[go: up one dir, main page]

TWI871691B - Semiconductor structure and method for manufacturing the same - Google Patents

Semiconductor structure and method for manufacturing the same Download PDF

Info

Publication number
TWI871691B
TWI871691B TW112124642A TW112124642A TWI871691B TW I871691 B TWI871691 B TW I871691B TW 112124642 A TW112124642 A TW 112124642A TW 112124642 A TW112124642 A TW 112124642A TW I871691 B TWI871691 B TW I871691B
Authority
TW
Taiwan
Prior art keywords
width
trench
layer
dielectric layer
opening
Prior art date
Application number
TW112124642A
Other languages
Chinese (zh)
Other versions
TW202504429A (en
Inventor
賴振益
Original Assignee
南亞科技股份有限公司
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202504429A publication Critical patent/TW202504429A/en
Application granted granted Critical
Publication of TWI871691B publication Critical patent/TWI871691B/en

Links

Images

Abstract

A semiconductor structure includes a substrate, a dielectric layer, and a capacitor structure. The dielectric layer is disposed on the substrate. The dielectric layer has a trench. The capacitor structure is located in the trench of the dielectric layer. The trench has a first width and a second width. The first width is a maximum width of the trench. The second width is the width of the trench at a top surface of the dielectric layer. A difference between a first width and the second width is smaller than 2 nanometers.

Description

半導體結構及其製造方法Semiconductor structure and method for manufacturing the same

本揭露是有關於一種半導體結構及其製造方法,尤其是針對動態隨機存取記憶體結構。The present disclosure relates to a semiconductor structure and a method for manufacturing the same, and in particular to a dynamic random access memory structure.

隨著半導體工業發展,半導體元件的關鍵尺寸快速縮減。積體電路中的元件密度增加。電容陣列製造的誤差要求更為嚴格。在高縱橫比的柱狀電容結構中,容置電容結構的溝槽寬度只要有些許差異,就會嚴重影響電容陣列的良率產。With the development of the semiconductor industry, the critical dimensions of semiconductor components are shrinking rapidly. The density of components in integrated circuits is increasing. The error requirements for capacitor array manufacturing are becoming more stringent. In a high aspect ratio columnar capacitor structure, even a slight difference in the width of the trench that holds the capacitor structure will seriously affect the yield of the capacitor array.

有鑑於此,如何提出一種可解決上述問題的半導體結構及其製造方法,是目前業界亟欲投入研發資源解決的問題之一。In view of this, how to propose a semiconductor structure and a manufacturing method that can solve the above problems is one of the problems that the industry is eager to invest research and development resources to solve.

本揭露的一技術態樣為一種半導體結構。One technical aspect of the present disclosure is a semiconductor structure.

在一實施例中,半導體結構包含基底、介電層以及電容結構。介電層設置於基底上。介電層具有溝槽。電容結構位在介電層的溝槽中。溝槽具有第一寬度與第二寬度,第一寬度為溝槽的最大寬度,第二寬度為溝槽在介電層的上表面的寬度。第一寬度與第二寬度的差值小於2奈米。In one embodiment, the semiconductor structure includes a substrate, a dielectric layer, and a capacitor structure. The dielectric layer is disposed on the substrate. The dielectric layer has a trench. The capacitor structure is located in the trench of the dielectric layer. The trench has a first width and a second width, the first width is the maximum width of the trench, and the second width is the width of the trench on the upper surface of the dielectric layer. The difference between the first width and the second width is less than 2 nanometers.

在一實施例中,介電層包含氧化物層以及氮化物層。氧化物層位在基底上方。氮化物層位在氧化物層上方。氧化物層與氮化物層共同構成溝槽側壁,溝槽側壁圍繞電容結構。In one embodiment, the dielectric layer includes an oxide layer and a nitride layer. The oxide layer is located above the substrate. The nitride layer is located above the oxide layer. The oxide layer and the nitride layer together form a trench sidewall, and the trench sidewall surrounds the capacitor structure.

在一實施例中,介電層具有第一位置,溝槽在第一位置具有第一寬度,第一位置位在氧化物層靠近氮化物層的一端。In one embodiment, the dielectric layer has a first position, the trench has a first width at the first position, and the first position is located at one end of the oxide layer close to the nitride layer.

在一實施例中,介電層具有第二位置,溝槽在第二位置具有第二寬度,且第二位置位在氮化物層遠離氧化物層的一端。In one embodiment, the dielectric layer has a second position, the trench has a second width at the second position, and the second position is located at an end of the nitride layer far from the oxide layer.

本揭露的另一技術態樣為一種半導體結構。Another technical aspect of the present disclosure is a semiconductor structure.

在一實施例中,半導體結構的製造方法包含圖案化位在基底上的介電層以形成開口;形成覆蓋層於介電層上以及開口中;蝕刻覆蓋層與介電層,使開口加深成為溝槽;以及形成電容結構於溝槽中。In one embodiment, a method for manufacturing a semiconductor structure includes patterning a dielectric layer on a substrate to form an opening; forming a capping layer on the dielectric layer and in the opening; etching the capping layer and the dielectric layer to deepen the opening into a trench; and forming a capacitor structure in the trench.

在一實施例中,介電層包含氧化物層以及位在氧化物層上方的氮化物層,其中圖案化位在基底上的介電層以形成開口的步驟還包含使開口貫穿氮化物層,且開口的深度小於介電層的厚度。In one embodiment, the dielectric layer includes an oxide layer and a nitride layer located above the oxide layer, wherein the step of patterning the dielectric layer located on the substrate to form an opening further includes making the opening penetrate the nitride layer, and the depth of the opening is less than the thickness of the dielectric layer.

在一實施例中,形成覆蓋層於介電層上以及開口中的步驟還包含使覆蓋層覆蓋開口周圍的氧化物層。In one embodiment, the step of forming a capping layer on the dielectric layer and in the opening further includes forming the capping layer to cover the oxide layer around the opening.

在一實施例中,圖案化位在基底上的介電層以形成開口的步驟還包使開口自氮化物層的下表面至開口底部之間的距離在100奈米至400奈米的範圍中。In one embodiment, patterning the dielectric layer on the substrate to form the opening further includes making the distance from the lower surface of the nitride layer to the bottom of the opening range from 100 nm to 400 nm.

在一實施例中,形成覆蓋層於介電層上以及開口中的步驟由原子層沉積製程執行。In one embodiment, the step of forming the capping layer on the dielectric layer and in the opening is performed by an atomic layer deposition process.

在一實施例中,蝕刻覆蓋層與介電層,使開口加深成為溝槽的步驟還包含使溝槽具有第一寬度與第二寬度,第一寬度為溝槽的最大寬度,第二寬度為溝槽在介電層的上表面的寬度,且第一寬度與第二寬度的差值小於2奈米。In one embodiment, the step of etching the capping layer and the dielectric layer to deepen the opening into a trench further includes providing the trench with a first width and a second width, wherein the first width is the maximum width of the trench, the second width is the width of the trench on the upper surface of the dielectric layer, and the difference between the first width and the second width is less than 2 nanometers.

在上述實施例中,本揭露的半導體裝置可降低溝槽第一寬度與第二寬度的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體裝置可減少溝槽的溝槽側壁的弧度,使溝槽更接近垂直。本揭露的半導體裝置的製造方法藉由覆蓋層保護開口的開口側壁,尤其是介電層中的開口周圍的氧化物層,藉此降低電容漏電機率並提升良率。In the above-mentioned embodiments, the semiconductor device disclosed herein can reduce the difference between the first width and the second width of the trench, thereby reducing the probability of capacitor leakage and improving the yield. In other words, the semiconductor device disclosed herein can reduce the curvature of the trench sidewall of the trench, making the trench closer to vertical. The manufacturing method of the semiconductor device disclosed herein protects the opening sidewall of the opening, especially the oxide layer around the opening in the dielectric layer, by a covering layer, thereby reducing the probability of capacitor leakage and improving the yield.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。且為了清楚起見,圖式中之層和區域的厚度可能被誇大,並且在圖式的描述中相同的元件符號表示相同的元件。The following will disclose multiple embodiments of the present invention with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner. And for the sake of clarity, the thickness of the layers and regions in the drawings may be exaggerated, and the same element symbols represent the same elements in the description of the drawings.

第1圖為根據本揭露一實施例之半導體結構100的示意圖。第1圖為剖面視角。半導體結構100包含基底110、介電層120以及電容結構130。半導體結構100為動態隨機存取記憶體(dynamic random access memory,DRAM)結構。FIG. 1 is a schematic diagram of a semiconductor structure 100 according to an embodiment of the present disclosure. FIG. 1 is a cross-sectional view. The semiconductor structure 100 includes a substrate 110, a dielectric layer 120, and a capacitor structure 130. The semiconductor structure 100 is a dynamic random access memory (DRAM) structure.

介電層120沿著第一方向D1設置於基底110上。第一方向D1為垂直方向。介電層120具有溝槽TR。溝槽TR貫穿介電層120,並使著陸墊112自溝槽TR露出。The dielectric layer 120 is disposed on the substrate 110 along a first direction D1. The first direction D1 is a vertical direction. The dielectric layer 120 has a trench TR. The trench TR penetrates the dielectric layer 120 and exposes the landing pad 112 from the trench TR.

電容結構130位在介電層120的溝槽TR中。電容結構130延伸於第一方向D1上。The capacitor structure 130 is located in the trench TR of the dielectric layer 120. The capacitor structure 130 extends in the first direction D1.

舉例來說,基底110包含矽(silicon)、經摻雜的矽(doped silicon)、矽鍺(silicon germanium)、絕緣層上覆矽(silicon on insulator)、藍寶石上矽(silicon on sapphire)、絕緣層上覆矽鍺(silicon germanium on insulator)、碳化矽(silicon carbide)、鍺(germanium)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷砷化鎵(gallium arsenide phosphide)、磷化銦(indium phosphide)或磷化銦鎵(indium gallium phosphide)所形成。For example, the substrate 110 includes silicon, doped silicon, silicon germanium, silicon on insulator, silicon on sapphire, silicon germanium on insulator, silicon carbide, germanium, gallium arsenide, gallium phosphide, gallium arsenide phosphide, indium phosphide, or indium gallium phosphide.

基底110中還包含主動區域、隔離區域以及位在主動區域中的字元線與位元線等結構。基底110中還包含電性連接字元線與位元線的接觸件。為了便於說明,上述結構特徵於圖中省略,僅示例性地繪示與電容結構130電性連接的著陸墊112(或者插塞)。The substrate 110 also includes an active region, an isolation region, and structures such as word lines and bit lines located in the active region. The substrate 110 also includes contacts electrically connecting the word lines and the bit lines. For ease of explanation, the above structural features are omitted in the figure, and only the landing pad 112 (or plug) electrically connected to the capacitor structure 130 is shown as an example.

介電層120包含氧化物層122以及氮化物層124。氧化物層122位在基底110與氮化物層124之間。氮化物層124位在氧化物層122上方。氧化物層122的材料為氧化矽(silicon oxide),氮化物層124的材料為氮化矽(silicon nitride)。The dielectric layer 120 includes an oxide layer 122 and a nitride layer 124. The oxide layer 122 is located between the substrate 110 and the nitride layer 124. The nitride layer 124 is located above the oxide layer 122. The material of the oxide layer 122 is silicon oxide, and the material of the nitride layer 124 is silicon nitride.

溝槽TR貫穿氧化物層122與氮化物層124。氧化物層122與氮化物層124共同構成溝槽側壁120S。溝槽側壁120S圍繞位在溝槽TR中的電容結構130。溝槽側壁120S為介電層120與位在溝槽TR中的電容結構130的交界面。The trench TR penetrates the oxide layer 122 and the nitride layer 124. The oxide layer 122 and the nitride layer 124 together form a trench sidewall 120S. The trench sidewall 120S surrounds the capacitor structure 130 in the trench TR. The trench sidewall 120S is the interface between the dielectric layer 120 and the capacitor structure 130 in the trench TR.

溝槽TR具有沿著第二方向D2的第一寬度W1與第二寬度W2。第二方向D2垂直於第一方向D1。第二方向D2為水平方向。第一寬度W1為溝槽TR的最大寬度。第二寬度W2為溝槽TR在介電層120的上表面1242的寬度。第一寬度W1與第二寬度W2的差值小於2奈米。The trench TR has a first width W1 and a second width W2 along a second direction D2. The second direction D2 is perpendicular to the first direction D1. The second direction D2 is a horizontal direction. The first width W1 is the maximum width of the trench TR. The second width W2 is the width of the trench TR at the upper surface 1242 of the dielectric layer 120. The difference between the first width W1 and the second width W2 is less than 2 nanometers.

介電層120具有第一位置P1與第二位置P2。溝槽TR的最大寬度(第一寬度W1)位在介電層120的第一位置P1,溝槽TR的第二寬度W2位在介電層120的第二位置P2。第一位置P1位在氧化物層122靠近氮化物層124的一端。第二位置P2是氮化物層124的上表面1242(相當於介電層120的上表面1242)的位置,也可說第二位置P2位在氮化物層124遠離氧化物層122的一端。The dielectric layer 120 has a first position P1 and a second position P2. The maximum width (first width W1) of the trench TR is located at the first position P1 of the dielectric layer 120, and the second width W2 of the trench TR is located at the second position P2 of the dielectric layer 120. The first position P1 is located at one end of the oxide layer 122 close to the nitride layer 124. The second position P2 is the position of the upper surface 1242 of the nitride layer 124 (equivalent to the upper surface 1242 of the dielectric layer 120), which can also be said that the second position P2 is located at one end of the nitride layer 124 far from the oxide layer 122.

一般而言,由於材料性質差異蝕刻製程選擇比,介電層120的氧化物層122在第一位置P1被蝕刻的程度較大。容置電容結構130的溝槽TR在第一位置P1較容易被過度蝕刻,導致溝槽TR呈現明顯的弓形輪廓(bow profile)或瓶型輪廓。如此一來,將導致相鄰電容間的電性絕緣能力下降而產生漏電。因此,本揭露的半導體結構100可降低溝槽TR第一寬度W1與第二寬度W2的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體結構100可減少溝槽TR的溝槽側壁120S的弧度,使溝槽TR更接近垂直。Generally speaking, due to the difference in material properties and the etching process selection ratio, the oxide layer 122 of the dielectric layer 120 is etched to a greater extent at the first position P1. The trench TR accommodating the capacitor structure 130 is more likely to be over-etched at the first position P1, causing the trench TR to present an obvious bow profile or bottle-shaped profile. As a result, the electrical insulation ability between adjacent capacitors will decrease and leakage will occur. Therefore, the semiconductor structure 100 disclosed in the present invention can reduce the difference between the first width W1 and the second width W2 of the trench TR, thereby reducing the probability of capacitor leakage and improving the yield. In other words, the semiconductor structure 100 disclosed herein can reduce the curvature of the trench sidewall 120S of the trench TR, making the trench TR closer to vertical.

位在溝槽TR中的電容結構130也具有沿著第二方向D2的第三寬度W3與第四寬度W4。第三寬度W3為電容結構130的最大寬度。第三寬度W3大致上等於溝槽TR的第一寬度W1,第四寬度W4大致上等於溝槽TR的第二寬度W2。第三寬度W3與第四寬度W4的差值小於2奈米。The capacitor structure 130 in the trench TR also has a third width W3 and a fourth width W4 along the second direction D2. The third width W3 is the maximum width of the capacitor structure 130. The third width W3 is substantially equal to the first width W1 of the trench TR, and the fourth width W4 is substantially equal to the second width W2 of the trench TR. The difference between the third width W3 and the fourth width W4 is less than 2 nanometers.

具體而言,電容結構130與溝槽TR的實際結構極為狹長,且溝槽TR的最大寬度(第一寬度W1)在整個電容結構130與溝槽TR靠近頂端的位置。舉例來說,溝槽TR自氮化物層124的上表面1242至氧化物層122與基底110之間的下表面1222的第一深度DE1大約為1000奈米。第一位置P1與第二位置P2之間的距離L3大約在15奈米至30奈米的範圍中。為了方便說明,本揭露的圖示中放大了電容結構130的上半部的比例,以便於凸顯本案介電層120與電容結構130的技術特徵。介電層120構成容置電容結構130的容器,氮化物層124具有較高的強度可支撐狹長的電容結構130與溝槽TR。Specifically, the actual structure of the capacitor structure 130 and the trench TR is extremely narrow, and the maximum width (first width W1) of the trench TR is near the top of the entire capacitor structure 130 and the trench TR. For example, the first depth DE1 of the trench TR from the upper surface 1242 of the nitride layer 124 to the lower surface 1222 between the oxide layer 122 and the substrate 110 is approximately 1000 nanometers. The distance L3 between the first position P1 and the second position P2 is approximately in the range of 15 nanometers to 30 nanometers. For the convenience of explanation, the proportion of the upper half of the capacitor structure 130 is enlarged in the diagram of the present disclosure to highlight the technical features of the dielectric layer 120 and the capacitor structure 130 of the present invention. The dielectric layer 120 forms a container for accommodating the capacitor structure 130, and the nitride layer 124 has a relatively high strength and can support the narrow and elongated capacitor structure 130 and the trench TR.

電容結構130包含底部電極132、電容絕緣層134和頂部電極136。在本實施例中,底部電極132包括氮化鈦(TiN)。在其他實施例中,底部電極132包括氮化鈦矽(TiSiN)。在本實施例中,電容絕緣層134是高介電(high-k)層,包括氧化鋯(ZrO2)、氧化鉿(HfO2)、氧化鈦(TiO2)或上述之組合。在一些實施例中,頂部電極136包括氮化鈦。在其他實施例中,頂部電極136包括氮化鈦矽(TiSiN)。上述電容結構130的各層結構及材料並非用以限制本揭露。The capacitor structure 130 includes a bottom electrode 132, a capacitor insulating layer 134, and a top electrode 136. In the present embodiment, the bottom electrode 132 includes titanium nitride (TiN). In other embodiments, the bottom electrode 132 includes titanium silicon nitride (TiSiN). In the present embodiment, the capacitor insulating layer 134 is a high-k layer including zirconium oxide (ZrO2), helium oxide (HfO2), titanium oxide (TiO2), or a combination thereof. In some embodiments, the top electrode 136 includes titanium nitride. In other embodiments, the top electrode 136 includes titanium silicon nitride (TiSiN). The structures and materials of the various layers of the capacitor structure 130 are not intended to limit the present disclosure.

在第1圖的剖面視角中,位在電容結構130兩側的溝槽側壁120S之間在第一位置P1具有沿著第二方向D2的第一距離L1,第一距離L1等於第一寬度W1。位在電容結構130兩側的溝槽側壁120S之間在第二位置P2具有沿著第二方向D2的第二距離L2。第二距離L2等於第二寬度W2。In the cross-sectional view of FIG. 1 , the trench sidewalls 120S located on both sides of the capacitor structure 130 have a first distance L1 along the second direction D2 at a first position P1, and the first distance L1 is equal to the first width W1. The trench sidewalls 120S located on both sides of the capacitor structure 130 have a second distance L2 along the second direction D2 at a second position P2. The second distance L2 is equal to the second width W2.

應瞭解到,已敘述過的元件連接關係、材料與功效將不再重複贅述,合先敘明。在以下敘述中,將說明半導體結構100的製造方法。It should be understood that the previously described element connection relationship, materials and functions will not be repeated, and are described first. In the following description, the manufacturing method of the semiconductor structure 100 will be described.

第2圖為根據本揭露一實施例之半導體結構100的製造方法的流程圖。第3圖至第6圖為第2圖的製造方法的中間步驟示意圖。FIG. 2 is a flow chart of a method for manufacturing a semiconductor structure 100 according to an embodiment of the present disclosure. FIG. 3 to FIG. 6 are schematic diagrams of intermediate steps of the manufacturing method of FIG. 2.

同時參照第2圖與第3圖。半導體結構100的製造方法開始於步驟S1。形成圖案化遮罩層140於介電層120上方,以定義出溝槽TR(見第1圖)的位置。Refer to FIG. 2 and FIG. 3 at the same time. The manufacturing method of the semiconductor structure 100 starts at step S1. A patterned mask layer 140 is formed on the dielectric layer 120 to define the position of the trench TR (see FIG. 1).

同時參照第2圖與第4圖。接著執行半導體結構100的製造方法的步驟S2。圖案化位在基底110上的介電層120以形成開口OP。介電層120通過蝕刻製程將圖案化遮罩層140的圖案形成於介電層120中,以形成開口OP於介電層120中。Refer to FIG. 2 and FIG. 4 at the same time. Then, the step S2 of the manufacturing method of the semiconductor structure 100 is performed. The dielectric layer 120 located on the substrate 110 is patterned to form an opening OP. The dielectric layer 120 is etched to form the pattern of the patterned mask layer 140 in the dielectric layer 120 to form the opening OP in the dielectric layer 120.

開口OP貫穿氮化物層124。開口OP的開口底部126與介電層120的上表面1242(等於氮化物層124的上表面1242)之間具有第二深度DE2。開口OP的第二深度DE2小於介電層120的厚度T。換句話說,步驟S2是部分蝕刻介電層120。介電層120的厚度T相當於第一深度DE1。開口OP的第二深度DE2略大於第一位置P1與氮化物層124的上表面1242之間的距離L3。開口OP自氮化物層124的下表面1244至開口底部126之間的距離L4在100奈米至400奈米的範圍中。The opening OP penetrates the nitride layer 124. There is a second depth DE2 between the opening bottom 126 of the opening OP and the upper surface 1242 of the dielectric layer 120 (equal to the upper surface 1242 of the nitride layer 124). The second depth DE2 of the opening OP is less than the thickness T of the dielectric layer 120. In other words, step S2 is to partially etch the dielectric layer 120. The thickness T of the dielectric layer 120 is equal to the first depth DE1. The second depth DE2 of the opening OP is slightly greater than the distance L3 between the first position P1 and the upper surface 1242 of the nitride layer 124. The distance L4 from the lower surface 1244 of the nitride layer 124 to the opening bottom 126 of the opening OP is in the range of 100 nm to 400 nm.

在步驟S2中,蝕刻步驟由電漿蝕刻製程執行。電漿氣體為含氟蝕刻氣體,例如四氟化碳(CF 4)、六氟乙烷(C 2F 6)、八氟环丁烷(C 4F 8), 八氟环戊烯(C 5F 8)或六氟-1,3-丁二烯(C 4F 6),但不限於此。電漿蝕刻製程對氧化物層122與氮化物層124具有高選擇比,有利於蝕刻氧化物層122。 In step S2, the etching step is performed by a plasma etching process. The plasma gas is a fluorine-containing etching gas, such as carbon tetrafluoride ( CF4 ), hexafluoroethane ( C2F6 ), octafluorocyclobutane ( C4F8 ), octafluorocyclopentene ( C5F8 ) or hexafluoro-1,3-butadiene ( C4F6 ), but not limited thereto. The plasma etching process has a high selectivity for the oxide layer 122 and the nitride layer 124 , which is beneficial for etching the oxide layer 122.

電漿蝕刻製程使圖案化遮罩層140產生斜角142。斜角142造成電漿蝕刻過程中的離子散射,使得開口側壁128在第二方向D2水平方向上的蝕刻程度增加。若是持續進行電漿蝕刻製程直到開口OP貫穿介電層120,在開口OP中散射的離子將導致介電層120在第一位置P1被過度地蝕刻。因此,當開口OP的第二深度DE2略大於第一位置P1與氮化物層124的上表面1242之間的距離時停止電漿蝕刻步驟。The plasma etching process causes the patterned mask layer 140 to have an oblique angle 142. The oblique angle 142 causes ion scattering during the plasma etching process, so that the etching degree of the opening sidewall 128 in the horizontal direction of the second direction D2 increases. If the plasma etching process is continued until the opening OP penetrates the dielectric layer 120, the ions scattered in the opening OP will cause the dielectric layer 120 to be over-etched at the first position P1. Therefore, the plasma etching step is stopped when the second depth DE2 of the opening OP is slightly greater than the distance between the first position P1 and the upper surface 1242 of the nitride layer 124.

同時參照第2圖與第5圖。接著執行半導體結構100的製造方法的步驟S3。形成覆蓋層150於介電層120上以及開口OP中。形成覆蓋層150的步驟由原子層沉積(Atomic Layer Deposition,ALD)製程執行。覆蓋層150的材料為氮化矽。Refer to FIG. 2 and FIG. 5 at the same time. Then, the step S3 of the manufacturing method of the semiconductor structure 100 is performed. A capping layer 150 is formed on the dielectric layer 120 and in the opening OP. The step of forming the capping layer 150 is performed by an atomic layer deposition (ALD) process. The material of the capping layer 150 is silicon nitride.

覆蓋層150覆蓋具有斜角142的圖案化遮罩層140、開口OP的開口底部126以及開口側壁128。在一些實施例中,覆蓋層150可降低斜角142的傾斜角度或填補斜角142,使得電漿蝕刻過程中的離子散射程度降低。The capping layer 150 covers the patterned mask layer 140 having the bevel 142, the opening bottom 126 of the opening OP, and the opening sidewall 128. In some embodiments, the capping layer 150 can reduce the inclination angle of the bevel 142 or fill the bevel 142, so that the degree of ion scattering during plasma etching is reduced.

同時參照第2圖、第5圖與第6圖。接著執行半導體結構100的製造方法的步驟S4。蝕刻覆蓋層150與介電層120,使開口OP加深成為溝槽TR。在此步驟中,電漿蝕刻持續進行直到基底110自溝槽TR露出。步驟S4中的電漿蝕刻步驟與步驟S2中相同。Refer to FIG. 2, FIG. 5 and FIG. 6 at the same time. Then, step S4 of the method for manufacturing the semiconductor structure 100 is performed. The cap layer 150 and the dielectric layer 120 are etched to deepen the opening OP into a trench TR. In this step, the plasma etching is continued until the substrate 110 is exposed from the trench TR. The plasma etching step in step S4 is the same as that in step S2.

同時參照第5圖與第6圖。覆蓋在開口OP中的覆蓋層150在步驟S4中被完全蝕刻。在第4圖所示的步驟中,調整覆蓋層150的沉積量,使步驟S4中溝槽TR形成時剛好將覆蓋層150完全移除。Refer to Figures 5 and 6 at the same time. The cover layer 150 covering the opening OP is completely etched in step S4. In the step shown in Figure 4, the deposition amount of the cover layer 150 is adjusted so that the cover layer 150 is completely removed when the trench TR is formed in step S4.

在開口OP持續被蝕刻而加深的過程中,電漿蝕刻製程對於覆蓋在開口OP中的覆蓋層150與氧化物層122具有高選擇比。因此,覆蓋層150可保護開口OP的開口側壁128,尤其是介電層120的開口OP周圍的氧化物層122。在一些實施例中,由於覆蓋層150使得電漿蝕刻過程中的離子散射程度降低,開口OP的開口側壁128在水平方向上的蝕刻量減少,可避免介電層120的第一位置P1被過度地蝕刻。藉此,使溝槽TR在第一位置P1與第二位置P2分別具有第一寬度W1與第二寬度W2,且第一寬度W1與第二寬度W2的差值小於2奈米。In the process of the opening OP being continuously etched and deepened, the plasma etching process has a high selectivity ratio between the capping layer 150 covering the opening OP and the oxide layer 122. Therefore, the capping layer 150 can protect the opening sidewall 128 of the opening OP, especially the oxide layer 122 around the opening OP of the dielectric layer 120. In some embodiments, since the capping layer 150 reduces the degree of ion scattering during the plasma etching process, the etching amount of the opening sidewall 128 of the opening OP in the horizontal direction is reduced, which can prevent the first position P1 of the dielectric layer 120 from being over-etched. Thereby, the trench TR has a first width W1 and a second width W2 at the first position P1 and the second position P2 respectively, and the difference between the first width W1 and the second width W2 is less than 2 nanometers.

在一實施例中,上述方法可使溝槽TR的第一寬度W1從36.4奈米縮減為35.4奈米,並使良率從7.69%提升到51.1%。在另一實施例中,上述方法可使溝槽TR的第一寬度W1從36.4奈米縮減為36.1奈米,並使良率從7.69%提升到39.26%。In one embodiment, the method can reduce the first width W1 of the trench TR from 36.4 nm to 35.4 nm, and increase the yield from 7.69% to 51.1%. In another embodiment, the method can reduce the first width W1 of the trench TR from 36.4 nm to 36.1 nm, and increase the yield from 7.69% to 39.26%.

同時參照第1圖、第2圖與第6圖。最後執行步驟S5,形成電容結構130於溝槽TR中。在此步驟中,先移除剩餘的圖案化遮罩層140。接續地,將電容結構130的底部電極132、電容絕緣層134和頂部電極136形成於溝槽TR中以及溝槽TR上方。上述電容結構130僅為示意,其具體結構當可視需求做適當的調整。Refer to FIG. 1, FIG. 2 and FIG. 6 at the same time. Finally, step S5 is performed to form a capacitor structure 130 in the trench TR. In this step, the remaining patterned mask layer 140 is first removed. Subsequently, the bottom electrode 132, the capacitor insulating layer 134 and the top electrode 136 of the capacitor structure 130 are formed in the trench TR and above the trench TR. The above capacitor structure 130 is only for illustration, and its specific structure can be appropriately adjusted according to needs.

綜上所述,本揭露的半導體裝置可降低溝槽第一寬度與第二寬度的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體裝置可減少溝槽的溝槽側壁的弧度,使溝槽更接近垂直。本揭露的半導體裝置的製造方法藉由覆蓋層保護開口的開口側壁,尤其是介電層中的開口周圍的氧化物層,藉此降低電容漏電機率並提升良率。In summary, the semiconductor device disclosed herein can reduce the difference between the first width and the second width of the trench, thereby reducing the probability of capacitor leakage and improving the yield. In other words, the semiconductor device disclosed herein can reduce the curvature of the trench sidewall of the trench, making the trench closer to vertical. The manufacturing method of the semiconductor device disclosed herein protects the opening sidewall of the opening, especially the oxide layer around the opening in the dielectric layer, by a covering layer, thereby reducing the probability of capacitor leakage and improving the yield.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined in the attached patent application.

100:半導體結構 100:Semiconductor structure

110:基底 110: Base

112:著陸墊 112: Landing pad

120:介電層 120: Dielectric layer

120S:溝槽側壁 120S: Groove side wall

122:氧化物層 122: Oxide layer

1222:下表面 1222: Lower surface

124:氮化物層 124: Nitride layer

1242:上表面 1242: Upper surface

1244:下表面 1244: Lower surface

126:開口底部 126: Opening bottom

128:開口側壁 128: Opening side wall

130:電容結構 130: Capacitor structure

132:底部電極 132: Bottom electrode

134:電容絕緣層 134: Capacitor insulation layer

136:頂部電極 136: Top electrode

140:圖案化遮罩層 140: Patterned mask layer

142:斜角 142: Bevel

150:覆蓋層 150: Covering layer

D1:第一方向 D1: First direction

D2:第二方向 D2: Second direction

TR:溝槽 TR: Groove

W1:第一寬度 W1: First width

W2:第二寬度 W2: Second width

W3:第三寬度 W3: Third width

W4:第四寬度 W4: Fourth width

P1:第一位置 P1: First position

P2:第二位置 P2: Second position

L1:第一距離 L1: First distance

L2:第二距離 L2: Second distance

L3,L4:距離 L3, L4: distance

OP:開口 OP: Open mouth

DE1:第一深度 DE1: First Depth

DE2:第二深度 DE2: Second Depth

T:厚度 T:Thickness

S1~S5:步驟 S1~S5: Steps

第1圖為根據本揭露一實施例之半導體結構的示意圖。 第2圖為根據本揭露一實施例之半導體結構的製造方法的流程圖。 第3圖至第6圖為第2圖的製造方法的中間步驟示意圖。 FIG. 1 is a schematic diagram of a semiconductor structure according to an embodiment of the present disclosure. FIG. 2 is a flow chart of a method for manufacturing a semiconductor structure according to an embodiment of the present disclosure. FIG. 3 to FIG. 6 are schematic diagrams of intermediate steps of the manufacturing method of FIG. 2.

100:半導體結構 110:基底 112:著陸墊 120:介電層 120S:溝槽側壁 122:氧化物層 1222:下表面 124:氮化物層 1242:上表面 130:電容結構 132:底部電極 134:電容絕緣層 136:頂部電極 D1:第一方向 D2:第二方向 TR:溝槽 W1:第一寬度 W2:第二寬度 W3:第三寬度 W4:第四寬度 P1:第一位置 P2:第二位置 L1:第一距離 L2:第二距離 L3:距離 DE1:第一深度 100: semiconductor structure 110: substrate 112: landing pad 120: dielectric layer 120S: trench sidewall 122: oxide layer 1222: lower surface 124: nitride layer 1242: upper surface 130: capacitor structure 132: bottom electrode 134: capacitor insulating layer 136: top electrode D1: first direction D2: second direction TR: trench W1: first width W2: second width W3: third width W4: fourth width P1: first position P2: second position L1: first distance L2: second distance L3: distance DE1: First Depth

Claims (9)

一種半導體結構,包含:一基底;一介電層,設置於該基底上,該介電層具有一溝槽;以及一電容結構,位在該介電層的該溝槽中,該溝槽具有一第一寬度與一第二寬度,該第一寬度為該溝槽的最大寬度,該第二寬度為該溝槽在該介電層的一上表面的寬度,該第一寬度與該第二寬度的差值小於2奈米,且該溝槽靠近該基底的一端的一寬度小於該第一寬度。 A semiconductor structure comprises: a substrate; a dielectric layer disposed on the substrate, the dielectric layer having a trench; and a capacitor structure located in the trench of the dielectric layer, the trench having a first width and a second width, the first width being the maximum width of the trench, the second width being the width of the trench on an upper surface of the dielectric layer, the difference between the first width and the second width being less than 2 nanometers, and a width of the trench at an end close to the substrate being less than the first width. 如請求項1所述之半導體結構,其中該介電層包含:一氧化物層,位在該基底上方;以及一氮化物層,位在該氧化物層上方,該氧化物層與該氮化物層共同構成一溝槽側壁,該溝槽側壁圍繞該電容結構。 A semiconductor structure as described in claim 1, wherein the dielectric layer comprises: an oxide layer located above the substrate; and a nitride layer located above the oxide layer, wherein the oxide layer and the nitride layer together form a trench sidewall, and the trench sidewall surrounds the capacitor structure. 如請求項2所述之半導體結構,其中該介電層具有一第一位置,該溝槽在該第一位置具有該第一寬度,該第一位置位在該氧化物層靠近該氮化物層的一端。 A semiconductor structure as described in claim 2, wherein the dielectric layer has a first position, the trench has the first width at the first position, and the first position is located at one end of the oxide layer close to the nitride layer. 如請求項2所述之半導體結構,其中該介電層具有一第二位置,該溝槽在該第二位置具有該第二寬度, 且該第二位置位在該氮化物層遠離該氧化物層的一端。 A semiconductor structure as described in claim 2, wherein the dielectric layer has a second position, the trench has the second width at the second position, and the second position is located at an end of the nitride layer away from the oxide layer. 一種半導體結構的製造方法,包含:圖案化位在一基底上的一介電層以形成一開口;形成一覆蓋層於該介電層上以及該開口中;蝕刻該覆蓋層與該介電層,使該開口加深成為一溝槽,其中該溝槽具有一第一寬度與一第二寬度,該第一寬度為該溝槽的最大寬度,該第二寬度為該溝槽在該介電層的一頂端的寬度,該第一寬度與該第二寬度的一差值小於2奈米,且該溝槽靠近該基底的一端的一寬度小於該第一寬度;以及形成一電容結構於該溝槽中。 A method for manufacturing a semiconductor structure comprises: patterning a dielectric layer on a substrate to form an opening; forming a capping layer on the dielectric layer and in the opening; etching the capping layer and the dielectric layer to deepen the opening into a trench, wherein the trench has a first width and a second width, the first width being the maximum width of the trench, the second width being the width of the trench at a top end of the dielectric layer, a difference between the first width and the second width being less than 2 nanometers, and a width of the trench at an end close to the substrate being less than the first width; and forming a capacitor structure in the trench. 如請求項5所述之半導體結構的製造方法,其中該介電層包含一氧化物層以及位在該氧化物層上方的一氮化物層,其中圖案化位在該基底上的該介電層以形成該開口的步驟還包含:使該開口貫穿該氮化物層,且該開口的深度小於該介電層的一厚度。 A method for manufacturing a semiconductor structure as described in claim 5, wherein the dielectric layer comprises an oxide layer and a nitride layer located above the oxide layer, wherein the step of patterning the dielectric layer located on the substrate to form the opening further comprises: making the opening penetrate the nitride layer, and the depth of the opening is less than a thickness of the dielectric layer. 如請求項6所述之半導體結構的製造方法,其中形成該覆蓋層於該介電層上以及該開口中的步驟還包含:使該覆蓋層覆蓋該開口周圍的該氧化物層。 The method for manufacturing a semiconductor structure as described in claim 6, wherein the step of forming the covering layer on the dielectric layer and in the opening further includes: making the covering layer cover the oxide layer around the opening. 如請求項6所述之半導體結構的製造方法,其中圖案化位在該基底上的該介電層以形成該開口的步驟還包含:使該開口自該氮化物層的一下表面至一開口底部之間的距離在100奈米至400奈米的範圍中。 The method for manufacturing a semiconductor structure as described in claim 6, wherein the step of patterning the dielectric layer on the substrate to form the opening further includes: making the distance between the lower surface of the nitride layer and the bottom of the opening in the range of 100 nanometers to 400 nanometers. 如請求項5所述之半導體結構的製造方法,其中形成該覆蓋層於該介電層上以及該開口中的步驟由原子層沉積製程執行。 A method for manufacturing a semiconductor structure as described in claim 5, wherein the step of forming the capping layer on the dielectric layer and in the opening is performed by an atomic layer deposition process.
TW112124642A 2023-06-30 Semiconductor structure and method for manufacturing the same TWI871691B (en)

Publications (2)

Publication Number Publication Date
TW202504429A TW202504429A (en) 2025-01-16
TWI871691B true TWI871691B (en) 2025-02-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785486A (en) 2016-08-24 2018-03-09 德克萨斯仪器股份有限公司 Trench isolations capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785486A (en) 2016-08-24 2018-03-09 德克萨斯仪器股份有限公司 Trench isolations capacitor

Similar Documents

Publication Publication Date Title
US20150132935A1 (en) Semiconductor device and method for fabricating the same
US20110294276A1 (en) Method of manufacturing semiconductor device
KR100876758B1 (en) Manufacturing method of semiconductor device
WO2022088758A1 (en) Method for forming semiconductor structure, and semiconductor structure
KR102171265B1 (en) Patterning method using metal mask, and method for fabricating semiconductor device comprising the same patterning method
CN113937058B (en) Forming method of semiconductor structure and semiconductor structure
US20210020498A1 (en) Method For Manufacturing Semiconductor Device
WO2022028164A1 (en) Semiconductor structure and manufacturing method therefor
WO2022088788A1 (en) Method for forming semiconductor structure, and semiconductor structure
WO2022148067A1 (en) Semiconductor structure and manufacturing method therefor
TWI871691B (en) Semiconductor structure and method for manufacturing the same
WO2022057341A1 (en) Semiconductor structure and manufacturing method therefor
TW202504429A (en) Semiconductor structure and method for manufacturing the same
TWI855592B (en) Semiconductor structures having deep trench capacitor and method for manufacturing the same
TWI793949B (en) Semiconductor structure and method for manufacturing the same
KR100366634B1 (en) Method for manufacturing semiconductor device
TWI817903B (en) Method of manufacturing semiconductor device
US11956944B2 (en) DRAM semiconductor structure formation method and DRAM semiconductor structure
TWI730769B (en) Manufacturing method of semiconductor device
US20240381625A1 (en) Methods of manufacturing semiconductor device
WO2021204064A1 (en) Memory formation method and memory
TWI727618B (en) Memory devices and methods for forming the same
WO2023000658A1 (en) Semiconductor structure and preparation method therefor
US20220130836A1 (en) Semiconductor structure formation method and semiconductor structure
KR20040038049A (en) Method of forming contact in semiconductor device