TWI871691B - Semiconductor structure and method for manufacturing the same - Google Patents
Semiconductor structure and method for manufacturing the same Download PDFInfo
- Publication number
- TWI871691B TWI871691B TW112124642A TW112124642A TWI871691B TW I871691 B TWI871691 B TW I871691B TW 112124642 A TW112124642 A TW 112124642A TW 112124642 A TW112124642 A TW 112124642A TW I871691 B TWI871691 B TW I871691B
- Authority
- TW
- Taiwan
- Prior art keywords
- width
- trench
- layer
- dielectric layer
- opening
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000003990 capacitor Substances 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 150000004767 nitrides Chemical class 0.000 claims description 34
- 238000005530 etching Methods 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004969 ion scattering spectroscopy Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- LGPPATCNSOSOQH-UHFFFAOYSA-N 1,1,2,3,4,4-hexafluorobuta-1,3-diene Chemical compound FC(F)=C(F)C(F)=C(F)F LGPPATCNSOSOQH-UHFFFAOYSA-N 0.000 description 1
- YBMDPYAEZDJWNY-UHFFFAOYSA-N 1,2,3,3,4,4,5,5-octafluorocyclopentene Chemical compound FC1=C(F)C(F)(F)C(F)(F)C1(F)F YBMDPYAEZDJWNY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 239000004341 Octafluorocyclobutane Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- JMBPWMGVERNEJY-UHFFFAOYSA-N helium;hydrate Chemical compound [He].O JMBPWMGVERNEJY-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Abstract
Description
本揭露是有關於一種半導體結構及其製造方法,尤其是針對動態隨機存取記憶體結構。The present disclosure relates to a semiconductor structure and a method for manufacturing the same, and in particular to a dynamic random access memory structure.
隨著半導體工業發展,半導體元件的關鍵尺寸快速縮減。積體電路中的元件密度增加。電容陣列製造的誤差要求更為嚴格。在高縱橫比的柱狀電容結構中,容置電容結構的溝槽寬度只要有些許差異,就會嚴重影響電容陣列的良率產。With the development of the semiconductor industry, the critical dimensions of semiconductor components are shrinking rapidly. The density of components in integrated circuits is increasing. The error requirements for capacitor array manufacturing are becoming more stringent. In a high aspect ratio columnar capacitor structure, even a slight difference in the width of the trench that holds the capacitor structure will seriously affect the yield of the capacitor array.
有鑑於此,如何提出一種可解決上述問題的半導體結構及其製造方法,是目前業界亟欲投入研發資源解決的問題之一。In view of this, how to propose a semiconductor structure and a manufacturing method that can solve the above problems is one of the problems that the industry is eager to invest research and development resources to solve.
本揭露的一技術態樣為一種半導體結構。One technical aspect of the present disclosure is a semiconductor structure.
在一實施例中,半導體結構包含基底、介電層以及電容結構。介電層設置於基底上。介電層具有溝槽。電容結構位在介電層的溝槽中。溝槽具有第一寬度與第二寬度,第一寬度為溝槽的最大寬度,第二寬度為溝槽在介電層的上表面的寬度。第一寬度與第二寬度的差值小於2奈米。In one embodiment, the semiconductor structure includes a substrate, a dielectric layer, and a capacitor structure. The dielectric layer is disposed on the substrate. The dielectric layer has a trench. The capacitor structure is located in the trench of the dielectric layer. The trench has a first width and a second width, the first width is the maximum width of the trench, and the second width is the width of the trench on the upper surface of the dielectric layer. The difference between the first width and the second width is less than 2 nanometers.
在一實施例中,介電層包含氧化物層以及氮化物層。氧化物層位在基底上方。氮化物層位在氧化物層上方。氧化物層與氮化物層共同構成溝槽側壁,溝槽側壁圍繞電容結構。In one embodiment, the dielectric layer includes an oxide layer and a nitride layer. The oxide layer is located above the substrate. The nitride layer is located above the oxide layer. The oxide layer and the nitride layer together form a trench sidewall, and the trench sidewall surrounds the capacitor structure.
在一實施例中,介電層具有第一位置,溝槽在第一位置具有第一寬度,第一位置位在氧化物層靠近氮化物層的一端。In one embodiment, the dielectric layer has a first position, the trench has a first width at the first position, and the first position is located at one end of the oxide layer close to the nitride layer.
在一實施例中,介電層具有第二位置,溝槽在第二位置具有第二寬度,且第二位置位在氮化物層遠離氧化物層的一端。In one embodiment, the dielectric layer has a second position, the trench has a second width at the second position, and the second position is located at an end of the nitride layer far from the oxide layer.
本揭露的另一技術態樣為一種半導體結構。Another technical aspect of the present disclosure is a semiconductor structure.
在一實施例中,半導體結構的製造方法包含圖案化位在基底上的介電層以形成開口;形成覆蓋層於介電層上以及開口中;蝕刻覆蓋層與介電層,使開口加深成為溝槽;以及形成電容結構於溝槽中。In one embodiment, a method for manufacturing a semiconductor structure includes patterning a dielectric layer on a substrate to form an opening; forming a capping layer on the dielectric layer and in the opening; etching the capping layer and the dielectric layer to deepen the opening into a trench; and forming a capacitor structure in the trench.
在一實施例中,介電層包含氧化物層以及位在氧化物層上方的氮化物層,其中圖案化位在基底上的介電層以形成開口的步驟還包含使開口貫穿氮化物層,且開口的深度小於介電層的厚度。In one embodiment, the dielectric layer includes an oxide layer and a nitride layer located above the oxide layer, wherein the step of patterning the dielectric layer located on the substrate to form an opening further includes making the opening penetrate the nitride layer, and the depth of the opening is less than the thickness of the dielectric layer.
在一實施例中,形成覆蓋層於介電層上以及開口中的步驟還包含使覆蓋層覆蓋開口周圍的氧化物層。In one embodiment, the step of forming a capping layer on the dielectric layer and in the opening further includes forming the capping layer to cover the oxide layer around the opening.
在一實施例中,圖案化位在基底上的介電層以形成開口的步驟還包使開口自氮化物層的下表面至開口底部之間的距離在100奈米至400奈米的範圍中。In one embodiment, patterning the dielectric layer on the substrate to form the opening further includes making the distance from the lower surface of the nitride layer to the bottom of the opening range from 100 nm to 400 nm.
在一實施例中,形成覆蓋層於介電層上以及開口中的步驟由原子層沉積製程執行。In one embodiment, the step of forming the capping layer on the dielectric layer and in the opening is performed by an atomic layer deposition process.
在一實施例中,蝕刻覆蓋層與介電層,使開口加深成為溝槽的步驟還包含使溝槽具有第一寬度與第二寬度,第一寬度為溝槽的最大寬度,第二寬度為溝槽在介電層的上表面的寬度,且第一寬度與第二寬度的差值小於2奈米。In one embodiment, the step of etching the capping layer and the dielectric layer to deepen the opening into a trench further includes providing the trench with a first width and a second width, wherein the first width is the maximum width of the trench, the second width is the width of the trench on the upper surface of the dielectric layer, and the difference between the first width and the second width is less than 2 nanometers.
在上述實施例中,本揭露的半導體裝置可降低溝槽第一寬度與第二寬度的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體裝置可減少溝槽的溝槽側壁的弧度,使溝槽更接近垂直。本揭露的半導體裝置的製造方法藉由覆蓋層保護開口的開口側壁,尤其是介電層中的開口周圍的氧化物層,藉此降低電容漏電機率並提升良率。In the above-mentioned embodiments, the semiconductor device disclosed herein can reduce the difference between the first width and the second width of the trench, thereby reducing the probability of capacitor leakage and improving the yield. In other words, the semiconductor device disclosed herein can reduce the curvature of the trench sidewall of the trench, making the trench closer to vertical. The manufacturing method of the semiconductor device disclosed herein protects the opening sidewall of the opening, especially the oxide layer around the opening in the dielectric layer, by a covering layer, thereby reducing the probability of capacitor leakage and improving the yield.
以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。且為了清楚起見,圖式中之層和區域的厚度可能被誇大,並且在圖式的描述中相同的元件符號表示相同的元件。The following will disclose multiple embodiments of the present invention with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner. And for the sake of clarity, the thickness of the layers and regions in the drawings may be exaggerated, and the same element symbols represent the same elements in the description of the drawings.
第1圖為根據本揭露一實施例之半導體結構100的示意圖。第1圖為剖面視角。半導體結構100包含基底110、介電層120以及電容結構130。半導體結構100為動態隨機存取記憶體(dynamic random access memory,DRAM)結構。FIG. 1 is a schematic diagram of a
介電層120沿著第一方向D1設置於基底110上。第一方向D1為垂直方向。介電層120具有溝槽TR。溝槽TR貫穿介電層120,並使著陸墊112自溝槽TR露出。The
電容結構130位在介電層120的溝槽TR中。電容結構130延伸於第一方向D1上。The capacitor structure 130 is located in the trench TR of the
舉例來說,基底110包含矽(silicon)、經摻雜的矽(doped silicon)、矽鍺(silicon germanium)、絕緣層上覆矽(silicon on insulator)、藍寶石上矽(silicon on sapphire)、絕緣層上覆矽鍺(silicon germanium on insulator)、碳化矽(silicon carbide)、鍺(germanium)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷砷化鎵(gallium arsenide phosphide)、磷化銦(indium phosphide)或磷化銦鎵(indium gallium phosphide)所形成。For example, the
基底110中還包含主動區域、隔離區域以及位在主動區域中的字元線與位元線等結構。基底110中還包含電性連接字元線與位元線的接觸件。為了便於說明,上述結構特徵於圖中省略,僅示例性地繪示與電容結構130電性連接的著陸墊112(或者插塞)。The
介電層120包含氧化物層122以及氮化物層124。氧化物層122位在基底110與氮化物層124之間。氮化物層124位在氧化物層122上方。氧化物層122的材料為氧化矽(silicon oxide),氮化物層124的材料為氮化矽(silicon nitride)。The
溝槽TR貫穿氧化物層122與氮化物層124。氧化物層122與氮化物層124共同構成溝槽側壁120S。溝槽側壁120S圍繞位在溝槽TR中的電容結構130。溝槽側壁120S為介電層120與位在溝槽TR中的電容結構130的交界面。The trench TR penetrates the
溝槽TR具有沿著第二方向D2的第一寬度W1與第二寬度W2。第二方向D2垂直於第一方向D1。第二方向D2為水平方向。第一寬度W1為溝槽TR的最大寬度。第二寬度W2為溝槽TR在介電層120的上表面1242的寬度。第一寬度W1與第二寬度W2的差值小於2奈米。The trench TR has a first width W1 and a second width W2 along a second direction D2. The second direction D2 is perpendicular to the first direction D1. The second direction D2 is a horizontal direction. The first width W1 is the maximum width of the trench TR. The second width W2 is the width of the trench TR at the
介電層120具有第一位置P1與第二位置P2。溝槽TR的最大寬度(第一寬度W1)位在介電層120的第一位置P1,溝槽TR的第二寬度W2位在介電層120的第二位置P2。第一位置P1位在氧化物層122靠近氮化物層124的一端。第二位置P2是氮化物層124的上表面1242(相當於介電層120的上表面1242)的位置,也可說第二位置P2位在氮化物層124遠離氧化物層122的一端。The
一般而言,由於材料性質差異蝕刻製程選擇比,介電層120的氧化物層122在第一位置P1被蝕刻的程度較大。容置電容結構130的溝槽TR在第一位置P1較容易被過度蝕刻,導致溝槽TR呈現明顯的弓形輪廓(bow profile)或瓶型輪廓。如此一來,將導致相鄰電容間的電性絕緣能力下降而產生漏電。因此,本揭露的半導體結構100可降低溝槽TR第一寬度W1與第二寬度W2的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體結構100可減少溝槽TR的溝槽側壁120S的弧度,使溝槽TR更接近垂直。Generally speaking, due to the difference in material properties and the etching process selection ratio, the
位在溝槽TR中的電容結構130也具有沿著第二方向D2的第三寬度W3與第四寬度W4。第三寬度W3為電容結構130的最大寬度。第三寬度W3大致上等於溝槽TR的第一寬度W1,第四寬度W4大致上等於溝槽TR的第二寬度W2。第三寬度W3與第四寬度W4的差值小於2奈米。The capacitor structure 130 in the trench TR also has a third width W3 and a fourth width W4 along the second direction D2. The third width W3 is the maximum width of the capacitor structure 130. The third width W3 is substantially equal to the first width W1 of the trench TR, and the fourth width W4 is substantially equal to the second width W2 of the trench TR. The difference between the third width W3 and the fourth width W4 is less than 2 nanometers.
具體而言,電容結構130與溝槽TR的實際結構極為狹長,且溝槽TR的最大寬度(第一寬度W1)在整個電容結構130與溝槽TR靠近頂端的位置。舉例來說,溝槽TR自氮化物層124的上表面1242至氧化物層122與基底110之間的下表面1222的第一深度DE1大約為1000奈米。第一位置P1與第二位置P2之間的距離L3大約在15奈米至30奈米的範圍中。為了方便說明,本揭露的圖示中放大了電容結構130的上半部的比例,以便於凸顯本案介電層120與電容結構130的技術特徵。介電層120構成容置電容結構130的容器,氮化物層124具有較高的強度可支撐狹長的電容結構130與溝槽TR。Specifically, the actual structure of the capacitor structure 130 and the trench TR is extremely narrow, and the maximum width (first width W1) of the trench TR is near the top of the entire capacitor structure 130 and the trench TR. For example, the first depth DE1 of the trench TR from the
電容結構130包含底部電極132、電容絕緣層134和頂部電極136。在本實施例中,底部電極132包括氮化鈦(TiN)。在其他實施例中,底部電極132包括氮化鈦矽(TiSiN)。在本實施例中,電容絕緣層134是高介電(high-k)層,包括氧化鋯(ZrO2)、氧化鉿(HfO2)、氧化鈦(TiO2)或上述之組合。在一些實施例中,頂部電極136包括氮化鈦。在其他實施例中,頂部電極136包括氮化鈦矽(TiSiN)。上述電容結構130的各層結構及材料並非用以限制本揭露。The capacitor structure 130 includes a
在第1圖的剖面視角中,位在電容結構130兩側的溝槽側壁120S之間在第一位置P1具有沿著第二方向D2的第一距離L1,第一距離L1等於第一寬度W1。位在電容結構130兩側的溝槽側壁120S之間在第二位置P2具有沿著第二方向D2的第二距離L2。第二距離L2等於第二寬度W2。In the cross-sectional view of FIG. 1 , the
應瞭解到,已敘述過的元件連接關係、材料與功效將不再重複贅述,合先敘明。在以下敘述中,將說明半導體結構100的製造方法。It should be understood that the previously described element connection relationship, materials and functions will not be repeated, and are described first. In the following description, the manufacturing method of the
第2圖為根據本揭露一實施例之半導體結構100的製造方法的流程圖。第3圖至第6圖為第2圖的製造方法的中間步驟示意圖。FIG. 2 is a flow chart of a method for manufacturing a
同時參照第2圖與第3圖。半導體結構100的製造方法開始於步驟S1。形成圖案化遮罩層140於介電層120上方,以定義出溝槽TR(見第1圖)的位置。Refer to FIG. 2 and FIG. 3 at the same time. The manufacturing method of the
同時參照第2圖與第4圖。接著執行半導體結構100的製造方法的步驟S2。圖案化位在基底110上的介電層120以形成開口OP。介電層120通過蝕刻製程將圖案化遮罩層140的圖案形成於介電層120中,以形成開口OP於介電層120中。Refer to FIG. 2 and FIG. 4 at the same time. Then, the step S2 of the manufacturing method of the
開口OP貫穿氮化物層124。開口OP的開口底部126與介電層120的上表面1242(等於氮化物層124的上表面1242)之間具有第二深度DE2。開口OP的第二深度DE2小於介電層120的厚度T。換句話說,步驟S2是部分蝕刻介電層120。介電層120的厚度T相當於第一深度DE1。開口OP的第二深度DE2略大於第一位置P1與氮化物層124的上表面1242之間的距離L3。開口OP自氮化物層124的下表面1244至開口底部126之間的距離L4在100奈米至400奈米的範圍中。The opening OP penetrates the
在步驟S2中,蝕刻步驟由電漿蝕刻製程執行。電漿氣體為含氟蝕刻氣體,例如四氟化碳(CF
4)、六氟乙烷(C
2F
6)、八氟环丁烷(C
4F
8), 八氟环戊烯(C
5F
8)或六氟-1,3-丁二烯(C
4F
6),但不限於此。電漿蝕刻製程對氧化物層122與氮化物層124具有高選擇比,有利於蝕刻氧化物層122。
In step S2, the etching step is performed by a plasma etching process. The plasma gas is a fluorine-containing etching gas, such as carbon tetrafluoride ( CF4 ), hexafluoroethane ( C2F6 ), octafluorocyclobutane ( C4F8 ), octafluorocyclopentene ( C5F8 ) or hexafluoro-1,3-butadiene ( C4F6 ), but not limited thereto. The plasma etching process has a high selectivity for the
電漿蝕刻製程使圖案化遮罩層140產生斜角142。斜角142造成電漿蝕刻過程中的離子散射,使得開口側壁128在第二方向D2水平方向上的蝕刻程度增加。若是持續進行電漿蝕刻製程直到開口OP貫穿介電層120,在開口OP中散射的離子將導致介電層120在第一位置P1被過度地蝕刻。因此,當開口OP的第二深度DE2略大於第一位置P1與氮化物層124的上表面1242之間的距離時停止電漿蝕刻步驟。The plasma etching process causes the patterned
同時參照第2圖與第5圖。接著執行半導體結構100的製造方法的步驟S3。形成覆蓋層150於介電層120上以及開口OP中。形成覆蓋層150的步驟由原子層沉積(Atomic Layer Deposition,ALD)製程執行。覆蓋層150的材料為氮化矽。Refer to FIG. 2 and FIG. 5 at the same time. Then, the step S3 of the manufacturing method of the
覆蓋層150覆蓋具有斜角142的圖案化遮罩層140、開口OP的開口底部126以及開口側壁128。在一些實施例中,覆蓋層150可降低斜角142的傾斜角度或填補斜角142,使得電漿蝕刻過程中的離子散射程度降低。The
同時參照第2圖、第5圖與第6圖。接著執行半導體結構100的製造方法的步驟S4。蝕刻覆蓋層150與介電層120,使開口OP加深成為溝槽TR。在此步驟中,電漿蝕刻持續進行直到基底110自溝槽TR露出。步驟S4中的電漿蝕刻步驟與步驟S2中相同。Refer to FIG. 2, FIG. 5 and FIG. 6 at the same time. Then, step S4 of the method for manufacturing the
同時參照第5圖與第6圖。覆蓋在開口OP中的覆蓋層150在步驟S4中被完全蝕刻。在第4圖所示的步驟中,調整覆蓋層150的沉積量,使步驟S4中溝槽TR形成時剛好將覆蓋層150完全移除。Refer to Figures 5 and 6 at the same time. The
在開口OP持續被蝕刻而加深的過程中,電漿蝕刻製程對於覆蓋在開口OP中的覆蓋層150與氧化物層122具有高選擇比。因此,覆蓋層150可保護開口OP的開口側壁128,尤其是介電層120的開口OP周圍的氧化物層122。在一些實施例中,由於覆蓋層150使得電漿蝕刻過程中的離子散射程度降低,開口OP的開口側壁128在水平方向上的蝕刻量減少,可避免介電層120的第一位置P1被過度地蝕刻。藉此,使溝槽TR在第一位置P1與第二位置P2分別具有第一寬度W1與第二寬度W2,且第一寬度W1與第二寬度W2的差值小於2奈米。In the process of the opening OP being continuously etched and deepened, the plasma etching process has a high selectivity ratio between the
在一實施例中,上述方法可使溝槽TR的第一寬度W1從36.4奈米縮減為35.4奈米,並使良率從7.69%提升到51.1%。在另一實施例中,上述方法可使溝槽TR的第一寬度W1從36.4奈米縮減為36.1奈米,並使良率從7.69%提升到39.26%。In one embodiment, the method can reduce the first width W1 of the trench TR from 36.4 nm to 35.4 nm, and increase the yield from 7.69% to 51.1%. In another embodiment, the method can reduce the first width W1 of the trench TR from 36.4 nm to 36.1 nm, and increase the yield from 7.69% to 39.26%.
同時參照第1圖、第2圖與第6圖。最後執行步驟S5,形成電容結構130於溝槽TR中。在此步驟中,先移除剩餘的圖案化遮罩層140。接續地,將電容結構130的底部電極132、電容絕緣層134和頂部電極136形成於溝槽TR中以及溝槽TR上方。上述電容結構130僅為示意,其具體結構當可視需求做適當的調整。Refer to FIG. 1, FIG. 2 and FIG. 6 at the same time. Finally, step S5 is performed to form a capacitor structure 130 in the trench TR. In this step, the remaining patterned
綜上所述,本揭露的半導體裝置可降低溝槽第一寬度與第二寬度的差異,藉此降低電容漏電機率並提升良率。換句話說,本揭露的半導體裝置可減少溝槽的溝槽側壁的弧度,使溝槽更接近垂直。本揭露的半導體裝置的製造方法藉由覆蓋層保護開口的開口側壁,尤其是介電層中的開口周圍的氧化物層,藉此降低電容漏電機率並提升良率。In summary, the semiconductor device disclosed herein can reduce the difference between the first width and the second width of the trench, thereby reducing the probability of capacitor leakage and improving the yield. In other words, the semiconductor device disclosed herein can reduce the curvature of the trench sidewall of the trench, making the trench closer to vertical. The manufacturing method of the semiconductor device disclosed herein protects the opening sidewall of the opening, especially the oxide layer around the opening in the dielectric layer, by a covering layer, thereby reducing the probability of capacitor leakage and improving the yield.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined in the attached patent application.
100:半導體結構 100:Semiconductor structure
110:基底 110: Base
112:著陸墊 112: Landing pad
120:介電層 120: Dielectric layer
120S:溝槽側壁 120S: Groove side wall
122:氧化物層 122: Oxide layer
1222:下表面 1222: Lower surface
124:氮化物層 124: Nitride layer
1242:上表面 1242: Upper surface
1244:下表面 1244: Lower surface
126:開口底部 126: Opening bottom
128:開口側壁 128: Opening side wall
130:電容結構 130: Capacitor structure
132:底部電極 132: Bottom electrode
134:電容絕緣層 134: Capacitor insulation layer
136:頂部電極 136: Top electrode
140:圖案化遮罩層 140: Patterned mask layer
142:斜角 142: Bevel
150:覆蓋層 150: Covering layer
D1:第一方向 D1: First direction
D2:第二方向 D2: Second direction
TR:溝槽 TR: Groove
W1:第一寬度 W1: First width
W2:第二寬度 W2: Second width
W3:第三寬度 W3: Third width
W4:第四寬度 W4: Fourth width
P1:第一位置 P1: First position
P2:第二位置 P2: Second position
L1:第一距離 L1: First distance
L2:第二距離 L2: Second distance
L3,L4:距離 L3, L4: distance
OP:開口 OP: Open mouth
DE1:第一深度 DE1: First Depth
DE2:第二深度 DE2: Second Depth
T:厚度 T:Thickness
S1~S5:步驟 S1~S5: Steps
第1圖為根據本揭露一實施例之半導體結構的示意圖。 第2圖為根據本揭露一實施例之半導體結構的製造方法的流程圖。 第3圖至第6圖為第2圖的製造方法的中間步驟示意圖。 FIG. 1 is a schematic diagram of a semiconductor structure according to an embodiment of the present disclosure. FIG. 2 is a flow chart of a method for manufacturing a semiconductor structure according to an embodiment of the present disclosure. FIG. 3 to FIG. 6 are schematic diagrams of intermediate steps of the manufacturing method of FIG. 2.
100:半導體結構
110:基底
112:著陸墊
120:介電層
120S:溝槽側壁
122:氧化物層
1222:下表面
124:氮化物層
1242:上表面
130:電容結構
132:底部電極
134:電容絕緣層
136:頂部電極
D1:第一方向
D2:第二方向
TR:溝槽
W1:第一寬度
W2:第二寬度
W3:第三寬度
W4:第四寬度
P1:第一位置
P2:第二位置
L1:第一距離
L2:第二距離
L3:距離
DE1:第一深度
100: semiconductor structure
110: substrate
112: landing pad
120:
Claims (9)
Publications (2)
Publication Number | Publication Date |
---|---|
TW202504429A TW202504429A (en) | 2025-01-16 |
TWI871691B true TWI871691B (en) | 2025-02-01 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785486A (en) | 2016-08-24 | 2018-03-09 | 德克萨斯仪器股份有限公司 | Trench isolations capacitor |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785486A (en) | 2016-08-24 | 2018-03-09 | 德克萨斯仪器股份有限公司 | Trench isolations capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150132935A1 (en) | Semiconductor device and method for fabricating the same | |
US20110294276A1 (en) | Method of manufacturing semiconductor device | |
KR100876758B1 (en) | Manufacturing method of semiconductor device | |
WO2022088758A1 (en) | Method for forming semiconductor structure, and semiconductor structure | |
KR102171265B1 (en) | Patterning method using metal mask, and method for fabricating semiconductor device comprising the same patterning method | |
CN113937058B (en) | Forming method of semiconductor structure and semiconductor structure | |
US20210020498A1 (en) | Method For Manufacturing Semiconductor Device | |
WO2022028164A1 (en) | Semiconductor structure and manufacturing method therefor | |
WO2022088788A1 (en) | Method for forming semiconductor structure, and semiconductor structure | |
WO2022148067A1 (en) | Semiconductor structure and manufacturing method therefor | |
TWI871691B (en) | Semiconductor structure and method for manufacturing the same | |
WO2022057341A1 (en) | Semiconductor structure and manufacturing method therefor | |
TW202504429A (en) | Semiconductor structure and method for manufacturing the same | |
TWI855592B (en) | Semiconductor structures having deep trench capacitor and method for manufacturing the same | |
TWI793949B (en) | Semiconductor structure and method for manufacturing the same | |
KR100366634B1 (en) | Method for manufacturing semiconductor device | |
TWI817903B (en) | Method of manufacturing semiconductor device | |
US11956944B2 (en) | DRAM semiconductor structure formation method and DRAM semiconductor structure | |
TWI730769B (en) | Manufacturing method of semiconductor device | |
US20240381625A1 (en) | Methods of manufacturing semiconductor device | |
WO2021204064A1 (en) | Memory formation method and memory | |
TWI727618B (en) | Memory devices and methods for forming the same | |
WO2023000658A1 (en) | Semiconductor structure and preparation method therefor | |
US20220130836A1 (en) | Semiconductor structure formation method and semiconductor structure | |
KR20040038049A (en) | Method of forming contact in semiconductor device |