a select line 213. The RRAM device 201 may include one or more RRAM devices in combination as described in FIGS. 3A-9C below. The cross-point device 200 may also be referred to as a one-transistor-one-resistor (1T1R) configuration. The transistor 203 can be used as a selector as well as a current controller, which can set the current compliance of the RRAM device 201 during programming. The gate voltage of the transistor 203 can set the current compliance of the cross-point device 200 during programming, and thus control the conductance and analog behavior of the cross-point device 200. For example, when the cross-point device 200 is set from a high-resistance state to a low-resistance state, a set signal (e.g., a voltage signal, a current signal) can be provided through the bit line (BL) 211. Another voltage, also referred to as a select voltage or gate voltage, can be applied to the transistor gate through the select line (SEL) 213 to open the gate and set the current compliance, and the word line (WL) 215 can be set to ground. When the cross-point device 200 is reset from a low resistance state to a high resistance state, a gate voltage can be applied to the gate of the transistor through the select line 213 to turn on the transistor gate. At the same time, a reset signal can be sent to the RRAM device 201 through the word line 215, and the bit line 211 can be set to ground.

圖3A、3B和3C示出了根據本發明一些實施例的示例RRAM器件300a、300b和300c的截面圖。RRAM器件300b和300c可以分別對應於RRAM器件300a的低阻態和高阻態。3A, 3B, and 3C illustrate cross-sectional views of example RRAM devices 300a, 300b, and 300c according to some embodiments of the present invention. The RRAM devices 300b and 300c may correspond to a low resistance state and a high resistance state of the RRAM device 300a, respectively.

如圖3A所示,RRAM器件300a可以包括襯底310、製造在襯底310上的第一電極320、切換氧化物層330和第二電極340。切換氧化物層330製造於第一電極320和第二電極340之間。襯底310可以包括可用於RRAM器件襯底的任何合適材料的一層或者多層,例如矽(Si)、二氧化矽(SiO2)、氮化矽(Si3N4)、氧化鋁(Al2O3)、氮化鋁(AlN)等。在一些實施例中,襯底310可以包括二極管、晶體管、互連、集成電路等。在一些實施例中,所述襯底可以包括驅動電路,該驅動電路包括可以單獨控制的一個或多個電路(例如,電路陣列)。在一些實施例中,所述驅動電路可以包括一個或多個互補金屬氧化物半導體(CMOS)驅動器。As shown in FIG. 3A , the RRAM device 300 a may include a substrate 310, a first electrode 320 fabricated on the substrate 310, a switching oxide layer 330, and a second electrode 340. The switching oxide layer 330 is fabricated between the first electrode 320 and the second electrode 340. The substrate 310 may include one or more layers of any suitable material that may be used for a RRAM device substrate, such as silicon (Si), silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3), aluminum nitride (AlN), etc. In some embodiments, the substrate 310 may include a diode, a transistor, an interconnect, an integrated circuit, etc. In some embodiments, the substrate may include a driver circuit including one or more circuits (e.g., a circuit array) that can be individually controlled. In some embodiments, the driver circuit may include one or more complementary metal oxide semiconductor (CMOS) drivers.

第一電極320可以包括金屬氮化物,該金屬氮化物對製造的切換氧化物層是可導電和非反應性的。所述金屬氮化物可以具有合適的化學穩定性使得其在RRAM切換期間不與氧發生反應。所述金屬氮化物可以包括,例如氮化鈦(TiN)、氮化鉭(TaN)等。第一電極320還可以包括非反應性金屬,非反應金屬具有電子導電性和在RRAM切換期間不與氧發生反應,例如鉑(Pt)、鈀(Pd)、銥(Ir)、釕(Ru)等。在其非反應性電極具有金屬氮化物和非反應金屬的RRAM器件具有IMC應用所需的多級電阻和模擬行為。The first electrode 320 may include a metal nitride that is conductive and non-reactive to the fabricated switching oxide layer. The metal nitride may have suitable chemical stability so that it does not react with oxygen during RRAM switching. The metal nitride may include, for example, titanium nitride (TiN), tantalum nitride (TaN), etc. The first electrode 320 may also include a non-reactive metal that has electronic conductivity and does not react with oxygen during RRAM switching, such as platinum (Pt), palladium (Pd), iridium (Ir), ruthenium (Ru), etc. RRAM devices having metal nitrides and non-reactive metals at their non-reactive electrodes have multi-level resistance and analog behavior required for IMC applications.

在一些實施例中,第一電極320可以是和/或包括結合圖4所描述的化合物底電極。例如,第一電極320可以包括包含一種或多種金屬氮化物(例如,TiN、TaN等)的金屬氮化物層。第一電極320還進一步包括包含製造在金屬氮化物層上的包含一種或多種貴金屬(例如,Pt、Pb、Ir、Ru等)的金屬層。在一些實施例中,所述金屬層比金屬氮化物層薄。In some embodiments, the first electrode 320 may be and/or include a compound bottom electrode as described in conjunction with FIG. 4. For example, the first electrode 320 may include a metal nitride layer including one or more metal nitrides (e.g., TiN, TaN, etc.). The first electrode 320 further includes a metal layer including one or more precious metals (e.g., Pt, Pb, Ir, Ru, etc.) fabricated on the metal nitride layer. In some embodiments, the metal layer is thinner than the metal nitride layer.

在一些實施例中,可以在第一電極和襯底310之間製造Ta和/或Ti層,以增強襯底310和RRAM器件320組件之間的黏附性。In some embodiments, a Ta and/or Ti layer may be fabricated between the first electrode and the substrate 310 to enhance adhesion between the substrate 310 and the RRAM device 320 assembly.

切換氧化物層330可以包括二元氧化物、三元氧化物和高級氧化物中的一種或多種過渡性金屬氧化物,例如T aO x、HfO x、TiO x,、NbO x、 ZrO x等。在一些實施例中,第一電極320中非反應性材料的化學穩定性可以高於切換氧化物層330中過渡性金屬氧化物的化學穩定性。在一些實施例中,所述過渡性金屬氧化物包括HfO x或 TaO x中的至少一種,其中x可以被用於指示氧化物與其完全(或末端)氧化物相比是缺氧的,且x的值可以根據其完全氧化物的化學計量中的氧和金屬原子的比值進行變化,例如對於HfO x(其中HfO 2是完全氧化物)x≤2.0,對於TaO x(其中Ta 2O 5是完全氧化物),x≤2.5。 The switching oxide layer 330 may include one or more transition metal oxides among binary oxides, ternary oxides, and higher oxides, such as TaOx , HfOx , TiOx , NbOx , ZrOx , etc. In some embodiments, the chemical stability of the non-reactive material in the first electrode 320 may be higher than the chemical stability of the transition metal oxide in the switching oxide layer 330. In some embodiments, the transitional metal oxide includes at least one of HfOx or TaOx , where x can be used to indicate that the oxide is oxygen-deficient compared to its complete (or terminal) oxide, and the value of x can vary depending on the ratio of oxygen and metal atoms in the stoichiometry of its complete oxide, for example, for HfOx (where HfO2 is a complete oxide), x≤2.0, and for TaOx (where Ta2O5 is a complete oxide ), x≤2.5.

第二電極340可以包括電子導電的且對切換氧化物是反應性的任何合適的金屬材料。例如,第二電極340中的金屬材料可以包括Ta、Hf、Ti、TiN、TaN等。第二電極340可以與切換氧化物發生反應,並具有合適的氧溶解度從而可以從所述切換氧化物層330中吸收氧並在所述切換氧化物層330中產生氧空位。換句話說,第二電極340中的所述反應性金屬材料可以具有合適的氧溶解度和/或氧遷移率。在一些實施例中,第二電極340不僅可以在所述切換氧化物層330中產生氧空位(例如,通過清除氧),還可以在單元編程期間充當所述切換氧化物層330的氧存儲器或氧源。The second electrode 340 may include any suitable metal material that is electronically conductive and reactive to the switching oxide. For example, the metal material in the second electrode 340 may include Ta, Hf, Ti, TiN, TaN, etc. The second electrode 340 may react with the switching oxide and have a suitable oxygen solubility so that oxygen can be absorbed from the switching oxide layer 330 and oxygen vacancies can be generated in the switching oxide layer 330. In other words, the reactive metal material in the second electrode 340 may have a suitable oxygen solubility and/or oxygen mobility. In some embodiments, the second electrode 340 may not only generate oxygen vacancies in the switching oxide layer 330 (e.g., by scavenging oxygen), but may also serve as an oxygen reservoir or oxygen source for the switching oxide layer 330 during cell programming.

RRAM器件330a在製造後可以具有初始電阻(本文也稱為“原始電阻”)。所述RRAM器件300a的初始電阻可以被改變,且RRAM器件300a可以通過形成過程被切換到較低電阻的狀態。例如,可以向RRAM器件300a施加一個適當的電壓或電流。向RRAM器件300a施加的電壓可以引起第二電極中的金屬材料從所述切換氧化物層330中吸收氧,並在所述切換氧化物層中生成氧空位。結果,可以在切換氧化物層330中形成富含氧空位的導電通道(例如,導電絲)。例如,如圖3B所示,導電通道335a可以形成於所述切換氧化物層中。如圖所示,導電通道335a可以從第二電極340跨過所述切換氧化物層330到第一電極320。RRAM器件300b可以被複位至高阻態。例如,可以在複位過程中向RRAM器件300b施加複位信號(例如,電壓信號或電流信號)。在一些實施例中,設置信號和複位信號可以擁有相反的極性,例如分別為正信號和負信號。複位信號的應用可以引起氧漂移回所述切換氧化物層330,且與一個或多個氧空位重新結合。例如,在複位過程中,可以在切換氧化物層330中形成如圖3C所示的中斷導電通道335b。如圖所示,導電通道可以被位於中斷導電通道335b和第一電極320之間的氧化物間隙中斷。中斷導電通道335b的橫向尺寸可以小於導電通道335a的橫向尺寸。在一些實施例中,中斷導電通道335b不連續的連接第一電極320和第二電極340。RRAM器件300a-c可以通過向RRAM器件施加適當的編程信號(例如,電壓信號、電流信號等)在高阻態和低阻態之間進行電切換。The RRAM device 330a may have an initial resistance (also referred to herein as "original resistance") after fabrication. The initial resistance of the RRAM device 300a may be changed, and the RRAM device 300a may be switched to a lower resistance state through a formation process. For example, an appropriate voltage or current may be applied to the RRAM device 300a. The voltage applied to the RRAM device 300a may cause the metal material in the second electrode to absorb oxygen from the switching oxide layer 330 and generate oxygen vacancies in the switching oxide layer. As a result, a conductive channel (e.g., a conductive filament) rich in oxygen vacancies may be formed in the switching oxide layer 330. For example, as shown in FIG. 3B , a conductive channel 335a may be formed in the switching oxide layer. As shown, the conductive path 335a can cross the switching oxide layer 330 from the second electrode 340 to the first electrode 320. The RRAM device 300b can be reset to a high resistance state. For example, a reset signal (e.g., a voltage signal or a current signal) can be applied to the RRAM device 300b during the reset process. In some embodiments, the set signal and the reset signal can have opposite polarities, such as a positive signal and a negative signal, respectively. The application of the reset signal can cause oxygen to drift back to the switching oxide layer 330 and recombine with one or more oxygen vacancies. For example, during the reset process, an interrupted conductive path 335b as shown in Figure 3C can be formed in the switching oxide layer 330. As shown, the conductive channel may be interrupted by an oxide gap between the interrupted conductive channel 335b and the first electrode 320. The lateral dimension of the interrupted conductive channel 335b may be smaller than the lateral dimension of the conductive channel 335a. In some embodiments, the interrupted conductive channel 335b does not continuously connect the first electrode 320 and the second electrode 340. The RRAM devices 300a-c may be electrically switched between a high resistance state and a low resistance state by applying an appropriate programming signal (e.g., a voltage signal, a current signal, etc.) to the RRAM device.

在一種實施方式中,第二電極340可以包括一種或多種合金。每種合金可以包括兩種或多種金屬元素。每種合金可以包括二元合金(例如,包含兩種金屬元素的合金)、三元合金(如,包含三種金屬元素的合金)、四元合金(例,包含四種金屬元素的合金)、五元合金(例如,包含五種金屬元素的合金)、和/或高階合金(例如含有六種以上金屬元素的合金)。在一些實施例中,所述第二電極340可以包括一種或多種合金,該合金包含第一金屬元素和一種或多種第二金屬元素。每種第二金屬元素對所述切換氧化物層中的過渡性金屬氧化物的反應性小於或大於第一金屬元素。在一些實施例中,第一金屬元素可以是Ta。第二金屬元素可以包括鎢(W)、鉿(Hf)、鉬(Mo)、鈮(Nb)、鋯(Zr)等中的一種或多種。在一些實施例中,第二電極340中合金的第一金屬元素與第二金屬元素的比率可以是50原子百分率。在一些實施例中,合金中第一金屬元素與第二金屬元素的合適比例可以從整個組成範圍內進行優化。在形成過程中,所述第二金屬元素可以在切換氧化物層中產生比第一金屬元素更少的氧空位。因此,在包括含有合金的第二電極的RRAM器件中形成的導電絲的橫向尺寸可以小於在包括僅由第一金屬製成的第二電極的RRAM器件中形成的導電絲的橫向尺寸。In one embodiment, the second electrode 340 may include one or more alloys. Each alloy may include two or more metal elements. Each alloy may include a binary alloy (e.g., an alloy containing two metal elements), a ternary alloy (e.g., an alloy containing three metal elements), a quaternary alloy (e.g., an alloy containing four metal elements), a quinary alloy (e.g., an alloy containing five metal elements), and/or a high-order alloy (e.g., an alloy containing six or more metal elements). In some embodiments, the second electrode 340 may include one or more alloys containing a first metal element and one or more second metal elements. Each second metal element has a reactivity to the transitional metal oxide in the switching oxide layer that is less than or greater than the first metal element. In some embodiments, the first metal element may be Ta. The second metal element may include one or more of tungsten (W), niobium (Hf), molybdenum (Mo), niobium (Nb), zirconium (Zr), etc. In some embodiments, the ratio of the first metal element to the second metal element of the alloy in the second electrode 340 may be 50 atomic percent. In some embodiments, the appropriate ratio of the first metal element to the second metal element in the alloy may be optimized from the entire composition range. During the formation process, the second metal element may produce fewer oxygen vacancies in the switching oxide layer than the first metal element. Therefore, the lateral size of the conductive filament formed in the RRAM device including the second electrode containing the alloy may be smaller than the lateral size of the conductive filament formed in the RRAM device including the second electrode made of only the first metal.

在一種實施方案中,第二電極340可以包括不同金屬材料的多個層。例如,第二電極340可以包括鈦(Ti)層和鉭(Ta)層。所述Ti層可以比Ta層薄得多。例如,Ti層的厚度可以在大約0.2nm到5nm之間。Ta層的厚度可以大約是50nm。在一些實施例中,所述Ti層的厚度可以在0.3nm到2nm之間。Ti和Ta都可以在器件操作期間捕獲和釋放氧。在RRAM器件中加入薄Ti層可以改變RRAM器件的原始電阻,導致一個不突兀的形成過程,降低形成電壓,降低複位電流,並且降低後續操作中的電壓和/或電流要求。In one embodiment, the second electrode 340 may include multiple layers of different metal materials. For example, the second electrode 340 may include a titanium (Ti) layer and a tantalum (Ta) layer. The Ti layer may be much thinner than the Ta layer. For example, the thickness of the Ti layer may be between about 0.2nm and 5nm. The thickness of the Ta layer may be about 50nm. In some embodiments, the thickness of the Ti layer may be between 0.3nm and 2nm. Both Ti and Ta can capture and release oxygen during device operation. Adding a thin Ti layer to a RRAM device can change the original resistance of the RRAM device, resulting in a less obtrusive formation process, lower formation voltage, lower reset current, and lower voltage and/or current requirements in subsequent operations.

圖4顯示了根據本發明的另一實施方案中化合物非反應性電極400示例的截面圖。FIG4 shows a cross-sectional view of an example of a compound non-reactive electrode 400 according to another embodiment of the present invention.

如圖所示,非反應性電極400可以包括金屬氮化物層410和金屬層420。金屬層420可以製造在金屬氮化物層410上。金屬氮化物層410可以包括一種或多種金屬氮化物的一個或多個層。所述金屬氮化物的示例可以包括TiN、TaN等。金屬層420可包括一種或多種貴金屬(例如Pt、Pb、Ru等)。在一些實施例中,金屬層420可以比金屬氮化物層410薄。在一些實施例中,金屬氮化物層410的厚度可以在約20nm至約25nm之間。在一些實施例中,所述金屬氮化物層410的厚度可以在約20nm至約50nm之間。在一些實施例中,所述金屬氮化物層410的厚度可以在約20nm至約30nm之間。所述金屬層420的厚度可以在約3nm至約10nm之間。在一些實施例中,金屬層420可以比2-3nm厚,且可以包括覆蓋金屬氮化物層410的貴金屬連續膜。As shown, the non-reactive electrode 400 may include a metal nitride layer 410 and a metal layer 420. The metal layer 420 may be fabricated on the metal nitride layer 410. The metal nitride layer 410 may include one or more layers of one or more metal nitrides. Examples of the metal nitrides may include TiN, TaN, etc. The metal layer 420 may include one or more precious metals (e.g., Pt, Pb, Ru, etc.). In some embodiments, the metal layer 420 may be thinner than the metal nitride layer 410. In some embodiments, the thickness of the metal nitride layer 410 may be between about 20 nm and about 25 nm. In some embodiments, the thickness of the metal nitride layer 410 may be between about 20 nm and about 50 nm. In some embodiments, the thickness of the metal nitride layer 410 may be between about 20 nm and about 30 nm. The thickness of the metal layer 420 may be between about 3 nm and about 10 nm. In some embodiments, the metal layer 420 may be thicker than 2-3 nm and may include a continuous film of a noble metal covering the metal nitride layer 410.

圖5示出了根據本發明的一種實施例中包括化合物非反應性電極的示例RRAM器件500的截面圖。FIG. 5 illustrates a cross-sectional view of an example RRAM device 500 including a compound non-reactive electrode according to one embodiment of the present invention.

RRAM器件500可以包括黏合層510、第一電極520、切換氧化物層530、界面層A(ILA)550和第二電極540。第一電極520、切換氧化物層530和第二電極540可以分別與結合圖3A所述的第一電極320、切換氧化物層330和第二電極340相同。如圖所示,第一電極520可包括結合圖4所述的金屬氮化物層410和金屬層420。在一些實施例中,黏合層510可以被視為第一電極520的一部分。The RRAM device 500 may include an adhesion layer 510, a first electrode 520, a switching oxide layer 530, an interface layer A (ILA) 550, and a second electrode 540. The first electrode 520, the switching oxide layer 530, and the second electrode 540 may be respectively the same as the first electrode 320, the switching oxide layer 330, and the second electrode 340 described in conjunction with FIG. 3A. As shown, the first electrode 520 may include the metal nitride layer 410 and the metal layer 420 described in conjunction with FIG. 4. In some embodiments, the adhesion layer 510 may be considered as a part of the first electrode 520.

黏合層510可以包括一種或多種合適的金屬材料,其可以增強襯底和RRAM器件500組件之間的黏附性。在一些實施例中,黏合層510可以包括Ti、Ta等的一個或多個層。The adhesion layer 510 may include one or more suitable metal materials that may enhance adhesion between the substrate and the RRAM device 500 assembly. In some embodiments, the adhesion layer 510 may include one or more layers of Ti, Ta, etc.

ILA 550(也被稱為“第一界面層” )可以包括第一材料,所述第一材料相比切換氧化物層中的過渡性金屬氧化物更具有化學穩定性。所述第一材料可以包括,例如,Al 2O 3、MgO、Y 2O 3、La 2O 3等。ILA 550可以包括第一材料的非連續膜和/或第一材料的連續膜。在一些實施例中,ILA 550的厚度可以在約0.2nm至約0.5nm之間。在一些實施例中,ILA 550可以包括厚度等於或小於0.5nm的Al 2O 3膜。在一些實施例中,ILA 550可以是和/或包括厚度小於1nm的Al 2O 3膜。在ILA 550包括氧化鋁的情況下,RRAM器件可以是高電阻和耐退火的RRAM器件。 The ILA 550 (also referred to as a "first interface layer") may include a first material that is more chemically stable than the transition metal oxide in the switching oxide layer. The first material may include, for example, Al2O3 , MgO , Y2O3 , La2O3 , etc. The ILA 550 may include a non-continuous film of the first material and/or a continuous film of the first material. In some embodiments, the thickness of the ILA 550 may be between about 0.2nm and about 0.5nm. In some embodiments, the ILA 550 may include an Al2O3 film having a thickness equal to or less than 0.5nm. In some embodiments, the ILA 550 may be and/or include an Al2O3 film having a thickness less than 1nm. In the case where the ILA 550 includes aluminum oxide, the RRAM device may be a high resistance and annealing resistant RRAM device.

圖6示出了根據本發明的進一步實施方式中包含化合物非反應性電極的示例RRAM器件600的截面圖。FIG. 6 illustrates a cross-sectional view of an example RRAM device 600 including a compound non-reactive electrode according to a further embodiment of the present invention.

RRAM器件600可以包括黏合層610、第一電極620、界面層B(ILB)660、切換氧化物層630、界面層A(ILA)650和第二電極640。第一電極620、切換氧化物層630和第二電極640可以分別與結合圖3A所述的第一電極320、切換氧化物層330和第二電極340相同。黏合層610可以與圖5中的黏合層510相同。ILA 650可以與圖5中的ILA 550相同。在一些實施例中,RRAM器件600可以進一步包括如結合圖3A所描述的襯底(未顯示)。The RRAM device 600 may include an adhesion layer 610, a first electrode 620, an interface layer B (ILB) 660, a switching oxide layer 630, an interface layer A (ILA) 650, and a second electrode 640. The first electrode 620, the switching oxide layer 630, and the second electrode 640 may be the same as the first electrode 320, the switching oxide layer 330, and the second electrode 340 described in conjunction with FIG. 3A, respectively. The adhesion layer 610 may be the same as the adhesion layer 510 in FIG. 5. The ILA 650 may be the same as the ILA 550 in FIG. 5. In some embodiments, the RRAM device 600 may further include a substrate (not shown) as described in conjunction with FIG. 3A.

ILB 660 可以包括第二材料,所述第二材料相比切換氧化物層630中的過渡性金屬氧化物更具有化學穩定性。所述第二材料可以包括,例如Al 2O 3、MgO、Y 2O 3、La 2O 3等。ILB 660可以包括第二材料的非連續膜和/或第二材料的連續膜。在一些實施例中,ILB 660的厚度可以在約0.2nm至約0.5nm之間。在一些實施例中,ILB 660可包括厚度等於或小於0.5nm的Al 2O 3膜。在一些實施例中,ILB 660可以是和/或包括厚度小於1nm的Al2O3 膜。在具有第一界面層和第二界面層下,RRAM器件可以是高電阻和耐退火的RRAM器件。 The ILB 660 may include a second material that is more chemically stable than the transition metal oxide in the switching oxide layer 630. The second material may include, for example, Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc. The ILB 660 may include a non-continuous film of the second material and/or a continuous film of the second material. In some embodiments, the thickness of the ILB 660 may be between about 0.2 nm and about 0.5 nm. In some embodiments, the ILB 660 may include an Al 2 O 3 film having a thickness equal to or less than 0.5 nm. In some embodiments, the ILB 660 may be and/or include an Al 2 O 3 film having a thickness less than 1 nm. With the first interface layer and the second interface layer, the RRAM device may be a high resistance and annealing resistant RRAM device.

在一些實施例中,ILA 650可以從RRAM器件600中省略。例如,如圖7所示,RRAM器件700可以包括結合圖6所描述的黏合層610、第一電極620、界面層B(ILB)660、切換氧化物層630和第二電極640。In some embodiments, the ILA 650 may be omitted from the RRAM device 600. For example, as shown in FIG7 , the RRAM device 700 may include the adhesion layer 610, the first electrode 620, the interface layer B (ILB) 660, the switching oxide layer 630, and the second electrode 640 described in conjunction with FIG6 .

圖8A、8B、8C、8D、8E和8F是示出了根據本發明一些實施例中製造RRAM器件中的非反應性電極的結構截面圖的示意圖。8A, 8B, 8C, 8D, 8E and 8F are schematic diagrams showing cross-sectional views of structures of non-reactive electrodes in manufacturing RRAM devices according to some embodiments of the present invention.

如圖8A所示,可以提供襯底810。襯底810可以包括可用於製造RRAM器件的襯底的任何合適材料的一個或多個層,例如矽(Si)、二氧化矽(SiO 2)、氮化矽(Si 3N 4)、氧化鋁(Al 2O 3)、氮化鋁(AlN)等。在一些實施例中,襯底810可以包括二極管、晶體管、互連、集成電路等。襯底810可以包括驅動電路,該驅動電路可以單獨控制一個或多個電路(例如,電路陣列)。在一些實施例中,驅動電路可以包括一個或多個互補金屬氧化物半導體(CMOS)驅動器。在一些實施例中,襯底810可以包括一個或多個介電層、互連層、晶體管和/或用於製造交叉電路的任何其它合適的組件(未顯示)。每個互連層可以包括一個或多個金屬焊盤和/或金屬通孔,且可以提供製造於襯底810上的器件之間的電連接。 As shown in FIG8A , a substrate 810 may be provided. The substrate 810 may include one or more layers of any suitable material that may be used to fabricate a substrate for an RRAM device, such as silicon (Si), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), etc. In some embodiments, the substrate 810 may include diodes, transistors, interconnects, integrated circuits, etc. The substrate 810 may include a driver circuit that may individually control one or more circuits (e.g., a circuit array). In some embodiments, the driver circuit may include one or more complementary metal oxide semiconductor (CMOS) drivers. In some embodiments, substrate 810 may include one or more dielectric layers, interconnect layers, transistors, and/or any other suitable components (not shown) for fabricating cross-circuit circuits. Each interconnect layer may include one or more metal pads and/or metal vias, and may provide electrical connections between devices fabricated on substrate 810.

如圖8A所示,襯底810可以包括一個或多個金屬互連(例如,金屬焊盤和/或金屬通孔)的互連層。例如,第一互連層可以包括金屬互連811a和811b(也被稱為“第一金屬互連”和“第二金屬互連” )。在一些實施例中,金屬互連811a和811b可以是包含鎢(W)、Al、Cu和任何其它合適金屬的金屬焊盤。在一些實施例中,金屬互連811a和811b可以是包含鋁(Al)、銅(Cu)、鎢(W)等的金屬通孔。金屬互連811a和811b中的每一個都可以連接到其它組件(未顯示),例如晶體管、二極管等。在一些實施例中,金屬互連811a-b可以包括鎢(W)孔和摻雜多晶矽(poly-Si)端子,其中多晶矽端子可以連接晶體管或二極管端子(未示出)。As shown in FIG8A , substrate 810 may include an interconnect layer of one or more metal interconnects (e.g., metal pads and/or metal vias). For example, a first interconnect layer may include metal interconnects 811a and 811b (also referred to as “first metal interconnects” and “second metal interconnects”). In some embodiments, metal interconnects 811a and 811b may be metal pads containing tungsten (W), Al, Cu, and any other suitable metal. In some embodiments, metal interconnects 811a and 811b may be metal vias containing aluminum (Al), copper (Cu), tungsten (W), etc. Each of metal interconnects 811a and 811b may be connected to other components (not shown), such as transistors, diodes, etc. In some embodiments, metal interconnects 811a-b may include tungsten (W) holes and doped polysilicon (poly-Si) terminals, where the poly-Si terminals may be connected to transistor or diode terminals (not shown).

如圖8B所示,黏合層821可以製造於金屬互連811a和811b以及襯底810上。黏合層821可以包括Ta層、Ti層和/或可以加強襯底810和在襯底810上製造的RRAM器件中其它組件的黏附性的任何合適材料的層。8B, an adhesion layer 821 may be fabricated on metal interconnects 811a and 811b and substrate 810. Adhesion layer 821 may include a Ta layer, a Ti layer, and/or a layer of any suitable material that may enhance adhesion of substrate 810 and other components in a RRAM device fabricated on substrate 810.

如圖8C所示,金屬氮化物層823可以製造於黏合層821上。金屬氮化物層823可以包括一種或多種金屬氮化物的一個或多個層,所述一種或多種金屬氮化物對在襯底810上製造的RRAM器件中切換氧化物是電子導電的和不反應的。金屬氮化物可以包括例如TiN、TaN等。8C, a metal nitride layer 823 may be fabricated on the adhesion layer 821. The metal nitride layer 823 may include one or more layers of one or more metal nitrides that are electronically conductive and non-reactive to switching oxide in the RRAM device fabricated on the substrate 810. The metal nitride may include, for example, TiN, TaN, etc.

如圖8D所示,金屬層825可以製造於金屬氮化物層823上。金屬層825可以包括一種或多種合適金屬(也被稱為“非反應性金屬”)的一個或多個層,一種或多種合適金屬對於在襯底810上製造的RRAM器件中切換氧化物是電子導電的和非反應的。所述非反應性金屬的示例可以包括Pt、Pd、Ir、Ru等。As shown in FIG8D , a metal layer 825 may be fabricated on the metal nitride layer 823. The metal layer 825 may include one or more layers of one or more suitable metals (also referred to as “non-reactive metals”) that are electronically conductive and non-reactive to switching oxides in RRAM devices fabricated on the substrate 810. Examples of the non-reactive metals may include Pt, Pd, Ir, Ru, etc.

黏合層821、金屬氮化物層823和金屬層825中的一個或多個部分可以選擇性地去除以製造一個或多個底電極。例如,如圖8E所示,通過圖形化和蝕刻黏合層821、金屬氮化物層823和金屬層825,第一底電極820a和第二底電極820b可以分別製造於金屬互連811a和金屬互連811b上。第一底電極820a可以包括第一黏合層821a、第一金屬氮化物層823a和第一金屬層825a。第二底部電極820b可以包括第二黏合層821b、第二金屬氮化物層823b和第二金屬層825b。第一黏合層821a和821b可以對應於蝕刻的黏合層821。第一金屬氮化物層823a和第二金屬氮化物層823b可以對應於蝕刻的金屬氮化物層822。第一金屬層825a和第二金屬層825b可以對應於蝕刻的金屬層825。在一些實施例中,底電極820a-b的橫向尺寸可以大於金屬互連811a-b的橫向尺寸。第一底電極820a可以直接接觸金屬互連811a以形成歐姆接觸。第二底電極820b可以直接接觸金屬互連811b以形成歐姆接觸。第一底電極820a和第二底電極820b可以進一步接觸所述襯底810的一個或多個部分,例如襯底810的表面801(例如,襯底810的頂表面)的一個或多個部分。One or more portions of the adhesion layer 821, the metal nitride layer 823, and the metal layer 825 may be selectively removed to fabricate one or more bottom electrodes. For example, as shown in FIG8E, by patterning and etching the adhesion layer 821, the metal nitride layer 823, and the metal layer 825, a first bottom electrode 820a and a second bottom electrode 820b may be fabricated on the metal interconnect 811a and the metal interconnect 811b, respectively. The first bottom electrode 820a may include a first adhesion layer 821a, a first metal nitride layer 823a, and a first metal layer 825a. The second bottom electrode 820b may include a second adhesion layer 821b, a second metal nitride layer 823b, and a second metal layer 825b. The first adhesion layer 821a and 821b may correspond to the etched adhesion layer 821. The first metal nitride layer 823a and the second metal nitride layer 823b may correspond to the etched metal nitride layer 822. The first metal layer 825a and the second metal layer 825b may correspond to the etched metal layer 825. In some embodiments, the lateral dimensions of the bottom electrodes 820a-b may be greater than the lateral dimensions of the metal interconnects 811a-b. The first bottom electrode 820a may directly contact the metal interconnect 811a to form an ohmic contact. The second bottom electrode 820b may directly contact the metal interconnect 811b to form an ohmic contact. The first bottom electrode 820a and the second bottom electrode 820b may further contact one or more portions of the substrate 810, such as one or more portions of the surface 801 of the substrate 810 (eg, the top surface of the substrate 810).

如圖8F所示,RRAM堆疊830a和RRAM堆疊830b可以分別製造於第一底電極820a和第二底電極820b上。RRAM堆疊830a和830b中的每一個可以包括如上結合圖3A-7所描述切換氧化物層、頂電極和一個或多個界面層。在一些實施例中,可以使用美國專利申請號為17/654,476和17/936,830中所描述的技術來製造RRAM堆疊830a和830b,這些專利申請通過引用結合在本文中。As shown in FIG8F, RRAM stack 830a and RRAM stack 830b can be fabricated on first bottom electrode 820a and second bottom electrode 820b, respectively. Each of RRAM stacks 830a and 830b can include a switching oxide layer, a top electrode, and one or more interface layers as described above in conjunction with FIGS. 3A-7. In some embodiments, RRAM stacks 830a and 830b can be fabricated using techniques described in U.S. Patent Application Nos. 17/654,476 and 17/936,830, which are incorporated herein by reference.

圖9A示出了根據本發明一些實施例中包括化合物非反應性電極的示例RRAM器件的I-V(電流-電壓)特性的特性曲線圖900A。圖9B示出了顯示RRAM器件的模擬行為的I-V曲線的特性曲線圖900B。圖9C示出了示例RRAM器件隨時間變化的器件讀取電流特性的特性曲線圖900C。FIG. 9A shows a characteristic graph 900A of I-V (current-voltage) characteristics of an example RRAM device including a compound non-reactive electrode according to some embodiments of the present invention. FIG. 9B shows a characteristic graph 900B of an I-V curve showing simulated behavior of the RRAM device. FIG. 9C shows a characteristic graph 900C of a device read current characteristic of an example RRAM device over time.

如圖9A所示,RRAM器件為多次開關(例如,開關1、開關2和開關3)提供了可重複性的和期望的設置-複位操作,證明了多個開關行為的穩定性。如圖9B所示,RRAM器件表現出期望的模擬行為。也就是說,可以通過控制電流順應性將器件電阻調節至多級(或模擬行為),且在每個電阻狀態下電流與電壓成線性比例(或線性行為)。如圖9C所示,特性曲線圖900C可以表示RRAM器件隨時間保持電阻水平的能力的器件保持測試的結果,以及當RRAM器件因其隨時間變化保持電阻水平的能力而處於恆定讀取(具有0.2V的讀取電壓)時的讀取穩定性測試的結果。如圖9C所示,RRAM器件表現出隨時間變化的期望的器件讀取穩定性。As shown in FIG. 9A , the RRAM device provides repeatable and expected set-reset operation for multiple switches (e.g., switch 1, switch 2, and switch 3), demonstrating the stability of multiple switch behaviors. As shown in FIG. 9B , the RRAM device exhibits expected analog behavior. That is, the device resistance can be adjusted to multiple levels (or analog behavior) by controlling the current compliance, and the current is linearly proportional to the voltage (or linear behavior) in each resistance state. As shown in FIG. 9C , the characteristic curve graph 900C can represent the results of a device retention test of the ability of the RRAM device to maintain the resistance level over time, and the results of a read stability test when the RRAM device is in a constant read (with a read voltage of 0.2V) due to its ability to maintain the resistance level over time. As shown in FIG. 9C , the RRAM device exhibits the desired device read stability over time.

圖10示出了根據本發明的一些實施例中製造RRAM器件(例如圖5、圖6和圖7中所示RRAM器件500、600和700)的製造方法示例1000的流程圖。FIG. 10 shows a flow chart of an example method 1000 for manufacturing an RRAM device (eg, the RRAM devices 500 , 600 , and 700 shown in FIGS. 5 , 6 , and 7 ) according to some embodiments of the present invention.

在1010中,第一電極可以製造於襯底上。製造所述第一電極可以包括沉積一層或多層金屬氮化物,例如TiN或TaN。例如,製造第一電極可以包括利用原子層沉積(ALD)技術、物理氣相沉積(PVD)技術、Ti反應濺射技術和/或任何其它合適的沉積技術沉積一層或多層TiN。製造第一電極可以進一步包括在所述金屬氮化物上沉積一種或多種非反應性金屬。所述第一電極可以是和/或包括如上結合圖4所描述的化合物非反應性電極。在一些實施例中,製造所述第一底電極可以涉及執行如下圖11所描述的一個或多個操作。In 1010, a first electrode may be fabricated on a substrate. Fabricating the first electrode may include depositing one or more layers of a metal nitride, such as TiN or TaN. For example, fabricating the first electrode may include depositing one or more layers of TiN using an atomic layer deposition (ALD) technique, a physical vapor deposition (PVD) technique, a Ti reactive sputtering technique, and/or any other suitable deposition technique. Fabricating the first electrode may further include depositing one or more non-reactive metals on the metal nitride. The first electrode may be and/or include a compound non-reactive electrode as described above in conjunction with FIG. 4 . In some embodiments, fabricating the first bottom electrode may involve performing one or more operations as described below in FIG. 11 .

在1020中,界面層B(ILB)可以製造在第一電極上。所述ILB可以包括比隨後描述的切換氧化物層中過渡性金屬氧化物(例如,AlO x, 像 Al 2O 3)更具有化學穩定性的材料。例如,製造界面層B可以包括利用原子層沉積(ALD)技術、物理氣相沉積(PVD)技術、Al反應濺射技術和/或任何其它合適的沉積技術來沉積AlO x。界面層B可以是和/或包括如上結合圖6所描述的ILB 660。在一些實施例中,步驟1020可以從製造方法示例1000中省略。 In 1020, an interface layer B (ILB) can be fabricated on the first electrode. The ILB can include a material that is more chemically stable than the transition metal oxide (e.g., AlOx , such as Al2O3 ) in the switching oxide layer described later. For example, fabricating the interface layer B can include depositing AlOx using an atomic layer deposition (ALD) technique, a physical vapor deposition (PVD) technique, an Al reactive sputtering technique, and/or any other suitable deposition technique. The interface layer B can be and/or include the ILB 660 described above in conjunction with FIG. 6. In some embodiments, step 1020 can be omitted from the manufacturing method example 1000.

在1030中,包括一種或多種過渡性金屬氧化物的所述切換氧化物層可以製造於所述界面層B上。過渡性金屬氧化物可以包括例如HfOx。例如,製造切換氧化物層可以包括利用原子層沉積(ALD)技術、物理氣相沉積(PVD)技術、Hf的反應濺射技術和/或任何其它合適的沉積技術來沉積HfOx。切換氧化物層可以是和/或包括如上結合圖6所述的切換氧化物層630。In 1030, the switching oxide layer including one or more transitional metal oxides may be fabricated on the interface layer B. The transitional metal oxide may include, for example, HfOx. For example, fabricating the switching oxide layer may include depositing HfOx using an atomic layer deposition (ALD) technique, a physical vapor deposition (PVD) technique, a reactive sputtering technique of Hf, and/or any other suitable deposition technique. The switching oxide layer may be and/or include the switching oxide layer 630 described above in conjunction with FIG. 6 .

在1040中,界面層A(ILA)可以製造於所述切換氧化物層上。所述ILA可以包括比切換氧化物層中的過渡性金屬氧化物更具有化學穩定性的金屬,例如AlO x、像Al 2O 3。例如,製造所述界面層A可包括使用原子層沉積(ALD)技術、物理氣相沉積(PVD)技術、Al反應濺射技術和/或任何其它合適的沉積技術來沉積AlO x。所述界面層A可以是和/或包括如上結合圖6所描述的ILA 650。 In 1040, an interface layer A (ILA) may be fabricated on the switching oxide layer. The ILA may include a metal that is more chemically stable than the transition metal oxide in the switching oxide layer, such as AlOx , such as Al2O3 . For example, fabricating the interface layer A may include depositing AlOx using an atomic layer deposition ( ALD ) technique, a physical vapor deposition (PVD) technique, an Al reactive sputtering technique, and/or any other suitable deposition technique. The interface layer A may be and/or include the ILA 650 described above in conjunction with FIG. 6.

在1050中,第二電極可以製造於所述界面層A上。製造第二電極可以涉及製造一種或多種金屬材料的一個或多個層,所述一種或多種金屬材料是電子導電的並且對切換氧化物是反應性的。例如,製造第二電極可以包括使用物理氣相沉積(PVD)技術和/或任何其它合適的沉積技術沉積一個或多個Ta層。第二電極可以是和/或包括如上結合圖6所述的第二電極640。In 1050, a second electrode may be fabricated on the interface layer A. Fabricating the second electrode may involve fabricating one or more layers of one or more metal materials that are electronically conductive and reactive to the switching oxide. For example, fabricating the second electrode may include depositing one or more Ta layers using physical vapor deposition (PVD) techniques and/or any other suitable deposition techniques. The second electrode may be and/or include the second electrode 640 described above in conjunction with FIG. 6 .

圖11示出了根據本發明的一些實施例製造非反應性電極的製造方法示例1100的流程圖,例如結合圖4和圖8A-8F所描述的非反應性電極。11 shows a flow chart of an example method 1100 for manufacturing a non-reactive electrode according to some embodiments of the present invention, such as the non-reactive electrode described in conjunction with FIG. 4 and FIGS. 8A-8F .

在1110中,黏合層可以製造於襯底上。製造所述黏合層可以包括沉積金屬層,例如Ta、Ti等,該金屬層可以增強襯底與底電極和/或製造於襯底上的RRAM器件其他組件之間的黏附性。在一些實施例中,製造所述黏合層可能涉及沉積厚度在約2nm至5nm之間的Ti膜或Ta膜。可以使用合適的PVD技術和/或用於沉積金屬的任何其它合適的沉積技術來沉積黏合層。在一些實施例中,步驟1110可以從製造方法示例1100中省略。In 1110, an adhesive layer may be fabricated on the substrate. Fabricating the adhesive layer may include depositing a metal layer, such as Ta, Ti, etc., which may enhance adhesion between the substrate and the bottom electrode and/or other components of the RRAM device fabricated on the substrate. In some embodiments, fabricating the adhesive layer may involve depositing a Ti film or a Ta film with a thickness between about 2 nm and 5 nm. The adhesive layer may be deposited using a suitable PVD technique and/or any other suitable deposition technique for depositing metals. In some embodiments, step 1110 may be omitted from the manufacturing method example 1100.

在1120中,金屬氮化物層可以製造於所述黏合層上。製造所述金屬氮化物層可以涉及沉積對製造於底電極上的切換氧化物層中過渡性金屬氧化物不反應的金屬氮化物層。例如,製造金屬氮化物層可以包括使用ALD、PVD、反應濺射技術或任何其它合適的沉積技術沉積TiN、TaN等的層。In 1120, a metal nitride layer may be fabricated on the adhesion layer. Fabricating the metal nitride layer may involve depositing a metal nitride layer that is non-reactive to the transitional metal oxide in the switching oxide layer fabricated on the bottom electrode. For example, fabricating the metal nitride layer may include depositing a layer of TiN, TaN, etc. using ALD, PVD, reactive sputtering techniques, or any other suitable deposition technique.

在1130中,金屬層可以製造於所述金屬氮化物層上。製造金屬層可以包括沉積本發明所述的一種或多種非反應性金屬。在一些實施例中,製造金屬層可包括利用PVD技術或任何其它合適的沉積技術在金屬氮化物層上沉積Pt、Pd、Ir、Ru等。在一些實施例中,製造金屬層可包括沉積厚度在約3nm和約10nm之間的Pt、Pd、Ir、Ru層。In 1130, a metal layer may be fabricated on the metal nitride layer. Fabricating the metal layer may include depositing one or more non-reactive metals described herein. In some embodiments, fabricating the metal layer may include depositing Pt, Pd, Ir, Ru, etc. on the metal nitride layer using PVD techniques or any other suitable deposition techniques. In some embodiments, fabricating the metal layer may include depositing a Pt, Pd, Ir, Ru layer having a thickness between about 3 nm and about 10 nm.

在一些實施例中,在1140中,黏合層、金屬氮化物層和金屬層中的一個或多個部分可以選擇性地被移除以製造一個或多個底電極。例如黏合層、金屬氮化物層和金屬層可以被圖形化和蝕刻,以製造如結合圖8E所述的第一底部電極820a和第二底部電極820b。In some embodiments, one or more portions of the adhesion layer, the metal nitride layer, and the metal layer may be selectively removed to fabricate one or more bottom electrodes in 1140. For example, the adhesion layer, the metal nitride layer, and the metal layer may be patterned and etched to fabricate the first bottom electrode 820a and the second bottom electrode 820b as described in conjunction with FIG. 8E.

為了說明的簡潔起見,本發明的方法作為一系列動作來描繪和描述。但是,根據本發明的動作能夠按照各種順序和/或同時地發生,並且與其它在本發明中未提出和描述的動作一起發生。此外,並不是所有說明的動作都可以被要求來實現根據所發明的主題的方法。另外,本領域的技術人員將理解並認識到,可以替代性地經由狀態圖或事件將方法表示為一系列相互狀態。For simplicity of illustration, the method of the present invention is depicted and described as a series of actions. However, the actions according to the present invention can occur in various orders and/or simultaneously, and with other actions not proposed and described in the present invention. In addition, not all illustrated actions may be required to implement the method according to the invented subject matter. In addition, those skilled in the art will understand and recognize that the method can alternatively be represented as a series of inter-states via state diagrams or events.

本文所使用的術語 “大約”、“關於 ”和 “基本上 ”可以指在本領域的正常公差範圍內,例如在平均值的2個標準差內,在一些實施例中在目標尺寸的±20%內,在一些實施例中在目標尺寸的±10%內,在一些實施例中在目標尺寸的±5%內,在一些實施例中在目標尺寸的±2%內,在一些實施例中在目標尺寸的±1%內,以及在一些實施例中在目標尺寸的±0.1%內。術語 “大約 ”和 “關於”可以包括目標尺寸。 除非特別說明或從上下文中明顯看出,本文描述的所有數值都由術語 “約”進行修飾。As used herein, the terms "approximately," "about," and "substantially" may mean within a normal tolerance range in the art, such as within 2 standard deviations of the mean, within ±20% of a target size in some embodiments, within ±10% of a target size in some embodiments, within ±5% of a target size in some embodiments, within ±2% of a target size in some embodiments, within ±1% of a target size in some embodiments, and within ±0.1% of a target size in some embodiments. The terms "approximately" and "about" may include target sizes. Unless otherwise specified or apparent from the context, all numerical values described herein are modified by the term "about."

如本文所用,一個範圍包括該範圍內的所有數值。例如,1至10的範圍可以包括任意數字、數字組合、來自1、2、3、4、5、6、7、8、9和10的數字的子範圍以及其分數。As used herein, a range includes all values within the range. For example, a range of 1 to 10 may include any number, combination of numbers, sub-ranges of numbers from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, and fractions thereof.

本發明在上述說明中提到了很多細節。但顯而易見的是,沒有這些具體細節本發明也可以實施。在一些例子中,為了突出本發明的內容,熟知的結構和設備以框圖的形式顯示,而非具體細節。The present invention has been described in many details in the above description. However, it is obvious that the present invention can be implemented without these specific details. In some examples, in order to highlight the content of the present invention, well-known structures and devices are shown in the form of block diagrams rather than specific details.

本文所使用的術語“第一”、“第二”、“第三”、“第四”等是用於區分不同部件的標記,可以不必具有所用數字編號的序數含義。The terms "first", "second", "third", "fourth", etc. used in this document are used to distinguish different components and may not necessarily have the ordinal meaning of the numerical numbers used.

這裡使用的“例子”或“示範性”一詞是指作為例子、實例或說明。此處描述為 “示例”或 “示範”的任何方面或設計不一定被理解為比其它方面或設計更優選或有利。相反,使用“例子”或“示範性”這些詞的目的是為了以一種具體的方式呈現概念。在本申請中,術語“或”的意思是包括“或”,而不是排除“或”。也就是說,除非另有規定,或從上下文中可以看出,“X包括A或B ”意指任何自然的包容性排列組合。也就是說,如果X包括A;X包括B;或者X同時包括A和B,那麼在上述任何情況下,“X包括A或B ”都被滿足。此外,在本申請和所附申請專利範圍中使用的 “a ”和 “an”通常應被理解為 “一個或多個”,除非另有規定或從上下文中明確指出是針對單數形式。本說明書中提到的 “一個實施方案 ”或 “一個實施方案”是指與該實施方案有關的特定特徵、結構或特性至少包括在一個實施方案中。因此,在本說明書的不同地方出現的短語 “一個實施方案 ”或 “一種實施方案 ”不一定都是指同一個實施方案。The words "example" or "exemplary" as used herein refer to serving as an example, instance or illustration. Any aspect or design described herein as "example" or "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs. On the contrary, the purpose of using the words "example" or "exemplary" is to present the concept in a concrete way. In this application, the term "or" means inclusive "or" rather than exclusive "or". That is, unless otherwise specified or clear from the context, "X includes A or B" means any natural inclusive permutation combination. That is, if X includes A; X includes B; or X includes both A and B, then in any of the above cases, "X includes A or B" is satisfied. In addition, "a" and "an" used in this application and the appended application patent scope should generally be understood as "one or more" unless otherwise specified or the context clearly indicates that it is directed to the singular form. The "one embodiment" or "an embodiment" mentioned in this specification means that the specific features, structures or characteristics related to the embodiment are included in at least one embodiment. Therefore, the phrases "one embodiment" or "an embodiment" appearing in different places in this specification do not necessarily refer to the same embodiment.

如本文所使用的,當一個元素或層被稱為“在”另一個元素或層上時,該元素或層可以直接在另一個元素或層上,或者可以存在介入的元素或層。反之,當一個元素或層被稱為“直接在”另一個元素或層上時,不存在中間的元素或層。As used herein, when an element or layer is referred to as being “on” another element or layer, it can be directly on the other element or layer, or intervening elements or layers may be present. In contrast, when an element or layer is referred to as being “directly on” another element or layer, there are no intervening elements or layers present.

儘管在瞭解上述描述後,對於本發明內容做出另外的變更和修改對於本領域普通技術人員無疑是顯而易見的,但應理解的是,以說明方式所顯示和描述的任何具體實施例不應被視為是限制的。因此,各種實施例的細節並不是為了限制申請專利範圍,申請專利範圍本身只是敘述了發明技術特徵。Although it is obvious to a person skilled in the art that additional changes and modifications to the content of the present invention are made after understanding the above description, it should be understood that any specific embodiment shown and described in an illustrative manner should not be considered as limiting. Therefore, the details of the various embodiments are not intended to limit the scope of the patent application, and the scope of the patent application itself only describes the technical features of the invention.

100:交叉開關電路 111a、111b、111i、111n:行線 113a、113b、113j、113m:列線 120a、120b、120ij、120z:交叉點器件 200:交叉點器件 201:RRAM器件 203:晶體管 211:位線 213:選線 215:字線 G:柵極 S:源極 D:漏極 300a、300b、330c:RRAM器件 310:襯底 320:第一電極 330:切換氧化物層 340:第二電極 335a:導電通道 335b:中斷導電通道 400:非反應性電極 410:金屬氮化物層 420:金屬層 500:RRAM器件 510:黏合層 520:第一電極 530:切換氧化物層 540:第二電極 550:界面層A(ILA) 600:RRAM器件 610:黏合層 620:第一電極 630:切換氧化物層 640:第二電極 650:界面層A(ILA) 660:界面層B(ILB) 700:RRAM器件 801:表面 810:襯底 811a、811b:金屬互連 820a:第一底電極 820b:第二底電極 821:黏合層 823:金屬氮化物層 823a:第一金屬氮化物層 823b:第二金屬氮化物層 825:金屬層 825a:第一金屬層 825b:第二金屬層 821a:第一黏合層 821b:第二黏合層 830a、830b:RRAM堆疊 900A:特性曲線圖 900B:特性曲線圖 900C:特性曲線圖 1000:製造方法示例 1010、1020、1030、1040、1050:步驟 1100:製造方法示例 1110、1120、1130、1140:步驟 100: cross-switch circuit 111a, 111b, 111i, 111n: row lines 113a, 113b, 113j, 113m: column lines 120a, 120b, 120ij, 120z: cross-point device 200: cross-point device 201: RRAM device 203: transistor 211: bit line 213: select line 215: word line G: gate S: source D: drain 300a, 300b, 330c: RRAM device 310: substrate 320: first electrode 330: switching oxide layer 340: second electrode 335a: conductive channel 335b: interrupt conductive channel 400: non-reactive electrode 410: metal nitride layer 420: metal layer 500: RRAM device 510: adhesive layer 520: first electrode 530: switching oxide layer 540: second electrode 550: interface layer A (ILA) 600: RRAM device 610: adhesive layer 620: first electrode 630: switching oxide layer 640: second electrode 650: interface layer A (ILA) 660: interface layer B (ILB) 700: RRAM device 801: surface 810: substrate 811a, 811b: metal interconnects 820a: first bottom electrode 820b: second bottom electrode 821: adhesive layer 823: metal nitride layer 823a: first metal nitride layer 823b: second metal nitride layer 825: metal layer 825a: first metal layer 825b: second metal layer 821a: first adhesive layer 821b: second adhesive layer 830a, 830b: RRAM stack 900A: characteristic curve 900B: characteristic curve 900C: characteristic curve 1000: manufacturing method example 1010, 1020, 1030, 1040, 1050: steps 1100: Example of manufacturing method 1110, 1120, 1130, 1140: Steps

從下述給出的詳細描述及本發明的各種實施例的附圖,將更充分地理解本發明。然而,附圖不應被用於將本發明限制在特定實施例中,而是僅用於解釋和理解。 圖1是示出了根據本發明一些實施例中交叉開關電路示例的示意圖。 圖2是示出了根據本發明一些實施例中交叉點器件示例的示意圖。 圖3A示出了根據本發明一些實施例的示例RRAM器件的截面圖。 圖3B和圖3C分別示出了圖3A中RRAM器件處於低阻態和高阻態下的截面圖。 圖4示出了根據本發明另一個實施方案中化合物非反應性電極的示例400的截面圖。 圖5、圖6和圖7示出了根據本發明一些實施例中的示例RRAM器件的截面圖。 圖8A、圖8B、圖8C、圖8D、圖8E和圖8F是根據本發明一些實施例中的用於製造RRAM器件的非反應性電極的結構截面圖的示意圖。 圖9A顯示了根據本發明一些實施例的RRAM器件的I-V (電流-電壓)特性; 圖9B是顯示了根據本發明一些實施例中的RRAM器件的模擬行為的I-V曲線; 圖9C是示出了根據本發明一些實施例中的示例RRAM器件隨時間的器件讀取電流特性的圖。 圖10是示出了根據本發明一些實施例中的用於製造RRAM器件的示例方法的流程圖。 圖11是示出了根據本發明一些實施例中的用於製造非反應性電極的方法示例的流程圖。 The present invention will be more fully understood from the detailed description given below and the accompanying drawings of various embodiments of the present invention. However, the accompanying drawings should not be used to limit the present invention to specific embodiments, but only for explanation and understanding. FIG. 1 is a schematic diagram showing an example of a cross-switch circuit according to some embodiments of the present invention. FIG. 2 is a schematic diagram showing an example of a cross-point device according to some embodiments of the present invention. FIG. 3A shows a cross-sectional view of an example RRAM device according to some embodiments of the present invention. FIG. 3B and FIG. 3C respectively show cross-sectional views of the RRAM device in FIG. 3A in a low resistance state and a high resistance state. FIG. 4 shows a cross-sectional view of an example 400 of a compound non-reactive electrode according to another embodiment of the present invention. FIG. 5, FIG. 6 and FIG. 7 show cross-sectional views of example RRAM devices according to some embodiments of the present invention. Figures 8A, 8B, 8C, 8D, 8E and 8F are schematic diagrams of structural cross-sectional views of non-reactive electrodes for manufacturing RRAM devices according to some embodiments of the present invention. Figure 9A shows the I-V (current-voltage) characteristics of the RRAM device according to some embodiments of the present invention; Figure 9B is an I-V curve showing the simulated behavior of the RRAM device according to some embodiments of the present invention; Figure 9C is a diagram showing the device read current characteristics of the example RRAM device over time according to some embodiments of the present invention. Figure 10 is a flow chart showing an example method for manufacturing RRAM devices according to some embodiments of the present invention. Figure 11 is a flow chart showing an example method for manufacturing non-reactive electrodes according to some embodiments of the present invention.

810:襯底 810: Lining

811a、811b:金屬互連 811a, 811b: Metal interconnection

820a:第一底電極 820a: first bottom electrode

820b:第二底電極 820b: Second bottom electrode

823a:第一金屬氮化物層 823a: First metal nitride layer

823b:第二金屬氮化物層 823b: Second metal nitride layer

825a:第一金屬層 825a: First metal layer

825b:第二金屬層 825b: Second metal layer

821a:第一黏合層 821a: First adhesive layer

821b:第二黏合層 821b: Second adhesive layer

830a、830b:RRAM堆疊 830a, 830b: RRAM stack

Claims (20)

一種電阻式隨機存取存儲(RRAM)器件,包括:第一電極,所述第一電極包括:金屬氮化物層和金屬層,所述金屬氮化物層包括至少一種金屬氮化物,所述金屬層製造於所述金屬氮化層之上;第二電極,所述第二電極包括導電材料;及切換氧化物層,所述切換氧化物層位於所述第一電極和所述第二電極之間,所述切換氧化物層包括至少一種過渡性金屬氧化物;其中所述金屬層包括不與所述至少一種過渡性金屬氧化物發生反應的金屬;所述金屬氮化物層及所述金屬層具有相同之寬度。 A resistive random access memory (RRAM) device comprises: a first electrode, the first electrode comprises: a metal nitride layer and a metal layer, the metal nitride layer comprises at least one metal nitride, and the metal layer is manufactured on the metal nitride layer; a second electrode, the second electrode comprises a conductive material; and a switching oxide layer, the switching oxide layer is located between the first electrode and the second electrode, the switching oxide layer comprises at least one transitional metal oxide; wherein the metal layer comprises a metal that does not react with the at least one transitional metal oxide; the metal nitride layer and the metal layer have the same width. 如請求項1所述的RRAM器件,其中,所述金屬氮化物包括氮化鈦或氮化鉭中的至少一種。 An RRAM device as described in claim 1, wherein the metal nitride includes at least one of titanium nitride or tantalum nitride. 如請求項1所述的RRAM器件,其中,所述不與所述至少一種過渡性金屬氧化物發生反應的金屬包括鉑、鈀、銥或釕中的至少一種。 The RRAM device as described in claim 1, wherein the metal that does not react with the at least one transitional metal oxide includes at least one of platinum, palladium, iridium or ruthenium. 如請求項3所述的RRAM器件,其中,所述金屬層比所述金屬氮化物層薄。 An RRAM device as described in claim 3, wherein the metal layer is thinner than the metal nitride layer. 如請求項4所述的RRAM器件,其中,所述金屬層的厚度在3nm至10nm之間。 An RRAM device as described in claim 4, wherein the thickness of the metal layer is between 3nm and 10nm. 如請求項5所述的RRAM器件,其中,所述金屬氮化物層的厚度在20nm至50nm之間。 An RRAM device as described in claim 5, wherein the thickness of the metal nitride layer is between 20nm and 50nm. 如請求項1所述的RRAM器件,其中,所述至少一種過渡性金屬氧化物包括HfOx或TaOy中的至少一種,其中x
Figure 112122820-A0305-13-0001-4
2.0且y
Figure 112122820-A0305-13-0001-5
2.5。
The RRAM device of claim 1, wherein the at least one transition metal oxide comprises at least one of HfOx or TaOy, wherein x
Figure 112122820-A0305-13-0001-4
2.0 and y
Figure 112122820-A0305-13-0001-5
2.5.
如請求項1所述的RRAM器件,其中,所述第二電極中的導電材料包括鉭。 An RRAM device as described in claim 1, wherein the conductive material in the second electrode includes tantalum. 如請求項1所述的RRAM器件,進一步包括:位於所述切換氧化物層和所述第二電極之間的界面層,其中所述界面層包括氧化鋁。 The RRAM device as described in claim 1 further comprises: an interface layer located between the switching oxide layer and the second electrode, wherein the interface layer comprises aluminum oxide. 如請求項1所述的RRAM器件,進一步包括:黏合層,所述黏合層包括鈦或鉭中的至少一種,其中所述金屬氮化物層製造於所述黏合層上。 The RRAM device as described in claim 1 further comprises: an adhesive layer, the adhesive layer comprising at least one of titanium or tantalum, wherein the metal nitride layer is fabricated on the adhesive layer. 一種製造電阻式隨機存取存儲(RRAM)器件的方法,包括:製造第一電極,包括:製造金屬氮化物層,其中所述金屬氮化物層包括至少一種金屬氮化物;在金屬氮化物層之上製造金屬層;在所述第一電極上製造切換氧化物層,其中所述切換氧化物層包括至少一種過渡性金屬氧化物,其中所述金屬層包括不與所述至少一種過渡性金屬氧化物發生反應的金屬;及在所述切換氧化物層上製造第二電極,所述第二電極包括導電材料;所述金屬氮化物層及所述金屬層具有相同之寬度。 A method for manufacturing a resistive random access memory (RRAM) device, comprising: manufacturing a first electrode, comprising: manufacturing a metal nitride layer, wherein the metal nitride layer includes at least one metal nitride; manufacturing a metal layer on the metal nitride layer; manufacturing a switching oxide layer on the first electrode, wherein the switching oxide layer includes at least one transitional metal oxide, wherein the metal layer includes a metal that does not react with the at least one transitional metal oxide; and manufacturing a second electrode on the switching oxide layer, wherein the second electrode includes a conductive material; the metal nitride layer and the metal layer have the same width. 如請求項11所述的方法,其中所述金屬氮化物包括氮化鈦或氮化鉭中的至少一種。 A method as described in claim 11, wherein the metal nitride comprises at least one of titanium nitride or tantalum nitride. 如請求項12所述的方法,其中,所述不與所述至少一種過渡性金屬氧化物發生反應的金屬包括鉑、鈀、銥或釕中的至少一種。 The method of claim 12, wherein the metal that does not react with the at least one transition metal oxide includes at least one of platinum, palladium, iridium or ruthenium. 如請求項13所述的方法,其中所述金屬層比所述金屬氮化物層薄。 A method as described in claim 13, wherein the metal layer is thinner than the metal nitride layer. 如請求項14所述的方法,其中,所述金屬層的厚度在3nm至10nm之間。 The method as claimed in claim 14, wherein the thickness of the metal layer is between 3nm and 10nm. 如請求項15所述的方法,其中,所述金屬氮化物層的厚度在20nm至50nm之間。 The method as claimed in claim 15, wherein the thickness of the metal nitride layer is between 20nm and 50nm. 如請求項11所述的方法,其中,所述至少一種過渡性金屬氧化物包括HfOx或TaOy中的至少一種,其中x
Figure 112122820-A0305-13-0003-1
2.0且y
Figure 112122820-A0305-13-0003-3
2.5。
The method of claim 11, wherein the at least one transition metal oxide comprises at least one of HfOx or TaOy, wherein x
Figure 112122820-A0305-13-0003-1
2.0 and y
Figure 112122820-A0305-13-0003-3
2.5.
如請求項11所述的方法,進一步包括:在所述切換氧化物層上製造界面層,其中所述界面層位於所述切換氧化物層和所述第二電極之間,且所述界面層包括氧化鋁。 The method as described in claim 11 further comprises: manufacturing an interface layer on the switching oxide layer, wherein the interface layer is located between the switching oxide layer and the second electrode, and the interface layer comprises aluminum oxide. 如請求項11所述的方法,進一步包括製造包含鈦或鉭中的至少一種的黏合層,其中所述金屬氮化物層製造於所述黏合層上。 The method of claim 11 further comprises manufacturing an adhesive layer comprising at least one of titanium or tantalum, wherein the metal nitride layer is manufactured on the adhesive layer. 一種製造非反應性電極的方法,包括:製造黏合層,所述黏合層包括鈦或鉭中的至少一種;在所述黏合層上製造金屬氮化物層,其中所述金屬氮化物層包括至少一種金屬氮化物,所述至少一種金屬氮化物包括氮化鈦或氮化鉭中的至少一種;及在所述金屬氮化物層上製造金屬層,所述金屬層包括一種貴金屬;及選擇性地去除所述黏合層、所述金屬氮化物層和所述金屬層中的一個或多個部分以製造所述非反應性電極;所述金屬氮化物層及所述金屬層具有相同之寬度。 A method for manufacturing a non-reactive electrode, comprising: manufacturing an adhesive layer, the adhesive layer comprising at least one of titanium or tantalum; manufacturing a metal nitride layer on the adhesive layer, wherein the metal nitride layer comprises at least one metal nitride, the at least one metal nitride comprising at least one of titanium nitride or tantalum nitride; and manufacturing a metal layer on the metal nitride layer, the metal layer comprising a noble metal; and selectively removing one or more portions of the adhesive layer, the metal nitride layer and the metal layer to manufacture the non-reactive electrode; the metal nitride layer and the metal layer have the same width.
TW112122820A 2023-02-01 2023-06-17 Resistive random-access memory devices with compound non-reactive electrodes TWI876385B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18/163,272 2023-02-01
US18/163,272 US20230413697A1 (en) 2022-06-17 2023-02-01 Resistive random-access memory devices with compound non-reactive electrodes

Publications (2)

Publication Number Publication Date
TW202434069A TW202434069A (en) 2024-08-16
TWI876385B true TWI876385B (en) 2025-03-11

Family

ID=93260442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112122820A TWI876385B (en) 2023-02-01 2023-06-17 Resistive random-access memory devices with compound non-reactive electrodes

Country Status (1)

Country Link
TW (1) TWI876385B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137064A1 (en) * 2008-05-01 2015-05-21 Intermolecular Inc. Reduction of forming voltage in semiconductor devices
US20180062075A1 (en) * 2015-02-03 2018-03-01 Crossbar, Inc. Resistive memory cell with intrinsic current control
US20200343445A1 (en) * 2019-04-26 2020-10-29 Intel Corporation Resistive random-access memory devices and methods of fabrication
CN115605073A (en) * 2022-10-09 2023-01-13 四川大学(Cn) Resistive random access memory based on Mn-doped gallium oxide and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137064A1 (en) * 2008-05-01 2015-05-21 Intermolecular Inc. Reduction of forming voltage in semiconductor devices
US20180062075A1 (en) * 2015-02-03 2018-03-01 Crossbar, Inc. Resistive memory cell with intrinsic current control
US20200343445A1 (en) * 2019-04-26 2020-10-29 Intel Corporation Resistive random-access memory devices and methods of fabrication
CN115605073A (en) * 2022-10-09 2023-01-13 四川大学(Cn) Resistive random access memory based on Mn-doped gallium oxide and preparation method thereof

Also Published As

Publication number Publication date
TW202434069A (en) 2024-08-16

Similar Documents

Publication Publication Date Title
US10541271B2 (en) Superlattice-like switching devices
CN103000806A (en) Resistance change nonvolatile memory device, semiconductor device, and method of operating resistance change nonvolatile memory device
US20220077389A1 (en) Resistive random-access memory devices with multi-component electrodes and discontinuous interface layers
US20220367804A1 (en) Resistive random-access memory devices with metal-nitride compound electrodes
US12302768B2 (en) Resistive random-access memory devices with multi-component electrodes
US20220320430A1 (en) Resistive random-access memory devices with engineered electronic defects and methods for making the same
US20250160224A1 (en) Resistive random-access memory devices with multi-component electrodes
TWI876385B (en) Resistive random-access memory devices with compound non-reactive electrodes
KR102834838B1 (en) Resistive random access memory device having engineered electronic defects and method for fabricating the same
TWI863362B (en) Resistive random-access memory devices with metal-nitride compound electrodes
KR20240006677A (en) Resistive random access memory device with multi-component electrodes and discontinuous interface layers
CN119586345A (en) Resistive random access memory device with compound non-reactive electrode
WO2022240426A1 (en) Resistive random-access memory devices with multi-component electrodes
TWI824516B (en) Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers
US20230292635A1 (en) Resistive random-access memory devices with a via device structure
TW202517024A (en) Resistive random-access memory (rram) devices with interface layers
US20250127068A1 (en) Resistive random-access memory (rram) devices with electrodes containing ruthenium
US12137622B2 (en) Forming-free random-access memory (RRAM) devices
TW202312437A (en) Resistive random-access memory devices with multi-component electrodes
CN117296466A (en) Resistive random access memory device with multicomponent electrode
CN117480878A (en) Resistive random access memory device having multicomponent electrode and discontinuous interface layer
CN117322153A (en) Manufacturing method of resistive random access memory device