TWI875149B - Optoelectronic semiconductor device - Google Patents
Optoelectronic semiconductor device Download PDFInfo
- Publication number
- TWI875149B TWI875149B TW112131649A TW112131649A TWI875149B TW I875149 B TWI875149 B TW I875149B TW 112131649 A TW112131649 A TW 112131649A TW 112131649 A TW112131649 A TW 112131649A TW I875149 B TWI875149 B TW I875149B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor
- platform portion
- substrate
- layer
- semiconductor stack
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 204
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 28
- 239000011810 insulating material Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 3
- 238000003795 desorption Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 99
- 239000012790 adhesive layer Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 41
- 239000000956 alloy Substances 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 238000010494 dissociation reaction Methods 0.000 description 9
- 230000005593 dissociations Effects 0.000 description 9
- 239000010931 gold Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 3
- NQBRDZOHGALQCB-UHFFFAOYSA-N oxoindium Chemical compound [O].[In] NQBRDZOHGALQCB-UHFFFAOYSA-N 0.000 description 3
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- BYDQGSVXQDOSJJ-UHFFFAOYSA-N [Ge].[Au] Chemical compound [Ge].[Au] BYDQGSVXQDOSJJ-UHFFFAOYSA-N 0.000 description 2
- MBGCACIOPCILDG-UHFFFAOYSA-N [Ni].[Ge].[Au] Chemical compound [Ni].[Ge].[Au] MBGCACIOPCILDG-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- SAOPTAQUONRHEV-UHFFFAOYSA-N gold zinc Chemical compound [Zn].[Au] SAOPTAQUONRHEV-UHFFFAOYSA-N 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- GPYPVKIFOKLUGD-UHFFFAOYSA-N gold indium Chemical compound [In].[Au] GPYPVKIFOKLUGD-UHFFFAOYSA-N 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- -1 gold-tin (AuSn) Chemical class 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910000969 tin-silver-copper Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Abstract
Description
本揭露是關於一種光電半導體元件,且特別是關於一種微型光電半導體元件。The present disclosure relates to a photoelectric semiconductor device, and more particularly to a micro photoelectric semiconductor device.
半導體元件的用途十分廣泛,相關材料的開發研究也持續進行。舉例來說,包含三族及五族元素的III-V族半導體材料可應用於各種光電半導體元件如發光晶片(例如:發光二極體或雷射二極體)、吸光晶片(光電偵測器或太陽能電池)或不發光晶片(例如:開關或整流器的功率元件),能用於照明、醫療、顯示、通訊、感測、電源系統等領域。Semiconductor components have a wide range of uses, and the development and research of related materials is also ongoing. For example, III-V semiconductor materials containing group III and group V elements can be applied to various optoelectronic semiconductor components such as light-emitting chips (e.g., light-emitting diodes or laser diodes), light-absorbing chips (photodetectors or solar cells) or non-light-emitting chips (e.g., power components of switches or rectifiers), which can be used in lighting, medical, display, communication, sensing, power supply systems and other fields.
隨著科技的進步,光電半導體元件的體積逐漸往小型化發展。近幾年來由於發光二極體(light-emitting diode,LED)製作尺寸上的突破,目前將發光二極體以陣列排列製作的微型發光二極體(micro-LED)顯示器在市場上逐漸受到重視。微型發光二極體顯示器相較於有機發光二極體(organic light-emitting diode,OLED)顯示器而言,更為省電、具有較佳的可靠性、更長的使用壽命以及較佳的對比度表現,而可在陽光下具有可視性。隨著科技的發展,現今對於光電半導體元件仍存在許多技術研發的需求。雖然現有的光電半導體元件大致上已經符合多種需求,但並非在各方面皆令人滿意,仍需要進一步改良。With the advancement of technology, the size of optoelectronic semiconductor components has gradually developed towards miniaturization. In recent years, due to the breakthrough in the size of light-emitting diode (LED) manufacturing, micro-LED displays, which are made by arranging LEDs in arrays, have gradually gained attention in the market. Compared with organic light-emitting diode (OLED) displays, micro-LED displays are more power-saving, have better reliability, longer service life, better contrast performance, and can be visible in sunlight. With the development of technology, there are still many technical research and development needs for optoelectronic semiconductor components. Although existing optoelectronic semiconductor devices have generally met various requirements, they are not satisfactory in all aspects and still need further improvement.
本揭露的一些實施例提供一種光電半導體元件,包括基底、半導體疊層、黏結層及解離層。半導體疊層位於基底上且包括第二半導體結構,半導體疊層具有第一高台部、第二高台部及平台部,其中平台部位於第一高台部及第二高台部之間並露出第二半導體結構。黏結層位於基底及半導體疊層之間且具有平坦表面介於黏結層與半導體疊層之間。解離層位於黏結層及基底之間且與基底直接接觸,解離層包括無機絕緣材料。Some embodiments of the present disclosure provide a photoelectric semiconductor element, including a substrate, a semiconductor stack, a bonding layer and a release layer. The semiconductor stack is located on the substrate and includes a second semiconductor structure, the semiconductor stack has a first high platform portion, a second high platform portion and a platform portion, wherein the platform portion is located between the first high platform portion and the second high platform portion and exposes the second semiconductor structure. The bonding layer is located between the substrate and the semiconductor stack and has a flat surface between the bonding layer and the semiconductor stack. The release layer is located between the bonding layer and the substrate and is in direct contact with the substrate, and the release layer includes an inorganic insulating material.
本揭露提供一種光電半導體元件,包括基底、半導體疊層及解離層。半導體疊層位於基底上且包括第二半導體結構、第一高台部、第二高台部及平台部,其中平台部位於第一高台部及第二高台部之間並露出第二半導體結構。解離層位於半導體疊層及基底之間且具有圖案化的表面形貌,解離層具有能隙、或為非晶材料。The present disclosure provides a photoelectric semiconductor element, including a substrate, a semiconductor stack and a dissociation layer. The semiconductor stack is located on the substrate and includes a second semiconductor structure, a first high platform portion, a second high platform portion and a platform portion, wherein the platform portion is located between the first high platform portion and the second high platform portion and exposes the second semiconductor structure. The dissociation layer is located between the semiconductor stack and the substrate and has a patterned surface morphology, and the dissociation layer has an energy gap or is an amorphous material.
本揭露提供一種光電半導體元件,包括基底、半導體疊層、黏結層及解離層。半導體疊層位於基底上且包括第二半導體結構、第一高台部、第二高台部及平台部,其中平台部位於第一高台部及第二高台部之間並露出第二半導體結構,此外,半導體疊層具有粗化結構朝向基底。黏結層位於基底及半導體疊層之間,解離層具有平坦表面且位於半導體疊層及基底之間,且解離層與基底直接接觸。The present disclosure provides a photoelectric semiconductor element, including a substrate, a semiconductor stack, a bonding layer and a release layer. The semiconductor stack is located on the substrate and includes a second semiconductor structure, a first high platform portion, a second high platform portion and a platform portion, wherein the platform portion is located between the first high platform portion and the second high platform portion and exposes the second semiconductor structure. In addition, the semiconductor stack has a roughened structure facing the substrate. The bonding layer is located between the substrate and the semiconductor stack, and the release layer has a flat surface and is located between the semiconductor stack and the substrate, and the release layer is in direct contact with the substrate.
以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本揭露實施例之說明。當然,這些僅僅是範例,並非用以限定本揭露實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本揭露實施例可能在各種範例使用重複的元件符號。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及∕或配置之間的關係。The following disclosure provides a number of embodiments or examples for implementing different elements of the subject matter provided. Specific examples of each element and its configuration are described below to simplify the description of the disclosed embodiments. Of course, these are merely examples and are not intended to limit the disclosed embodiments. For example, if the description refers to a first element formed on a second element, it may include an embodiment in which the first and second elements are directly in contact, and it may also include an embodiment in which additional elements are formed between the first and second elements so that they are not directly in contact. In addition, the disclosed embodiments may use repeated element symbols in various examples. Such repetition is for the purpose of simplicity and clarity, and is not used to indicate the relationship between the different embodiments and/or configurations discussed.
再者,此處可使用空間上相關的用語,如「在…之下」、「下方的」、「低於」、「在…上方」、「上方的」、和類似用語可用於此,以便描述如圖所示一元件或部件和其他元件或部件之間的關係。這些空間用語除了包括圖式繪示的方位外,也企圖包括使用或操作中的裝置的不同方位。舉例來說,如果圖中的裝置被反過來,原本被形容為「低於」或在其他元件或部件「下方」的元件,就會被轉為「高於」其他元件或部件。所以,例示性用語「下方」可同時具有「上方」和「下方」的方位。當裝置被轉至其他方位(旋轉90°或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。Furthermore, spatially relative terms such as "below," "below," "below," "above," "above," and similar terms may be used herein to describe the relationship between an element or component and other elements or components as shown in the figures. These spatial terms are intended to include different orientations of the device in use or operation in addition to the orientations shown in the drawings. For example, if the device in the figure is reversed, an element originally described as "below" or "below" other elements or components will be turned "above" other elements or components. Therefore, the exemplary term "below" can have both "above" and "below" orientations. When the device is rotated to other orientations (rotated 90° or other orientations), the spatially relative descriptions used herein can also be interpreted based on the rotated orientation.
除非另外定義,在此使用的全部用語(包含技術及科學用語)具有與本揭露所屬技術領域中具通常知識者所理解的相同涵義。應理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例有特別定義。Unless otherwise defined, all terms used herein (including technical and scientific terms) have the same meanings as those understood by those of ordinary skill in the art to which the present disclosure belongs. It should be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the background or context of the relevant technology and the present disclosure, and should not be interpreted in an idealized or overly formal manner unless specifically defined in the present disclosure embodiments.
本揭露內容的半導體元件包含的各層組成、摻質(dopant)及缺陷可用任何適合的方式分析而得,例如:二次離子質譜儀(secondary ion mass spectrometer,SIMS)、穿透式電子顯微鏡(transmissionelectron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM);各層的厚度也可用任何適合的方式分析而得,例如:穿透式電子顯微鏡(transmissionelectron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM)。The composition, dopant and defects of each layer included in the semiconductor device disclosed in the present invention can be analyzed by any suitable method, such as secondary ion mass spectrometer (SIMS), transmission electron microscopy (TEM) or scanning electron microscope (SEM); the thickness of each layer can also be analyzed by any suitable method, such as transmission electron microscopy (TEM) or scanning electron microscope (SEM).
一般而言,微型發光二極體可以透過雷射剝離(laser-liftoff, LLO)製程進行巨量轉移,以將微型發光二極體的半導體疊層與基底分離。微型發光二極體中的半導體疊層與基底之間需有一層作為雷射剝離製程的犧牲層。由於在微型發光二極體製程期間形成歐姆接觸結構需進行高溫製程(例如:300℃至500℃),因此犧牲層需為可進行雷射剝離製程且可承受高溫製程的材料,習知的技術普遍使用半導體材料(例如:GaN)或有機材料(例如:苯並環丁烯(benzocyclobutene,BCB))將半導體疊層與基底黏接並作為後續雷射剝離(laser-liftoff, LLO)製程的解離層。Generally speaking, micro-LEDs can be mass-transferred by laser-liftoff (LLO) process to separate the semiconductor stack of the micro-LED from the substrate. A sacrificial layer is required between the semiconductor stack and the substrate in the micro-LED. Since a high temperature process (e.g., 300°C to 500°C) is required to form an ohmic contact structure during the micro-LED manufacturing process, the sacrificial layer needs to be a material that can undergo a laser lift-off process and withstand high temperature processes. Conventional technologies generally use semiconductor materials (e.g., GaN) or organic materials (e.g., benzocyclobutene (BCB)) to bond the semiconductor stack to the substrate and serve as a release layer for the subsequent laser liftoff (LLO) process.
然而,當解離層為半導體材料時,在長晶期間常會產生磊晶缺陷,導致鍵合製程良率較低;而當解離層為有機材料時,常因無法承受高溫,導致高溫合金的製程良率不高。根據本揭露的一些實施例,藉由無機絕緣材料所形成的解離層,可進行雷射剝離製程且可承受高溫製程,此外,亦無磊晶缺陷產生,因此可提升鍵合製程的良率,進而提升光電半導體元件的發光效率。However, when the release layer is a semiconductor material, epitaxial defects are often generated during the crystal growth period, resulting in a low yield rate of the bonding process; and when the release layer is an organic material, it often cannot withstand high temperatures, resulting in a low yield rate of the high-temperature alloy process. According to some embodiments of the present disclosure, the release layer formed by the inorganic insulating material can be subjected to the laser stripping process and can withstand the high-temperature process. In addition, no epitaxial defects are generated, so the yield rate of the bonding process can be improved, thereby improving the light-emitting efficiency of the optoelectronic semiconductor device.
一併參照第1A圖及第1B圖,第1A圖係根據本揭露的一實施例,繪示出光電半導體元件的俯視圖,第1B圖係為光電半導體元件10沿著第1A圖的A-A’線段的剖面圖。在本實施例中,光電半導體元件10包含基底100、解離層200、黏結層300及半導體疊層400。如第1B圖所示,半導體疊層400位於基底100之上,黏結層300位於半導體疊層400與基底100之間,解離層200位於黏結層300與基底100之間並且直接接觸基底100,換言之,半導體疊層400與基底100藉由黏結層300及解離層200彼此接合。Referring to FIG. 1A and FIG. 1B , FIG. 1A is a top view of a photoelectric semiconductor device according to an embodiment of the present disclosure, and FIG. 1B is a cross-sectional view of the photoelectric semiconductor device 10 along the line segment A-A′ of FIG. 1A . In this embodiment, the photoelectric semiconductor device 10 includes a substrate 100, a release layer 200, a bonding layer 300, and a semiconductor stack 400. As shown in FIG. 1B , the semiconductor stack 400 is located on the substrate 100 , the bonding layer 300 is located between the semiconductor stack 400 and the substrate 100 , and the release layer 200 is located between the bonding layer 300 and the substrate 100 and directly contacts the substrate 100 . In other words, the semiconductor stack 400 and the substrate 100 are bonded to each other via the bonding layer 300 and the release layer 200 .
應理解的是,在形成光電半導體元件10時,是先在另外的成長基板(未繪示)上藉由例如金屬有機化學氣相沉積(metal-organic chemical vapor deposition, MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy, HVPE)、分子束磊晶(molecular beam epitaxy, MBE)或液相磊晶法(liquid-phase epitaxy, LPE)、氣相磊晶(vapor phase epitaxy, VPE)、或其他合適的磊晶成長製程來形成半導體疊層400,之後倒置成長基板並透過黏結層300接合到基底100上,再移除成長基板。因此在本揭露的各種實施例中,各種示意圖中的元件的上下順序並不代表其實際的形成順序。It should be understood that when forming the optoelectronic semiconductor element 10, a semiconductor stack 400 is first formed on another growth substrate (not shown) by, for example, metal-organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), liquid-phase epitaxy (LPE), vapor phase epitaxy (VPE), or other suitable epitaxial growth processes, and then the growth substrate is inverted and bonded to the base 100 through the bonding layer 300, and then the growth substrate is removed. Therefore, in various embodiments of the present disclosure, the upper and lower order of the elements in various schematic diagrams does not represent the actual formation order.
在一些實施例中,如第1B圖所示,半導體疊層400包括第一半導體結構410、第二半導體結構420、以及主動區430(active region),主動區430位於第一半導體結構410及第二半導體結構420之間。半導體疊層400可區分為第一高台部400A、第二高台部400C、第一平台部400B、第二平台部400D、以及第三平台部400E。第一平台部400B位於第一高台部400A與第二高台部400C之間,第二平台部400D及第三平台部400E分別位於第一平台部400B的相反側上,第一高台部400A位於第一平台部400B與第二平台部400D之間,第二高台部400C位於第一平台部400B與第三平台部400E之間。由俯視觀之,第一高台部400A及第二高台部400C被平台部(例如:第一平台部400B、及/或第二平台部400D、及/或第三平台部400E)環繞,且第一平台部400B被第一高台部400A及第二高台部400C環繞。第一高台部400A的頂表面400a1及第二高台部400C的頂表面400a1共平面,且第一平台部400B的頂表面400a2低於主動區430。高台部400A、400C的厚度大於平台部400B、400D、400E的厚度。在其他實施例中,第二半導體結構420具有一下表面420a遠離第一半導體結構410,且下表面420a具有粗化結構(未繪示),粗化結構可以為規則粗化或不規則粗化,藉此增加光電半導體元件10的出光效率。In some embodiments, as shown in FIG. 1B , the semiconductor stack 400 includes a first semiconductor structure 410, a second semiconductor structure 420, and an active region 430, wherein the active region 430 is located between the first semiconductor structure 410 and the second semiconductor structure 420. The semiconductor stack 400 can be divided into a first plateau portion 400A, a second plateau portion 400C, a first platform portion 400B, a second platform portion 400D, and a third platform portion 400E. The first platform portion 400B is located between the first platform portion 400A and the second platform portion 400C, the second platform portion 400D and the third platform portion 400E are located on opposite sides of the first platform portion 400B, the first platform portion 400A is located between the first platform portion 400B and the second platform portion 400D, and the second platform portion 400C is located between the first platform portion 400B and the third platform portion 400E. From a top view, the first platform portion 400A and the second platform portion 400C are surrounded by the platform portion (e.g., the first platform portion 400B, and/or the second platform portion 400D, and/or the third platform portion 400E), and the first platform portion 400B is surrounded by the first platform portion 400A and the second platform portion 400C. The top surface 400a1 of the first high platform portion 400A and the top surface 400a1 of the second high platform portion 400C are coplanar, and the top surface 400a2 of the first platform portion 400B is lower than the active region 430. The thickness of the high platform portions 400A and 400C is greater than the thickness of the platform portions 400B, 400D, and 400E. In other embodiments, the second semiconductor structure 420 has a lower surface 420a away from the first semiconductor structure 410, and the lower surface 420a has a roughening structure (not shown), and the roughening structure can be regular roughening or irregular roughening, thereby increasing the light extraction efficiency of the optoelectronic semiconductor device 10.
在一些實施例中,基底100為透明材料,載此所述之「透明」係指該材料對於後續雷射剝離製程所使用的波長具有高穿透率。具體而言,基底100對於波長200nm至700nm具有80%至99.99%的穿透率,例如穿透率大於95%。基底100可為藍寶石(sapphire)、玻璃(glass)、環氧樹脂(epoxy)、石英(quartz)、壓克力(acrylic resin)、或其他透明材料。再一實施例中,基底100為藍寶石。在一實施例中,基底100具有一第一上表面100a面對半導體疊層400,黏結層300包含一第二上表面300a面對半導體疊層400,第一上表面100a包含一圖案化圖形(未繪示),使解離層200可依基底100之圖案化圖形具有相應的表面形貌,第二上表面300a則為一平坦表面,藉由平坦的第二上表面300a可以增加半導體疊層400與基底100之間之黏著力。In some embodiments, the substrate 100 is a transparent material. The term "transparent" herein refers to a material having a high transmittance for the wavelength used in the subsequent laser stripping process. Specifically, the substrate 100 has a transmittance of 80% to 99.99% for a wavelength of 200nm to 700nm, for example, a transmittance greater than 95%. The substrate 100 may be sapphire, glass, epoxy, quartz, acrylic resin, or other transparent materials. In another embodiment, the substrate 100 is sapphire. In one embodiment, the substrate 100 has a first upper surface 100a facing the semiconductor stack 400, the bonding layer 300 includes a second upper surface 300a facing the semiconductor stack 400, the first upper surface 100a includes a patterned pattern (not shown), so that the release layer 200 can have a corresponding surface morphology according to the patterned pattern of the substrate 100, and the second upper surface 300a is a flat surface. The flat second upper surface 300a can increase the adhesion between the semiconductor stack 400 and the substrate 100.
上述光電半導體元件10可為微型發光二極體(micro light emitting diode;Micro LED),且於俯視圖(第1A圖)中具有長度L及寬度W,換言之,半導體疊層400(或第二半導體結構420)具有長度L及寬度W。上述長度L不大於150微米,例如為20微米至150微米,例如:20微米至60微米、60微米至150微米。上述寬度W不大於100微米,例如為10微米至100微米,例如:10微米至30微米、30微米至75微米。The optoelectronic semiconductor element 10 may be a micro light emitting diode (Micro LED), and has a length L and a width W in the top view (FIG. 1A). In other words, the semiconductor stack 400 (or the second semiconductor structure 420) has a length L and a width W. The length L is not greater than 150 microns, for example, 20 microns to 150 microns, for example, 20 microns to 60 microns, 60 microns to 150 microns. The width W is not greater than 100 microns, for example, 10 microns to 100 microns, for example, 10 microns to 30 microns, 30 microns to 75 microns.
解離層200為無機絕緣材料,可承受後續的高溫製程(350℃至500℃),並具有一能隙(band gap)介於3eV至6eV,例如:3.5 eV至5.5eV、4eV至5.2eV,藉此使解離層200對於雷射剝離製程所使用的UV光波段(例如:200nm至400nm)具有高吸收率,以有效地分離基底100及半導體疊層400,且在分離過程中不對半導體疊層400造成損傷,進而提升製程良率。具體而言,上述解離層200材料對於波長200nm至300nm可具有大於或等於10 2cm -1的吸收係數,例如1x10 2cm -1至1x10 5cm -1的吸收係數。在本實施例中,解離層200可以為氮化矽(SiN x)、氮化鋁(AlN)、氮氧化矽(SiNO)或銦錫氧化玻璃(ITO)或其組合。在一些實施例中,解離層200可以為非晶(amorphous)材料。 The debonding layer 200 is an inorganic insulating material that can withstand subsequent high-temperature processes (350°C to 500°C) and has a band gap between 3eV and 6eV, for example, 3.5 eV to 5.5eV, 4eV to 5.2eV, so that the debonding layer 200 has a high absorption rate for the UV light band (for example, 200nm to 400nm) used in the laser stripping process, so as to effectively separate the substrate 100 and the semiconductor stack 400, and does not cause damage to the semiconductor stack 400 during the separation process, thereby improving the process yield. Specifically, the dissociation layer 200 material may have an absorption coefficient greater than or equal to 10 2 cm -1 , such as 1×10 2 cm -1 to 1×10 5 cm -1 , for a wavelength of 200 nm to 300 nm. In the present embodiment, the dissociation layer 200 may be silicon nitride (SiN x ), aluminum nitride (AlN), silicon oxynitride (SiNO), or indium tin oxide glass (ITO) or a combination thereof. In some embodiments, the dissociation layer 200 may be an amorphous material.
在一些實施例中,如第1B圖所示,解離層200具有一厚度T介於30Å至1000Å,例如為50Å至500Å、60Å至300Å或80Å至200Å。如果解離層200的厚度T小於30Å,可能不易控制製程的均勻性,造成較低的接合產率。如果解離層200的厚度T大於1000Å,可能導致後續半導體疊層400與基底100的分離製程中,無法有效地分離,並且在雷射剝離製程之後可能會有部分殘留解離層200於半導體疊層400上,進而造成元件損壞並影響良率。In some embodiments, as shown in FIG. 1B , the release layer 200 has a thickness T ranging from 30Å to 1000Å, such as 50Å to 500Å, 60Å to 300Å, or 80Å to 200Å. If the thickness T of the release layer 200 is less than 30Å, it may be difficult to control the uniformity of the process, resulting in a lower bonding yield. If the thickness T of the release layer 200 is greater than 1000Å, it may result in an inability to effectively separate the semiconductor stack 400 from the substrate 100 in the subsequent separation process, and after the laser stripping process, there may be a portion of the residual release layer 200 on the semiconductor stack 400, thereby causing damage to the device and affecting the yield.
在一些實施例中,由於本揭露的解離層200為無機絕緣材料,因此,可利用沉積製程將解離層200形成於基底100之上,且避免前述之當解離層為半導體材料時所造成磊晶缺陷進而導致鍵合製程良率較低之問題。上述沉積製程例如化學氣相沉積(chemical vapor deposition, CVD)、次氣壓化學氣相沉積(subatmospheric CVD, SACVD)、流動式化學氣相沉積(flowable CVD, FCVD)、旋轉塗佈(spin coating)、及/或其他合適的製程。In some embodiments, since the dissociation layer 200 disclosed herein is an inorganic insulating material, the dissociation layer 200 can be formed on the substrate 100 by a deposition process, and the aforementioned problem of epitaxial defects caused when the dissociation layer is a semiconductor material, which leads to a lower yield of the bonding process, can be avoided. The above-mentioned deposition process is, for example, chemical vapor deposition (CVD), subatmospheric CVD (SACVD), flowable CVD (FCVD), spin coating, and/or other suitable processes.
在一些實施例中,可藉由在磊晶成長期間原位(in-situ)摻雜及/或通過在磊晶成長之後使用摻質進行佈植(implanting)以進行第一半導體結構410及第二半導體結構420的摻雜。第一半導體結構410可包含第一摻質使其具有第一導電型,第二半導體結構420可包含第二摻質使其具有第二導電型。第一半導體結構410及第二半導體結構420具有不同的導電型,亦即第一導電型與第二導電型不同。第一導電型例如為p型及第二導電型例如為n型,或者,第一導電型例如為n型及第二導電型例如為p型。當光電半導體元件為一發光元件時,於操作下,第一半導體結構410及第二半導體結構420分別提供電洞及電子或分別提供電子或電洞以於主動區430結合以發光。在一實施例中,第一摻質或第二摻質可為鎂(Mg)、鋅(Zn)、矽(Si)、碳(C)或碲(Te)。In some embodiments, the first semiconductor structure 410 and the second semiconductor structure 420 may be doped by in-situ doping during epitaxial growth and/or by implanting the dopant after epitaxial growth. The first semiconductor structure 410 may include a first dopant to have a first conductivity type, and the second semiconductor structure 420 may include a second dopant to have a second conductivity type. The first semiconductor structure 410 and the second semiconductor structure 420 have different conductivity types, that is, the first conductivity type is different from the second conductivity type. The first conductivity type is, for example, p-type and the second conductivity type is, for example, n-type, or the first conductivity type is, for example, n-type and the second conductivity type is, for example, p-type. When the optoelectronic semiconductor device is a light-emitting device, in operation, the first semiconductor structure 410 and the second semiconductor structure 420 provide holes and electrons, or provide electrons or holes, respectively, to be combined in the active region 430 to emit light. In one embodiment, the first dopant or the second dopant may be magnesium (Mg), zinc (Zn), silicon (Si), carbon (C), or tellurium (Te).
在本揭露實施例中,第一半導體結構410、第二半導體結構420、主動區430可包含III-V族半導體材料,例如包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In)。具體而言,在本揭露實施例中,上述III-V族半導體材料可為二元化合物半導體(如GaAs、GaP、或GaN)、三元化合物半導體(如InGaAs、AlGaAs、InGaP、AlInP、InGaN、或AlGaN)、或四元化合物半導體(如AlGaInAs、AlGaInP、AlInGaN、InGaAsP、InGaAsN、或AlGaAsP)。In the disclosed embodiment, the first semiconductor structure 410, the second semiconductor structure 420, and the active region 430 may include III-V semiconductor materials, such as aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P), or indium (In). Specifically, in the disclosed embodiment, the III-V semiconductor materials may be binary compound semiconductors (such as GaAs, GaP, or GaN), ternary compound semiconductors (such as InGaAs, AlGaAs, InGaP, AlInP, InGaN, or AlGaN), or quaternary compound semiconductors (such as AlGaInAs, AlGaInP, AlInGaN, InGaAsP, InGaAsN, or AlGaAsP).
在本揭露實施例中,半導體疊層400可包含多重量子井結構(Multi Quantum Wells, MQWs)(未繪示),發出峰值波長為700奈米至1700奈米的紅外光或峰值波長為610奈米至700奈米的紅光、峰值波長介於400 nm及490 nm之間的藍光或深藍光、或峰值波長介於490 nm及550 nm之間的綠光。In the disclosed embodiment, the semiconductor stack 400 may include a multi-quantum well structure (MQWs) (not shown) to emit infrared light with a peak wavelength of 700 nm to 1700 nm or red light with a peak wavelength of 610 nm to 700 nm, blue light or deep blue light with a peak wavelength between 400 nm and 490 nm, or green light with a peak wavelength between 490 nm and 550 nm.
在本實施例中,光電半導體元件10另包含一中間結構900位於半導體疊層400及黏結層300之間,中間結構900可用來優化半導體疊層400與黏結層300之間之附著能力、及/或增加半導體疊層400往基底100的光反射回遠離基底100的機率,中間結構900的材料可以為導電材料或不導電材料,具體而言,中間結構900可以為無機絕緣材料(例如:氮化矽(SiN x)、氧化矽(SiO 2)等)、透明導電材料(例如:氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO))。在一實施例中,中間結構900包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的材料交替堆疊而形成。在本實施例中,中間結構900與解離層200具有相同材料,且中間結構900的厚度大於解離層200的厚度。 In this embodiment, the optoelectronic semiconductor device 10 further includes an intermediate structure 900 located between the semiconductor stack 400 and the bonding layer 300. The intermediate structure 900 can be used to optimize the adhesion between the semiconductor stack 400 and the bonding layer 300, and/or increase the probability of light from the semiconductor stack 400 to the substrate 100 being reflected back away from the substrate 100. The material of the intermediate structure 900 can be a conductive material or a non-conductive material. Specifically, the intermediate structure 900 can be an inorganic insulating material (e.g., silicon nitride ( SiNx ), silicon oxide ( SiO2 ) etc.), transparent conductive materials (e.g., indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO)). In one embodiment, the intermediate structure 900 includes a Bragg reflector structure (DBR), which is formed by alternately stacking two or more materials with different refractive indices. In this embodiment, the intermediate structure 900 and the debonding layer 200 have the same material, and the thickness of the intermediate structure 900 is greater than the thickness of the debonding layer 200.
如前文所述,雖然半導體疊層400在第1B圖中被繪示為位於基底100上方,但在其中一個實施例中,半導體疊層400以及黏結層300實際上是先形成於另外的成長基板上(未繪出)後,再倒置接合到基底100。換言之,在成長基板上依序形成第一半導體結構410、主動區430、第二半導體結構420、中間結構900及一部分的黏結層300,並在基底100上形成解離層200及另一部分的黏結層300後,再透過接合兩面的黏結層300使基底100及半導體疊層400相連接,之後再移除成長基板。As described above, although the semiconductor stack 400 is shown in FIG. 1B as being located above the substrate 100, in one embodiment, the semiconductor stack 400 and the bonding layer 300 are actually first formed on another growth substrate (not shown) and then invertedly bonded to the substrate 100. In other words, the first semiconductor structure 410, the active region 430, the second semiconductor structure 420, the intermediate structure 900 and a portion of the bonding layer 300 are sequentially formed on the growth substrate, and the release layer 200 and another portion of the bonding layer 300 are formed on the substrate 100, and then the substrate 100 and the semiconductor stack 400 are connected by bonding the bonding layers 300 on both sides, and then the growth substrate is removed.
在半導體疊層400透過黏結層300及解離層200連接至基底100後,可藉由蝕刻製程來蝕刻部分的半導體疊層400以露出第二半導體結構420供後續進行電性連接,上述蝕刻製程例如乾式蝕刻製程、濕式蝕刻製程、或其組合。舉例而言,乾式蝕刻製程可包括電漿蝕刻(plasma etching, PE)、反應離子蝕刻(reactive ion etching, RIE)、感應耦合電漿活性離子蝕刻(inductively coupled plasma reactive ion etching, ICP-RIE);濕式蝕刻製程可採用酸性溶液或鹼性溶液。此外,上述的蝕刻製程將半導體疊層400定義為平台部(400B、400D、以及400E)以及高台部(400A及400C),平台部400B、400D、以及400E僅包含第二半導體結構420,高台區400A、400C包含第一半導體結構410、主動區430及第二半導體結構420。在本實施例中,半導體疊層400的寬度小於基底100,且暴露出部分的中間結構900,換言之,半導體疊層400未覆蓋部分的中間結構900。在其他實施例中,可藉由上述蝕刻製程,移除部分的中間結構900、黏結層300或解離層200以暴露出部分的黏結層300、解離層200或基底100 。After the semiconductor stack 400 is connected to the substrate 100 through the bonding layer 300 and the release layer 200, a portion of the semiconductor stack 400 can be etched by an etching process to expose the second semiconductor structure 420 for subsequent electrical connection. The etching process can be, for example, a dry etching process, a wet etching process, or a combination thereof. For example, the dry etching process can include plasma etching (PE), reactive ion etching (RIE), and inductively coupled plasma reactive ion etching (ICP-RIE); the wet etching process can use an acidic solution or an alkaline solution. In addition, the above etching process defines the semiconductor stack 400 into a platform portion (400B, 400D, and 400E) and a plateau portion (400A and 400C), the platform portions 400B, 400D, and 400E only include the second semiconductor structure 420, and the plateau regions 400A and 400C include the first semiconductor structure 410, the active region 430, and the second semiconductor structure 420. In this embodiment, the width of the semiconductor stack 400 is smaller than that of the substrate 100, and a portion of the intermediate structure 900 is exposed. In other words, the semiconductor stack 400 does not cover a portion of the intermediate structure 900. In other embodiments, a portion of the intermediate structure 900, the bonding layer 300 or the release layer 200 may be removed by the etching process to expose a portion of the bonding layer 300, the release layer 200 or the substrate 100.
繼續參照第1B圖,光電半導體元件10選擇性地包含絕緣層500,絕緣層500順應地覆蓋於半導體疊層400之上,以保護半導體疊層400。絕緣層500在半導體疊層400的第一高台部400A及第一平台部400B上分別具有第一開孔510及第二開孔520。在本揭露實施例中,絕緣層500可包含氧化物絕緣材料、非氧化物絕緣材料、或前述之組合。舉例而言,氧化物絕緣材料可以包含氧化矽(SiO x);非氧化物絕緣材料可以包含氮化矽(SiN x)、苯並環丁烯(benzocyclobutene,BCB)、環烯烴聚合物(cycloolefin copolymer,COC)或氟碳聚合物(fluorocarbon polymer)、氟化鈣(calciumfluoride,CaF 2)或氟化鎂(magnesium fluoride,MgF 2)。在一實施例中,絕緣層500可具有反射功能且包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的半導體材料交替堆疊而形成,例如:氮化矽(SiN x)、氧化鋁(AlO x)、氧化矽(SiO x)、氟化鎂(MgF x)、氧化鈦(TiO 2)或氧化鈮(Nb 2O 5)。 Continuing to refer to FIG. 1B , the optoelectronic semiconductor device 10 selectively includes an insulating layer 500, and the insulating layer 500 conformably covers the semiconductor stack 400 to protect the semiconductor stack 400. The insulating layer 500 has a first opening 510 and a second opening 520 on the first high platform portion 400A and the first platform portion 400B of the semiconductor stack 400, respectively. In the embodiment disclosed herein, the insulating layer 500 may include an oxide insulating material, a non-oxide insulating material, or a combination thereof. For example, the oxide insulating material may include silicon oxide (SiO x ); the non-oxide insulating material may include silicon nitride (SiN x ), benzocyclobutene (BCB), cycloolefin copolymer (COC) or fluorocarbon polymer, calcium fluoride (CaF 2 ) or magnesium fluoride (MgF 2 ). In one embodiment, the insulating layer 500 may have a reflective function and include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more semiconductor materials with different refractive indices, such as silicon nitride ( SiNx ), aluminum oxide ( AlOx ), silicon oxide ( SiOx ), magnesium fluoride ( MgFx ), titanium oxide ( TiO2 ) or niobium oxide ( Nb2O5 ).
繼續參照第1B圖,光電半導體元件10選擇性地包含第一接觸結構610及第二接觸結構620。第一接觸結構610及第二接觸結構620可分別位於絕緣層500的第一開孔510及第二開孔520中。在本實施例中,第一接觸結構610具有一第一寬度W1、第二接觸結構620具有一第二寬度W2大於或等於第一寬度W1。第一開孔510的寬度W3大於第一寬度W1,故當第一接觸結構610位於第一半導體結構410上時,部分半導體疊層400之頂表面400a1會被暴露出來,亦即,部分半導體疊層400之頂表面400a1未被第一接觸結構610所覆蓋;同樣地,第二開孔520的寬度W4大於第二寬度W2,故當第二接觸結構620位於第二半導體結構420上時,部分半導體疊層400之頂表面400a2會被暴露出來,亦即,部分半導體疊層400之頂表面400a2會被暴露出來未被第二接觸結構620所覆蓋。第一接觸結構610直接接觸且電性連接於第一半導體結構410,第二接觸結構620直接接觸且電性連接於第二半導體結構420。第一接觸結構610及第二接觸結構620可分別與第一半導體結構410及第二半導體結構420形成歐姆接觸,進而降低光電半導體元件10的順向電壓(Vf)。Continuing to refer to FIG. 1B , the optoelectronic semiconductor device 10 selectively includes a first contact structure 610 and a second contact structure 620. The first contact structure 610 and the second contact structure 620 may be respectively located in the first opening 510 and the second opening 520 of the insulating layer 500. In this embodiment, the first contact structure 610 has a first width W1, and the second contact structure 620 has a second width W2 greater than or equal to the first width W1. The width W3 of the first opening 510 is greater than the first width W1. Therefore, when the first contact structure 610 is located on the first semiconductor structure 410, a portion of the top surface 400a1 of the semiconductor stack 400 is exposed, that is, a portion of the top surface 400a1 of the semiconductor stack 400 is not covered by the first contact structure 610. Similarly, The width W4 of the second opening 520 is greater than the second width W2, so when the second contact structure 620 is located on the second semiconductor structure 420, a portion of the top surface 400a2 of the semiconductor stack 400 will be exposed, that is, a portion of the top surface 400a2 of the semiconductor stack 400 will be exposed and not covered by the second contact structure 620. The first contact structure 610 directly contacts and is electrically connected to the first semiconductor structure 410, and the second contact structure 620 directly contacts and is electrically connected to the second semiconductor structure 420. The first contact structure 610 and the second contact structure 620 may form ohmic contacts with the first semiconductor structure 410 and the second semiconductor structure 420 respectively, thereby reducing the forward voltage (Vf) of the optoelectronic semiconductor device 10.
上述第一開孔510及第二開孔520可藉由蝕刻製程來蝕刻部分的絕緣層500而產生,第一開孔510及第二開孔520分別暴露出第一接觸結構610及部分第一半導體結構410、第二接觸結構620及第二半導體結構420。上述蝕刻製程可以為乾式蝕刻製程或濕式蝕刻製程。在本揭露實施例中,第一接觸結構610以及第二接觸結構620可各自包含金屬材料、合金材料、金屬氧化物材料等。金屬材料例如鍺(Ge)、鈹(Be)、鋅(Zn)、金(Au)、鎳(Ni)或銅(Cu)的金屬材料;合金材料可包含至少兩者之上述金屬的合金,例如鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、或鋅金(ZnAu);金屬氧化物材料可以包含氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)等。在一實施例中,第一接觸結構610以及第二接觸結構620分別為GeAu合金及BeAu合金。The first opening 510 and the second opening 520 can be formed by etching a portion of the insulating layer 500 through an etching process, and the first opening 510 and the second opening 520 respectively expose the first contact structure 610 and a portion of the first semiconductor structure 410, the second contact structure 620 and the second semiconductor structure 420. The etching process can be a dry etching process or a wet etching process. In the disclosed embodiment, the first contact structure 610 and the second contact structure 620 can each include a metal material, an alloy material, a metal oxide material, etc. The metal material may be a metal material such as germanium (Ge), benzium (Be), zinc (Zn), gold (Au), nickel (Ni) or copper (Cu); the alloy material may include an alloy of at least two of the above metals, such as germanium gold nickel (GeAuNi), benzium gold (BeAu), germanium gold (GeAu), or zinc gold (ZnAu); the metal oxide material may include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO), etc. In one embodiment, the first contact structure 610 and the second contact structure 620 are GeAu alloy and BeAu alloy respectively.
第一開孔510與第二開孔520可以具有相同或不同之形狀,第一接觸結構610及第二接觸結構620也可以具有相同或不同之形狀,例如圓形、方形或多邊形。第一開孔510之形狀與第一接觸結構610之形狀可以選擇為相同或不同之形狀,且/或第二開孔520之形狀與第二接觸結構620之形狀可以選擇為相同或不同之形狀。The first opening 510 and the second opening 520 may have the same or different shapes, and the first contact structure 610 and the second contact structure 620 may also have the same or different shapes, such as circular, square or polygonal. The shape of the first opening 510 and the shape of the first contact structure 610 may be selected to be the same or different shapes, and/or the shape of the second opening 520 and the shape of the second contact structure 620 may be selected to be the same or different shapes.
繼續參照第1B圖,光電半導體元件10包含第一電極710及第二電極720。第一電極710位於絕緣層500及第一接觸結構610之上,並且透過第一接觸結構610與第一半導體結構410電性連接,且第一電極710覆蓋部分的半導體疊層400之頂表面400a1;第二電極720順應地覆蓋於絕緣層500及第二接觸結構620之上,並且透過第二接觸結構620與第二半導體結構420電性連接,且第二電極720完全覆蓋半導體疊層400之頂表面400a2。在本實施例中,第一電極710的頂表面710a與第二電極720位於第一高台部400A之上及第二高台部400C之上的頂表面720a共平面。第一電極710與第二電極720可用來將光電半導體元件10與外部電源電性連接。電流可藉由第一電極710與第二電極720在光電半導體元件10中導通,並驅動半導體疊層400中的載子(電子和電洞)複合並發出光線,光線可朝基底100方向射出或者是朝遠離基底100的方向射出。1B , the optoelectronic semiconductor device 10 includes a first electrode 710 and a second electrode 720. The first electrode 710 is located on the insulating layer 500 and the first contact structure 610, and is electrically connected to the first semiconductor structure 410 through the first contact structure 610, and the first electrode 710 covers a portion of the top surface 400a1 of the semiconductor stack 400; the second electrode 720 conformingly covers the insulating layer 500 and the second contact structure 620, and is electrically connected to the second semiconductor structure 420 through the second contact structure 620, and the second electrode 720 completely covers the top surface 400a2 of the semiconductor stack 400. In this embodiment, the top surface 710a of the first electrode 710 and the top surface 720a of the second electrode 720 located on the first high platform portion 400A and the second high platform portion 400C are coplanar. The first electrode 710 and the second electrode 720 can be used to electrically connect the optoelectronic semiconductor element 10 to an external power source. The current can be conducted in the optoelectronic semiconductor element 10 through the first electrode 710 and the second electrode 720, and drive the carriers (electrons and holes) in the semiconductor stack 400 to recombine and emit light, and the light can be emitted toward the substrate 100 or emitted in a direction away from the substrate 100.
在本揭露實施例中,第一電極710及第二電極720的材料可相同或不同,且可各自包含金屬氧化材料、金屬或合金。金屬氧化材料包含如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)。金屬可列舉如鍺(Ge)、鈹(Be)、鋅(Zn)、金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、鎳(Ni)、銦(In)、錫(Sn)、銀(Ag)或銅(Cu)。合金可包含選自由上述金屬所組成的群組中的至少兩者,例如金錫(AuSn)、錫銀銅合金、錫合金、金銦(AuIn)、鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、鋅金(ZnAu)。In the disclosed embodiment, the materials of the first electrode 710 and the second electrode 720 may be the same or different, and may each include a metal oxide material, a metal or an alloy. The metal oxide material includes, for example, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO). The metal may be germanium (Ge), benzium (Be), zinc (Zn), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), indium (In), tin (Sn), silver (Ag) or copper (Cu). The alloy may include at least two selected from the group consisting of the above metals, such as gold-tin (AuSn), tin-silver-copper alloy, tin alloy, gold-indium (AuIn), germanium-gold-nickel (GeAuNi), benzium-gold (BeAu), germanium-gold (GeAu), zinc-gold (ZnAu).
在一些實施例中,可使用沉積製程形成第一電極710及第二電極720,在此不予贅述。在一實施例中,可進行平坦化製程(例如,化學機械平坦化(chemical mechanical planarization , CMP)製程),使得第一電極710的頂表面710a與第二電極720的頂表面720a共平面,以提供平坦的表面以利於第一電極710及第二電極720可在相同的水平高度上與外部電路連接,進而提升良率及可靠度。In some embodiments, the first electrode 710 and the second electrode 720 may be formed by a deposition process, which will not be described in detail herein. In one embodiment, a planarization process (e.g., a chemical mechanical planarization (CMP) process) may be performed to make the top surface 710a of the first electrode 710 and the top surface 720a of the second electrode 720 coplanar, so as to provide a flat surface so that the first electrode 710 and the second electrode 720 can be connected to an external circuit at the same level, thereby improving yield and reliability.
第2圖係根據本揭露的又一實施例,繪示出光電半導體元件20的剖面圖。光電半導體元件20具有近似於光電半導體元件10(第1B圖)的結構,差別在於光電半導體元件20具有反射層800位於半導體疊層400與解離層200之間,具體而言,反射層800位於黏結層300與解離層200之間。反射層800可反射主動區430所發出的光線,使光線朝遠離基底100的方向射出光電半導體元件20外,藉此提升發光效率。在本揭露實施例中,反射層800可包含半導體材料,如III-V族半導體材料;金屬材料,包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、或銀(Ag);或上述之合金材料。在其他實施例中,反射層800亦可包含布拉格反射結構(distributed bragg reflector structure;DBR),其由兩種以上具有不同折射率的半導體材料或絕緣材料交替堆疊而形成,諸如由AlAs∕GaAs、AlGaAs∕GaAs、InGaP∕GaAs、SiO 2/TiO 2所交替堆疊形成。在一些實施例中,在形成解離層200於基底100上之後,將反射層800形成在解離層200上,再藉由接合反射層800及黏結層300將半導體疊層400與基底100相連接;或者,在半導體疊層400上依序形成黏結層300及反射層800,並於基底100上形成解離層200,後續藉由接合反射層800及解離層200將半導體疊層400與基底100相連接。 FIG. 2 is a cross-sectional view of a photoelectric semiconductor device 20 according to another embodiment of the present disclosure. The photoelectric semiconductor device 20 has a structure similar to that of the photoelectric semiconductor device 10 (FIG. 1B), except that the photoelectric semiconductor device 20 has a reflective layer 800 located between the semiconductor stack 400 and the release layer 200. Specifically, the reflective layer 800 is located between the bonding layer 300 and the release layer 200. The reflective layer 800 can reflect the light emitted by the active region 430, so that the light is emitted out of the photoelectric semiconductor device 20 in a direction away from the substrate 100, thereby improving the light emission efficiency. In the disclosed embodiment, the reflective layer 800 may include semiconductor materials, such as III-V semiconductor materials; metal materials, including but not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au), or silver (Ag); or alloy materials thereof. In other embodiments, the reflective layer 800 may also include a distributed bragg reflector structure (DBR), which is formed by alternately stacking two or more semiconductor materials or insulating materials with different refractive indices, such as AlAs/GaAs, AlGaAs/GaAs, InGaP/GaAs, SiO 2 /TiO 2 . In some embodiments, after forming the release layer 200 on the substrate 100, the reflective layer 800 is formed on the release layer 200, and then the semiconductor stack 400 is connected to the substrate 100 by bonding the reflective layer 800 and the adhesive layer 300; or, the adhesive layer 300 and the reflective layer 800 are sequentially formed on the semiconductor stack 400, and the release layer 200 is formed on the substrate 100, and then the semiconductor stack 400 is connected to the substrate 100 by bonding the reflective layer 800 and the release layer 200.
第3A圖係根據本揭露的再一實施例,繪示出光電半導體元件的俯視圖。第3B圖係為沿著第3A圖中A-A’線段的剖面圖。光電半導體元件30具有近似於光電半導體元件20(第2圖)的結構,但差別在於光電半導體元件30不具有第二平台部400D及第三平台部400E。FIG. 3A is a top view of a photoelectric semiconductor device according to another embodiment of the present disclosure. FIG. 3B is a cross-sectional view along the line segment A-A' in FIG. 3A. The photoelectric semiconductor device 30 has a structure similar to that of the photoelectric semiconductor device 20 (FIG. 2), but the difference is that the photoelectric semiconductor device 30 does not have the second platform portion 400D and the third platform portion 400E.
如第3A圖及第3B圖所示,半導體疊層400可被區分為第一高台部400A、第二高台部400C、以及第一平台部400B,第一平台部400B位於第一高台部400A與第二高台部400C之間,第一高台部400A及第二高台部400C分別位於第一平台部400B的相反側上。相較於第2圖所示之實施例的光電半導體元件20,由於本實施例不具有第二平台部400D及第三平台部400E,因此可以進一步降低元件面積,以獲得更小尺寸的光電半導體元件30。As shown in FIG. 3A and FIG. 3B , the semiconductor stack 400 can be divided into a first high platform portion 400A, a second high platform portion 400C, and a first platform portion 400B. The first platform portion 400B is located between the first high platform portion 400A and the second high platform portion 400C. The first high platform portion 400A and the second high platform portion 400C are respectively located on opposite sides of the first platform portion 400B. Compared with the optoelectronic semiconductor device 20 of the embodiment shown in FIG. 2 , since the present embodiment does not have the second platform portion 400D and the third platform portion 400E, the device area can be further reduced to obtain a smaller optoelectronic semiconductor device 30.
綜上所述,本揭露光電半導體元件提供了一種對高溫製程耐受性高、無磊晶缺陷並且可搭配後續雷射剝離製程的解離層200。具體而言,本揭露的解離層200為無機絕緣材料,可以透過雷射剝離製程有效地移除基底100且不損害光電半導體元件,進而提升製程良率。In summary, the optoelectronic semiconductor device disclosed herein provides a release layer 200 that has high tolerance to high temperature processes, has no epitaxial defects, and can be used in a subsequent laser stripping process. Specifically, the release layer 200 disclosed herein is an inorganic insulating material, which can effectively remove the substrate 100 through a laser stripping process without damaging the optoelectronic semiconductor device, thereby improving the process yield.
以上概述數個實施例之部件,以便在本揭露所屬技術領域中具有通常知識者可更易理解本揭露實施例的觀點。在本揭露所屬技術領域中具有通常知識者應理解,他們能以本揭露實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本揭露所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本揭露的精神與範圍,且他們能在不違背本揭露之精神和範圍之下,做各式各樣的改變、取代和替換。The above summarizes the components of several embodiments so that those with ordinary knowledge in the art to which the present disclosure belongs can more easily understand the perspectives of the embodiments of the present disclosure. Those with ordinary knowledge in the art to which the present disclosure belongs should understand that they can design or modify other processes and structures based on the embodiments of the present disclosure to achieve the same purpose and/or advantages as the embodiments introduced herein. Those with ordinary knowledge in the art to which the present disclosure belongs should also understand that such equivalent processes and structures do not violate the spirit and scope of the present disclosure, and they can make various changes, substitutions and replacements without violating the spirit and scope of the present disclosure.
10:光電半導體元件 20:光電半導體元件 30:光電半導體元件 100:基底 100a:第一上表面 200:解離層 300:黏結層 300a:第二上表面 400:半導體疊層 400a1:頂表面 400a2:頂表面 400A:第一高台部 400B:第一平台部 400C:第二高台部 400D:第二平台部 400E:第三平台部 410:第一半導體結構 420:第二半導體結構 430:主動區 500:絕緣層 510:第一開孔 520:第二開孔 610:第一接觸結構 620:第二接觸結構 710:第一電極 710a:頂表面 720:第二電極 720a:頂表面 800:反射層 900:中間結構 L:長度 T:厚度 W:寬度 AA’:線段 W1:第一寬度 W2:第二寬度 W3、W4:寬度 10: Photoelectric semiconductor element 20: Photoelectric semiconductor element 30: Photoelectric semiconductor element 100: Substrate 100a: First upper surface 200: Debonding layer 300: Adhesive layer 300a: Second upper surface 400: Semiconductor stack 400a1: Top surface 400a2: Top surface 400A: First platform 400B: First platform 400C: Second platform 400D: Second platform 400E: Third platform 410: First semiconductor structure 420: Second semiconductor structure 430: Active region 500: Insulating layer 510: First opening 520: Second opening 610: first contact structure 620: second contact structure 710: first electrode 710a: top surface 720: second electrode 720a: top surface 800: reflective layer 900: intermediate structure L: length T: thickness W: width AA’: line segment W1: first width W2: second width W3, W4: width
由以下的詳細敘述配合所附圖式,可最好地理解本揭露實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用於說明。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本揭露實施例之特徵。 第1A圖係根據本揭露的一實施例,繪示出光電半導體元件的俯視圖。 第1B圖係根據本揭露的一實施例,繪示出沿著第1A圖中A-A’線段的剖面圖。 第2圖係根據本揭露的另一實施例,繪示出光電半導體元件的剖面圖。 第3A圖係根據本揭露再一實施例,繪示出光電半導體元件的俯視圖。 第3B圖係根據本揭露的再一實施例,繪示出沿著第3A圖中A-A’線段的剖面圖。 The disclosed embodiments are best understood by the following detailed description in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are for illustration purposes only. In fact, the sizes of the various components may be arbitrarily enlarged or reduced to clearly illustrate the features of the disclosed embodiments. FIG. 1A is a top view of a photoelectric semiconductor component according to an embodiment of the disclosed embodiment. FIG. 1B is a cross-sectional view along the line segment A-A’ in FIG. 1A according to an embodiment of the disclosed embodiment. FIG. 2 is a cross-sectional view of a photoelectric semiconductor component according to another embodiment of the disclosed embodiment. FIG. 3A is a top view of a photoelectric semiconductor component according to yet another embodiment of the disclosed embodiment. FIG. 3B is a cross-sectional view along the line segment A-A’ in FIG. 3A according to another embodiment of the present disclosure.
10:光電半導體元件 10: Optoelectronic semiconductor components
100:基底 100: Base
100a:第一上表面 100a: first upper surface
200:解離層 200: Decomposition layer
300:黏結層 300: Adhesive layer
300a:第二上表面 300a: Second upper surface
400:半導體疊層 400:Semiconductor stacking
400a1:頂表面 400a1: Top surface
400a2:頂表面 400a2: Top surface
400A:第一高台部 400A: First platform
400B:第一平台部 400B: First platform department
400C:第二高台部 400C: Second high platform
400D:第二平台部 400D: Second platform section
400E:第三平台部 400E: Third platform department
410:第一半導體結構 410: First semiconductor structure
420:第二半導體結構 420: Second semiconductor structure
430:主動區 430: Active zone
500:絕緣層 500: Insulation layer
510:第一開孔 510: First opening
520:第二開孔 520: Second opening
610:第一接觸結構 610: First contact structure
620:第二接觸結構 620: Second contact structure
710:第一電極 710: First electrode
710a:頂表面 710a: top surface
720:第二電極 720: Second electrode
720a:頂表面 720a: Top surface
900:中間結構 900: Middle structure
T:厚度 T:Thickness
AA’:線段 AA’: line segment
W1:第一寬度 W1: First width
W2:第二寬度 W2: Second width
W3、W4:寬度 W3, W4: Width
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112131649A TWI875149B (en) | 2022-03-17 | Optoelectronic semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112131649A TWI875149B (en) | 2022-03-17 | Optoelectronic semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202401853A TW202401853A (en) | 2024-01-01 |
TWI875149B true TWI875149B (en) | 2025-03-01 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220028825A1 (en) | 2020-07-21 | 2022-01-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor packages including passive devices and methods of forming same |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220028825A1 (en) | 2020-07-21 | 2022-01-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor packages including passive devices and methods of forming same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI795205B (en) | Light-emitting device | |
US10559717B2 (en) | Light-emitting device and manufacturing method thereof | |
US11990575B2 (en) | Light-emitting device | |
US20130062657A1 (en) | Light emitting diode structure and manufacturing method thereof | |
WO2023093446A1 (en) | Light-emitting diode chip and light-emitting apparatus | |
TWI875149B (en) | Optoelectronic semiconductor device | |
TWI816330B (en) | Optoelectronic semiconductor device | |
TWI786503B (en) | Light-emitting device and manufacturing method thereof | |
TW202401853A (en) | Optoelectronic semiconductor device | |
TWI834220B (en) | Optoelectronic semiconductor device | |
TWI838740B (en) | Optoelectronic semiconductor device and semiconductor device containing the same | |
TW202416552A (en) | Optoelectronic semiconductor device | |
US20240222566A1 (en) | Optoelectronic semiconductor device | |
CN219873571U (en) | Optoelectronic semiconductor component | |
TW202429729A (en) | Optoelectronic semiconductor device | |
TWI845841B (en) | Light-emitting device | |
TWI811778B (en) | Optoelectronic semiconductor device | |
TW202410482A (en) | Optoelectronic semiconductor device and semiconductor device containing the same | |
TWI828116B (en) | Semiconductor device | |
TWI833439B (en) | Light-emitting device and manufacturing method thereof | |
TWI705532B (en) | Semiconductor device and method of manufacturing thereof | |
TW202414750A (en) | Semiconductor device | |
CN118173683A (en) | Light emitting diode and light emitting device | |
TW202501854A (en) | Semiconductor device | |
TW202230832A (en) | Light-emitting element and manufacturing method thereof |