[go: up one dir, main page]

TWI871293B - Light-emitting element, light-emitting device, display device, electronic device and lighting device - Google Patents

Light-emitting element, light-emitting device, display device, electronic device and lighting device Download PDF

Info

Publication number
TWI871293B
TWI871293B TW108139434A TW108139434A TWI871293B TW I871293 B TWI871293 B TW I871293B TW 108139434 A TW108139434 A TW 108139434A TW 108139434 A TW108139434 A TW 108139434A TW I871293 B TWI871293 B TW I871293B
Authority
TW
Taiwan
Prior art keywords
light
compound
emitting
emitting element
skeleton
Prior art date
Application number
TW108139434A
Other languages
Chinese (zh)
Other versions
TW202030303A (en
Inventor
大澤信晴
瀬尾哲史
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202030303A publication Critical patent/TW202030303A/en
Application granted granted Critical
Publication of TWI871293B publication Critical patent/TWI871293B/en

Links

Images

Abstract

提供一種發光效率及可靠性高的發光元件。本發明的一個實施方式是在發光層包含主體材料及客體材料的發光元件。主體材料具有將三重激發能轉換為發光的功能,客體材料發射螢光。客體材料的分子結構為具有發光體及保護基的結構,在客體材料分子中具有五個以上的保護基。藉由將保護基引入分子中,抑制基於德克斯特機制三重激發能從主體材料轉移到客體材料。作為保護基,使用烷基、支鏈烷基。藉由作為主體材料使用具有五員環骨架的材料,可以獲得發光效率進一步提高的發光元件。A light-emitting element with high light-emitting efficiency and reliability is provided. One embodiment of the present invention is a light-emitting element including a host material and a guest material in a light-emitting layer. The host material has a function of converting triplet excitation energy into light-emitting, and the guest material emits fluorescence. The molecular structure of the guest material is a structure having a luminophore and a protecting group, and the guest material molecule has five or more protecting groups. By introducing the protecting group into the molecule, the transfer of triplet excitation energy from the host material to the guest material based on the Dexter mechanism is suppressed. As the protecting group, an alkyl group or a branched alkyl group is used. By using a material having a five-membered ring skeleton as the host material, a light-emitting element with further improved light-emitting efficiency can be obtained.

Description

發光元件、發光機器、顯示裝置、電子機器及照明裝置Light-emitting element, light-emitting device, display device, electronic device and lighting device

本發明的一個實施方式係關於一種發光元件或包括該發光元件的顯示裝置、電子機器及照明裝置。An embodiment of the present invention relates to a light-emitting element or a display device, an electronic machine and a lighting device including the light-emitting element.

注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。由此,更明確而言,作為本說明書所公開的本發明的一個實施方式的技術領域的例子可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光元件、照明裝置、蓄電裝置、記憶體裝置、這些裝置的驅動方法或者這些裝置的製造方法。Note that an embodiment of the present invention is not limited to the above-mentioned technical fields. The technical field of an embodiment of the invention disclosed in this specification and the like is related to an object, a method or a manufacturing method. In addition, an embodiment of the present invention is related to a process, a machine, a product or a composition of matter. Therefore, to be more specific, examples of the technical field of an embodiment of the present invention disclosed in this specification include semiconductor devices, display devices, liquid crystal display devices, light-emitting elements, lighting devices, power storage devices, memory devices, driving methods of these devices or manufacturing methods of these devices.

近年來,對利用電致發光(Electroluminescence:EL)的發光元件的研究開發日益火熱。這些發光元件的基本結構是在一對電極之間夾有包含發光物質的層(EL層)的結構。藉由將電壓施加到該元件的電極間,可以獲得來自發光物質的發光。In recent years, research and development of light-emitting devices using electroluminescence (EL) have become increasingly intense. The basic structure of these light-emitting devices is a structure in which a layer containing a light-emitting substance (EL layer) is sandwiched between a pair of electrodes. By applying a voltage between the electrodes of the device, light from the light-emitting substance can be obtained.

尤其是,因為上述發光元件是自發光型發光元件,所以使用該發光元件的顯示裝置具有如下優點:具有良好的可見度;不需要背光;以及功耗低等。另外,還具有如下優點:能夠被製造得薄且輕;以及回應速度快等。In particular, since the light-emitting element is a self-luminous light-emitting element, a display device using the light-emitting element has the following advantages: good visibility, no need for backlight, low power consumption, etc. In addition, it also has the following advantages: it can be made thin and light, and has a fast response speed, etc.

當使用將有機化合物用作發光性物質並在一對電極間設置包含該發光性物質的EL層的發光元件(例如,有機EL元件)時,藉由將電壓施加到一對電極間,電子和電洞分別從陰極和陽極注入到發光性EL層,而使電流流過。而且,被注入了的電子與電洞再結合而使發光有機化合物成為激發態,由此可以從被激發的發光有機化合物得到發光。When a light-emitting element (e.g., an organic EL element) is used in which an organic compound is used as a light-emitting substance and an EL layer containing the light-emitting substance is provided between a pair of electrodes, by applying a voltage between the pair of electrodes, electrons and holes are injected from the cathode and the anode into the light-emitting EL layer, respectively, so that a current flows. Then, the injected electrons and holes are recombined to make the light-emitting organic compound into an excited state, so that light can be obtained from the excited light-emitting organic compound.

作為有機化合物所形成的激發態的種類,有單重激發態(S )及三重激發態(T ),來自單重激發態的發光被稱為螢光,來自三重激發態的發光被稱為磷光。另外,在發光元件中,單重激發態和三重激發態的統計學上的生成比例被認為是S :T =1:3。因此,與使用發射螢光的化合物(螢光材料)的發光元件相比,使用發射磷光的化合物(磷光材料)的發光元件的發光效率更高。因此,近年來,對使用能夠將三重激發能轉換為發光的磷光材料的發光元件的研究開發日益火熱。There are two types of excited states formed by organic compounds: singlet excited state (S * ) and triplet excited state (T * ). The emission from the singlet excited state is called fluorescence, and the emission from the triplet excited state is called phosphorescence. In addition, in a light-emitting element, the statistical generation ratio of the singlet excited state and the triplet excited state is considered to be S * :T * = 1:3. Therefore, the light-emitting efficiency of a light-emitting element using a phosphorescent compound (phosphorescent material) is higher than that of a light-emitting element using a fluorescent compound (fluorescent material). Therefore, in recent years, research and development of light-emitting elements using phosphorescent materials that can convert triplet excited energy into light emission has become increasingly hot.

在使用磷光材料的發光元件中,尤其是發射藍色光的發光元件因為難以開發具有高三重激發能階的穩定的化合物,所以尚未投入實際使用。因此,對使用更穩定的螢光材料的發光元件進行開發,尋找提高使用螢光材料的發光元件(螢光發光元件)的發光效率的方法。Among light-emitting elements using phosphorescent materials, especially light-emitting elements emitting blue light, it is difficult to develop stable compounds with high triplet excitation energy levels, so they have not yet been put into practical use. Therefore, light-emitting elements using more stable fluorescent materials are being developed, and methods for improving the light-emitting efficiency of light-emitting elements using fluorescent materials (fluorescent light-emitting elements) are being sought.

作為能夠將三重激發能的一部分或全部轉換為發光的材料,除了磷光材料以外,已知有熱活化延遲螢光(Thermally Activated Delayed Fluorescence:TADF)材料。在熱活化延遲螢光材料中,藉由逆向系統間跨越從三重激發態產生單重激發態,並且單重激發態被轉換為發光。As a material capable of converting part or all of triplet excitation energy into luminescence, in addition to phosphorescent materials, thermally activated delayed fluorescence (TADF) materials are known. In TADF materials, a singlet excited state is generated from a triplet excited state by reverse intersystem crossing, and the singlet excited state is converted into luminescence.

為了在使用熱活化延遲螢光材料的發光元件中提高發光效率,不但在熱活化延遲螢光材料中由三重激發態高效地生成單重激發態,而且從單重激發態高效地獲得發光,亦即螢光量子產率高是重要的。但是,難以設計同時滿足上述兩個條件的發光材料。In order to improve the luminescence efficiency in a light-emitting element using a thermally activated delayed fluorescence material, it is important not only to efficiently generate a singlet excited state from a triplet excited state in the thermally activated delayed fluorescence material, but also to efficiently obtain luminescence from the singlet excited state, that is, to have a high fluorescence quantum yield. However, it is difficult to design a light-emitting material that satisfies both of the above conditions.

此外,已提出了如下方法:在包含熱活化延遲螢光材料和螢光材料的發光元件中,將熱活化延遲螢光材料的單重激發能轉移到螢光材料,並從螢光材料獲得發光(參照專利文獻1)。亦即,已提出了將熱活化延遲螢光材料作為主體材料且將螢光材料作為客體材料使用的發光元件。In addition, a method has been proposed in which, in a light-emitting element including a heat-activated delayed fluorescent material and a fluorescent material, the singlet excitation energy of the heat-activated delayed fluorescent material is transferred to the fluorescent material, and luminescence is obtained from the fluorescent material (see Patent Document 1). That is, a light-emitting element using the heat-activated delayed fluorescent material as a host material and the fluorescent material as a guest material has been proposed.

[專利文獻1] 日本專利申請公開第2014-45179號公報[Patent Document 1] Japanese Patent Application Publication No. 2014-45179

作為實現螢光發光元件的高效率化的方法,例如可以舉出如下方法:在包含主體材料及客體材料的發光層中,將主體材料所包含的三重激發能轉換為單重激發能,然後使單重激發能轉移到作為客體材料的螢光材料。但是,該將主體材料的三重激發能轉換為單重激發能的過程與三重激發能失活的過程競爭。因此,有時主體材料的從三重激發能到單重激發能的轉換不充分。例如,作為三重激發能失活的路徑,考慮到如下失活路徑:在發光元件的發光層中將螢光材料用作客體材料時,主體材料的三重激發能轉移到螢光材料的最低三重激發能階(T1 能階)。經過該失活路徑的能量轉移無助於發光,因此導致螢光發光元件的發光效率的降低。雖然藉由減少客體材料的濃度可以抑制該失活路徑,但是,此時從主體材料到客體材料的單重激發態的能量轉移速度也變慢。因此,起因於劣化物或雜質的淬滅易於發生。因此,發光元件的亮度容易降低,這導致可靠性的降低。As a method for achieving high efficiency of a fluorescent light-emitting element, for example, the following method can be cited: in a light-emitting layer including a host material and a guest material, the triplet excitation energy contained in the host material is converted into singlet excitation energy, and then the singlet excitation energy is transferred to the fluorescent material as the guest material. However, the process of converting the triplet excitation energy of the host material into the singlet excitation energy competes with the process of deactivating the triplet excitation energy. Therefore, sometimes the conversion of the triplet excitation energy of the host material to the singlet excitation energy is insufficient. For example, as a path for deactivating the triplet excitation energy, the following deactivation path is considered: when a fluorescent material is used as a guest material in the light-emitting layer of a light-emitting element, the triplet excitation energy of the host material is transferred to the lowest triplet excitation energy level ( T1 level) of the fluorescent material. Energy transfer through this deactivation path does not contribute to luminescence, thus resulting in a decrease in the luminescence efficiency of the fluorescent light-emitting element. Although this deactivation path can be suppressed by reducing the concentration of the guest material, the energy transfer rate from the host material to the singlet excited state of the guest material also slows down. Therefore, quenching due to deterioration or impurities is likely to occur. As a result, the brightness of the light-emitting element is easily reduced, which leads to a decrease in reliability.

於是,本發明的一個實施方式的目的是,在發光元件所包括的發光層的主體材料和客體材料中,抑制主體材料的三重激發能轉移到客體材料的T1 能階,將主體材料的三重激發能高效地轉換為客體材料的單重激發能,提高發光元件的螢光發光效率,並提高可靠性。Therefore, an embodiment of the present invention aims to suppress the transfer of the triplet excitation energy of the host material to the T1 energy level of the guest material in the host material and the guest material of the light-emitting layer included in the light-emitting element, efficiently convert the triplet excitation energy of the host material into the singlet excitation energy of the guest material, improve the fluorescent luminescence efficiency of the light-emitting element, and improve the reliability.

本發明的一個實施方式的目的是提供一種發光效率高的發光元件。另外,本發明的一個實施方式的目的是提供一種可靠性高的發光元件。另外,本發明的一個實施方式的目的是提供一種功耗得到降低的發光元件。另外,本發明的一個實施方式的目的是提供一種新穎的發光元件。另外,本發明的一個實施方式的目的是提供一種新穎的發光機器。此外,本發明的一個實施方式的目的是提供一種新穎的顯示裝置。An object of one embodiment of the present invention is to provide a light-emitting element with high light-emitting efficiency. In addition, an object of one embodiment of the present invention is to provide a light-emitting element with high reliability. In addition, an object of one embodiment of the present invention is to provide a light-emitting element with reduced power consumption. In addition, an object of one embodiment of the present invention is to provide a novel light-emitting element. In addition, an object of one embodiment of the present invention is to provide a novel light-emitting machine. In addition, an object of one embodiment of the present invention is to provide a novel display device.

另外,上述目的的記載不妨礙其他目的的存在。注意,本發明的一個實施方式並不需要實現所有上述目的。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出上述目的以外的目的,可以從說明書、圖式、申請專利範圍等的記載中衍生上述目的以外的目的。In addition, the description of the above-mentioned purpose does not hinder the existence of other purposes. Note that one embodiment of the present invention does not need to achieve all of the above-mentioned purposes. In addition, purposes other than the above-mentioned purposes can be clearly seen from the description of the specification, drawings, patent application scope, etc., and purposes other than the above-mentioned purposes can be derived from the description of the specification, drawings, patent application scope, etc.

本發明的一個實施方式提供一種發光元件,該發光元件主要能夠抑制主體材料(能量施體)與客體材料(能量受體)之間的能量轉移中的基於德克斯特機制的能量轉移,以便抑制在發光元件所包括的發光層中,主體材料的三重激發能轉移到客體材料的T1 能階。One embodiment of the present invention provides a light-emitting element, which is mainly capable of suppressing energy transfer based on the Dexter mechanism in energy transfer between a host material (energy donor) and a guest material (energy acceptor), so as to suppress the transfer of triplet excitation energy of the host material to the T1 energy level of the guest material in the light-emitting layer included in the light-emitting element.

為了抑制基於德克斯特機制的能量轉移,較佳為以不發生該能量轉移的方式使發光層中的能量施體與能量受體分離。由此,本發明的一個實施方式提供一種發光元件,該發光元件使用包括具有龐大結構的能量施體及保護基的能量受體,以便以不發生該能量轉移的方式使能量施體所包含的發光體與能量受體所包含的發光體分離。另外,在本發明的一個實施方式中,能量施體所具有的三重能階(T1能階)較佳為高於能量受體所具有的單重能階(S1能階)。In order to suppress the energy transfer based on the Dexter mechanism, it is preferable to separate the energy donor and the energy acceptor in the light-emitting layer in such a way that the energy transfer does not occur. Therefore, one embodiment of the present invention provides a light-emitting element, which uses an energy donor having a bulky structure and an energy acceptor with a protective group so that the light-emitting body contained in the energy donor and the light-emitting body contained in the energy acceptor are separated in such a way that the energy transfer does not occur. In addition, in one embodiment of the present invention, the triple energy level (T1 energy level) possessed by the energy donor is preferably higher than the single energy level (S1 energy level) possessed by the energy acceptor.

另外,在本發明的一個實施方式中,作為具有龐大結構的能量施體使用在五員環骨架具有取代基的材料。另外,作為能量受體使用螢光材料,由於具有保護基,該螢光材料具有龐大結構。作為能量施體所具有的五員環骨架,尤其較佳為使用咪唑骨架或三唑骨架。In one embodiment of the present invention, a material having a substituent in a five-membered ring skeleton is used as an energy donor having a bulky structure. In addition, a fluorescent material is used as an energy acceptor, and the fluorescent material has a bulky structure due to having a protective group. As the five-membered ring skeleton of the energy donor, an imidazole skeleton or a triazole skeleton is particularly preferably used.

由此,本發明的一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及五個以上的保護基,發光體是稠合芳香環或稠合雜芳環,五個以上的保護基分別獨立地具有碳原子數為1以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料的T1能階高於第二材料的S1能階。Thus, one embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer comprises a first material and a second material, the first material being capable of converting triplet excitation energy into light-emitting and having a five-membered ring skeleton, the second material being capable of converting singlet excitation energy into light-emitting and having a light-emitting body and five or more protecting groups, the light-emitting body being a condensed aromatic ring or a condensed heteroaromatic ring, the five or more protecting groups independently having any one of an alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms, the T1 energy level of the first material being higher than the S1 energy level of the second material.

在上述結構中,較佳的是,五個以上的保護基中的至少四個分別獨立為碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且10以下的三烷基矽基中的任一個。In the above structure, preferably, at least four of the five or more protecting groups are independently any one of an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及至少四個保護基,發光體是稠合芳香環或稠合雜芳環,四個保護基不直接鍵合於稠合芳香環或稠合雜芳環,四個保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material can convert triplet excitation energy into light-emitting and has a five-membered ring skeleton, the second material can convert singlet excitation energy into light-emitting and has a light-emitting body and at least four protecting groups, the light-emitting body is a fused aromatic ring or a fused heteroaromatic ring, the four protecting groups are not directly bonded to the fused aromatic ring or the fused heteroaromatic ring, the four protecting groups independently have any one of an alkyl group with a carbon number of 3 to 10, a substituted or unsubstituted cycloalkyl group with a carbon number of 3 to 10, and a trialkylsilyl group with a carbon number of 3 to 12, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及兩個以上的二芳基胺基,發光體是稠合芳香環或稠合雜芳環,稠合芳香環或稠合雜芳環鍵合於兩個以上的二芳基胺基,兩個以上的二芳基胺基中的芳基分別獨立地具有至少一個保護基,保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material can convert triplet excitation energy into light emission and has a five-membered ring skeleton, the second material can convert singlet excitation energy into light emission and has a light emitter and two or more diarylamine groups, the light emitter is a fused aromatic ring or a fused heteroaromatic ring, the fused aromatic ring or the fused heteroaromatic ring has a bond The first material is compounded with two or more diarylamine groups, the aryl groups in the two or more diarylamine groups each independently have at least one protecting group, the protecting groups each independently have any one of an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及兩個以上的二芳基胺基,發光體是稠合芳香環或稠合雜芳環,稠合芳香環或稠合雜芳環鍵合於兩個以上的二芳基胺基,兩個以上的二芳基胺基中的芳基分別獨立地具有至少兩個保護基,保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material can convert triplet excitation energy into light emission and has a five-membered ring skeleton, the second material can convert singlet excitation energy into light emission and has a light emitter and two or more diarylamine groups, the light emitter is a fused aromatic ring or a fused heteroaromatic ring, the fused aromatic ring or the fused heteroaromatic ring has a bond The first material is compounded with two or more diarylamine groups, and the aryl groups in the two or more diarylamine groups independently have at least two protecting groups, and the protecting groups independently have any one of an alkyl group with a carbon number of not less than 3 and not more than 10, a substituted or unsubstituted cycloalkyl group with a carbon number of not less than 3 and not more than 10, and a trialkylsilyl group with a carbon number of not less than 3 and not more than 12, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

另外,在上述結構中,二芳基胺基較佳為二苯基胺基。In the above structure, the diarylamine group is preferably a diphenylamine group.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及多個保護基,保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,發光體是稠合芳香環或稠合雜芳環,構成保護基的原子的至少一個位於稠合芳香環和稠合雜芳環中的一個的面的正上,構成多個保護基的原子的至少一個位於稠合環和稠合雜芳環中的另一個的面的正上,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material is capable of converting triplet excitation energy into light emission and has a five-membered ring skeleton, the second material is capable of converting singlet excitation energy into light emission and has a light-emitting body and a plurality of protecting groups, the protecting groups independently have an alkyl group with a carbon number of not less than 3 and not more than 10, a substituted or unsubstituted carbon number of 3 Any one of a cycloalkyl group having more than and less than 10 carbon atoms and a trialkylsilyl group having more than 3 and less than 12 carbon atoms, the luminescent body is a fused aromatic ring or a fused heteroaromatic ring, at least one of the atoms constituting the protecting group is located directly on the surface of one of the fused aromatic ring and the fused heteroaromatic ring, at least one of the atoms constituting the plurality of protecting groups is located directly on the surface of another of the fused ring and the fused heteroaromatic ring, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及兩個以上的二苯基胺基,發光體是稠合芳香環或稠合雜芳環,稠合芳香環或稠合雜芳環鍵合於兩個以上的二苯基胺基,兩個以上的二苯基胺基中的苯基分別獨立地在3位及5位具有保護基,保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material can convert triplet excitation energy into light emission and has a five-membered ring skeleton, the second material can convert singlet excitation energy into light emission and has a light emitter and two or more diphenylamine groups, the light emitter is a fused aromatic ring or a fused heteroaromatic ring, the fused aromatic ring or the fused heteroaromatic ring is bonded to In two or more diphenylamine groups, the phenyl groups in the two or more diphenylamine groups independently have protecting groups at the 3-position and the 5-position, and the protecting groups independently have any one of an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

在上述結構中,五員環骨架較佳為具有吡唑骨架、咪唑骨架和三唑骨架中的任一個,更佳的是,咪唑骨架及三唑骨架所具有的與雙鍵無關的氮原子具有取代或未取代的碳原子數為6至13的芳烴基。In the above structure, the five-membered ring skeleton is preferably any one of a pyrazole skeleton, an imidazole skeleton and a triazole skeleton, and more preferably, the nitrogen atom unrelated to the double bond of the imidazole skeleton and the triazole skeleton has a substituted or unsubstituted aromatic group having 6 to 13 carbon atoms.

另外,本發明的另一個實施方式是一種在一對電極間包括發光層的發光元件,其中發光層包含第一材料及第二材料,第一材料能夠將三重激發能轉換為發光且具有五員環骨架,第二材料能夠將單重激發能轉換為發光且具有發光體及兩個以上的保護基,發光體是稠合芳香環或稠合雜芳環,兩個以上的保護基分別獨立地具有碳原子數為1以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,第一材料具有五員環骨架,五員環骨架至少具有咪唑骨架和三唑骨架中的任一個,咪唑骨架及三唑骨架所具有的與雙鍵無關的氮原子具有取代或未取代的碳原子數為6至13的芳烴基,第一材料的T1能階高於第二材料的S1能階。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material and a second material, the first material can convert triplet excitation energy into light emission and has a five-membered ring skeleton, the second material can convert singlet excitation energy into light emission and has a light-emitting body and two or more protecting groups, the light-emitting body is a fused aromatic ring or a fused heteroaromatic ring, and the two or more protecting groups each independently have a carbon atom number of 1 or more and 10 or less. Any one of an alkyl group, a substituted or unsubstituted cycloalkyl group with a carbon number of 3 or more and 10 or less, and a trialkylsilyl group with a carbon number of 3 or more and 12 or less, the first material has a five-membered ring skeleton, the five-membered ring skeleton has at least one of an imidazole skeleton and a triazole skeleton, the nitrogen atoms unrelated to the double bond of the imidazole skeleton and the triazole skeleton have a substituted or unsubstituted aromatic group with a carbon number of 6 to 13, and the T1 energy level of the first material is higher than the S1 energy level of the second material.

另外,在上述結構中,芳烴基較佳為苯基。In the above structure, the aromatic hydrocarbon group is preferably a phenyl group.

另外,在上述結構中,烷基較佳為支鏈烷基。In the above structure, the alkyl group is preferably a branched alkyl group.

另外,在上述結構中,支鏈烷基較佳為包含四級碳。In addition, in the above structure, the branched alkyl group preferably contains a quaternary carbon.

另外,在上述結構中,稠合芳香環或稠合雜芳環較佳為包含萘、蒽、茀、䓛(chrysene)、聯伸三苯、芘、稠四苯、苝、香豆素、喹吖啶酮以及萘并雙苯并呋喃中的任一個。In the above structure, the condensed aromatic ring or condensed heteroaromatic ring preferably includes any one of naphthalene, anthracene, fluorene, chrysene, triphenylene, pyrene, tetraphenylene, perylene, coumarin, quinacridone and naphthodibenzofuran.

另外,在上述結構中,發光層較佳為還包含第三材料,第一材料及第三材料較佳為形成激態錯合物。In addition, in the above structure, the light-emitting layer preferably further includes a third material, and the first material and the third material preferably form an excited state complex.

在上述結構中,激態錯合物的發射光譜較佳為與第二材料的最長波長一側的吸收帶重疊。In the above structure, the emission spectrum of the excited complex preferably overlaps with the absorption band on the longest wavelength side of the second material.

在上述結構中,五員環骨架較佳為具有吡唑骨架、咪唑骨架和三唑骨架中的任一個。In the above structure, the five-membered ring skeleton preferably has any one of a pyrazole skeleton, an imidazole skeleton and a triazole skeleton.

另外,在上述結構中,第一材料較佳為金屬錯合物。另外,更佳的是,該金屬錯合物包含第8至第10族且第5及第6週期的金屬,五員環骨架配位於金屬。In the above structure, the first material is preferably a metal complex. In addition, more preferably, the metal complex contains metals of groups 8 to 10 and periods 5 and 6, and a five-membered ring skeleton is coordinated to the metal.

另外,在上述結構中,第一材料較佳為發射磷光。In addition, in the above structure, the first material preferably emits phosphorescence.

另外,在上述結構中,第一材料的發射光譜較佳為與第二材料的最長波長一側的吸收帶重疊。In addition, in the above structure, the emission spectrum of the first material preferably overlaps with the absorption band on the longest wavelength side of the second material.

另外,在上述結構中,發光層中的第二材料的濃度較佳為2wt%以上且30wt%以下。In addition, in the above structure, the concentration of the second material in the light-emitting layer is preferably greater than 2 wt % and less than 30 wt %.

另外,本發明的另一個實施方式是在一對電極間包括發光層的發光元件,其中發光層具有能量施體及能量受體,能量受體具有將三重激子轉換為發光的功能,能量受體具有五員環骨架,能量受體具有發光體及五個以上的保護基,發光體是稠合芳香環或稠合雜芳環,五個以上的保護基分別獨立地具有碳原子數為1以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,能量施體的T1能階高於能量受體的S1能階,能量施體的三重激發能被轉換為能量受體的單重激發能,並且可以獲得來源於能量受體的發光。In addition, another embodiment of the present invention is a light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer has an energy donor and an energy acceptor, the energy acceptor has the function of converting triplet excitons into light emission, the energy acceptor has a five-membered ring skeleton, the energy acceptor has a light-emitting body and five or more protecting groups, the light-emitting body is a condensed aromatic ring or a condensed heteroaromatic ring, the five or more protecting groups independently have any one of an alkyl group with a carbon number of 1 to 10, a substituted or unsubstituted cycloalkyl group with a carbon number of 3 to 10, and a trialkylsilyl group with a carbon number of 3 to 12, the T1 energy level of the energy donor is higher than the S1 energy level of the energy acceptor, the triplet excitation energy of the energy donor is converted into the singlet excitation energy of the energy acceptor, and light emission from the energy acceptor can be obtained.

在上述結構中,來源於能量受體的發光較佳為螢光發光。In the above structure, the luminescence originating from the energy acceptor is preferably fluorescent luminescence.

另外,本發明的另一個實施方式是包括上述各結構的發光元件、以及濾色片和電晶體中的至少一方的顯示裝置。本發明的另一個實施方式是一種電子機器,包括:該顯示裝置;以及外殼和觸控感測器中的至少一個。另外,本發明的另一個實施方式是一種照明裝置,包括:上述各結構的發光元件;以及外殼和觸控感測器中的至少一個。另外,本発明的一個實施方式除了包含發光元件的發光裝置以外,還包括包含發光元件的電子機器。因此,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明裝置)。另外,發光裝置有時還包括如下模組:在發光元件中安裝有連接器諸如FPC(Flexible Printed Circuit:撓性電路板)或TCP(Tape Carrier Package:捲帶式封裝)的顯示模組;在TCP端部設置有印刷線路板的顯示模組;或者IC(積體電路)藉由COG(Chip On Glass:晶粒玻璃接合)方式直接安裝在發光元件上的顯示模組。In addition, another embodiment of the present invention is a display device including a light-emitting element of each of the above-mentioned structures, and at least one of a color filter and a transistor. Another embodiment of the present invention is an electronic device including: the display device; and at least one of a housing and a touch sensor. In addition, another embodiment of the present invention is a lighting device including: a light-emitting element of each of the above-mentioned structures; and at least one of a housing and a touch sensor. In addition, an embodiment of the present invention includes an electronic device including a light-emitting element in addition to a light-emitting device including a light-emitting element. Therefore, the light-emitting device in this specification refers to an image display device or a light source (including a lighting device). In addition, the light-emitting device sometimes also includes the following modules: a display module in which a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is installed in the light-emitting element; a display module in which a printed circuit board is provided at the end of the TCP; or a display module in which an IC (integrated circuit) is directly mounted on the light-emitting element by COG (Chip On Glass).

根據本發明的一個實施方式,可以提供一種發光效率高的發光元件。另外,根據本發明的一個實施方式,可以提供一種可靠性高的發光元件。另外,根據本發明的一個實施方式,可以提供一種功耗得到降低的發光元件。另外,根據本發明的一個實施方式,可以提供一種新穎的發光元件。另外,根據本發明的一個實施方式,可以提供一種新穎的發光機器。另外,根據本發明的一個實施方式,可以提供一種新穎的顯示裝置。另外,根據本發明的一個實施方式,可以提供一種新穎的有機化合物。According to an embodiment of the present invention, a light-emitting element with high light-emitting efficiency can be provided. In addition, according to an embodiment of the present invention, a light-emitting element with high reliability can be provided. In addition, according to an embodiment of the present invention, a light-emitting element with reduced power consumption can be provided. In addition, according to an embodiment of the present invention, a novel light-emitting element can be provided. In addition, according to an embodiment of the present invention, a novel light-emitting machine can be provided. In addition, according to an embodiment of the present invention, a novel display device can be provided. In addition, according to an embodiment of the present invention, a novel organic compound can be provided.

注意,這些效果的記載不妨礙其他效果的存在。另外,本發明的一個實施方式並不一定需要具有所有上述效果。另外,上述效果以外的效果可以從說明書、圖式、申請專利範圍等的記載得知並衍生。Note that the description of these effects does not hinder the existence of other effects. In addition, one embodiment of the present invention does not necessarily need to have all of the above effects. In addition, effects other than the above effects can be known and derived from the description of the specification, drawings, patent application scope, etc.

以下,參照圖式詳細地說明本發明的實施方式。注意,本發明不侷限於下述說明,其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式及實施例所記載的內容中。The following is a detailed description of the embodiments of the present invention with reference to the drawings. Note that the present invention is not limited to the following description, and its methods and details can be transformed into various forms without departing from the spirit and scope of the present invention. Therefore, the present invention should not be interpreted as being limited to the embodiments shown below and the contents recorded in the examples.

另外,圖式等所示的各結構的位置、大小、範圍等為了容易理解而有時不表示實際上的位置、大小、範圍等。因此,所公開的發明不一定侷限於圖式等所公開的位置、大小、範圍等。In addition, the positions, sizes, ranges, etc. of each structure shown in the drawings and the like may not represent actual positions, sizes, ranges, etc. for easy understanding. Therefore, the disclosed invention is not necessarily limited to the positions, sizes, ranges, etc. disclosed in the drawings and the like.

此外,在本說明書等中,為了方便起見,附加了第一、第二等序數詞,而其有時並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。In addition, in this specification, for the sake of convenience, ordinal numbers such as first and second are added, but they sometimes do not indicate the process order or stacking order. Therefore, for example, "first" can be appropriately replaced with "second" or "third" for description. In addition, the ordinal numbers recorded in this specification and the like are sometimes inconsistent with the ordinal numbers used to specify an embodiment of the present invention.

注意,在本說明書等中,當利用圖式說明發明的結構時,有時在不同的圖式中共同使用表示相同的部分的符號。Note that in this specification and the like, when describing the structure of the invention using drawings, symbols representing the same parts may be used in common in different drawings.

在本說明書等中,“膜”和“層”可以相互調換。例如,有時可以將“導電層”調換為“導電膜”。此外,有時可以將“絕緣膜”調換為“絕緣層”。In this specification, "film" and "layer" may be interchanged. For example, "conductive layer" may be interchanged with "conductive film". Also, "insulating film" may be interchanged with "insulating layer".

另外,在本說明書等中,單重激發態(S* )是指具有激發能量的單重態。另外,S1能階是單重激發能階的最低能階,其是指最低單重激發態(S1狀態)的激發能階。另外,三重激發態(T* )是指具有激發能量的三重態。另外,T1能階是三重激發能階的最低能階,其是指最低三重激發態(T1狀態)的激發能階。此外,在本說明書等中,即使僅表示為“單重激發態”和“單重激發態能階”也有時分別表示S1狀態和S1能階。另外,即使表示為“三重激發態”和“三重激發態能階”也有時分別表示T1狀態和T1能階。In addition, in this specification, etc., a singlet excited state (S * ) refers to a singlet state having excitation energy. In addition, an S1 energy level is the lowest energy level of the singlet excited energy level, which refers to the excitation energy level of the lowest singlet excited state (S1 state). In addition, a triplet excited state (T * ) refers to a triplet state having excitation energy. In addition, a T1 energy level is the lowest energy level of the triplet excited energy level, which refers to the excitation energy level of the lowest triplet excited state (T1 state). In addition, in this specification, etc., even if simply expressed as "singlet excited state" and "singlet excited state energy level", sometimes the S1 state and the S1 energy level are respectively expressed. In addition, even if expressed as "triplet excited state" and "triplet excited state energy level", sometimes the T1 state and the T1 energy level are respectively expressed.

另外,在本說明書等中,螢光材料是指在從單重激發態返回到基態時在可見光區域發光的化合物。磷光材料是指在從三重激發態返回到基態時在室溫下在可見光區域發光的化合物。換言之,磷光材料是指能夠將三重激發能轉換為可見光的化合物之一。In this specification, a fluorescent material refers to a compound that emits light in the visible light region when returning from a singlet excited state to a ground state. A phosphorescent material refers to a compound that emits light in the visible light region at room temperature when returning from a triplet excited state to a ground state. In other words, a phosphorescent material refers to one of the compounds that can convert triplet excited energy into visible light.

另外,在本說明書等中,藍色的波長區域是指400nm以上且小於490nm的波長區域,藍色的發光在該波長區域具有至少一個發射光譜峰值。另外,綠色的波長區域是指490nm以上且小於580nm的波長區域,綠色的發光在該波長區域具有至少一個發射光譜峰值。另外,紅色的波長區域是指580nm以上且680nm以下的波長區域,紅色的發光在該波長區域具有至少一個發射光譜峰值。In this specification, etc., the blue wavelength region refers to a wavelength region of 400 nm or more and less than 490 nm, and blue luminescence has at least one emission spectrum peak in this wavelength region. In addition, the green wavelength region refers to a wavelength region of 490 nm or more and less than 580 nm, and green luminescence has at least one emission spectrum peak in this wavelength region. In addition, the red wavelength region refers to a wavelength region of 580 nm or more and less than 680 nm, and red luminescence has at least one emission spectrum peak in this wavelength region.

實施方式1 在本實施方式中,參照圖1A至圖5C說明本發明的一個實施方式的發光元件。Implementation method 1 In this implementation method, a light-emitting element of an implementation method of the present invention is described with reference to FIGS. 1A to 5C.

首先,下面將參照圖1A至圖1C說明本發明的一個實施方式的發光元件的結構。First, the structure of a light emitting element according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1C .

圖1A是本發明的一個實施方式的發光元件150的剖面示意圖。FIG. 1A is a cross-sectional view of a light emitting element 150 according to an embodiment of the present invention.

發光元件150包括一對電極(電極101及電極102),並包括設置在該一對電極之間的EL層100。EL層100至少包括發光層130。The light emitting element 150 includes a pair of electrodes (electrode 101 and electrode 102 ) and includes an EL layer 100 disposed between the pair of electrodes. The EL layer 100 includes at least a light emitting layer 130 .

另外,圖1A所示的EL層100除了發光層130以外還包括電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119等功能層。In addition, the EL layer 100 shown in FIG. 1A includes functional layers such as a hole injection layer 111 , a hole transport layer 112 , an electron transport layer 118 , and an electron injection layer 119 in addition to the light-emitting layer 130 .

注意,雖然在本實施方式中以一對電極中的電極101為陽極且以電極102為陰極來進行說明,但是發光元件150的結構並不侷限於此。也就是說,也可以將電極101用作陰極且將電極102用作陽極,倒序地層疊該電極間的各層。換言之,從陽極一側依次層疊電洞注入層111、電洞傳輸層112、發光層130、電子傳輸層118及電子注入層119即可。Note that although the present embodiment describes the electrode 101 of a pair of electrodes as an anode and the electrode 102 as a cathode, the structure of the light-emitting element 150 is not limited thereto. In other words, the electrode 101 may be used as a cathode and the electrode 102 may be used as an anode, and the layers between the electrodes may be stacked in reverse order. In other words, the hole injection layer 111, the hole transport layer 112, the light-emitting layer 130, the electron transport layer 118, and the electron injection layer 119 may be stacked in sequence from the anode side.

注意,EL層100的結構不侷限於圖1A所示的結構,只要包括選自電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119中的至少一個即可。或者,EL層100也可以包括具有如下功能的功能層:能夠減少電洞或電子的注入能障;能夠提高電洞或電子的傳輸性;能夠阻礙電洞或電子的傳輸性;或者能夠抑制電極所引起的淬滅現象等。功能層既可以是單層又可以是層疊有多個層的結構。Note that the structure of the EL layer 100 is not limited to the structure shown in FIG. 1A , as long as it includes at least one selected from the hole injection layer 111, the hole transport layer 112, the electron transport layer 118, and the electron injection layer 119. Alternatively, the EL layer 100 may include a functional layer having the following functions: reducing the injection barrier of holes or electrons; improving the transport properties of holes or electrons; blocking the transport properties of holes or electrons; or suppressing the quenching phenomenon caused by the electrode, etc. The functional layer may be a single layer or a structure in which a plurality of layers are stacked.

<發光元件的發光機制> 接著,下面將對發光層130的發光機制進行說明。<Luminescence mechanism of the luminescent element> Next, the luminescence mechanism of the luminescent layer 130 will be described.

在本發明的一個實施方式的發光元件150中,藉由將電壓施加到一對電極(電極101及電極102)之間,電子和電洞分別從陰極和陽極注入到EL層100,而使電流流過。在因載子(電子及電洞)的再結合而產生的激子中,單重激子與三重激子的比(以下,稱為激子產生概率)的統計概率為1:3。也就是說,產生單重激子的比例為25%,產生三重激子的比例為75%,由此為了提高發光元件的發光效率,使三重激子有助於發光是重要的。由此,作為發光層130,較佳為使用具有能夠將三重激發能轉換為發光的功能的材料。In the light-emitting element 150 of one embodiment of the present invention, by applying a voltage between a pair of electrodes (electrode 101 and electrode 102), electrons and holes are injected from the cathode and anode into the EL layer 100, respectively, so that a current flows. Among the excitons generated by the recombination of carriers (electrons and holes), the statistical probability of the ratio of singlet excitons to triplet excitons (hereinafter referred to as the exciton generation probability) is 1:3. That is, the proportion of singlet excitons generated is 25%, and the proportion of triplet excitons generated is 75%. Therefore, in order to improve the light-emitting efficiency of the light-emitting element, it is important to make triplet excitons contribute to light emission. Therefore, as the light-emitting layer 130, it is preferable to use a material having the function of converting triplet excitation energy into light emission.

作為具有能夠將三重激發能轉換為發光的功能的材料,可以舉出能夠發射磷光的化合物(以下稱為磷光材料)。在本說明書等中,磷光材料是指在液氮得到的低溫(例如77K)以上且室溫以下的溫度範圍的任一溫度下發射磷光而不發射螢光的化合物。該磷光材料較佳為包含自旋軌道交互作用大的金屬元素,明確而言,較佳為包含過渡金屬元素,尤其較佳為包含鉑族元素(第8至第10且第5及第6週期的元素(釕(Ru)、銠(Rh)、鈀(Pd)、鋨(Os)、銥(Ir)或鉑(Pt)),特別較佳為包含銥。銥可以提高有關單重基態與三重激發態之間的直接躍遷的躍遷概率,所以是較佳的。As a material having the function of converting triplet excitation energy into luminescence, a compound capable of emitting phosphorescence (hereinafter referred to as a phosphorescent material) can be cited. In this specification, etc., a phosphorescent material refers to a compound that emits phosphorescence but not fluorescence at any temperature in the temperature range of above the low temperature obtained by liquid nitrogen (e.g., 77K) and below room temperature. The phosphorescent material preferably contains a metal element with a large spin-orbit interaction, specifically, preferably contains a transition metal element, particularly preferably contains a platinum group element (element of the 8th to 10th and 5th and 6th periods (ruthenium (Ru), rhodium (Rh), palladium (Pd), niobium (Os), iridium (Ir) or platinum (Pt)), and particularly preferably contains iridium. Iridium can increase the transition probability of the direct transition between the singlet ground state and the triplet excited state, so it is preferred.

另外,作為具有將三重激發能轉換為發光的功能的材料,可以舉出TADF材料。TADF材料是指S1能階和T1能階的差異較小且具有藉由反系間竄越將三重激發能轉換為單重激發能的功能的材料。因此,能夠利用微小的熱能量(室溫等)將三重激發能上轉換(up-convert)為單重激發能(反系間竄越)並能夠高效地產生單重激發態。以兩種物質形成激發態的激態錯合物(Exciplex)因S1能階和T1能階之差極小而具有將三重激發能轉換為單重激發能的TADF材料的功能。In addition, as a material having the function of converting triplet excitation energy into light emission, TADF materials can be cited. TADF materials refer to materials that have a small difference between the S1 energy level and the T1 energy level and have the function of converting triplet excitation energy into singlet excitation energy by antisystem crossing. Therefore, it is possible to up-convert triplet excitation energy into singlet excitation energy (antisystem crossing) by using tiny thermal energy (room temperature, etc.) and efficiently generate a singlet excited state. Exciplexes that form excited states with two substances have the function of TADF materials that convert triplet excitation energy into singlet excitation energy because the difference between the S1 energy level and the T1 energy level is extremely small.

作為T1能階的指標,可以使用在低溫(例如,10K)下觀察到的磷光光譜。關於TADF材料,較佳的是,在螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為S1能階,在磷光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為T1能階,此時的S1和T1之差是0.2eV以下。As an indicator of the T1 energy level, the phosphorescence spectrum observed at a low temperature (e.g., 10 K) can be used. For TADF materials, it is preferred that a tangent line is drawn at the tail of the short-wavelength side of the fluorescence spectrum, and the energy of the wavelength of the extrapolated line is set to the S1 energy level, and a tangent line is drawn at the tail of the short-wavelength side of the phosphorescence spectrum, and the energy of the wavelength of the extrapolated line is set to the T1 energy level. At this time, the difference between S1 and T1 is less than 0.2 eV.

圖1B是示出本發明的一個實施方式的發光元件的發光層130的剖面示意圖。在本發明的一個實施方式中,發光層130包含化合物131、化合物132及化合物133。化合物133具有將三重激發能轉換為發光的功能,並且具有五員環骨架。化合物132具有將單重激發能轉換為發光的功能,並且具有保護基。因為螢光材料的穩定性高,所以作為化合物132較佳為使用螢光材料以得到可靠性高的發光元件。化合物131是主體材料,較佳為在化合物131上載子再結合。因此,較佳的是,在本發明的一個實施方式的發光元件中,在化合物131中產生載子的再結合而生成的激子的單重激發能及三重激發能藉由化合物133最終轉移到化合物132的單重激發態,而化合物132發光。在此,在發光層130中,化合物133是能量施體,化合物132是能量受體。在圖1B中,發光層130是以化合物131為主體材料且以化合物132為客體材料的螢光發光層。另外,化合物133被用作能量施體。此外,發光層130可以獲得來源於作為客體材料的化合物132的發光。FIG1B is a schematic cross-sectional view of a light-emitting layer 130 of a light-emitting element of an embodiment of the present invention. In an embodiment of the present invention, the light-emitting layer 130 comprises compound 131, compound 132 and compound 133. Compound 133 has a function of converting triplet excitation energy into luminescence and has a five-membered ring skeleton. Compound 132 has a function of converting singlet excitation energy into luminescence and has a protecting group. Since the stability of the fluorescent material is high, it is preferred to use a fluorescent material as compound 132 to obtain a light-emitting element with high reliability. Compound 131 is a host material, and it is preferred to recombine the carrier on compound 131. Therefore, preferably, in the light-emitting element of one embodiment of the present invention, the singlet excitation energy and triplet excitation energy of the excitons generated by the recombination of carriers in compound 131 are ultimately transferred to the singlet excited state of compound 132 through compound 133, and compound 132 emits light. Here, in the light-emitting layer 130, compound 133 is an energy donor and compound 132 is an energy acceptor. In FIG1B , the light-emitting layer 130 is a fluorescent light-emitting layer having compound 131 as a host material and compound 132 as a guest material. In addition, compound 133 is used as an energy donor. In addition, the light-emitting layer 130 can obtain light emission from compound 132 as a guest material.

<發光層的結構例子1> 圖1C示出本發明的一個實施方式的發光元件150的發光層130中的能階相關的一個例子。圖1B中的發光層130包括化合物131、化合物132及化合物133。在本發明的一個實施方式中,化合物132是具有保護基的螢光材料。化合物133具有將三重激發能轉換為發光的功能。在本結構例子中,以化合物133是磷光材料的情況為前提進行說明。<Structural example 1 of the light-emitting layer> Figure 1C shows an example of the energy level correlation in the light-emitting layer 130 of the light-emitting element 150 of one embodiment of the present invention. The light-emitting layer 130 in Figure 1B includes compound 131, compound 132, and compound 133. In one embodiment of the present invention, compound 132 is a fluorescent material having a protective group. Compound 133 has a function of converting triplet excitation energy into luminescence. In this structural example, the explanation is based on the premise that compound 133 is a phosphorescent material.

另外,圖1C示出發光層130中的化合物131和化合物132的能階相關。注意,圖1C中的記載及符號表示的是如下: •Comp(131):化合物131 •Comp(133):化合物133 •Guest(132):化合物132 •SC1 :化合物131的S1能階 •TC1 :化合物131的T1能階 •TC3 :化合物133的T1能階 •TG :化合物132的T1能階 •SG :化合物132的S1能階In addition, FIG1C shows the energy level correlation of compound 131 and compound 132 in the light-emitting layer 130. Note that the description and symbols in FIG1C represent the following: • Comp(131): compound 131 • Comp(133): compound 133 • Guest(132): compound 132 • SC1 : S1 energy level of compound 131 • TC1 : T1 energy level of compound 131 • TC3 : T1 energy level of compound 133 • TG : T1 energy level of compound 132 • SG : S1 energy level of compound 132

在本發明的一個實施方式的發光元件中,因為發光層130所包含的化合物131中主要發生載子的再結合,因此產生單重激子及三重激子。因為這裡的化合物133是磷光材料,所以藉由選擇滿足TC3 ≤TC1 的關係的材料,可以將在化合物131中產生的單重激發能及三重激發能都轉移到化合物133的TC3 能階(圖1C中的路徑A1 )。注意,一部分載子有可能在化合物133中再結合。In the light-emitting element of one embodiment of the present invention, since the recombination of carriers mainly occurs in the compound 131 included in the light-emitting layer 130, singlet excitons and triplet excitons are generated. Since the compound 133 here is a phosphorescent material, by selecting a material that satisfies the relationship of T C3T C1 , both the singlet excitation energy and triplet excitation energy generated in the compound 131 can be transferred to the T C3 energy level of the compound 133 (path A 1 in FIG. 1C ). Note that some carriers may recombine in the compound 133.

在上述結構中使用的磷光材料較佳為包含Ir、Pt、Os、Ru、Pd等重原子。如上所述,在本結構例子中,磷光材料還被用作能量施體,因此其量子產率既可以高又可以低。在將磷光材料用作化合物133(能量施體)時,從能量施體的三重激發能階到客體材料(能量受體)的單重激發能階的能量轉移為允許躍遷,所以是較佳的。因此,可以將化合物133的三重激發能經過路徑A2 的過程轉移到客體材料的化合物132的S1能階(SG )。在路徑A2 中,化合物133被用作能量施體,化合物132被用作能量受體。此時,在滿足TC3 ≥SG 的情況下,化合物133的激發能高效地轉移到作為客體材料的化合物132的單重激發態,所以是較佳的。明確而言,較佳的是,在化合物133的磷光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為TC3 ,將化合物132的吸收光譜的吸收端的波長或發射光譜的最短波長一側的尾處劃切線,將其外推線的波長的能量設定為SG ,此時滿足TC3 ≥SGThe phosphorescent material used in the above structure preferably contains heavy atoms such as Ir, Pt, Os, Ru, Pd, etc. As described above, in the present structural example, the phosphorescent material is also used as an energy donor, so its quantum yield can be either high or low. When the phosphorescent material is used as compound 133 (energy donor), the energy transfer from the triplet excitation energy level of the energy donor to the singlet excitation energy level of the guest material (energy acceptor) is an allowed transition, so it is preferred. Therefore, the triplet excitation energy of compound 133 can be transferred to the S1 energy level ( SG ) of compound 132 of the guest material through the process of path A2 . In path A2 , compound 133 is used as an energy donor and compound 132 is used as an energy acceptor. At this time, when TC3SG is satisfied, the excitation energy of compound 133 is efficiently transferred to the singlet excited state of compound 132 as the guest material, so it is preferred. Specifically, it is preferred that a tangent line is drawn at the tail of the short wavelength side of the phosphorescence spectrum of compound 133, and the energy of the wavelength of its extrapolated line is set to TC3 , and a tangent line is drawn at the wavelength of the absorption end of the absorption spectrum of compound 132 or the tail of the shortest wavelength side of the emission spectrum, and the energy of the wavelength of its extrapolated line is set to SG , and TC3SG is satisfied at this time.

在此,在發光層130中,化合物131、化合物132和化合物133混在一起。因此,有可能與上述路徑A1 及A2 競爭地發生化合物133的三重激發能被轉換為化合物132的三重激發能的過程(圖1C的路徑A3 )。因為化合物132是螢光材料,所以化合物132的三重激發能無助於發光。就是說,當發生路徑A3 的能量轉移時,發光元件的發光效率降低。注意,實際上,作為從TC3 到TG 的能量轉移(路徑A3 ),可能有不是直接的而是能量一旦轉移到高於化合物132的TG 的三重激發態就藉由內部轉換而成為TG 的路徑,但是,在圖式中省略該過程。後面的本說明書中的不希望的熱失活過程,亦即到TG 的能量轉移過程都是同樣的。Here, in the light-emitting layer 130, compound 131, compound 132, and compound 133 are mixed together. Therefore, there is a possibility that the triplet excitation energy of compound 133 is converted into the triplet excitation energy of compound 132 in competition with the above-mentioned paths A1 and A2 (path A3 in FIG. 1C ). Since compound 132 is a fluorescent material, the triplet excitation energy of compound 132 does not contribute to luminescence. That is, when the energy transfer of path A3 occurs, the luminescence efficiency of the light-emitting element decreases. Note that, in reality, as the energy transfer from TC3 to TG (path A3 ), there may be a path that is not direct but becomes TG by internal conversion once the energy is transferred to the triplet excited state higher than TG of compound 132, but this process is omitted in the figure. The undesirable thermal deactivation process in the following description, i.e. the energy transfer process to TG, is the same.

在此,作為分子間的能量轉移機構,已知螢光共振能量轉移(FRET:Fluorescence Resonance Enrgy Transfer,也稱為福斯特機制(偶極-偶極相互作用))及德克斯特機制(電子交換相互作用)。因為作為能量受體的化合物132是螢光材料,所以在路徑A3 的能量轉移中德克斯特機制佔優勢。一般而言,德克斯特機制在作為能量施體的化合物131和作為能量受體的化合物132的距離為1nm以下時顯著地發生。因此,為了抑制路徑A3 ,重要的是,使主體材料和客體材料之間的距離,亦即能量施體和能量受體之間的距離長。Here, as the intermolecular energy transfer mechanism, fluorescence resonance energy transfer (FRET: Fluorescence Resonance Energy Transfer, also called Förster mechanism (dipole-dipole interaction)) and Dexter mechanism (electron exchange interaction) are known. Since compound 132, which is an energy acceptor, is a fluorescent material, the Dexter mechanism is dominant in the energy transfer of path A 3. In general, the Dexter mechanism occurs significantly when the distance between compound 131, which is an energy donor, and compound 132, which is an energy acceptor, is less than 1 nm. Therefore, in order to suppress path A 3 , it is important to make the distance between the host material and the guest material, that is, the distance between the energy donor and the energy acceptor long.

由於化合物132中的單重基態到三重激發態的直接躍遷為禁止躍遷,因此從化合物131的單重激發能階(SC1 )到化合物132的三重激發能階(TG )的能量轉移很難成為主要的能量轉移過程,因此,未圖示。Since the direct transition from the singlet ground state to the triplet excited state in compound 132 is a forbidden transition, the energy transfer from the singlet excited energy level (S C1 ) of compound 131 to the triplet excited energy level ( TG ) of compound 132 is unlikely to become a major energy transfer process and is therefore not shown.

圖1C中的TG 大多為來源於能量受體中的發光體的能階。因此,更詳細地說,為了抑制路徑A3 ,重要的是,使能量施體和能量受體所包括的發光體之間的距離長。作為使能量施體和能量受體所包括的發光體之間的距離長的方法,一般舉出降低這些化合物的混合膜中的能量受體的濃度。但是,當降低混合膜中的能量受體的濃度時,除了從能量施體到能量受體的基於德克斯特機制的能量轉移以外,基於福斯特機制的能量轉移也被抑制。此時,因為路徑A2 基於福斯特機制,所以發生發光元件的發光效率的降低或可靠性的降低等問題。Most of the TG in FIG1C is derived from the energy level of the luminophore in the energy acceptor. Therefore, in more detail, in order to suppress the path A3 , it is important to lengthen the distance between the energy donor and the luminophore included in the energy acceptor. As a method for lengthening the distance between the energy donor and the luminophore included in the energy acceptor, reducing the concentration of the energy acceptor in the mixed film of these compounds is generally cited. However, when the concentration of the energy acceptor in the mixed film is reduced, in addition to the energy transfer based on the Dexter mechanism from the energy donor to the energy acceptor, the energy transfer based on the Foster mechanism is also suppressed. At this time, because the path A2 is based on the Foster mechanism, problems such as a reduction in the luminous efficiency of the light-emitting element or a reduction in reliability occur.

於是,本案發明人等發現:藉由作為能量受體使用具有用來使與能量施體的距離長的保護基的螢光材料,可以抑制上述發光效率的降低。藉由具有保護基,可以將該螢光材料用作龐大的能量受體。Therefore, the inventors of the present invention have found that the above-mentioned decrease in luminescence efficiency can be suppressed by using a fluorescent material having a protective group for increasing the distance between the fluorescent material and the energy donor as an energy acceptor. By having a protective group, the fluorescent material can be used as a large energy acceptor.

<具有保護基的螢光材料的概念> 圖2A示出將作為一般的螢光材料的不具有保護基的螢光材料作為客體材料分散在主體材料中的情況的示意圖,圖2B示出將用於本發明的一個實施方式的發光元件的具有保護基的螢光材料作為客體材料分散在主體材料中的情況的示意圖。可以將主體材料換稱為能量施體且將客體材料換稱為能量受體。在此,保護基具有使發光體和主體材料之間的距離長的功能。在圖2A中,客體材料301具有發光體310。客體材料301被用作能量受體。另一方面,在圖2B中,客體材料302包括發光體310和保護基320。在圖2A及圖2B中,客體材料301及客體材料302由主體材料330圍繞。在圖2A中,因為發光體和主體材料之間的距離較短,所以作為從主體材料330到客體材料301的能量轉移有可能發生基於福斯特機制的能量轉移(圖2A及圖2B中的路徑B1 )以及基於德克斯特機制的能量轉移(圖2A及圖2B中的路徑B2 )。當發生基於德克斯特機制的從主體材料到客體材料的三重激發能的能量轉移而產生客體材料的三重激發態時,在客體材料是螢光材料的情況下,發生三重激發能的無輻射失活,這會成為發光效率下降的原因之一。<Concept of fluorescent material with protective group> FIG. 2A shows a schematic diagram of a fluorescent material without protective group as a general fluorescent material dispersed in a host material as a guest material, and FIG. 2B shows a schematic diagram of a fluorescent material with protective group dispersed in a host material as a guest material of a light-emitting element used in one embodiment of the present invention. The host material can be referred to as an energy donor and the guest material can be referred to as an energy acceptor. Here, the protective group has a function of lengthening the distance between the luminescent body and the host material. In FIG. 2A, the guest material 301 has a luminescent body 310. The guest material 301 is used as an energy acceptor. On the other hand, in FIG. 2B, the guest material 302 includes a luminescent body 310 and a protective group 320. In FIG. 2A and FIG. 2B , the guest material 301 and the guest material 302 are surrounded by the host material 330. In FIG. 2A , because the distance between the luminescent body and the host material is short, energy transfer based on the Foster mechanism (path B 1 in FIG. 2A and FIG. 2B ) and energy transfer based on the Dexter mechanism (path B 2 in FIG. 2A and FIG. 2B ) may occur as energy transfer from the host material 330 to the guest material 301. When the energy transfer of triplet excitation energy from the host material to the guest material based on the Dexter mechanism occurs to generate a triplet excited state of the guest material, in the case where the guest material is a fluorescent material, non-radiative deactivation of the triplet excitation energy occurs, which becomes one of the reasons for the decrease in luminescence efficiency.

另一方面,在圖2B中,客體材料302具有保護基320。因此,可以使發光體310和主體材料330之間的距離長。因此,可以抑制基於德克斯特機制的能量轉移(路徑B2 )。On the other hand, in FIG2B , the guest material 302 has a protective group 320. Therefore, the distance between the light-emitting body 310 and the host material 330 can be made long. Therefore, the energy transfer based on the Dexter mechanism (path B 2 ) can be suppressed.

在此,為了使客體材料302發光,因為抑制德克斯特機制,所以客體材料302需要基於福斯特機制從主體材料330接收能量。就是說,較佳的是,在抑制基於德克斯特機制能量轉移的同時高效地利用基於福斯特機制的能量轉移。已知基於福斯特機制的能量轉移也受到主體材料和客體材料之間的距離的影響。一般而言,在主體材料330和客體材料302所具有的發光體310之間的距離為1nm以下時,德克斯特機制佔優勢,在其為1nm以上且10nm以下時,福斯特機制佔優勢。一般而言,在主體材料330和客體材料302所具有的發光體310之間的距離為10nm以上時,不容易發生能量轉移。Here, in order to make the object material 302 emit light, the object material 302 needs to receive energy from the host material 330 based on the Foster mechanism because the Dexter mechanism is suppressed. That is, it is better to efficiently utilize the energy transfer based on the Foster mechanism while suppressing the energy transfer based on the Dexter mechanism. It is known that the energy transfer based on the Foster mechanism is also affected by the distance between the host material and the object material. Generally speaking, when the distance between the host material 330 and the light-emitting body 310 of the object material 302 is less than 1nm, the Dexter mechanism is dominant, and when it is greater than 1nm and less than 10nm, the Foster mechanism is dominant. Generally speaking, when the distance between the host material 330 and the light-emitting body 310 of the object material 302 is greater than 10nm, energy transfer is not easy to occur.

於是,保護基320較佳為在離發光體310有1nm以上且10nm以下的範圍內擴散。更佳的是,在離發光體310有1nm以上且5nm以下的範圍內擴散。藉由採用該結構,可以在抑制從主體材料330到客體材料302的基於德克斯特機制的能量轉移的同時高效地利用基於福斯特機制的能量轉移。因此,可以製造具有高發光效率的發光元件。Therefore, the protective base 320 preferably diffuses within a range of 1 nm to 10 nm from the luminescent body 310. More preferably, it diffuses within a range of 1 nm to 5 nm from the luminescent body 310. By adopting this structure, energy transfer based on the Dexter mechanism can be efficiently utilized while suppressing energy transfer based on the Foster mechanism from the host material 330 to the guest material 302. Therefore, a light-emitting element with high light-emitting efficiency can be manufactured.

此外,為了提高基於福斯特機制的能量轉移效率(提高能量轉移速度),較佳為增高相對於主體材料330的客體材料301或客體材料302的濃度。但是,通常,當增高客體材料的濃度時,德克斯特機制的能量轉移速度也變快,這導致發光效率的下降。因此,增高客體材料的濃度是困難的。已有關於如下發光元件的報告:在將具有將三重激發能轉換為發光的功能的材料用作主體材料的螢光發光元件中,客體材料的濃度低達1wt%以下。In addition, in order to improve the energy transfer efficiency based on the Foster mechanism (increase the energy transfer speed), it is preferable to increase the concentration of the guest material 301 or the guest material 302 relative to the host material 330. However, generally, when the concentration of the guest material is increased, the energy transfer speed of the Dexter mechanism also becomes faster, which leads to a decrease in the luminescence efficiency. Therefore, it is difficult to increase the concentration of the guest material. There is a report on the following light-emitting element: in a fluorescent light-emitting element using a material having a function of converting triplet excitation energy into luminescence as a host material, the concentration of the guest material is as low as 1wt% or less.

另一方面,在本發明的一個實施方式的發光元件中,將發光體具有保護基的客體材料用於發光層。可以在抑制基於德克斯特機制的能量轉移的同時高效地利用基於福斯特機制的能量轉移,因此,可以增高作為能量受體的客體材料的濃度。其結果是,可以實現本來是矛盾的現象,亦即在抑制基於德克斯特機制的能量轉移的同時增高基於福斯特機制的能量轉移速度。相對於主體材料的客體材料的濃度較佳為2wt%以上且30wt%以下,更佳為5wt%以上且20wt%以下,進一步較佳為5wt%以上且15wt%以下。藉由採用該結構,可以增高基於福斯特機制的能量轉移速度,因此可以得到發光效率高的發光元件。並且,藉由將具有將三重激發能轉換為發光的功能的材料用作主體材料,可以製造具有與磷光發光元件相等的高發光效率的螢光發光元件。此外,因為使用穩定性高的螢光材料提高發光效率,所以可以製造可靠性高的發光元件。On the other hand, in a light-emitting element of an embodiment of the present invention, a guest material having a protective group as a light-emitting body is used in the light-emitting layer. Energy transfer based on the Foster mechanism can be efficiently utilized while suppressing energy transfer based on the Dexter mechanism, so the concentration of the guest material as an energy acceptor can be increased. As a result, an originally contradictory phenomenon can be achieved, that is, energy transfer based on the Dexter mechanism is suppressed while increasing the energy transfer rate based on the Foster mechanism. The concentration of the guest material relative to the host material is preferably greater than 2wt% and less than 30wt%, more preferably greater than 5wt% and less than 20wt%, and further preferably greater than 5wt% and less than 15wt%. By adopting this structure, the energy transfer rate based on the Foster mechanism can be increased, so a light-emitting element with high luminescence efficiency can be obtained. Furthermore, by using a material having the function of converting triplet excitation energy into luminescence as a host material, a fluorescent light-emitting element having high luminescence efficiency equivalent to that of a phosphorescent light-emitting element can be manufactured. In addition, since the luminescence efficiency is improved by using a highly stable fluorescent material, a light-emitting element with high reliability can be manufactured.

此外,尤其是,本發明的一個實施方式的發光元件的效果不只是穩定性高的螢光材料的使用所引起的可靠性提高的效果。上述能量轉移經常與劣化物或雜質影響所造成的淬滅過程競爭。當該淬滅過程的淬滅速率常數隨著時間變大時,發光元件的發光比例變小。就是說,發光元件的亮度劣化。但是,如上所述,在本發明的一個實施方式中,可以在抑制基於德克斯特機制的能量轉移的同時使基於福斯特機制的能量轉移速度比習知的發光元件高,因此,可以減小與淬滅過程的競爭所帶來的影響,可以實現元件的長壽命化。In addition, in particular, the effect of the light-emitting element of one embodiment of the present invention is not only the effect of improving reliability caused by the use of highly stable fluorescent materials. The above-mentioned energy transfer often competes with the quenching process caused by the influence of deterioration or impurities. When the quenching rate constant of the quenching process increases with time, the luminescence ratio of the light-emitting element decreases. That is, the brightness of the light-emitting element deteriorates. However, as described above, in one embodiment of the present invention, while suppressing the energy transfer based on the Dexter mechanism, the energy transfer rate based on the Foster mechanism can be made higher than that of the known light-emitting element. Therefore, the influence brought about by the competition with the quenching process can be reduced, and the life of the element can be extended.

在此,發光體是指在螢光材料中成為發光的原因的原子團(骨架)。發光體一般具有π鍵,較佳為包含芳香環,並較佳為具有稠合芳香環或稠合雜芳環。此外,作為其他方式,可認為發光體是指包含在環平面上存在躍遷偶極向量的芳香環的原子團(骨架)。Here, the luminescent body refers to an atomic group (skeleton) that is the cause of luminescence in a fluorescent material. The luminescent body generally has a π bond, preferably includes an aromatic ring, and preferably has a condensed aromatic ring or a condensed heteroaromatic ring. In addition, as another aspect, the luminescent body can be considered to be an atomic group (skeleton) containing an aromatic ring having a transition dipole vector on the ring plane.

作為稠合芳香環或稠合雜芳環,可以舉出菲骨架、二苯乙烯骨架、吖啶酮骨架、啡㗁𠯤骨架、啡噻𠯤骨架等。尤其是,具有萘骨架、蒽骨架、茀骨架、䓛骨架、聯伸三苯骨架、稠四苯骨架、芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并雙苯并呋喃骨架的螢光材料是較佳的,因為螢光量子產率高。As the condensed aromatic ring or condensed heteroaromatic ring, there can be cited a phenanthrene skeleton, a diphenylethylene skeleton, an acridone skeleton, a phenanthrene skeleton, a phenanthrene skeleton, etc. In particular, a fluorescent material having a naphthalene skeleton, an anthracene skeleton, a fluorene skeleton, a chrysene skeleton, a triphenyl skeleton, a condensed tetraphenyl skeleton, a pyrene skeleton, a perylene skeleton, a coumarin skeleton, a quinacridone skeleton, and a naphthodibenzofuran skeleton is preferred because of its high fluorescence quantum yield.

保護基需要具有比發光體及主體材料的T1能階高的三重激發能階。因此,較佳為使用飽和烴基。這是因為不具有π鍵的取代基的三重激發能階高。此外,不具有π鍵的取代基不具有載子(電子或電洞)的傳輸功能。因此,飽和烴基可以幾乎不給主體材料的激發態或載子傳輸性帶來影響而使發光體和主體材料之間的距離長。此外,在同時包含不具有π鍵的取代基與具有π共軛的取代基的有機化合物中,在很多情況下,前沿軌域{HOMO(Highest Occupied Molecular Orbital,也稱為最高佔據分子軌域)及LUMO(Lowest Unoccupied Molecular Orbital,也稱為最低未佔用分子軌域)}存在於具有π共軛的取代基一側,尤其是,發光體具有前沿軌域的情況很多。如後面說明,對基於德克斯特機制的能量轉移來說,能量施體及能量受體的HOMO的重疊以及能量施體及能量受體的LUMO的重疊很重要。因此,藉由將飽和烴基用於保護基,可以使作為能量施體的主體材料的前沿軌域與作為能量受體的客體材料的前沿軌域之間的距離長,因此可以抑制基於德克斯特機制的能量轉移。The protecting group needs to have a triplet excitation energy level higher than the T1 energy level of the luminescent body and the host material. Therefore, it is better to use a saturated hydrocarbon group. This is because the triplet excitation energy level of the substituent without a π bond is high. In addition, the substituent without a π bond does not have the function of transporting carriers (electrons or holes). Therefore, the saturated hydrocarbon group can almost not affect the excited state or carrier transportability of the host material and make the distance between the luminescent body and the host material longer. Furthermore, in organic compounds containing both a substituent having no π bond and a substituent having π conjugation, frontier orbital domains {HOMO (Highest Occupied Molecular Orbital, also called the highest occupied molecular orbital domain) and LUMO (Lowest Unoccupied Molecular Orbital, also called the lowest unoccupied molecular orbital domain)} are often present on the side of the substituent having π conjugation, and in particular, there are many cases where the luminescent body has a frontier orbital domain. As described later, for energy transfer based on the Dexter mechanism, the overlap of the HOMO of the energy donor and the energy acceptor and the overlap of the LUMO of the energy donor and the energy acceptor are important. Therefore, by using a saturated hydrocarbon group as a protecting group, the distance between the frontier orbital domain of the host material as an energy donor and the frontier orbital domain of the guest material as an energy acceptor can be lengthened, thereby suppressing energy transfer based on the Dexter mechanism.

作為保護基的具體例子,可以舉出碳原子數為1以上且10以下的烷基。因為需要使發光體和主體材料之間的距離長,所以保護基較佳為龐大的取代基。換言之,較佳為空間位阻大的取代基。因此,可以適用碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基、碳原子數為3以上且10以下的三烷基矽基。尤其是,烷基較佳為龐大的支鏈烷基。此外,該取代基在包含四級碳時為龐大的取代基,所以特別較佳的。As a specific example of a protecting group, an alkyl group having 1 to 10 carbon atoms can be cited. Since the distance between the luminescent body and the main material needs to be long, the protecting group is preferably a bulky substituent. In other words, a substituent with large steric hindrance is preferred. Therefore, an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms can be applied. In particular, the alkyl group is preferably a bulky branched alkyl group. In addition, the substituent is a bulky substituent when it contains a quaternary carbon, so it is particularly preferred.

此外,較佳為相對於一個發光體具有五個以上的保護基。藉由採用該結構,可以由保護基覆蓋發光體整體,因此可以適當地調節主體材料和發光體之間的距離。雖然在圖2B中示出發光體和保護基直接鍵合的情況,但是,更佳的是,保護基與發光體不直接鍵合。例如,保護基也可以藉由伸芳基或胺基等二價以上的取代基與發光體鍵合。藉由該取代基使保護基與發光體鍵合,由此可以有效地使發光體和主體材料之間的距離長。因此,當發光體和保護基不直接鍵合時,藉由相對於一個發光體具有四個以上的保護基,可以有效地抑制基於德克斯特機制的能量轉移。In addition, it is preferred to have five or more protecting groups relative to one luminophore. By adopting this structure, the entire luminophore can be covered by the protecting groups, so the distance between the host material and the luminophore can be appropriately adjusted. Although FIG. 2B shows a case where the luminophore and the protecting groups are directly bonded, it is more preferred that the protecting groups are not directly bonded to the luminophore. For example, the protecting group may also be bonded to the luminophore via a divalent or higher substituent such as an aryl group or an amine group. By bonding the protecting group to the luminophore via the substituent, the distance between the luminophore and the host material can be effectively lengthened. Therefore, when the luminophore and the protecting group are not directly bonded, by having four or more protecting groups relative to one luminophore, energy transfer based on the Dexter mechanism can be effectively suppressed.

此外,使發光體和保護基鍵合的二價以上的取代基較佳為具有π共軛的取代基。藉由採用該結構,可以調節客體材料的發光顏色、HOMO能階、玻璃化轉變點等物性。此外,保護基較佳為以在以發光體為中心觀察分子結構時位於最外側的方式配置。In addition, the divalent or higher substituent that bonds the luminescent body and the protective group is preferably a substituent having π conjugation. By adopting this structure, the physical properties of the guest material such as the luminescent color, HOMO energy level, and glass transition point can be adjusted. In addition, the protective group is preferably arranged in a manner that is located on the outermost side when the molecular structure is observed with the luminescent body as the center.

<具有保護基的螢光材料以及分子結構的例子> 在此,示出由下述結構式(102)表示的可用於本發明的一個實施方式的發光元件的螢光材料N,N’-[(2-三級丁基蒽)-9,10-二基]-N,N’-雙(3,5-二-三級丁基苯基)胺(簡稱:2tBu-mmtBuDPhA2Anth)的結構。在2tBu-mmtBuDPhA2Anth中,蒽環是發光體,三級丁基(tBu基)被用作保護基。<Examples of fluorescent materials and molecular structures having protective groups> Here, the structure of the fluorescent material N,N'-[(2-tert-butylanthracene)-9,10-diyl]-N,N'-bis(3,5-di-tert-butylphenyl)amine (abbreviated as: 2tBu-mmtBuDPhA2Anth) which can be used in a light-emitting element of one embodiment of the present invention, represented by the following structural formula (102) is shown. In 2tBu-mmtBuDPhA2Anth, the anthracene ring is the luminescent body, and the tert-butyl group (tBu group) is used as a protective group.

在圖3B中,以球棍模型表示上述2tBu-mmtBuDPhA2Anth。在圖3B中,示出從圖3A的箭頭方向(與蒽環面水平的方向)看2tBu-mmtBuDPhA2Anth時的情況。圖3B的陰影部分表示作為發光體的蒽環面的正上部分,可以確認到該正上部分具有與作為保護基的tBu基重疊的區域。例如,在圖3B中,由箭頭(a)表示的原子是與該陰影部分重疊的tBu基的碳原子,由箭頭(b)表示的原子是與該陰影部分重疊的tBu基的氫原子。就是說,在2tBu-mmtBuDPhA2Anth中,構成保護基的原子位於發光體面的一個面的正上,構成保護基的原子也位於發光體面的一個面的正上。藉由採用該結構,即使在客體材料分散於主體材料中的狀態下,在作為發光體的蒽環的平面方向和垂直方向上,也可以使蒽環與主體材料之間的距離長,因此可以抑制基於德克斯特機制的能量轉移。In FIG3B , the above-mentioned 2tBu-mmtBuDPhA2Anth is represented by a ball-and-stick model. FIG3B shows the situation when 2tBu-mmtBuDPhA2Anth is viewed from the direction of the arrow in FIG3A (the direction horizontal to the anthracene ring plane). The shaded portion in FIG3B represents the portion directly above the anthracene ring plane as the luminescent body, and it can be confirmed that the portion directly above has a region overlapping with the tBu group as the protecting group. For example, in FIG3B , the atom represented by the arrow (a) is the carbon atom of the tBu group overlapping with the shaded portion, and the atom represented by the arrow (b) is the hydrogen atom of the tBu group overlapping with the shaded portion. That is, in 2tBu-mmtBuDPhA2Anth, the atoms constituting the protective group are located directly above one of the luminescent body surfaces, and the atoms constituting the protective group are also located directly above one of the luminescent body surfaces. By adopting this structure, even when the guest material is dispersed in the host material, the distance between the anthracene ring as the luminescent body and the host material can be made long in the plane direction and the vertical direction of the anthracene ring, thereby suppressing the energy transfer based on the Dexter mechanism.

例如,在有關能量轉移的遷移是HOMO和LUMO之間的遷移的情況下,對基於德克斯特機制的能量轉移來說,主體材料的HOMO和客體材料的HOMO的重疊以及主體材料的LUMO和客體材料的LUMO的重疊很重要。在這兩個材料的HOMO及LUMO重疊時,德克斯特機制顯著地發生。因此,為了抑制德克斯特機制,重要的是,抑制兩個材料的HOMO及LUMO的重疊。就是說,重要的是,使關係到激發態的骨架和主體材料之間的距離長。在此,在螢光材料中,HOMO及LUMO大多具有發光體。例如,當客體材料的HOMO及LUMO擴散到發光體面的上方及下方(2tBu-mmtBuDPhA2Anth中的蒽環的上方及下方)時,由保護基覆蓋發光體面的上方及下方是在分子結構中很重要。For example, when the migration related to energy transfer is the migration between HOMO and LUMO, the overlap of the HOMO of the host material and the HOMO of the guest material, and the overlap of the LUMO of the host material and the LUMO of the guest material are important for the energy transfer based on the Dexter mechanism. When the HOMO and LUMO of these two materials overlap, the Dexter mechanism occurs significantly. Therefore, in order to suppress the Dexter mechanism, it is important to suppress the overlap of the HOMO and LUMO of the two materials. That is, it is important to make the distance between the skeleton related to the excited state and the host material long. Here, in fluorescent materials, HOMO and LUMO often have a luminescent body. For example, when the HOMO and LUMO of the guest material diffuse above and below the light-emitting surface (above and below the anthracene ring in 2tBu-mmtBuDPhA2Anth), it is important in the molecular structure that the light-emitting surface is covered by the protecting group above and below.

此外,在芘環或蒽環等被用作發光體的稠合芳香環或稠合雜芳環中,在該環平面上存在躍遷偶極向量。因此,在圖3B中,2tBu-mmtBuDPhA2Anth在躍遷偶極向量存在的面,亦即在蒽環的面的正上較佳為具有與作為保護基的tBu基重疊的區域。明確而言,構成多個保護基(圖3A和圖3B中的tBu基)的原子中的至少一個位於稠合芳香環或稠合雜芳環(圖3A和圖3B中的蒽環)的一個面的正上,該構成多個保護基的原子中的至少一個位於該稠合芳香環或稠合雜芳環的另一個面的正上。藉由採用該結構,即使在客體材料分散於主體材料中的狀態下,也可以使發光體與主體材料之間的距離長,因此可以抑制基於德克斯特機制的能量轉移。此外,較佳的是,以覆蓋如蒽環那樣的發光體的方式配置tBu基。In addition, in a fused aromatic ring or fused heteroaromatic ring such as a pyrene ring or anthracene ring used as a luminescent body, a transition dipole vector exists on the ring plane. Therefore, in FIG3B , 2tBu-mmtBuDPhA2Anth preferably has a region overlapping with the tBu group as a protecting group on the surface where the transition dipole vector exists, that is, directly on the surface of the anthracene ring. Specifically, at least one of the atoms constituting the multiple protecting groups (tBu groups in FIG3A and FIG3B ) is located directly on one surface of the fused aromatic ring or the fused heteroaromatic ring (the anthracene ring in FIG3A and FIG3B ), and at least one of the atoms constituting the multiple protecting groups is located directly on another surface of the fused aromatic ring or the fused heteroaromatic ring. By adopting this structure, even when the guest material is dispersed in the host material, the distance between the light-emitting body and the host material can be made long, thereby suppressing energy transfer based on the Dexter mechanism. In addition, it is preferable to arrange the tBu group so as to cover the light-emitting body such as anthracene ring.

<使用具有五員環骨架的磷光材料的理由> 接著,考慮能量施體。本案發明人等發現:藉由將具有五員環骨架的材料用作作為能量施體使用的磷光材料,可以有效地利用基於福斯特機制的能量轉移。如後面說明,作為龐大能量施體可以適當地使用具有五員環骨架的磷光材料。<Reasons for using phosphorescent materials with a five-membered ring skeleton> Next, consider the energy donor. The inventors of this case found that by using a material with a five-membered ring skeleton as a phosphorescent material used as an energy donor, energy transfer based on the Förster mechanism can be effectively utilized. As described later, phosphorescent materials with a five-membered ring skeleton can be appropriately used as a large energy donor.

作為五員環骨架較佳為使用芳雜環骨架,例如可以舉出吡咯骨架、吡唑骨架、咪唑骨架、三唑骨架或四唑骨架、苯并咪唑骨架、萘并咪唑骨架等。尤其是,較佳為使用具有咪唑骨架、三唑骨架、苯并咪唑骨架、萘并咪唑骨架的磷光材料,其中尤其較佳為使用將該骨架作為配體的金屬錯合物,較佳為作為配體包括該骨架且作為中心金屬具有第8至第10族且第5及第6週期的金屬(Ru、Rh、Pd、Os、Ir或Pt),其中Ir錯合物是尤其較佳的。另外,苯并咪唑骨架、萘并咪唑骨架是具有咪唑骨架的骨架的一個例子。As the five-membered ring skeleton, it is preferred to use an aromatic ring skeleton, for example, a pyrrole skeleton, a pyrazole skeleton, an imidazole skeleton, a triazole skeleton or a tetrazole skeleton, a benzimidazole skeleton, a naphthylimidazole skeleton, etc. In particular, it is preferred to use a phosphorescent material having an imidazole skeleton, a triazole skeleton, a benzimidazole skeleton, or a naphthylimidazole skeleton, and it is particularly preferred to use a metal complex using the skeleton as a ligand, and it is preferred to include the skeleton as a ligand and have a metal (Ru, Rh, Pd, Os, Ir, or Pt) of the 8th to 10th group and the 5th and 6th period as a central metal, and Ir complexes are particularly preferred. In addition, a benzimidazole skeleton and a naphthylimidazole skeleton are examples of a skeleton having an imidazole skeleton.

作為配體具有五員環骨架的磷光材料具有HOMO能階高的傾向。在發光層130中,在HOMO能階高的材料用於上述化合物133(能量施體)時,可以抑制在使電流流過發光元件150時對作為客體材料(能量受體)的化合物132填補電洞,換言之,可以抑制化合物132帶正電。除了上述激態錯合物,電流所導致的化合物的激發由於對同一分子上填補電洞及電子而發生。因此,藉由將HOMO能階高的材料用於化合物133,可以抑制化合物132上的電流激發(化合物132的直接激發)。在化合物132直接激發時,由於化合物132是螢光材料,所以所產生的三重激子無助於發光而導致發光效率的下降。由此,在具有五員環骨架的磷光材料的HOMO能階高時,藉由將該磷光材料作為化合物133使用,可以抑制發光元件150的發光效率下降。Phosphorescent materials having a five-membered ring skeleton as a ligand tend to have a high HOMO energy level. In the light-emitting layer 130, when a material having a high HOMO energy level is used for the above-mentioned compound 133 (energy donor), it is possible to suppress the filling of charge holes in the compound 132 as the guest material (energy acceptor) when a current is passed through the light-emitting element 150. In other words, it is possible to suppress the compound 132 from being positively charged. Except for the above-mentioned excited state complex, the excitation of the compound caused by the current occurs due to the filling of charge holes and electrons on the same molecule. Therefore, by using a material having a high HOMO energy level for compound 133, the current excitation on compound 132 (direct excitation of compound 132) can be suppressed. When compound 132 is directly excited, since compound 132 is a fluorescent material, the triplet excitons generated do not contribute to luminescence, resulting in a decrease in luminescence efficiency. Thus, when the HOMO energy level of the phosphorescent material having a five-membered ring skeleton is high, by using the phosphorescent material as the compound 133, a decrease in the light emission efficiency of the light-emitting element 150 can be suppressed.

<作為龐大能量施體的具有五員環骨架的磷光材料> 在此,作為能夠用於本發明的一個實施方式的在配體具有五員環骨架的磷光材料,以下表示在配體具有五員環骨架的Ir錯合物的一個例子。Ir(mpptz-diPrp)3 是作為五員環骨架具有三唑骨架的Ir錯合物,fac-Ir(pbi-diBup)3 是具有咪唑骨架的Ir錯合物。<Phosphorescent material with a five-membered ring skeleton as a large energy donor> Here, as a phosphorescent material with a five-membered ring skeleton in a ligand that can be used in one embodiment of the present invention, an example of an Ir complex with a five-membered ring skeleton in a ligand is shown below. Ir(mpptz-diPrp) 3 is an Ir complex with a triazole skeleton as a five-membered ring skeleton, and fac-Ir(pbi-diBup) 3 is an Ir complex with an imidazole skeleton.

如上述Ir錯合物那樣,在作為配體所具有的五員環骨架使用在該五員環骨架中包含兩個以上的氮原子的骨架,例如咪唑骨架或三唑骨架時,存在有不與金屬配位的氮。不與金屬配位的氮的至少一個與雙鍵無關,所以可以保持芳香環而具有取代基(上述Ir錯合物中,以圓圈圍繞的氮原子)。作為該取代基可以舉出氫、烷基、芳烴基等各種取代基,較佳為使用取代或未取代的碳原子數為6至13的芳烴基。尤其是,較佳為使用未取代的苯基或具有一個或多個碳原子數為1至6的烷基的苯基。另外,也可以在該苯基還鍵合有氟、氰基、氟化烷基等拉電子基團。藉由採用該結構,可以提高該Ir錯合物的熱穩定性及昇華性。As in the above-mentioned Ir complex, when a five-membered ring skeleton having two or more nitrogen atoms in the five-membered ring skeleton, such as an imidazole skeleton or a triazole skeleton, is used as the five-membered ring skeleton possessed by the ligand, there is nitrogen that is not coordinated with the metal. At least one of the nitrogen that is not coordinated with the metal is not related to the double bond, so the aromatic ring can be maintained and a substituent (a nitrogen atom surrounded by a circle in the above-mentioned Ir complex) can be included. As the substituent, various substituents such as hydrogen, alkyl, and aromatic hydrocarbon groups can be cited, and it is preferred to use a substituted or unsubstituted aromatic hydrocarbon group with 6 to 13 carbon atoms. In particular, it is preferred to use an unsubstituted phenyl group or a phenyl group having one or more alkyl groups with 1 to 6 carbon atoms. In addition, the phenyl group may also be bonded with an electron-withdrawing group such as fluorine, cyano, or fluorinated alkyl. By adopting this structure, the thermal stability and sublimation properties of the Ir complex can be improved.

因此,在作為Ir錯合物的配體使用具有五員環骨架的化合物時,該氮原子較佳為作為取代基具有取代或未取代的碳原子數為6至13的芳烴基。藉由具有該取代基,配體具有空間位阻大的龐大結構。其結果是,該Ir錯合物具有龐大結構。換言之,在將具有五員環骨架的化合物用於磷光材料的配體時,該Ir錯合物容易成為龐大結構。Therefore, when a compound having a five-membered ring skeleton is used as a ligand of an Ir complex, the nitrogen atom preferably has a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms as a substituent. By having the substituent, the ligand has a bulky structure with large steric hindrance. As a result, the Ir complex has a bulky structure. In other words, when a compound having a five-membered ring skeleton is used as a ligand of a phosphorescent material, the Ir complex tends to have a bulky structure.

在此,考慮該Ir錯合物被激發的情況。在磷光材料的Ir錯合物中,在很多情況下,最低三重激發能階來源於三重MLCT。因此,三重激發能在很多情況下存在於Ir原子及配體中的配位於Ir原子的部分(配位於Ir的氮原子、鄰位金屬化的碳原子)附近。Here, let's consider the case where the Ir complex is excited. In the Ir complex of the phosphorescent material, the lowest triplet excitation energy level often originates from the triplet MLCT. Therefore, the triplet excitation energy often exists near the Ir atom and the part of the ligand coordinated to the Ir atom (nitrogen atom coordinated to Ir, or adjacent metallized carbon atom).

在此,考慮使具有龐大配體的Ir錯合物分散到發光層中的情況。由於是龐大配體,所以可以使Ir錯合物中的Ir原子與Ir錯合物周圍的材料間的距離長。換言之,可以抑制基於德克斯特機制的三重激發能的失活。Here, we consider the case where an Ir complex having a bulky ligand is dispersed in the light-emitting layer. The bulky ligand can increase the distance between the Ir atoms in the Ir complex and the material surrounding the Ir complex. In other words, the deactivation of triplet excitation energy based on the Dexter mechanism can be suppressed.

在此,考慮將該龐大Ir錯合物用於上述化合物133的情況。如上所述,可以抑制基於德克斯特機制的從化合物133向化合物132的激發能量的失活(路徑A3 )。因此,可以高效地利用經由路徑A2 的能量轉移(基於福斯特機制的能量轉移)。如此,藉由使用將五員環骨架作為配體的Ir錯合物,可以獲得發光效率高的發光元件。Here, the case where this large Ir complex is used for the above-mentioned compound 133 is considered. As described above, the deactivation of the excitation energy from compound 133 to compound 132 based on the Dexter mechanism (path A 3 ) can be suppressed. Therefore, the energy transfer via the path A 2 (energy transfer based on the Förster mechanism) can be efficiently utilized. In this way, by using an Ir complex having a five-membered ring skeleton as a ligand, a light-emitting element with high light-emitting efficiency can be obtained.

另外,如上所述,藉由將五員環骨架作為配體的Ir錯合物作為能量施體使用,可以抑制基於德克斯特機制的激發能量的轉移。因此,將五員環作為配體的Ir錯合物用於能量施體時,即使作為客體材料的能量受體所具有的保護基的數量少,也可以高效地利用經由路徑A2 的能量轉移。在此情況下,能量受體較佳為對每一個發光體具有至少兩個保護基,更佳為具有三個以上的保護基,進一步較佳為具有四個以上的保護基。作為用於該Ir錯合物的配體的五員環骨架,較佳為使用咪唑骨架或三唑骨架。並且,在該Ir錯合物中,更佳為採用對不與Ir鍵合且與雙鍵無關的氮原子鍵合有作為取代基的取代或未取代的碳原子數為6至13的芳烴基的結構。另外,在該芳烴基是苯基且該苯基具有取代基時,作為該取代基更佳為具有碳原子數為1至6的烷基。In addition, as described above, by using an Ir complex having a five-membered ring skeleton as a ligand as an energy donor, the transfer of excitation energy based on the Dexter mechanism can be suppressed. Therefore, when an Ir complex having a five-membered ring as a ligand is used as an energy donor, even if the number of protecting groups possessed by the energy acceptor as the guest material is small, the energy transfer via the path A2 can be efficiently utilized. In this case, the energy acceptor preferably has at least two protecting groups for each luminescent body, more preferably has three or more protecting groups, and further preferably has four or more protecting groups. As a five-membered ring skeleton of the ligand used for the Ir complex, an imidazole skeleton or a triazole skeleton is preferably used. Furthermore, in the Ir complex, it is more preferred to adopt a structure in which a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms is bonded to a nitrogen atom which is not bonded to Ir and is not involved in a double bond. In addition, when the aromatic hydrocarbon group is a phenyl group and the phenyl group has a substituent, the substituent is more preferably an alkyl group having 1 to 6 carbon atoms.

明確而言,作為碳原子數為6至13的芳烴基,可以舉出苯基、聯苯基、萘基、茀基等。另外,作為碳原子數為1至6的烷基,可以舉出甲基、乙基、丙基、戊基、己基、環己基、降莰基、金剛烷基、異丙基、二級丁基、異丁基、三級丁基、異戊基、二級戊基、三級戊基、新戊基、異己基、3-甲基戊基、2-甲基戊基、2-乙基丁基、1,2-二甲基丁基、2,3-二甲基丁基等。注意,碳原子數為6至13的芳烴基及碳原子數為1至6的烷基不侷限於此。Specifically, as the aromatic group having 6 to 13 carbon atoms, there can be mentioned phenyl, biphenyl, naphthyl, fluorenyl, etc. Also, as the alkyl group having 1 to 6 carbon atoms, there can be mentioned methyl, ethyl, propyl, pentyl, hexyl, cyclohexyl, norbornyl, adamantyl, isopropyl, dibutyl, isobutyl, tertiary butyl, isopentyl, dipentyl, tertiary pentyl, neopentyl, isohexyl, 3-methylpentyl, 2-methylpentyl, 2-ethylbutyl, 1,2-dimethylbutyl, 2,3-dimethylbutyl, etc. Note that the aromatic group having 6 to 13 carbon atoms and the alkyl group having 1 to 6 carbon atoms are not limited thereto.

另外,將五員環骨架作為配體的Ir錯合物的三重激發能高於只由六員環骨架構成的Ir錯合物。因此,在作為化合物132使用發射綠色、藍色等較短波長的發光的螢光材料用作能量受體時,將五員環骨架作為配體的Ir錯合物適當地用於能量施體。In addition, the triplet excitation energy of an Ir complex having a five-membered ring skeleton as a ligand is higher than that of an Ir complex consisting of only a six-membered ring skeleton. Therefore, when a fluorescent material emitting shorter wavelengths such as green and blue is used as an energy acceptor as Compound 132, an Ir complex having a five-membered ring skeleton as a ligand is preferably used as an energy donor.

如後面說明,在基於福斯特機制的能量轉移中,能量受體的吸收光譜(最長波長一側的吸收帶(主要來源於S1能階的吸收帶))與能量施體的發射光譜的重疊越大越好。當在藍色至綠色的較短波長一側(400nm至580nm)具有發光峰值的螢光材料時,該螢光材料的該吸收帶也可以存在於短波長一側。因此,為了擴大該吸收帶與能量施體的發射光譜的重疊,較佳為使用三重激發能大的能量施體。As described later, in the energy transfer based on the Förster mechanism, the greater the overlap between the absorption spectrum of the energy acceptor (absorption band on the longest wavelength side (absorption band mainly derived from the S1 energy level)) and the emission spectrum of the energy donor, the better. When a fluorescent material has a luminescence peak on the shorter wavelength side (400nm to 580nm) from blue to green, the absorption band of the fluorescent material may also exist on the short wavelength side. Therefore, in order to expand the overlap between the absorption band and the emission spectrum of the energy donor, it is preferred to use an energy donor with a large triplet excitation energy.

另外,藉由使用在化合物133具有五員環骨架的磷光材料,可以在抑制基於德克斯特機制的能量轉移的同時高效地利用基於福斯特機制的能量轉移,因此,可以在將作為能量施體的化合物133添加到發光層130時增高其濃度。其結果是,可以實現本來是矛盾的現象,亦即在抑制基於德克斯特機制的能量轉移的同時增高基於福斯特機制的能量轉移速度。相對於主體材料的化合物133的濃度較佳為2wt%以上且30wt%以下,更佳為5wt%以上且20wt%以下,進一步較佳為5wt%以上且15wt%以下。藉由採用該結構,可以增高基於福斯特機制的能量轉移速度,因此可以得到發光效率高的發光元件。此外,因為使用穩定性高的螢光材料提高發光效率,所以可以製造可靠性高的發光元件。注意,化合物133和螢光材料的化合物132的濃度較佳為都高。另外,化合物133和化合物132的濃度較佳為相同的左右高。明確而言,化合物133與化合物132的濃度比較佳為1:0.2以上且1:5以下,更佳為1:0.5以上且1:2以下。In addition, by using a phosphorescent material having a five-membered ring skeleton in compound 133, energy transfer based on the Förster mechanism can be efficiently utilized while suppressing energy transfer based on the Dexter mechanism. Therefore, when compound 133 as an energy donor is added to the light-emitting layer 130, its concentration can be increased. As a result, a phenomenon that is originally contradictory can be achieved, that is, energy transfer based on the Dexter mechanism is suppressed while increasing the energy transfer rate based on the Förster mechanism. The concentration of compound 133 relative to the host material is preferably greater than 2wt% and less than 30wt%, more preferably greater than 5wt% and less than 20wt%, and further preferably greater than 5wt% and less than 15wt%. By adopting this structure, the energy transfer rate based on the Förster mechanism can be increased, so a light-emitting element with high light-emitting efficiency can be obtained. In addition, since the luminescence efficiency is improved by using a highly stable fluorescent material, a highly reliable light-emitting element can be manufactured. Note that the concentrations of compound 133 and compound 132 of the fluorescent material are preferably both high. In addition, the concentrations of compound 133 and compound 132 are preferably about the same high. Specifically, the concentration ratio of compound 133 to compound 132 is preferably 1:0.2 or more and 1:5 or less, and more preferably 1:0.5 or more and 1:2 or less.

<發光層的結構例子2> 圖4C示出本發明的一個實施方式的發光元件150的發光層130中的能階相關的一個例子。圖4A所示的發光層130包括化合物131、化合物132以及化合物133。在本發明的一個實施方式中,化合物132較佳為螢光材料。此外,在本結構例子中,化合物131和化合物133是形成激態錯合物的組合。以下說明在化合物133為具有五員環骨架的磷光材料的情況。<Structural example 2 of the light-emitting layer> Figure 4C shows an example of the energy level correlation in the light-emitting layer 130 of the light-emitting element 150 of one embodiment of the present invention. The light-emitting layer 130 shown in Figure 4A includes compound 131, compound 132, and compound 133. In one embodiment of the present invention, compound 132 is preferably a fluorescent material. In addition, in this structural example, compound 131 and compound 133 are a combination that forms an excited state complex. The following describes the case where compound 133 is a phosphorescent material having a five-membered ring skeleton.

作為化合物131與化合物133的組合,只要是能夠形成激態錯合物的組合即可,較佳為其中一個是具有傳輸電洞的功能(電洞傳輸性)的化合物,另一個是具有傳輸電子的功能(電子傳輸性)的化合物。在該情況下,容易形成施體-受體型的激態錯合物,而可以高效地形成激態錯合物。另外,當化合物131與化合物133的組合是具有電洞傳輸性的化合物與具有電子傳輸性的化合物的組合時,能夠藉由調整其混合比而容易地控制載子的平衡。明確而言,具有電洞傳輸性的化合物:具有電子傳輸性的化合物較佳為在1:9至9:1(重量比)的範圍內。另外,藉由具有該結構,可以容易地控制載子的平衡,由此也可以容易地對載子再結合區域進行控制。具有五員環骨架的磷光材料的HOMO能階容易提高。因此,作為具有電洞傳輸性材料適當地使用。As a combination of compound 131 and compound 133, any combination that can form an excited complex is sufficient, and preferably one of them is a compound having a function of transporting holes (hole transportability) and the other is a compound having a function of transporting electrons (electron transportability). In this case, a donor-acceptor type excited complex is easily formed, and an excited complex can be formed efficiently. In addition, when the combination of compound 131 and compound 133 is a combination of a compound having hole transportability and a compound having electron transportability, the balance of carriers can be easily controlled by adjusting their mixing ratio. Specifically, the ratio of compound having hole transportability:compound having electron transportability is preferably in the range of 1:9 to 9:1 (weight ratio). In addition, by having this structure, the balance of carriers can be easily controlled, thereby also making it easy to control the carrier recombination region. The HOMO level of phosphorescent materials having a five-membered ring skeleton is easily increased, and therefore, they are preferably used as materials having hole transport properties.

另外,作為高效地形成激態錯合物的主體材料的組合,較佳的是,化合物131及化合物133中的一個的HOMO能階高於另一個的HOMO能階,並且其中一個的LUMO能階高於另一個的LUMO能階。另外,化合物131的HOMO能階也可以與化合物133的HOMO能階相等,或者,化合物131的LUMO能階也可以與化合物133的LUMO能階相等。In addition, as a combination of host materials that efficiently forms an excited complex, it is preferred that the HOMO energy level of one of Compound 131 and Compound 133 is higher than the HOMO energy level of the other, and the LUMO energy level of one of them is higher than the LUMO energy level of the other. In addition, the HOMO energy level of Compound 131 may be equal to the HOMO energy level of Compound 133, or the LUMO energy level of Compound 131 may be equal to the LUMO energy level of Compound 133.

注意,化合物的LUMO能階及HOMO能階可以從藉由循環伏安(CV)測量測得的化合物的電化學特性(還原電位及氧化電位)求出。Note that the LUMO energy level and the HOMO energy level of a compound can be obtained from the electrochemical properties (reduction potential and oxidation potential) of the compound measured by cyclic voltammetry (CV) measurement.

例如,當化合物133具有電洞傳輸性而化合物131具有電子傳輸性時,如圖4B所示的能帶圖那樣,較佳的是,化合物133的HOMO能階高於化合物131的HOMO能階,且化合物133的LUMO能階高於化合物131的LUMO能階。藉由這種能階相關,從一對電極(電極101及電極102)注入的作為載子的電洞及電子分別容易注入到化合物133及化合物131,所以是較佳的。For example, when compound 133 has hole transportability and compound 131 has electron transportability, as shown in the energy band diagram of FIG4B , it is preferred that the HOMO energy level of compound 133 is higher than the HOMO energy level of compound 131, and the LUMO energy level of compound 133 is higher than the LUMO energy level of compound 131. Due to this energy level correlation, holes and electrons as carriers injected from a pair of electrodes (electrode 101 and electrode 102) are easily injected into compound 133 and compound 131, respectively, which is preferred.

另外,在圖4B中,Comp(131)表示化合物131,Comp(133)表示化合物133,∆EC1 表示化合物131的LUMO能階和HOMO能階的能量差,∆EC3 表示化合物133的LUMO能階和HOMO能階的能量差,並且∆EE 表示化合物131的LUMO能階和化合物133的HOMO能階的能量差。In addition, in Figure 4B, Comp(131) represents compound 131, Comp(133) represents compound 133, ∆E C1 represents the energy difference between the LUMO energy level and the HOMO energy level of compound 131, ∆E C3 represents the energy difference between the LUMO energy level and the HOMO energy level of compound 133, and ∆E E represents the energy difference between the LUMO energy level of compound 131 and the HOMO energy level of compound 133.

另外,由化合物131和化合物133形成的激態錯合物在化合物133中具有HOMO的分子軌域並在化合物131中具有LUMO的分子軌域。另外,該激態錯合物的激發能大致相當於化合物131的LUMO能階和化合物133的HOMO能階的能量差(∆EE ),並小於化合物131的LUMO能階和HOMO能階的能量差(∆EC1 )及化合物133的LUMO能階和HOMO能階的能量差(∆EC3 )。因此,藉由由化合物131和化合物133形成激態錯合物,可以以較低的激發能形成激發態。另外,該激態錯合物因具有較低的激發能而能夠形成穩定的激發態。In addition, the excited complex formed by Compound 131 and Compound 133 has a molecular orbital of HOMO in Compound 133 and a molecular orbital of LUMO in Compound 131. In addition, the excitation energy of the excited complex is approximately equivalent to the energy difference (∆E E ) between the LUMO energy level of Compound 131 and the HOMO energy level of Compound 133, and is smaller than the energy difference (∆E C1 ) between the LUMO energy level and the HOMO energy level of Compound 131 and the energy difference (∆E C3 ) between the LUMO energy level and the HOMO energy level of Compound 133. Therefore, by forming an excited complex by Compound 131 and Compound 133, an excited state can be formed with a lower excitation energy. In addition, the excited complex can form a stable excited state due to its lower excitation energy.

圖4C示出發光層130中的化合物131、化合物132以及化合物133的能階相關。如下是圖4C中的標記及符號。 •Comp(131):化合物131 •Comp(133):化合物133 •Guest(132):化合物132 •SC1 :化合物131的S1能階 •TC1 :化合物131的T1能階 •SC3 :化合物133的S1能階 •TC3 :化合物133的S1能階 •SG :化合物132的S1能階 •TG :化合物132的T1能階 •SE :激態錯合物的S1能階 •TE :激態錯合物的T1能階FIG4C shows the energy level correlation of compound 131, compound 132, and compound 133 in the light-emitting layer 130. The following are the notations and symbols in FIG4C. • Comp(131): compound 131 • Comp(133): compound 133 • Guest(132): compound 132 • S C1 : S1 energy level of compound 131 • T C1 : T1 energy level of compound 131 • S C3 : S1 energy level of compound 133 • T C3 : S1 energy level of compound 133 • S G : S1 energy level of compound 132 • T G : T1 energy level of compound 132 • S E : S1 energy level of excited complex • T E : T1 energy level of excited complex

在本發明的一個實施方式的發光元件中,發光層130所包含的化合物131及化合物133形成激態錯合物。激態錯合物的S1能階(SE )與激態錯合物的T1能階(TE )成為相鄰的能階(參照圖4C中的路徑A4 )。In the light-emitting device of one embodiment of the present invention, the compound 131 and the compound 133 included in the light-emitting layer 130 form an excited complex. The S1 energy level ( SE ) of the excited complex and the T1 energy level ( TE ) of the excited complex are adjacent energy levels (see path A4 in FIG4C).

激態錯合物的激發能階(SE 及TE )比形成激態錯合物的各物質(化合物131及化合物133)的S1能階(SC1 及SC3 )低,所以可以以更低的激發能形成激發態。由此,可以降低發光元件150的驅動電壓。The excitation energy levels ( SE and TE ) of the excited complex are lower than the S1 energy levels ( SC1 and SC3 ) of the substances forming the excited complex (Compound 131 and Compound 133), so an excited state can be formed with lower excitation energy. Thus, the driving voltage of the light-emitting element 150 can be reduced.

因為激態錯合物的S1能階(SE )和T1能階(TE )是彼此相鄰的能階,所以容易產生反系間竄越而具有TADF特性。因此,激態錯合物具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖4C的路徑A5 )。激態錯合物的單重激發能可以迅速地轉移到化合物132(圖4C的路徑A6 )。此時,較佳為滿足SE ≥SG 。在路徑A6 中,激態錯合物被用作能量施體,化合物132被用作能量受體。明確而言,較佳的是,在激態錯合物的螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SE ,將化合物132的吸收光譜的吸收端的波長的能量或者化合物132的螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SG ,此時滿足SE ≥SGBecause the S1 energy level ( SE ) and T1 energy level ( TE ) of the excited complex are adjacent energy levels, antisystem crossing is easily generated and TADF characteristics are obtained. Therefore, the excited complex has the function of converting triplet excitation energy into singlet excitation energy by up-conversion (path A5 in Figure 4C). The singlet excitation energy of the excited complex can be quickly transferred to compound 132 (path A6 in Figure 4C). At this time, it is preferred to satisfy SESG . In path A6 , the excited complex is used as an energy donor and compound 132 is used as an energy acceptor. Specifically, it is preferred that a tangent line is drawn at the tail of the short-wavelength side of the fluorescence spectrum of the excited complex, and the energy of the wavelength of its extrapolated line is set to SE , and the energy of the wavelength of the absorption end of the absorption spectrum of compound 132 or the tail of the short-wavelength side of the fluorescence spectrum of compound 132 is drawn, and the energy of the wavelength of its extrapolated line is set to SG , in which case SESG is satisfied.

為了增高TADF特性,較佳的是,化合物131及化合物133的T1能階,亦即TC1 及TC3 為TE 以上。作為其指標,較佳的是,化合物131及化合物133的磷光光譜的最短波長一側的發光峰值波長都是激態錯合物的最大發光峰值波長以下。或者,較佳的是,在激態錯合物的發射光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為TE ,在化合物131及化合物133的磷光光譜的短波長一側的尾處分別劃切線,將其外推線的波長的能量設定為各化合物的TC1 及TC3 ,此時較佳為TE -TC1 ≤0.2eV且TE -TC3 ≤0.2eV。In order to improve the TADF characteristics, it is preferred that the T1 energy level of Compound 131 and Compound 133, that is, T C1 and T C3 , be greater than TE . As an indicator thereof, it is preferred that the emission peak wavelength on the shortest wavelength side of the phosphorescence spectrum of Compound 131 and Compound 133 is less than the maximum emission peak wavelength of the excited complex. Alternatively, it is preferred that a tangent line is drawn at the tail of the emission spectrum of the excited complex on the short-wavelength side, and the energy of the wavelength of the extrapolated line is set to TE , and tangent lines are drawn at the tail of the phosphorescence spectra of compound 131 and compound 133 on the short-wavelength side, and the energy of the wavelength of the extrapolated line is set to TC1 and TC3 of each compound, in which case TE - TC1 ≤0.2 eV and TE - TC3 ≤0.2 eV are preferred.

另外,在本結構例子中,將包含重原子的化合物用於形成激態錯合物的化合物中的一個。因此,單重激發態和三重激發態之間的系間竄越促進。因此,可以形成能夠將三重激發能轉換為發光的激態錯合物。此時,與一般的激態錯合物不同,激態錯合物的三重激發能階(TE )有可能為能量施體的能階,因此TE 較佳為作為發光材料的化合物132的單重激發能階(SG )以上。明確而言,較佳的是,在使用重原子的激態錯合物的發射光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為TE ,將化合物132的吸收光譜的吸收端的波長的能量或化合物132的發射光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SG ,此時滿足TE ≥SGIn addition, in this structural example, a compound containing a heavy atom is used as one of the compounds that form an excited complex. Therefore, the intersystem transition between the singlet excited state and the triplet excited state is promoted. Therefore, an excited complex that can convert triplet excitation energy into luminescence can be formed. At this time, unlike a general excited complex, the triplet excitation energy level ( TE ) of the excited complex may be the energy level of an energy donor, so TE is preferably higher than the singlet excitation energy level ( SG ) of compound 132 as a luminescent material. Specifically, it is preferred that a tangent line is drawn at the tail of the emission spectrum of the excited complex using a heavy atom on the short wavelength side, the energy of the wavelength of the extrapolated line is set to TE , and the energy of the wavelength of the absorption end of the absorption spectrum of compound 132 or the tail of the emission spectrum of compound 132 on the short wavelength side is drawn, and the energy of the wavelength of the extrapolated line is set to SG , in which case TESG is satisfied.

在是這種能階相關的情況下,可以使所生成的激態錯合物的三重激發能從激態錯合物的三重激發能階(TE )直接或透過單重激發能階(SE )向化合物132的單重激發能階(SG )進行能量轉移。注意,激態錯合物的S1能階(SE )和T1能階(TE )彼此相鄰,由此有時在發射光譜中難以明確地區分螢光和磷光。在此情況下,有時可以根據發光壽命區分螢光和磷光。In the case of such energy level correlation, the triplet excitation energy of the generated excited complex can be transferred from the triplet excitation energy level ( TE ) of the excited complex directly or via the singlet excitation energy level ( SE ) to the singlet excitation energy level ( SG ) of compound 132. Note that the S1 energy level ( SE ) and the T1 energy level ( TE ) of the excited complex are adjacent to each other, so that it is sometimes difficult to clearly distinguish between fluorescence and phosphorescence in the emission spectrum. In this case, fluorescence and phosphorescence can sometimes be distinguished based on the luminescence lifetime.

在發光層130中發生的三重激發能經過上述路徑A4 以及從激態錯合物的S1能階到客體材料的S1能階的能量轉移(路徑A6 ),由此可以使客體材料發光。因此,藉由將形成激態錯合物的組合的材料用於發光層130,可以提高螢光發光元件的發光效率。The triplet excitation energy generated in the light-emitting layer 130 passes through the above-mentioned path A4 and the energy transfer from the S1 energy level of the excited state complex to the S1 energy level of the guest material (path A6 ), thereby making the guest material emit light. Therefore, by using the combination of materials that form the excited state complex for the light-emitting layer 130, the light-emitting efficiency of the fluorescent light-emitting element can be improved.

在上述結構中使用的具有重原子的化合物較佳為包含Ir、Pt、Os、Ru、Pd等重原子。另外,該具有重原子的化合物較佳為磷光材料。另一方面,在本結構例子中,磷光材料是構成用作能量施體的激態錯合物的一個材料,因此其量子產率既可以高又可以低。就是說,從激態錯合物的三重激發能階直接或藉由單重激發能階到客體材料的單重激發能階的能量轉移為允許躍遷即可。在從由上述磷光材料構成的激態錯合物或者上述磷光材料到客體材料的能量轉移中,從能量施體的三重激發能階到客體材料(能量受體)的單重激發能階的能量轉移為允許躍遷,所以是較佳的。因此,存在有不經過圖4C中的路徑A5 的過程而將激態錯合物的三重激發能經過路徑A6 的過程轉移到客體材料的S1能階(SG )的路徑。在路徑A6 中,激態錯合物被用作能量施體,化合物132被用作能量受體。The compound with heavy atoms used in the above structure preferably contains heavy atoms such as Ir, Pt, Os, Ru, Pd, etc. In addition, the compound with heavy atoms is preferably a phosphorescent material. On the other hand, in the present structural example, the phosphorescent material is a material constituting an excited complex used as an energy donor, so its quantum yield can be either high or low. That is, the energy transfer from the triplet excitation energy level of the excited complex to the singlet excitation energy level of the guest material directly or via the singlet excitation energy level is an allowed transition. In the energy transfer from the excited complex composed of the above phosphorescent material or the above phosphorescent material to the guest material, the energy transfer from the triplet excitation energy level of the energy donor to the singlet excitation energy level of the guest material (energy acceptor) is an allowed transition, so it is preferred. Therefore, there is a path for transferring the triplet excitation energy of the excited complex to the S1 energy level ( SG ) of the guest material via the path A6 without going through the path A5 in Figure 4C. In the path A6 , the excited complex is used as an energy donor and compound 132 is used as an energy acceptor.

在此,在本發明的一個實施方式的發光元件中,將其發光體具有保護基的客體材料用於化合物132。藉由採用該結構,如上所述,可以抑制由路徑A7 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。因此,可以得到發光效率高的螢光發光元件。Here, in a light-emitting element of one embodiment of the present invention, a guest material whose light-emitting body has a protective group is used for compound 132. By adopting this structure, as described above, energy transfer based on the Dexter mechanism represented by path A7 can be suppressed, and deactivation of triplet excitation energy can be suppressed. Therefore, a fluorescent light-emitting element with high light-emitting efficiency can be obtained.

另外,在本發明的一個實施方式中,使用具有五員環骨架的磷光材料。藉由採用該結構,如上所述,可以抑制由路徑A7 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。另外,可以抑制化合物132中的再結合。因此,可以得到發光效率高的螢光發光元件。In one embodiment of the present invention, a phosphorescent material having a five-membered ring skeleton is used. By adopting this structure, as described above, the energy transfer based on the Dexter mechanism represented by the path A7 can be suppressed, and the deactivation of the triplet excitation energy can be suppressed. In addition, the recombination in the compound 132 can be suppressed. Therefore, a fluorescent light-emitting element with high light-emitting efficiency can be obtained.

在本說明書等中,有時將上述路徑A4 至A6 的過程稱為ExSET(Exciplex-Singlet Energy Transfer:激態錯合物-單重態能量轉移)或ExEF(Exciplex-Enhanced Fluorescence:激態錯合物增強螢光)。換言之,在發光層130中,產生從激態錯合物到螢光材料的激發能的供應。In this specification, the process of the above-mentioned path A4 to A6 is sometimes referred to as ExSET (Exciplex-Singlet Energy Transfer) or ExEF (Exciplex-Enhanced Fluorescence). In other words, in the light-emitting layer 130, the excitation energy is supplied from the exciplex to the fluorescent material.

<發光層的結構例子3> 圖5A示出發光層130使用四種材料時的情況。圖5A中的發光層130包括化合物131、化合物132、化合物133及化合物134。在本發明的一個實施方式中,化合物133具有將三重激發能轉換為發光的功能。在本結構例子中,以化合物133是具有五員環骨架的磷光材料的情況為前提進行說明。化合物132是呈現螢光發光的客體材料。另外,化合物131是與化合物134形成激態錯合物的有機化合物。<Structural example 3 of the light-emitting layer> Figure 5A shows the case where four materials are used for the light-emitting layer 130. The light-emitting layer 130 in Figure 5A includes compound 131, compound 132, compound 133, and compound 134. In one embodiment of the present invention, compound 133 has a function of converting triplet excitation energy into luminescence. In this structural example, the explanation is based on the premise that compound 133 is a phosphorescent material having a five-membered ring skeleton. Compound 132 is a guest material that exhibits fluorescent luminescence. In addition, compound 131 is an organic compound that forms an excited complex with compound 134.

另外,圖5B示出發光層130中的化合物131、化合物132、化合物133以及化合物134的能階相關。如下是圖5B中的標記及符號,其他的標記及符號與圖2B所示的標記及符號相同。 •SC4 :化合物134的S1能階 •TC4 :化合物134的T1能階In addition, FIG5B shows the energy level correlation of compound 131, compound 132, compound 133, and compound 134 in the light-emitting layer 130. The following are the symbols and signs in FIG5B, and the other symbols and signs are the same as those shown in FIG2B. • S C4 : S1 energy level of compound 134 • T C4 : T1 energy level of compound 134

在本結構例子示出的本發明的一個實施方式的發光元件中,發光層130所包含的化合物131及化合物134形成激態錯合物。激態錯合物的S1能階(SE )與激態錯合物的T1能階(TE )成為相鄰的能階(參照圖5B中的路徑A8 )。In the light-emitting device of one embodiment of the present invention shown in this structural example, the compound 131 and the compound 134 contained in the light-emitting layer 130 form an excited complex. The S1 energy level ( SE ) of the excited complex and the T1 energy level ( TE ) of the excited complex are adjacent energy levels (see path A8 in FIG5B).

藉由上述過程生成的激態錯合物如上所述,當失去激發能時,形成激態錯合物的兩種物質再次被用作原來的兩種物質。The excited complex generated by the above process is as described above, and when the excitation energy is lost, the two substances forming the excited complex are used again as the original two substances.

激態錯合物的激發能階(SE 及TE )比形成激態錯合物的各物質(化合物131及化合物134)的S1能階(SC1 及SC4 )低,所以可以以更低的激發能形成激發態。由此,可以降低發光元件150的驅動電壓。The excitation energy levels ( SE and TE ) of the excited complex are lower than the S1 energy levels ( SC1 and SC4 ) of the substances forming the excited complex (Compound 131 and Compound 134), so an excited state can be formed with lower excitation energy. Thus, the driving voltage of the light-emitting element 150 can be reduced.

這裡,在化合物133為磷光材料時,允許單重激發態與三重激發態間的系間竄越。所以,可以使激態錯合物的單重激發能及三重激發能的兩者快速地轉移到化合物133(路徑A9 )。這裡,較佳為滿足TE ≥TC3 。另外,可以使化合物133所具有的三重激發能高效地轉換為化合物132的單重激發能(路徑A10 )。這裡,如圖5B所示,在TE ≥TC3 ≥SG 的情況下,化合物133的激發能作為單重激發能高效地轉移至作為客體材料的化合物132,所以是較佳的。明確而言,較佳的是,在化合物133的磷光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為TC3 ,將化合物132的吸收光譜的吸收端的波長的能量或化合物132的螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SG ,此時滿足TC3 ≥SG 。在路徑A10 中,化合物133被用作能量施體,化合物132被用作能量受體。Here, when compound 133 is a phosphorescent material, intersystem crossing between a singlet excited state and a triplet excited state is allowed. Therefore, both the singlet excitation energy and the triplet excitation energy of the excited complex can be quickly transferred to compound 133 (path A 9 ). Here, it is preferred to satisfy TETC3 . In addition, the triplet excitation energy possessed by compound 133 can be efficiently converted into the singlet excitation energy of compound 132 (path A 10 ). Here, as shown in FIG. 5B , in the case of TETC3SG , the excitation energy of compound 133 is efficiently transferred as singlet excitation energy to compound 132 as a guest material, so it is preferred. Specifically, it is preferred that a tangent line is drawn at the tail of the short-wavelength side of the phosphorescence spectrum of compound 133, and the energy of the wavelength of its extrapolation line is set to TC3 , and the energy of the wavelength of the absorption end of the absorption spectrum of compound 132 or the tail of the short-wavelength side of the fluorescence spectrum of compound 132 is drawn at the tail, and the energy of the wavelength of its extrapolation line is set to SG , and then TC3SG is satisfied. In path A 10 , compound 133 is used as an energy donor, and compound 132 is used as an energy acceptor.

此時,作為化合物131與化合物134的組合,只要是能夠形成激態錯合物的組合即可,較佳為其中一個是具有電洞傳輸性的化合物,另一個是具有電子傳輸性的化合物。In this case, the combination of Compound 131 and Compound 134 may be any combination as long as it can form an exciplex, and preferably one of them is a compound having a hole transport property and the other is a compound having an electron transport property.

另外,作為高效地形成激態錯合物的材料的組合,較佳的是,化合物131及化合物134中的一個的HOMO能階高於另一個的HOMO能階,並且一個的LUMO能階高於另一個的LUMO能階。In addition, as a combination of materials that efficiently forms an exciplex, it is preferred that the HOMO energy level of one of Compound 131 and Compound 134 is higher than the HOMO energy level of the other, and the LUMO energy level of one of Compound 131 and Compound 134 is higher than the LUMO energy level of the other.

另外,化合物131與化合物134的能階相關不侷限於圖5B所示的能階相關。也就是說,化合物131的單重激發能階(SC1 )可以高於化合物134的單重激發能階(SC4 )也可以低於化合物134的單重激發能階(SC4 )。另外,化合物131的三重激發能階(TC1 )可以高於化合物134的三重激發能階(TC4 )也可以低於化合物134的三重激發能階(TC4 )。In addition, the energy level correlation between compound 131 and compound 134 is not limited to the energy level correlation shown in Figure 5B. That is, the singlet excitation energy level (S C1 ) of compound 131 may be higher than the singlet excitation energy level (S C4 ) of compound 134 or lower than the singlet excitation energy level (S C4 ) of compound 134. In addition, the triplet excitation energy level (T C1 ) of compound 131 may be higher than the triplet excitation energy level (T C4 ) of compound 134 or lower than the triplet excitation energy level (T C4 ) of compound 134.

另外,在本發明的一個實施方式的發光元件中,化合物131較佳為具有缺π電子骨架。藉由採用該結構,化合物131的LUMO能階變低,這適合於激態錯合物的形成。In the light-emitting device of one embodiment of the present invention, the compound 131 preferably has a π-electron-deficient skeleton. By adopting this structure, the LUMO energy level of the compound 131 becomes lower, which is suitable for the formation of an excited complex.

在本發明的一個實施方式的發光元件中,化合物131較佳為具有富π電子骨架。藉由採用該結構,化合物131的HOMO能階變高,這適合於激態錯合物的形成。In the light-emitting device of one embodiment of the present invention, the compound 131 preferably has a π-electron-rich skeleton. By adopting this structure, the HOMO energy level of the compound 131 becomes higher, which is suitable for the formation of an excited complex.

在此,在本發明的一個實施方式的發光元件中,將其發光體具有保護基的客體材料用於化合物132。藉由採用該結構,如上所述,可以抑制由路徑A11 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。因此,可以得到發光效率高的螢光發光元件。Here, in a light-emitting element of one embodiment of the present invention, a guest material whose light-emitting body has a protective group is used for compound 132. By adopting this structure, as described above, energy transfer based on the Dexter mechanism represented by path A 11 can be suppressed, and deactivation of triplet excitation energy can be suppressed. Therefore, a fluorescent light-emitting element with high light-emitting efficiency can be obtained.

另外,在本發明的一個實施方式中,將具有五員環骨架的磷光材料用於化合物133。藉由採用該結構,如上所述,可以抑制由路徑A11 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。另外,可以抑制化合物132中的載子的再結合。因此,可以得到發光效率高的螢光發光元件。In one embodiment of the present invention, a phosphorescent material having a five-membered ring skeleton is used for compound 133. By adopting this structure, as described above, energy transfer based on the Dexter mechanism represented by path A11 can be suppressed, and deactivation of triplet excitation energy can be suppressed. In addition, recombination of carriers in compound 132 can be suppressed. Therefore, a fluorescent light-emitting element with high light-emitting efficiency can be obtained.

在本說明書等中,有時將上述路徑A8 及A9 的過程稱為ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)。換言之,在發光層130中,產生從激態錯合物到化合物133的激發能的供應。因此,可以說,本結構例子是採用將具有保護基的螢光材料混合到可用ExTET的發光層而成的結構。In this specification, etc., the process of the above-mentioned paths A8 and A9 is sometimes referred to as ExTET (Exciplex-Triplet Energy Transfer). In other words, in the light-emitting layer 130, the excitation energy is supplied from the excited complex to the compound 133. Therefore, it can be said that this structural example is a structure in which a fluorescent material having a protective group is mixed into a light-emitting layer that can use ExTET.

<發光層的結構例子4> 在本結構例子中,對將具有TADF特性的材料用於上述發光層的結構例子3中說明的化合物134的情況進行說明。<Structural Example 4 of Light Emitting Layer> In this structural example, a case where a material having TADF characteristics is used for the compound 134 described in the structural example 3 of the light emitting layer described above is described.

圖5C示出發光層130使用四種材料的情況。圖5C中的發光層130包括化合物131、化合物132、化合物133及化合物134。在本發明的一個實施方式中,化合物133具有將三重激發能轉換為發光的功能。化合物132是呈現螢光發光的客體材料。另外,化合物131是與化合物134形成激態錯合物的有機化合物。另外,在本結構例子中說明在化合物133具有五員環骨架的磷光材料的情況。FIG5C shows a case where four materials are used for the light-emitting layer 130. The light-emitting layer 130 in FIG5C includes compound 131, compound 132, compound 133, and compound 134. In one embodiment of the present invention, compound 133 has a function of converting triplet excitation energy into luminescence. Compound 132 is a guest material exhibiting fluorescent luminescence. In addition, compound 131 is an organic compound that forms an excited state complex with compound 134. In addition, in this structural example, a case where compound 133 has a phosphorescent material with a five-membered ring skeleton is described.

在此,由於化合物134為TADF材料,所以沒有形成激態錯合物的化合物134具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖5C的路徑A12 )。化合物134所具有的單重激發能可以迅速地轉移到化合物132(圖5C的路徑A13 )。此時,較佳為滿足SC4 ≥SG 。明確而言,較佳的是,在化合物134的螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SC4 ,將化合物132的吸收光譜的吸收端的波長的能量或化合物132的螢光光譜的短波長一側的尾處劃切線,將其外推線的波長的能量設定為SG ,此時滿足SC4 ≥SGHere, since compound 134 is a TADF material, compound 134 without forming an excited complex has the function of converting triplet excitation energy into singlet excitation energy by up-conversion (path A 12 in FIG. 5C ). The singlet excitation energy of compound 134 can be quickly transferred to compound 132 (path A 13 in FIG. 5C ). At this time, it is preferred to satisfy SC4SG . Specifically, it is preferred that a tangent line is drawn at the tail of the short-wavelength side of the fluorescence spectrum of compound 134, and the energy of the wavelength of its extrapolated line is set to SC4 , and the energy of the wavelength of the absorption end of the absorption spectrum of compound 132 or the tail of the short-wavelength side of the fluorescence spectrum of compound 132 is drawn, and the energy of the wavelength of its extrapolated line is set to SG , in which case SC4SG is satisfied.

與上述發光層的結構例子同樣,在本發明的一個實施方式的發光元件中,存在三重激發能經過圖5B中的路徑A8 至路徑A10 而轉移到作為客體材料的化合物132的路徑、以及三重激發能經過圖5C中的路徑A12 及路徑A13 而轉移到化合物132的路徑。因為存在三重激發能轉移到螢光材料的多個路徑,所以可以進一步提高發光效率。在路徑A10 中,化合物133被用作能量施體,化合物132被用作能量受體。在路徑A13 中,化合物134被用作能量施體,化合物132被用作能量受體。Similar to the structural example of the light-emitting layer, in the light-emitting element of one embodiment of the present invention, there are paths for triplet excitation energy to be transferred to compound 132 as a guest material via paths A8 to A10 in FIG. 5B , and paths for triplet excitation energy to be transferred to compound 132 via paths A12 and A13 in FIG. 5C . Since there are multiple paths for triplet excitation energy to be transferred to the fluorescent material, the light-emitting efficiency can be further improved. In path A10 , compound 133 is used as an energy donor, and compound 132 is used as an energy acceptor. In path A13 , compound 134 is used as an energy donor, and compound 132 is used as an energy acceptor.

在此,在本發明的一個實施方式中,將其發光體具有保護基的客體材料用於化合物132。藉由採用該結構,如上所述,可以抑制由路徑A11 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。因此,可以得到發光效率高的螢光發光元件。Here, in one embodiment of the present invention, a guest material whose luminescent body has a protecting group is used for compound 132. By adopting this structure, as described above, energy transfer based on the Dexter mechanism represented by path A 11 can be suppressed, and deactivation of triplet excitation energy can be suppressed. Therefore, a fluorescent light-emitting element with high luminescence efficiency can be obtained.

另外,在本發明的一個實施方式的發光元件中,將其發光體具有五員環骨架的磷光材料用於化合物133。藉由採用該結構,如上所述,可以抑制由路徑A11 表示的基於德克斯特機制的能量轉移,且可以抑制三重激發能的失活。另外,可以抑制化合物132中的載子的再結合。因此,可以得到發光效率高的螢光發光元件。In addition, in a light-emitting element of an embodiment of the present invention, a phosphorescent material whose light-emitting body has a five-membered ring skeleton is used for compound 133. By adopting this structure, as described above, energy transfer based on the Dexter mechanism represented by path A 11 can be suppressed, and deactivation of triplet excitation energy can be suppressed. In addition, recombination of carriers in compound 132 can be suppressed. Therefore, a fluorescent light-emitting element with high light-emitting efficiency can be obtained.

<能量轉移機制> 下面,對福斯特機制和德克斯特機制進行說明。雖然在此對有關從處於激發態的第一材料向處於基態的第二材料的激發能供給的第一材料與第二材料的分子間的能量轉移過程進行說明,但是在上述任一個是激態錯合物時也是同樣的。<Energy transfer mechanism> The following describes the Foster mechanism and the Dexter mechanism. Although the energy transfer process between the molecules of the first material and the second material is described here in terms of the supply of excitation energy from the first material in an excited state to the second material in a ground state, the same is true when either of the above is an excited complex.

<<福斯特機制>> 在福斯特機制中,在能量轉移中不需要分子間的直接接觸,藉由第一材料與第二材料間的偶極振盪的共振現象發生能量轉移。藉由偶極振盪的共振現象,第一材料向第二材料供應能量,激發態的第一材料成為基態,基態的第二材料成為激發態。另外,公式(1)示出福斯特機制的速率常數kh* g<<Foster mechanism>> In the Foster mechanism, direct contact between molecules is not required for energy transfer, and energy transfer occurs through the resonance phenomenon of dipole oscillation between the first material and the second material. Through the resonance phenomenon of dipole oscillation, the first material supplies energy to the second material, and the excited state of the first material becomes the ground state, and the ground state of the second material becomes the excited state. In addition, the rate constant k h* g of the Foster mechanism is shown in formula (1).

在公式(1)中,ν表示振盪數,f’h (ν)表示第一材料的正規化發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜),εg (ν)表示第二材料的莫耳吸光係數,N表示亞佛加厥數,n表示介質的折射率,R表示第一材料與第二材料的分子間距,τ表示所測量的激發態的壽命(螢光壽命或磷光壽命),c表示光速,φ表示發光量子產率(當討論從單重激發態的能量轉移時為螢光量子產率,當討論從三重激發態的能量轉移時為磷光量子產率),K2 表示第一材料和第二材料的躍遷偶極矩的配向的係數(0至4)。另外,在無規配向中,K2 =2/3。In formula (1), ν represents the oscillation number, f'h (ν) represents the normalized emission spectrum of the first material (fluorescence spectrum when discussing energy transfer from a singlet excited state, and phosphorescence spectrum when discussing energy transfer from a triplet excited state), εg (ν) represents the molar absorption coefficient of the second material, N represents the Avogadro number, n represents the refractive index of the medium, R represents the molecular distance between the first material and the second material, τ represents the measured lifetime of the excited state (fluorescence lifetime or phosphorescence lifetime), c represents the speed of light, φ represents the luminescence quantum yield (fluorescence quantum yield when discussing energy transfer from a singlet excited state, and phosphorescence quantum yield when discussing energy transfer from a triplet excited state), and K2 represents the coefficient of the orientation of the transition dipole moments of the first material and the second material (0 to 4). In addition, in the random alignment, K 2 =2/3.

<<德克斯特機制>> 在德克斯特機制中,第一材料和第二材料接近於產生軌域的重疊的接觸有效距離,藉由交換激發態的第一材料的電子和基態的第二材料的電子,發生能量轉移。另外,公式(2)示出德克斯特機制的速率常數kh* g<<Dexter mechanism>> In the Dexter mechanism, the first material and the second material are close to the contact effective distance that produces the overlap of the orbital domains, and energy transfer occurs by exchanging the electrons of the excited state of the first material and the electrons of the ground state of the second material. In addition, the rate constant k h* g of the Dexter mechanism is shown in formula (2).

在公式(2)中,h表示普朗克常數,K表示具有能量維數(energy dimension)的常數,ν表示振盪數,f’h (ν)表示第一材料的正規化發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜),ε’g (ν)表示第二材料的正規化吸收光譜,L表示有效分子半徑,R表示第一材料與第二材料的分子間距。In formula (2), h represents Planck's constant, K represents a constant having an energy dimension, ν represents the oscillation number, f' h (ν) represents the normalized emission spectrum of the first material (fluorescence spectrum when discussing energy transfer from a singlet excited state, phosphorescence spectrum when discussing energy transfer from a triplet excited state), ε' g (ν) represents the normalized absorption spectrum of the second material, L represents the effective molecular radius, and R represents the molecular distance between the first material and the second material.

這裡,從第一材料到第二材料的能量轉移效率φET 以公式(3)表示。kr 表示第一材料的發光過程(當討論從單重激發態的能量轉移時為螢光,當討論從三重激發態的能量轉移時為磷光)的速率常數,kn 表示第二材料的非發光過程(熱失活或系間竄越)的速率常數,τ表示所測量的第一材料的激發態的壽命。Here, the energy transfer efficiency φ ET from the first material to the second material is expressed by formula (3). k r represents the rate constant of the luminescence process of the first material (fluorescence when discussing energy transfer from a singlet excited state, phosphorescence when discussing energy transfer from a triplet excited state), k n represents the rate constant of the non-luminescence process (thermal deactivation or intersystem crossing) of the second material, and τ represents the lifetime of the excited state of the first material being measured.

從公式(3)可知,為了提高能量轉移效率φET ,可以增大能量轉移的速率常數kh* g 來使其他競爭速率常數kr +kn (=1/τ)相對變小。From formula (3), we can see that in order to improve the energy transfer efficiency φ ET , we can increase the energy transfer rate constant k h* g to make other competing rate constants k r +k n (=1/τ) relatively smaller.

<<用來提高能量轉移的概念>> 首先,考慮基於福斯特機制的能量轉移。藉由將公式(1)代入到公式(3),可以消去τ。因此,在福斯特機制中,能量轉移效率φET 不取決於第一材料的激發態的壽命τ。另外,當發光量子產率φ高時,可以說能量轉移效率φET 較高。<<Concept for improving energy transfer>> First, consider energy transfer based on the Förster mechanism. By substituting equation (1) into equation (3), τ can be eliminated. Therefore, in the Förster mechanism, the energy transfer efficiency φ ET does not depend on the lifetime τ of the excited state of the first material. In addition, when the luminescence quantum yield φ is high, it can be said that the energy transfer efficiency φ ET is high.

另外,第一材料的發射光譜與第二材料的吸收光譜(相當於從單重基態到單重激發態的遷移的吸收)的重疊較佳為大。再者,第二材料的莫耳吸光係數較佳為高。這意味著第一材料的發射光譜與呈現在第二材料的最長波長一側的吸收帶重疊。注意,由於第二材料中的從單重基態到三重激發態的直接躍遷被禁止,因此在第二材料中,三重激發態下的莫耳吸光係數為少到可以忽視的量。由此,可以忽視基於福斯特機制的第一材料的激發態到第二材料的三重激發態的能量轉移過程,只需考慮向第二材料的單重激發態的能量轉移過程。In addition, the overlap between the emission spectrum of the first material and the absorption spectrum of the second material (equivalent to the absorption of the transition from the singlet ground state to the singlet excited state) is preferably large. Furthermore, the molar absorption coefficient of the second material is preferably high. This means that the emission spectrum of the first material overlaps with the absorption band that appears on the longest wavelength side of the second material. Note that since the direct transition from the singlet ground state to the triplet excited state is prohibited in the second material, the molar absorption coefficient in the triplet excited state is so small that it can be ignored in the second material. Therefore, the energy transfer process from the excited state of the first material to the triplet excited state of the second material based on the Förster mechanism can be ignored, and only the energy transfer process to the singlet excited state of the second material needs to be considered.

此外,根據公式(1),基於福斯特機制的能量轉移速度與第一材料和第二材料的分子間距R的六乘方成反比。如上所述,在R為1nm以下時,基於德克斯特機制的能量轉移佔優勢。因此,為了在抑制基於德克斯特機制的能量轉移的同時增高基於福斯特機制的能量轉移速度,分子間距較佳為1nm以上且10nm以下。因此,上述保護基被要求不過龐大,構成保護基的碳原子數較佳為3以上且10以下。In addition, according to formula (1), the energy transfer rate based on the Förster mechanism is inversely proportional to the sixth power of the molecular distance R between the first material and the second material. As described above, when R is less than 1 nm, the energy transfer based on the Dexter mechanism is dominant. Therefore, in order to suppress the energy transfer based on the Dexter mechanism while increasing the energy transfer rate based on the Förster mechanism, the molecular distance is preferably greater than 1 nm and less than 10 nm. Therefore, the above-mentioned protecting group is required not to be too large, and the number of carbon atoms constituting the protecting group is preferably greater than 3 and less than 10.

接著,考慮基於德克斯特機制的能量轉移。從公式(2)可知,為了增大速率常數kh* g ,第一材料的發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜)與第二材料的吸收光譜(相當於從單重基態到單重激發態的遷移的吸收)的重疊較佳為大。因此,藉由使第一材料的發射光譜與呈現在第二材料的最長波長一側的吸收帶重疊可以實現能量轉移效率的最佳化。Next, consider the energy transfer based on the Dexter mechanism. From formula (2), it can be seen that in order to increase the rate constant k h* g , the emission spectrum of the first material (the fluorescence spectrum when discussing the energy transfer from the singlet excited state, the phosphorescence spectrum when discussing the energy transfer from the triplet excited state) and the absorption spectrum of the second material (equivalent to the absorption of the transition from the singlet ground state to the singlet excited state) should preferably overlap more. Therefore, the energy transfer efficiency can be optimized by overlapping the emission spectrum of the first material with the absorption band on the longest wavelength side of the second material.

另外,當將公式(2)代入到公式(3)時,可知德克斯特機制中的能量轉移效率φET 取決於τ。因為德克斯特機制是基於電子交換的能量轉移過程,所以與從第一材料的單重激發態到第二材料的單重激發態的能量轉移同樣地,還產生從第一材料的三重激發態到第二材料的三重激發態的能量轉移。In addition, when formula (2) is substituted into formula (3), it can be seen that the energy transfer efficiency φ ET in the Dexter mechanism depends on τ. Since the Dexter mechanism is an energy transfer process based on electron exchange, energy transfer from the triplet excited state of the first material to the triplet excited state of the second material also occurs in the same manner as energy transfer from the singlet excited state of the first material to the triplet excited state of the second material.

在本發明的一個實施方式的發光元件中,第二材料是螢光材料,所以到第二材料的三重激發態的能量轉移效率較佳為低。也就是說,從第一材料到第二材料的基於德克斯特機制的能量轉移效率較佳為低,而從第一材料到第二材料的基於福斯特機制的能量轉移效率較佳為高。In a light-emitting element of an embodiment of the present invention, the second material is a fluorescent material, so the energy transfer efficiency of the triplet excited state to the second material is preferably low. In other words, the energy transfer efficiency based on the Dexter mechanism from the first material to the second material is preferably low, and the energy transfer efficiency based on the Foster mechanism from the first material to the second material is preferably high.

如上所述,基於福斯特機制的能量轉移效率不取決於第一材料的激發態的壽命τ。另一方面,基於德克斯特機制的能量轉移效率取決於第一材料的激發壽命τ,為了降低基於德克斯特機制的能量轉移效率,第一材料的激發壽命τ較佳為短。As described above, the energy transfer efficiency based on the Foster mechanism does not depend on the lifetime τ of the excited state of the first material. On the other hand, the energy transfer efficiency based on the Dexter mechanism depends on the excitation lifetime τ of the first material. In order to reduce the energy transfer efficiency based on the Dexter mechanism, the excitation lifetime τ of the first material is preferably short.

於是,在本發明的一個實施方式中,作為第一材料使用激態錯合物、磷光材料或TADF材料。這些材料具有將三重激發能轉換為發光的功能。福斯特機制的能量轉移效率取決於能量施體的發光量子產率,因此,磷光材料、激態錯合物或TADF材料等可以將三重激發態轉換為發光的第一材料可以利用福斯特機制使其激發能轉移到第二材料。另一方面,藉由本發明的一個實施方式的結構,可以促進第一材料(激態錯合物或TADF材料)的從三重激發態向單重激發態的反系間竄越,可以縮短第一材料的三重激發態的激發壽命τ。另外,可以促進第一材料(磷光材料或使用磷光材料的激態錯合物)的從三重激發態向單重基態的躍遷,可以縮短第一材料的三重激發態的激發壽命τ。其結果是,可以降低從第一材料的三重激發態向螢光材料(第二材料)的三重激發態的基於德克斯特機制的能量轉移效率。Therefore, in one embodiment of the present invention, an excited state complex, a phosphorescent material or a TADF material is used as the first material. These materials have the function of converting triplet excitation energy into luminescence. The energy transfer efficiency of the Förster mechanism depends on the luminescence quantum yield of the energy donor. Therefore, the first material such as the phosphorescent material, excited state complex or TADF material that can convert the triplet excited state into luminescence can utilize the Förster mechanism to transfer its excitation energy to the second material. On the other hand, by means of the structure of one embodiment of the present invention, the antisystem transition from the triplet excited state to the singlet excited state of the first material (excited state complex or TADF material) can be promoted, and the excitation lifetime τ of the triplet excited state of the first material can be shortened. In addition, the transition from the triplet excited state to the singlet ground state of the first material (phosphorescent material or excited complex using the phosphorescent material) can be promoted, and the excitation lifetime τ of the triplet excited state of the first material can be shortened. As a result, the energy transfer efficiency based on the Dexter mechanism from the triplet excited state of the first material to the triplet excited state of the fluorescent material (second material) can be reduced.

在本發明的一個實施方式的發光元件中,如上所述,作為第二材料使用具有保護基的螢光材料。因此,可以使第一材料和第二材料的分子間距大。因此,在本發明的一個實施方式的發光元件中,藉由將具有將三重激發能轉換為發光的功能的材料用於第一材料且將具有保護基的螢光材料用於第二材料,可以降低基於德克斯特機制的能量轉移效率。其結果是,可以抑制發光層130中的三重激發能的無輻射失活,由此可以提供發光效率高的發光元件。In a light-emitting element of an embodiment of the present invention, as described above, a fluorescent material having a protective group is used as the second material. Therefore, the molecular distance between the first material and the second material can be made large. Therefore, in a light-emitting element of an embodiment of the present invention, by using a material having a function of converting triplet excitation energy into luminescence as the first material and using a fluorescent material having a protective group as the second material, the energy transfer efficiency based on the Dexter mechanism can be reduced. As a result, the radiationless deactivation of the triplet excitation energy in the light-emitting layer 130 can be suppressed, thereby providing a light-emitting element with high luminescence efficiency.

<材料> 接著,說明根據本發明的一個實施方式的發光元件的組件。<Materials> Next, the components of a light-emitting element according to one embodiment of the present invention are described.

<<發光層>> 下面對能夠用於發光層130的材料分別進行說明。在本發明的一個實施方式的發光元件的發光層中,使用具有將三重激發能轉換為發光的功能的能量受體以及在發光體具有保護基的能量施體。作為具有將三重激發能轉換為發光的功能的材料,可以舉出TADF特性材料及磷光材料等。<<Luminescent layer>> The following describes the materials that can be used for the luminescent layer 130. In the luminescent layer of the luminescent element of one embodiment of the present invention, an energy acceptor having a function of converting triplet excitation energy into luminescence and an energy donor having a protective group in the luminescent body are used. As materials having a function of converting triplet excitation energy into luminescence, TADF characteristic materials and phosphorescent materials can be cited.

作為被用作能量受體的化合物132所具有的發光體,例如可以舉出菲骨架、二苯乙烯骨架、吖啶酮骨架、啡㗁𠯤骨架、啡噻𠯤骨架等。尤其是,具有萘骨架、蒽骨架、茀骨架、䓛骨架、聯伸三苯骨架、稠四苯骨架、芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并雙苯并呋喃骨架的螢光材料具有高螢光量子產率,所以是較佳的。Examples of the luminescent material of compound 132 used as an energy acceptor include a phenanthrene skeleton, a diphenylethylene skeleton, an acridone skeleton, a phenanthrene skeleton, a phenanthrene skeleton, and a phenanthrenethio skeleton. In particular, fluorescent materials having a naphthalene skeleton, anthracene skeleton, fluorene skeleton, chrysene skeleton, a triphenylene skeleton, a tetraphenylene skeleton, a pyrene skeleton, a perylene skeleton, a coumarin skeleton, a quinacridone skeleton, and a naphthodibenzofuran skeleton are preferred because they have a high fluorescence quantum yield.

此外,作為保護基,較佳為碳原子數為1以上且10以下的烷基、碳原子數為3以上且10以下的環烷基、碳原子數為3以上且10以下的支鏈烷基以及碳原子數為3以上且12以下的三烷基矽基。In addition, the protecting group is preferably an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a branched alkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms.

作為碳原子數為1以上且10以下的烷基,可以舉出甲基、乙基、丙基、戊基、己基,特別較佳的是後述的碳原子數為3以上且10以下的支鏈烷基。注意,該烷基不侷限於此。Examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, propyl, pentyl, and hexyl groups, and particularly preferred are branched alkyl groups having 3 to 10 carbon atoms described below. Note that the alkyl group is not limited thereto.

作為碳原子數為3以上且10以下的環烷基,可以舉出環丙基、環丁基、環己基、降莰基、金剛烷基等。該環烷基不侷限於此。此外,當該環烷基具有取代基時,作為該取代基,可以舉出甲基、乙基、丙基、異丙基、丁基、異丁基、二級丁基、三級丁基、戊基及己基等碳原子數為1至7的烷基、環戊基、環己基、環庚基及8,9,10-三降莰基等碳原子數為5至7的環烷基、以及苯基、萘基、聯苯基等碳原子數為6至12的芳基等。As the cycloalkyl group having 3 or more and 10 or less carbon atoms, cyclopropyl, cyclobutyl, cyclohexyl, norbornyl, adamantyl, etc. can be mentioned. The cycloalkyl group is not limited thereto. In addition, when the cycloalkyl group has a substituent, as the substituent, alkyl groups having 1 to 7 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, dibutyl, tertiary butyl, pentyl and hexyl, cycloalkyl groups having 5 to 7 carbon atoms such as cyclopentyl, cyclohexyl, cycloheptyl and 8,9,10-trinorbornyl, and aryl groups having 6 to 12 carbon atoms such as phenyl, naphthyl and biphenyl can be mentioned.

作為碳原子數為3以上且10以下的支鏈烷基,可以舉出異丙基、二級丁基、異丁基、三級丁基、異戊基、二級戊基、三級戊基、新戊基、異己基、3-甲基戊基、2-甲基戊基、2-乙基丁基、1,2-二甲基丁基、2,3-二甲基丁基等。該支鏈烷基不侷限於此。Examples of the branched alkyl group having 3 to 10 carbon atoms include isopropyl, dibutyl, isobutyl, tertiary butyl, isopentyl, dipentyl, tertiary pentyl, neopentyl, isohexyl, 3-methylpentyl, 2-methylpentyl, 2-ethylbutyl, 1,2-dimethylbutyl, and 2,3-dimethylbutyl. The branched alkyl group is not limited thereto.

作為碳原子數為3以上且12以下的三烷基矽基,可以舉出三甲基矽基、三乙基矽基、三級丁基二甲基矽基等。該三烷基矽基不侷限於此。Examples of the trialkylsilyl group having 3 to 12 carbon atoms include trimethylsilyl, triethylsilyl, tertiary butyldimethylsilyl, etc. The trialkylsilyl group is not limited thereto.

另外,作為該能量受體的分子結構,較佳為發光體與兩個以上的二芳基胺基鍵合且二芳基胺基所具有的各芳基中具有至少一個保護基的結構。更佳為至少兩個保護基鍵合到該各芳基。這是因為:保護基的個數越多,將該客體材料用於發光層時的抑制基於德克斯特機制的能量轉移的效果越大。為了抑制分子量的增大且保持昇華性,二芳基胺基較佳為二苯基胺基。In addition, as the molecular structure of the energy acceptor, it is preferred that the luminescent body is bonded to two or more diarylamine groups and each aryl group possessed by the diarylamine group has at least one protecting group. It is more preferred that at least two protecting groups are bonded to each aryl group. This is because: the more the number of protecting groups, the greater the effect of suppressing the energy transfer based on the Dexter mechanism when the guest material is used in the luminescent layer. In order to suppress the increase of molecular weight and maintain sublimation, the diarylamine group is preferably a diphenylamine group.

藉由將兩個以上的胺基鍵合到發光體,可以在調整發光顏色的同時得到量子產率高的螢光材料。此外,該胺基較佳為鍵合到相對於發光體對稱的位置。藉由採用該結構,可以實現具有高量子產率的螢光材料。By bonding two or more amine groups to the luminescent body, a fluorescent material with a high quantum yield can be obtained while adjusting the luminescent color. In addition, the amine groups are preferably bonded to positions symmetrical with respect to the luminescent body. By adopting this structure, a fluorescent material with a high quantum yield can be realized.

此外,也可以經過二芳基胺所具有的芳基將保護基鍵合到發光體,而不將保護基直接鍵合到發光體。藉由採用該結構,可以以覆蓋發光體的方式配置保護基,所以從所有方向可以使主體材料和發光體之間的距離長,所以是較佳的。另外,當不將保護基直接鍵合到發光體時,較佳為相對於一個發光體鍵合四個以上的保護基。In addition, the protecting group may be bonded to the luminescent body via the aryl group of the diarylamine, rather than directly bonding the protecting group to the luminescent body. By adopting this structure, the protecting group can be arranged in a manner covering the luminescent body, so the distance between the main material and the luminescent body can be made long from all directions, which is preferred. In addition, when the protecting group is not directly bonded to the luminescent body, it is preferred to bond four or more protecting groups to one luminescent body.

此外,如圖3B所示,較佳的是,構成多個保護基的原子中的至少一個位於發光體的正上,亦即稠合芳香環或稠合雜芳環的一個面的正上,構成多個保護基的原子中的至少一個位於該稠合芳香環或該稠合雜芳環的另一個面的正上。作為其具體的方法,可以舉出如下結構。就是說,為發光體的稠合芳香環或稠合雜芳環與兩個以上的二苯基胺基鍵合,該兩個以上的二苯基胺基中的苯基分別獨立地在3位及5位具有保護基。In addition, as shown in FIG3B , it is preferred that at least one of the atoms constituting the plurality of protecting groups is located directly on the luminescent body, that is, directly on one face of the fused aromatic ring or the fused heteroaromatic ring, and at least one of the atoms constituting the plurality of protecting groups is located directly on another face of the fused aromatic ring or the fused heteroaromatic ring. As a specific method, the following structure can be cited. That is, the fused aromatic ring or the fused heteroaromatic ring of the luminescent body is bonded to two or more diphenylamine groups, and the phenyl groups in the two or more diphenylamine groups have protecting groups at the 3-position and the 5-position, respectively, independently.

藉由採用這樣的結構,如圖3B所示,可以實現苯基上的3位或5位的保護基位於為發光體的稠合芳香環或稠合雜芳環的正上的構型。其結果是,可以高效地覆蓋該稠合芳香環或該稠合雜芳環的面的上方及下方,可以抑制基於德克斯特機制的能量轉移。By adopting such a structure, as shown in FIG3B , a configuration can be achieved in which the protecting group at the 3-position or 5-position on the phenyl group is located directly above the condensed aromatic ring or condensed heteroaromatic ring that is the luminescent body. As a result, the upper and lower surfaces of the condensed aromatic ring or the condensed heteroaromatic ring can be efficiently covered, and energy transfer based on the Dexter mechanism can be suppressed.

作為如上的能量受體材料,可以適用由下述通式(G1)或(G2)表示的有機化合物。As the energy acceptor material as described above, an organic compound represented by the following general formula (G1) or (G2) can be used.

在通式(G1)及(G2)中,A表示碳原子數為10至30的取代或未取代的稠合芳香環或者碳原子數為10至30的取代或未取代的稠合雜芳環,Ar1 至Ar6 分別獨立地表示取代或未取代的碳原子數為6至13的芳烴基,X1 至X12 分別獨立地表示碳原子數為3以上且10以下的支鏈烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且10以下的三烷基矽基中的任一個。R1 至R10 分別獨立地表示氫、碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且12以下的三烷基矽基中的任一個。In the general formulae (G1) and (G2), A represents a substituted or unsubstituted fused aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted fused heteroaromatic ring having 10 to 30 carbon atoms, Ar1 to Ar6 each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms, X1 to X12 each independently represent any one of a branched alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms. R1 to R10 each independently represent any one of hydrogen, an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms.

作為碳原子數為6至13的芳烴基,可以舉出苯基、聯苯基、萘基、茀基等。注意,該芳烴基不侷限於此。此外,當該芳烴基具有取代基時,作為該取代基,可以舉出甲基、乙基、丙基、異丙基、丁基、異丁基、二級丁基、三級丁基、戊基、己基等碳原子數為1至7的烷基、環戊基、環己基、環庚基、8,9,10-三降莰基等碳原子數為5至7的環烷基、苯基、萘基、聯苯基等碳原子數為6至12的芳基等。As the aromatic hydrocarbon group having 6 to 13 carbon atoms, phenyl, biphenyl, naphthyl, fluorenyl, etc. can be cited. Note that the aromatic hydrocarbon group is not limited thereto. In addition, when the aromatic hydrocarbon group has a substituent, as the substituent, alkyl groups having 1 to 7 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, dibutyl, tertiary butyl, pentyl, hexyl, etc., cycloalkyl groups having 5 to 7 carbon atoms such as cyclopentyl, cyclohexyl, cycloheptyl, 8,9,10-trinorbornyl, phenyl, naphthyl, biphenyl, etc., aryl groups having 6 to 12 carbon atoms, etc. can be cited.

在通式(G1)中,碳原子數為10至30的取代或未取代的稠合芳香環或者碳原子數為10至30的取代或未取代的稠合雜芳環表示上述發光體,可以使用上述骨架。此外,在通式(G1)及(G2)中,X1 至X12 表示保護基。In the general formula (G1), a substituted or unsubstituted fused aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted fused heteroaromatic ring having 10 to 30 carbon atoms represents the above-mentioned luminescent body, and the above-mentioned skeleton can be used. In the general formulas (G1) and (G2), X1 to X12 represent a protecting group.

在通式(G2)中,保護基經過伸芳基與為發光體的喹吖啶酮骨架鍵合。藉由採用該結構,可以以覆蓋發光體的方式配置保護基,所以可以抑制基於德克斯特機制的能量轉移。此外,也可以具有直接鍵合到發光體的保護基。In the general formula (G2), the protecting group is bonded to the quinacridone skeleton, which is the luminescent body, via the aryl group. By adopting this structure, the protecting group can be arranged in a manner covering the luminescent body, so that the energy transfer based on the Dexter mechanism can be suppressed. In addition, the protecting group can also be directly bonded to the luminescent body.

作為該能量受體材料,可以適用由下述通式(G3)或(G4)表示的有機化合物。As the energy acceptor material, an organic compound represented by the following general formula (G3) or (G4) can be used.

在通式(G3)及(G4)中,A表示碳原子數為10至30的取代或未取代的稠合芳香環或者碳原子數為10至30的取代或未取代的稠合雜芳環,X1 至X12 分別獨立地表示碳原子數為3以上且10以下的支鏈烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且10以下的三烷基矽基中的任一個。In the general formulae (G3) and (G4), A represents a substituted or unsubstituted fused aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted fused heteroaromatic ring having 10 to 30 carbon atoms, and X1 to X12 each independently represent any one of a branched alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms.

保護基較佳為經過苯基與發光體鍵合。藉由採用該結構,可以以覆蓋發光體的方式配置保護基,所以可以抑制基於德克斯特機制的能量轉移。此外,當發光體和保護基經過伸苯基而鍵合且兩個保護基鍵合到該伸苯基時,如通式(G3)及(G4)所示,該兩個保護基較佳為以間位鍵合到伸苯基。藉由採用該結構,可以高效地覆蓋發光體,所以可以抑制基於德克斯特機制的能量轉移。作為由通式(G3)表示的有機化合物的一個例子可以舉出上述2tBu-mmtBuDPhA2Anth。就是說,在本發明的一個實施方式中,通式(G3)是特別較佳的例子。The protecting group is preferably bonded to the luminescent body via a phenyl group. By adopting this structure, the protecting group can be arranged in a manner covering the luminescent body, so that energy transfer based on the Dexter mechanism can be suppressed. In addition, when the luminescent body and the protecting group are bonded via a phenyl group and two protecting groups are bonded to the phenyl group, as shown in general formulae (G3) and (G4), the two protecting groups are preferably bonded to the phenyl group at the meta position. By adopting this structure, the luminescent body can be efficiently covered, so that energy transfer based on the Dexter mechanism can be suppressed. As an example of an organic compound represented by general formula (G3), the above-mentioned 2tBu-mmtBuDPhA2Anth can be cited. That is, in one embodiment of the present invention, general formula (G3) is a particularly preferred example.

作為該能量受體,可以適用由下述通式(G5)表示的有機化合物。As the energy acceptor, an organic compound represented by the following general formula (G5) can be used.

在通式(G5)中,X1 至X8 分別獨立地表示碳原子數為3以上且10以下的支鏈烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且10以下的三烷基矽基中的任一個,R11 至R18 分別獨立地表示氫、碳原子數為3以上且10以下的支鏈烷基、取代或未取代的碳原子數為3以上且10以下的環烷基、碳原子數為3以上且10以下的三烷基矽基以及取代或未取代的碳原子數為6以上且25以下的芳基中的任一個。In the general formula (G5), X1 to X8 each independently represent any one of a branched alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms, and R11 to R18 each independently represent any one of hydrogen, a branched alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 25 carbon atoms.

作為碳原子數為6以上且25以下的芳基,例如可以舉出苯基、萘基、聯苯基、茀基、螺茀基等。注意,碳原子數為6以上且25以下的芳基不侷限於此。此外,當該芳基具有取代基時,作為該取代基,可以舉出碳原子數為1以上且10以下的烷基、碳原子數為3以上且10以下的支鏈烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且10以下的三烷基矽基。Examples of the aryl group having 6 to 25 carbon atoms include phenyl, naphthyl, biphenyl, fluorenyl, spirofluorenyl, etc. Note that the aryl group having 6 to 25 carbon atoms is not limited thereto. In addition, when the aryl group has a substituent, examples of the substituent include an alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 10 carbon atoms.

蒽化合物具有高發光量子產率且其發光體的面積小,因此可以由保護基高效地覆蓋蒽的面的上方及下方。作為由通式(G5)表示的有機化合物的一個例子可以舉出上述2tBu-mmtBuDPhA2Anth。Anthracene compounds have high light emission quantum yields and their light emitting bodies have small areas, so the upper and lower surfaces of anthracene can be efficiently covered with protective groups. An example of an organic compound represented by general formula (G5) is the above-mentioned 2tBu-mmtBuDPhA2Anth.

以下,由結構式(102)至(105)及(200)至(249)示出在通式(G1)至(G5)中舉出的化合物的例子。注意,在通式(G1)至(G5)中舉出的化合物不侷限於此。此外,可以將結構式(102)至(105)及(200)至(249)所示的化合物適當地用於本發明的一個實施方式的發光元件的客體材料。注意,該客體材料不侷限於此。Examples of compounds listed in general formulae (G1) to (G5) are shown below by structural formulae (102) to (105) and (200) to (249). Note that the compounds listed in general formulae (G1) to (G5) are not limited thereto. In addition, the compounds represented by structural formulae (102) to (105) and (200) to (249) can be appropriately used as a guest material of a light-emitting element of an embodiment of the present invention. Note that the guest material is not limited thereto.

由結構式(100)及(101)表示可以適當地用作本發明的一個實施方式的發光元件的客體材料的材料的例子。注意,該客體材料不侷限於此。Structural formulas (100) and (101) show examples of materials that can be suitably used as a guest material of a light-emitting device according to an embodiment of the present invention. Note that the guest material is not limited thereto.

作為化合物133,可以使用具有五員環骨架的磷光材料。作為磷光材料,可以舉出銥、銠、鉑類有機金屬錯合物或金屬錯合物。另外,可以舉出具有卟啉配體的鉑錯合物或有機銥錯合物,尤其是,例如,較佳為使用銥類鄰位金屬錯合物等有機銥錯合物。作為鄰位金屬化的配體,可以舉出吡咯配體、吡唑配體、4H-三唑配體、1H-三唑配體、咪唑配體、苯并咪唑配體、萘并咪唑配體等。此時,化合物133(磷光材料)具有三重MLCT(從金屬到配體的電荷轉移:Metal to Ligand Charge Transfer)躍遷的吸收帶。此外,較佳為以化合物133的發光峰值與化合物132(螢光材料)的最長波長一側(低能量一側)的吸收帶重疊的方式選擇化合物133及化合物132(螢光材料)。由此,可以實現一種發光效率得到顯著提高的發光元件。此外,化合物133即使是磷光材料的情況下,也可以與化合物131形成激態錯合物。當形成激態錯合物時,磷光材料不需要在常溫下發光,在形成激態錯合物時在常溫下能夠發光即可。此時,例如,可以將三[2-(1H-吡唑-1-基-κN2)苯基-κC]銥(III)(簡稱:Ir(ppz)3 )等用作磷光材料。As compound 133, a phosphorescent material having a five-membered ring skeleton can be used. As the phosphorescent material, iridium, rhodium, platinum-based organic metal complexes or metal complexes can be cited. In addition, platinum complexes or organic iridium complexes having porphyrin ligands can be cited, and in particular, for example, organic iridium complexes such as iridium-based ortho-metal complexes are preferably used. As ortho-metallated ligands, pyrrole ligands, pyrazole ligands, 4H-triazole ligands, 1H-triazole ligands, imidazole ligands, benzimidazole ligands, naphthylimidazole ligands, etc. can be cited. At this time, compound 133 (phosphorescent material) has an absorption band with a triple MLCT (metal to ligand charge transfer) transition. In addition, it is preferred to select compound 133 and compound 132 (fluorescent material) in such a way that the luminescence peak of compound 133 overlaps with the absorption band on the longest wavelength side (low energy side) of compound 132 (fluorescent material). In this way, a light-emitting element with significantly improved luminescence efficiency can be achieved. In addition, even if compound 133 is a phosphorescent material, it can form an excited complex with compound 131. When an excited complex is formed, the phosphorescent material does not need to emit light at room temperature, and it only needs to be able to emit light at room temperature when the excited complex is formed. At this time, for example, tris[2-(1H-pyrazol-1-yl-κN2)phenyl-κC]iridium (III) (abbreviated as: Ir(ppz) 3 ) and the like can be used as a phosphorescent material.

作為在藍色或綠色處具有發光峰值的物質,例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:Ir(mpptz-dmp)3 )、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz)3 )、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b)3 )、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPr5btz)3 )、三{2-[4-(4-氰基-2,6-二異丁基苯基)-5-(2-甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:Ir(mpptz-diBuCNp)3 )、三{2-[5-(2-甲基苯基)-4-(2,6-二異丙基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:Ir(mpptz-diPrp)3 )等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptz1-mp)3 )、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptz1-Me)3 )等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi)3 )、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:Ir(dmpimpt-Me)3 )等具有咪唑骨架的有機金屬銥錯合物;三{2-[1-(4-氰基-2,6-二異丁基苯基)-1H-苯并咪唑-2-基-κN3]苯基-κC}銥(III)(簡稱:Ir(pbi-diBuCNp)3 )、(OC-6-22)-三{2-[1-(2,6-二異丁基苯基)-1H-苯并咪唑-2-基-κN3]苯基-κC}銥(III)(簡稱:Ir(pbi-diBup)3 )等具有苯并咪唑骨格的有機金屬銥錯合物;雙{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}[2-(4-甲苯-5-苯基-2-吡啶基-κN2)苯基-κC]銥(III)(簡稱:Ir(pni-diBup)2 (mdppy))、三{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}銥(III)(簡稱:Ir(pni-diBup)3 )等具有萘并咪唑骨格的有機金屬銥錯合物。在上述材料中,具有4H-三唑骨架、1H-三唑骨架、咪唑骨架、苯并咪唑骨架及萘并咪唑骨架等含氮五元雜環骨架的有機金屬銥錯合物的三重激發能很高並具有高可靠性及高發光效率,所以是特別較佳的。另外,也可以使用:2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3 (Phen))等稀土金屬錯合物。Examples of substances having a blue or green emission peak include tris{2-[5-(2-methylphenyl)-4-(2,6-dimethylphenyl)-4H-1,2,4-triazol-3-yl-κN2]phenyl-κC}iridium(III) (abbreviated as Ir(mpptz-dmp) 3 ), tris(5-methyl-3,4-diphenyl-4H-1,2,4-triazole)iridium(III) (abbreviated as Ir(Mptz) 3 ), tris[4-(3-biphenyl)-5-isopropyl-3-phenyl-4H-1,2,4-triazole]iridium(III) (abbreviated as Ir(iPrptz-3b) 3 )、Tris[3-(5-biphenyl)-5-isopropyl-4-phenyl-4H-1,2,4-triazole] iridium(III)(abbreviated as: Ir(iPr5btz) 3 )、Tris{2-[4-(4-cyano-2,6-diisobutylphenyl)-5-(2-methylphenyl)-4H-1,2,4-triazol-3-yl-κN2]phenyl-κC} iridium(III)(abbreviated as: Ir(mpptz-diBuCNp) 3 )、Tris{2-[5-(2-methylphenyl)-4-(2,6-diisopropylphenyl)-4H-1,2,4-triazol-3-yl-κN2]phenyl-κC} iridium(III)(abbreviated as: Ir(mpptz-diPrp) 3 ) and other organometallic iridium complexes with a 4H-triazole skeleton; tris[3-methyl-1-(2-methylphenyl)-5-phenyl-1H-1,2,4-triazole] iridium(III) (abbreviated as: Ir(Mptz1-mp) 3 ), tris(1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole) iridium(III) (abbreviated as: Ir(Prptz1-Me) 3 ) and other organometallic iridium complexes with a 1H-triazole skeleton; fac-tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole] iridium(III) (abbreviated as: Ir(iPrpmi) 3 ), tris[3-(2,6-dimethylphenyl)-7-methylimidazo[1,2-f]phenanthridinato] iridium(III) (abbreviated as Ir(dmpimpt-Me) 3 ), tris{2-[1-(4-cyano-2,6-diisobutylphenyl)-1H-benzimidazol-2-yl-κN3]phenyl-κC}iridium(III) (abbreviated as Ir(pbi-diBuCNp) 3 ), (OC-6-22)-tris{2-[1-(2,6-diisobutylphenyl)-1H-benzimidazol-2-yl-κN3]phenyl-κC}iridium(III) (abbreviated as Ir(pbi-diBuCNp) 3 ) and other organometallic iridium complexes having a benzimidazole skeleton; bis{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}[2-(4-toluene-5-phenyl-2-pyridyl-κN2)phenyl-κC]iridium(III) (abbreviated as Ir(pni-diBup) 2 (mdppy)), tris{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}iridium(III) (abbreviated as Ir(pni-diBup) 3 ) and other organometallic iridium complexes having a naphthoimidazole skeleton. Among the above materials, organic metal iridium complexes having a nitrogen-containing five-membered heterocyclic skeleton such as a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a benzimidazole skeleton, and a naphthylimidazole skeleton are particularly preferred because of their high triplet excitation energy, high reliability, and high luminescence efficiency. In addition, platinum complexes such as 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (abbreviated as: PtOEP) and rare earth metal complexes such as tris[1-(2-thienylcarbonyl)-3,3,3-trifluoroacetone](monomorphin)piperidinium (III) (abbreviated as: Eu(TTA) 3 (Phen)) can also be used.

另外,作為化合物134例如可以使用TADF材料。較佳的是,化合物134的S1能階與T1能階的能量差小,明確而言,大於0eV且0.2eV以下。In addition, for example, a TADF material can be used as the compound 134. Preferably, the energy difference between the S1 energy level and the T1 energy level of the compound 134 is small, specifically, greater than 0 eV and less than 0.2 eV.

化合物134較佳為包括具有電洞傳輸性的骨架及具有電子傳輸性的骨架。或者,化合物134較佳為具有富π電子骨架或芳香胺骨架且具有缺π電子骨架。由此容易在分子內形成施體-受體型激發態。再者,較佳的是,以在化合物134的分子中同時增強施體性及受體性的方式包括具有電子傳輸性的骨架與具有電洞傳輸性的骨架直接鍵合的結構。或者,較佳的是,包括富π電子骨架或芳香胺骨架與缺π電子骨架直接鍵合的結構。藉由在分子中同時增強施體性及受體性,可以在化合物134中縮小HOMO的分子軌域分佈的區域與LUMO的分子軌域分佈的區域重疊的部分,而可以減小化合物134的單重激發能階與三重激發能階的能量差。此外,可以使化合物134的三重激發能階保持為高。Compound 134 preferably includes a skeleton having hole transport properties and a skeleton having electron transport properties. Alternatively, compound 134 preferably includes a π-electron-rich skeleton or an aromatic amine skeleton and a π-electron-deficient skeleton. This makes it easy to form a donor-acceptor type excited state in the molecule. Furthermore, preferably, a structure in which a skeleton having electron transport properties is directly bonded to a skeleton having hole transport properties in a manner that simultaneously enhances the donor property and the acceptor property in the molecule of compound 134. Alternatively, preferably, a structure in which a π-electron-rich skeleton or an aromatic amine skeleton is directly bonded to a π-electron-deficient skeleton. By enhancing both the donor property and the acceptor property in the molecule, the overlapped region of the HOMO and LUMO molecular orbital distributions in compound 134 can be reduced, thereby reducing the energy difference between the singlet excitation energy level and the triplet excitation energy level of compound 134. In addition, the triplet excitation energy level of compound 134 can be kept high.

當TADF材料由一種材料構成時,例如可以使用如下材料。When the TADF material is composed of one material, for example, the following materials can be used.

首先,可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、曙紅(eosin)等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為該含金屬卟啉,例如也可以舉出原卟啉-氟化錫錯合物(SnF2 (Proto IX))、中卟啉-氟化錫錯合物(SnF2 (Meso IX))、血卟啉-氟化錫錯合物(SnF2 (Hemato IX))、糞卟啉四甲基酯-氟化錫錯合物(SnF2 (Copro III-4Me))、八乙基卟啉-氟化錫錯合物(SnF2 (OEP))、初卟啉-氟化錫錯合物(SnF2 (Etio I))、八乙基卟啉-氯化鉑錯合物(PtCl2 OEP)等。First, fullerene or its derivatives, acridine derivatives such as proflavin, eosin, etc. Also, metal-containing porphyrins containing magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), or palladium (Pd) can be cited. Examples of the metal-containing porphyrin include protoporphyrin-tin fluoride complex (SnF 2 (Proto IX)), mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)), hematoporphyrin-tin fluoride complex (SnF 2 (Hemato IX)), tetramethylnaphthoporphyrin-tin fluoride complex (SnF 2 (Copro III-4Me)), octaethylporphyrin-tin fluoride complex (SnF 2 (OEP)), protoporphyrin-tin fluoride complex (SnF 2 (Etio I)), and octaethylporphyrin-platinum chloride complex (PtCl 2 OEP).

另外,作為由一種材料構成的熱活化延遲螢光材料,還可以使用具有富π電子骨架和缺π電子骨架的雜環化合物。明確而言,可以舉出2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-啡㗁𠯤-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡𠯤-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)、4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzBfpm)、4-[4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzPBfpm)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-聯-9H-咔唑(簡稱:mPCCzPTzn-02)等具有富π電子骨架和缺π電子骨架中的一個或兩個的雜環化合物。該雜環化合物具有富π電子雜芳環及缺π電子雜芳環,因此電子傳輸性及電洞傳輸性高,所以是較佳的。尤其是,在具有缺π電子雜芳環的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、嗒𠯤骨架)及三嗪骨架穩定且可靠性良好,所以是較佳的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的受體性高且可靠性良好,所以是較佳的。另外,在具有富π電子雜芳環的骨架中,吖啶骨架、啡㗁𠯤骨架、啡噻𠯤骨架、呋喃骨架、噻吩骨架及吡咯骨架穩定且可靠性良好,所以較佳為具有上述骨架中的至少一個。另外,作為呋喃骨架較佳為使用二苯并呋喃骨架,作為噻吩骨架較佳為使用二苯并噻吩骨架。作為吡咯骨架,特別較佳為使用吲哚骨架、咔唑骨架,聯咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。另外,在富π電子雜芳環和缺π電子雜芳環直接鍵合的物質中,富π電子雜芳環的施體性和缺π電子雜芳環的受體性都強,單重激發態與三重激發態的能階之差變小,所以是尤其較佳的。另外,也可以使用鍵合有如氰基等拉電子基團的芳香環代替缺π電子雜芳環。此外,作為富π電子骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作為缺π電子骨架,可以使用氧雜蒽骨架、二氧化噻噸(thioxanthene dioxide)骨架、㗁二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香環或雜芳環、二苯甲酮等羰骨架、氧化膦骨架、碸骨架等。如此,可以使用缺π電子骨架及富π電子骨架代替缺π電子雜芳環以及富π電子雜芳環中的至少一個。In addition, as a heat-activated delayed fluorescence material composed of one material, a heterocyclic compound having a π-electron-rich skeleton and a π-electron-deficient skeleton can also be used. Specifically, 2-(biphenyl-4-yl)-4,6-bis(12-phenylindolo[2,3-a]carbazole-11-yl)-1,3,5-triazine (abbreviated as: PIC-TRZ), 2-{4-[3-(N-phenyl-9H-carbazole-3-yl)-9H-carbazole-9-yl]phenyl}-4,6-diphenyl-1,3,5-triazine (abbreviated as: PCCzPTzn), 2-[4-(10 H-phenanthracene-10-yl)phenyl]-4,6-diphenyl-1,3,5-triazine (abbreviated as PXZ-TRZ), 3-[4-(5-phenyl-5,10-dihydrophenanthracene-10-yl)phenyl]-4,5-diphenyl-1,2,4-triazole (abbreviated as PPZ-3TPT), 3-(9,9-dimethyl-9H-acridin-10-yl)-9H-oxanthracen-9-one (abbreviated as ACRXTN), Bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (abbreviated as: DMAC-DPS), 10-phenyl-10H,10'H-spiro[acridine-9,9'-anthracen]-10'-one (abbreviated as: ACRSA), 4-(9'-phenyl-3,3'-bi-9H-carbazole-9-yl)benzofurano[3,2-d]pyrimidine (abbreviated as: 4PCCzBfpm), 4-[4-(9'- A heterocyclic compound having one or both of a π-electron-rich skeleton and a π-electron-deficient skeleton, such as phenyl-3,3'-bi-9H-carbazole-9-yl)phenyl]benzofurano[3,2-d]pyrimidine (abbreviated as 4PCCzPBfpm), 9-[3-(4,6-diphenyl-1,3,5-triazine-2-yl)phenyl]-9'-phenyl-2,3'-bi-9H-carbazole (abbreviated as mPCCzPTzn-02). The heterocyclic compound has a π-electron-rich heteroaromatic ring and a π-electron-deficient heteroaromatic ring, and thus has high electron and hole transport properties, and is therefore preferred. In particular, among the skeletons having π-electron-deficient heteroaromatic rings, pyridine skeletons, diazine skeletons (pyrimidine skeletons, pyrazine skeletons, pyrimidine skeletons) and triazine skeletons are stable and have good reliability, so they are preferred. In particular, the benzofuranopyrimidine skeleton, benzothiophenopyrimidine skeleton, benzofuranopyrazine skeleton, and benzothiophenopyrazine skeleton have high acceptor properties and good reliability, so they are preferred. In addition, among the skeletons having π-electron-rich heteroaromatic rings, acridine skeletons, phenanthrene skeletons, phenanthrenethiophene skeletons, furan skeletons, thiophene skeletons, and pyrrole skeletons are stable and have good reliability, so it is preferred to have at least one of the above skeletons. In addition, it is preferred to use a dibenzofuran skeleton as a furan skeleton, and it is preferred to use a dibenzothiophene skeleton as a thiophene skeleton. As the pyrrole skeleton, it is particularly preferred to use an indole skeleton, a carbazole skeleton, a bicarbazole skeleton, and a 3-(9-phenyl-9H-carbazole-3-yl)-9H-carbazole skeleton. In addition, in a substance in which a π-electron-rich heteroaromatic ring and a π-electron-deficient heteroaromatic ring are directly bonded, the donor property of the π-electron-rich heteroaromatic ring and the acceptor property of the π-electron-deficient heteroaromatic ring are both strong, and the difference in energy levels between the singlet excited state and the triplet excited state becomes smaller, so it is particularly preferred. In addition, an aromatic ring bonded to an electron-withdrawing group such as a cyano group can also be used instead of a π-electron-deficient heteroaromatic ring. In addition, as a π-electron-rich skeleton, an aromatic amine skeleton, a phenazine skeleton, etc. can be used. In addition, as the π-electron-deficient skeleton, an anthracene skeleton, a thioxanthene dioxide skeleton, a triazole skeleton, an imidazole skeleton, an anthraquinone skeleton, a boron-containing skeleton such as phenylborane or boranthrene, an aromatic ring or a heteroaromatic ring having a nitrile group or a cyano group such as benzonitrile or cyanophenyl, a carbonyl skeleton such as benzophenone, a phosphine oxide skeleton, a sulfonium skeleton, etc. can be used. In this way, a π-electron-deficient skeleton and a π-electron-rich skeleton can be used to replace at least one of the π-electron-deficient heteroaromatic ring and the π-electron-rich heteroaromatic ring.

當化合物134不具有將三重激子轉換為發光的功能時,作為化合物131和化合物133的組合或者化合物131和化合物134的組合,較佳的是互相形成激態錯合物的組合,但是沒有特別的限制。較佳的是,一個具有傳輸電子的功能,另一個具有傳輸電洞的功能。When compound 134 does not have the function of converting triplet excitons into luminescence, the combination of compound 131 and compound 133 or the combination of compound 131 and compound 134 is preferably a combination that forms an excited state complex with each other, but there is no particular limitation. Preferably, one has the function of transporting electrons and the other has the function of transporting holes.

作為化合物131,除了鋅、鋁類金屬錯合物以外還可以舉出㗁二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等。作為其他例子,可以舉出芳香胺或咔唑衍生物等。As compound 131, in addition to zinc and aluminum metal complexes, there can be cited diazole derivatives, triazole derivatives, benzimidazole derivatives, quinoline derivatives, dibenzoquinoline derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives, bipyridine derivatives, phenanthroline derivatives, etc. As other examples, there can be cited aromatic amines and carbazole derivatives.

此外,例如可以使用如下電洞傳輸性材料及電子傳輸性材料。In addition, for example, the following hole-transporting materials and electron-transporting materials can be used.

作為電洞傳輸性材料,可以使用電洞傳輸性比電子傳輸性高的材料,較佳為使用具有1×10-6 cm2 /Vs以上的電洞移動率的材料。明確而言,可以使用芳族胺、咔唑衍生物、芳烴、二苯乙烯衍生物等。上述電洞傳輸性材料也可以是高分子化合物。As the hole transport material, a material having higher hole transport than electron transport can be used, preferably a material having a hole mobility of 1×10 -6 cm 2 /Vs or more. Specifically, aromatic amines, carbazole derivatives, aromatic hydrocarbons, stilbene derivatives, etc. can be used. The hole transport material may also be a polymer compound.

作為電洞傳輸性高的材料,例如,作為芳香胺化合物,可以舉出N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯胺基]苯(簡稱:DPA3B)等。As materials with high hole transport properties, for example, aromatic amine compounds include N,N'-di(p-tolyl)-N,N'-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4'-bis[N-(4-diphenylaminophenyl)-N-anilino]biphenyl (abbreviation: DPAB), N,N'-bis{4-[bis(3-methylphenyl)amino]phenyl}-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (abbreviation: DNTPD), and 1,3,5-tris[N-(4-diphenylaminophenyl)-N-anilino]benzene (abbreviation: DPA3B).

另外,作為咔唑衍生物,明確而言,可以舉出3-[N-(4-二苯基胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯基胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯基胺基苯基)-N-(1-萘基)氨]-9-苯基咔唑(簡稱:PCzTPN2)、3-[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)等。In addition, as carbazole derivatives, specifically, 3-[N-(4-diphenylaminophenyl)-N-anilino]-9-phenylcarbazole (abbreviated as PCzDPA1), 3,6-bis[N-(4-diphenylaminophenyl)-N-anilino]-9-phenylcarbazole (abbreviated as PCzDPA2), 3,6-bis[N-(4-diphenylaminophenyl)-N-(1-naphthyl)amino]-9-phenylcarbazole (abbreviated as PCzDPA2) and 3,6-bis[N-(4-diphenylaminophenyl)-N-(1-naphthyl)amino]-9-phenylcarbazole (abbreviated as PCzDPA3) can be cited. : PCzTPN2), 3-[N-(9-phenylcarbazole-3-yl)-N-anilino]-9-phenylcarbazole (abbreviated as: PCzPCA1), 3,6-bis[N-(9-phenylcarbazole-3-yl)-N-anilino]-9-phenylcarbazole (abbreviated as: PCzPCA2), 3-[N-(1-naphthyl)-N-(9-phenylcarbazole-3-yl)amino]-9-phenylcarbazole (abbreviated as: PCzPCN1), etc.

另外,作為咔唑衍生物,還可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、1,4-雙[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。In addition, examples of carbazole derivatives include 4,4'-di(N-carbazolyl)biphenyl (abbreviated as CBP), 1,3,5-tris[4-(N-carbazolyl)phenyl]benzene (abbreviated as TCPB), 9-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole (abbreviated as CzPA), and 1,4-bis[4-(N-carbazolyl)phenyl]-2,3,5,6-tetraphenylbenzene.

作為芳烴,例如可以舉出2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-三級丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-三級丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-三級丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-三級丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(三級丁基)苝等。另外,除此之外,還可以使用稠五苯、蔻等。如此,更佳為使用具有1×10-6 cm2 /Vs以上的電洞移動率且碳原子數為14至42的芳烴。Examples of the aromatic hydrocarbon include 2-tert-butyl-9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 2-tert-butyl-9,10-di(1-naphthyl)anthracene, 9,10-bis(3,5-diphenylphenyl)anthracene (abbreviation: DPPA), 2-tert-butyl-9,10-bis(4-phenylphenyl)anthracene (abbreviation: t-BuDBA), 9,10-di(2-naphthyl)anthracene (abbreviation: DNA), 9,10-diphenylanthracene (abbreviation: DPAnth), 2-tert-butylanthracene (abbreviation: t-BuAnth), and 9,10-bis(4-methyl-1-naphthyl)anthracene (abbreviation: DMNA). , 2-tert-butyl-9,10-bis[2-(1-naphthyl)phenyl]anthracene, 9,10-bis[2-(1-naphthyl)phenyl]anthracene, 2,3,6,7-tetramethyl-9,10-di(1-naphthyl)anthracene, 2,3,6,7-tetramethyl-9,10-di(2-naphthyl)anthracene, 9,9'-bianthracene, 10,10'-diphenyl-9,9'-bianthracene, 10,10'-bis(2-phenylphenyl)-9,9'-bianthracene, 10,10'-bis[(2,3,4,5,6-pentaphenyl)phenyl]-9,9'-bianthracene, anthracene, fused tetraphenyl, rubrene, perylene, 2,5,8,11-tetra(tert-butyl)perylene, etc. In addition, fused pentadiene, coronene, etc. can also be used. Thus, it is more preferable to use an aromatic hydrocarbon having a hole mobility of 1×10 -6 cm 2 /Vs or more and having 14 to 42 carbon atoms.

注意,芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如,可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。Note that the aromatic hydrocarbon may have a vinyl skeleton. Examples of aromatic hydrocarbons having a vinyl group include 4,4'-bis(2,2-diphenylvinyl)biphenyl (abbreviation: DPVBi) and 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene (abbreviation: DPVPA).

另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。In addition, high molecular weight compounds such as poly(N-vinylcarbazole) (abbreviation: PVK), poly(4-vinyltriphenylamine) (abbreviation: PVTPA), poly[N-(4-{N’-[4-(4-diphenylamino)phenyl]phenyl-N’-phenylamino}phenyl)methacrylamide] (abbreviation: PTPDMA), and poly[N,N’-bis(4-butylphenyl)-N,N’-bis(phenyl)benzidine] (abbreviation: Poly-TPD) can also be used.

另外,作為電洞傳輸性高的材料,例如,可以使用4,4’-雙[N-(1-萘基)-N-苯胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4’’-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4’’-三[N-(1-萘基)-N-苯胺基]三苯胺(簡稱:1’-TNATA)、4,4’,4’’-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4’’-三[N-(3-甲基苯基)-N-苯胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{(9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)氨]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯基胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯基胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPASF)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4’’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4’’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N’’-三苯基-N,N’,N’’-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-聯茀-2-胺(簡稱:PCBASF)、2-[N-(9-苯基咔唑-3-基)-N-苯胺基]螺-9,9’-聯茀(簡稱:PCASF)、2,7-雙[N-(4-二苯基胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPA2SF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)等芳香胺化合物等。另外,可以使用3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、1,3-雙(N-咔唑基)苯(簡稱:mCP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、4-{(3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)、4,4’,4’’-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、1,3,5-三(二苯并噻吩-4-基)苯(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)、4-[3-(聯伸三苯-2-基)苯基]二苯并噻吩(簡稱:mDBTPTp-II)等胺化合物、咔唑化合物、噻吩化合物、呋喃化合物、茀化合物、聯伸三苯化合物、菲化合物等。在此所述的物質主要是電洞移動率為1×10-6 cm2 /Vs以上的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述物質以外的物質。In addition, as a material with high hole transport properties, for example, 4,4'-bis[N-(1-naphthyl)-N-anilino]biphenyl (abbreviated as: NPB or α-NPD), N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (abbreviated as: TPD), 4,4',4''-tris(carbazol-9-yl)triphenylamine (abbreviated as: TCTA), 4,4',4''-tris[N-(1-naphthyl)- N-anilino]triphenylamine (abbreviated as: 1'-TNATA), 4,4',4''-tris(N,N-diphenylamino)triphenylamine (abbreviated as: TDATA), 4,4',4''-tris[N-(3-methylphenyl)-N-anilino]triphenylamine (abbreviated as: MTDATA), 4,4'-bis[N-(spiro-9,9'-bifluoren-2-yl)-N-anilino]biphenyl (abbreviated as: BSPB), 4-phenyl-4'-(9-phenylfluoren-9-yl)- )triphenylamine (abbreviated as BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl)triphenylamine (abbreviated as mBPAFLP), N-(9,9-dimethyl-9H-fluoren-2-yl)-N-{(9,9-dimethyl-2-[N'-phenyl-N'-(9,9-dimethyl-9H-fluoren-2-yl)amino]-9H-fluoren-7-yl}phenylamine (abbreviated as DFLADFL), N-(9,9-dimethyl-2-diphenylamino-9 H-fluoren-7-yl) diphenylamine (abbreviated as: DPNF), 2-[N-(4-diphenylaminophenyl)-N-anilino]spiro-9,9'-bifluoren-7-yl) (abbreviated as: DPASF), 4-phenyl-4'-(9-phenyl-9H-carbazole-3-yl)triphenylamine (abbreviated as: PCBA1BP), 4,4'-diphenyl-4''-(9-phenyl-9H-carbazole-3-yl)triphenylamine (abbreviated as: PCBBi1BP), 4-(1-naphthyl)-4' -(9-phenyl-9H-carbazole-3-yl)triphenylamine (abbreviated as: PCBANB), 4,4'-di(1-naphthyl)-4''-(9-phenyl-9H-carbazole-3-yl)triphenylamine (abbreviated as: PCBNBB), 4-phenyldiphenyl-(9-phenyl-9H-carbazole-3-yl)amine (abbreviated as: PCA1BP), N,N'-bis(9-phenylcarbazole-3-yl)-N,N'-diphenylbenzene-1,3-diamine (abbreviated as: PCA2B) 、N,N',N''-triphenyl-N,N',N''-tri(9-phenylcarbazole-3-yl)benzene-1,3,5-triamine (abbreviated as: PCA3B), N-(4-biphenyl)-N-(9,9-dimethyl-9H-fluoren-2-yl)-9-phenyl-9H-carbazole-3-amine (abbreviated as: PCBiF), N-(1,1'-biphenyl-4-yl)-N-[4-(9-phenyl-9H-carbazole-3-yl)phenyl]-9,9-dimethyl-9 H-fluorene-2-amine (abbreviated as: PCBBiF), 9,9-dimethyl-N-phenyl-N-[4-(9-phenyl-9H-carbazole-3-yl)phenyl]fluorene-2-amine (abbreviated as: PCBAF), N-phenyl-N-[4-(9-phenyl-9H-carbazole-3-yl)phenyl]spiro-9,9'-bifluorene-2-amine (abbreviated as: PCBASF), 2-[N-(9-phenylcarbazole-3-yl)-N-anilino]spiro-9,9'-bifluorene (abbreviated as: : PCASF), 2,7-bis[N-(4-diphenylaminophenyl)-N-anilino]spiro-9,9'-bifluorene (abbreviated as: DPA2SF), N-[4-(9H-carbazol-9-yl)phenyl]-N-(4-phenyl)phenylaniline (abbreviated as: YGA1BP), N,N'-bis[4-(carbazol-9-yl)phenyl]-N,N'-diphenyl-9,9-dimethylfluorene-2,7-diamine (abbreviated as: YGA2F) and other aromatic amine compounds. In addition, 3-[4-(1-naphthyl)-phenyl]-9-phenyl-9H-carbazole (abbreviated as PCPN), 3-[4-(9-phenanthrenyl)-phenyl]-9-phenyl-9H-carbazole (abbreviated as PCPPn), 3,3'-bis(9-phenyl-9H-carbazole) (abbreviated as PCCP), 1,3-bis(N-carbazolyl)benzene (abbreviated as mCP), 3,6-bis(3,5-diphenylphenyl)-9-phenylcarbazole (abbreviated as CzTP), 4-{(3-[3-(9-phenyl-9H-fluoren-9-yl)phenyl]phenyl}dibenzofuran (abbreviated as mmDBFFLBi-II), 4,4',4''-(benzene-1,3,5-triyl)tris(dibenzofuran) (abbreviated as mCP) can be used. amine compounds, carbazole compounds, thiophene compounds, furan compounds, fluorene compounds, triphenyl compounds, phenanthrene compounds, etc., such as 1,3,5-tris(dibenzothiophene-4-yl)benzene (abbreviated as DBT3P-II), 2,8-diphenyl-4-[4-(9-phenyl-9H-fluoren-9-yl)phenyl]dibenzothiophene (abbreviated as DBTFLP-III), 4-[4-(9-phenyl-9H-fluoren-9-yl)phenyl]-6-phenyldibenzothiophene (abbreviated as DBTFLP-IV), 4-[3-(triphenyl-2-yl)phenyl]dibenzothiophene (abbreviated as mDBTPTp-II). The substances described here are mainly 1×10 -6 cm 2 /Vs or more. However, any substance other than the above substances may be used as long as it has a hole-transmitting property higher than an electron-transmitting property.

作為電子傳輸性材料,可以使用電子傳輸性比電洞傳輸性高的材料,較佳為使用具有1×10-6 cm2 /Vs以上的電子移動率的材料。作為容易接收電子的材料(具有電子傳輸性的材料),可以使用含氮雜芳族化合物等的缺π電子雜芳族化合物或金屬錯合物等。作為具體例子,可以舉出包括喹啉配體、苯并喹啉配體、㗁唑配體或噻唑配體的金屬錯合物、㗁二唑衍生物、三唑衍生物、啡啉衍生物、吡啶衍生物、聯吡啶衍生物、嘧啶衍生物等。As the electron-transmitting material, a material having higher electron-transmitting property than hole-transmitting property can be used, and preferably a material having an electron mobility of 1×10 -6 cm 2 /Vs or more can be used. As the material that easily receives electrons (material having electron-transmitting property), π-electron-deficient heteroaromatic compounds such as nitrogen-containing heteroaromatic compounds or metal complexes can be used. As specific examples, metal complexes including quinoline ligands, benzoquinoline ligands, oxadiazole ligands or thiazole ligands, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and the like can be cited.

例如,可以使用包含具有喹啉骨架或苯并喹啉骨架的金屬錯合物等諸如有三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等。另外,除此之外,還可以使用如雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有㗁唑基類、噻唑類配體的金屬錯合物等。再者,除了金屬錯合物以外,還可以使用2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級基丁苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、2,2’,2’’-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)、紅啡啉(簡稱:BPhen)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBPhen)、浴銅靈(簡稱:BCP)等雜環化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III),7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)、6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等具有二嗪骨架的雜環化合物;2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)等具有三嗪骨架的雜環化合物;3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等具有吡啶骨架的雜環化合物;4,4’-雙(5-甲基苯并㗁唑基-2-基)二苯乙烯(簡稱:BzOs)等雜芳香化合物。另外,還可以使用高分子化合物諸如聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)。在此所述的物質主要是電子移動率為1×10-6 cm2 /Vs以上的物質。注意,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述物質以外的物質。For example, a metal complex having a quinoline skeleton or a benzoquinoline skeleton such as tris(8-hydroxyquinolinato)aluminum(III) (abbreviation: Alq), tris(4-methyl-8-hydroxyquinolinato)aluminum(III) (abbreviation: Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)borate(II) (abbreviation: BeBq 2 ), bis(2-methyl-8-hydroxyquinolinato)(4-phenylphenol)aluminum(III) (abbreviation: BAlq), bis(8-hydroxyquinolinato)zinc(II) (abbreviation: Znq) and the like can be used. In addition to these, metal complexes having oxazolyl or thiazole ligands such as bis[2-(2-benzoxazolyl)phenol]zinc(II) (abbreviated as ZnPBO) and bis[2-(2-benzothiazolyl)phenol]zinc(II) (abbreviated as ZnBTZ) can also be used. In addition to the metal complex, 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (abbreviation: OXD-7), 9-[4-(5-phenyl-1,3,4-oxadiazole-2-yl)phenyl]-9H-carbazole (abbreviation: CO11), 3-(4-biphenyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (abbreviation: TAZ), 2,2',2''-(1,3,5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (abbreviation: TPBI), 2-[3-(dibenzothiophene-4 -yl)phenyl]-1-phenyl-1H-benzimidazole (abbreviated as: mDBTBIm-II), red phenanthroline (abbreviated as: BPhen), 2,9-bis(naphthalene-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviated as: NBPhen), bathocophine (abbreviated as: BCP) and other heterocyclic compounds; 2-[3-(dibenzothiophene-4-yl)phenyl]dibenzo[f,h]quinoline (abbreviated as: 2mDBTPDBq-II), 2-[3'-(dibenzothiophene-4-yl)biphenyl-3-yl]dibenzo[f,h]quinoline (abbreviated as: 2mDBTBPDBq-II), 2-[3'-(9H-carbazole-9-yl)biphenyl-3-yl]dibenzo[f,h]quinoline (abbreviated as: 2m CzBPDBq), 2-[4-(3,6-diphenyl-9H-carbazole-9-yl)phenyl]dibenzo[f,h]quinoline (abbreviated as: 2CzPDBq-III), 7-[3-(dibenzothiophene-4-yl)phenyl]dibenzo[f,h]quinoline (abbreviated as: 7mDBTPDBq-II), 6-[3-(dibenzothiophene-4-yl)phenyl]dibenzo[f,h]quinoline (abbreviated as: 6mDBTPDBq-II), 4,6-bis[3-(phenanthrene-9-yl)phenyl]pyrimidine (abbreviated as: 4,6mPnP2Pm), 4,6-bis[3-(4-dibenzothiophene-1-yl)phenyl]pyrimidine (abbreviated as: 4,6mDBTP2Pm-II), 4,6-bis[3-(9H -carbazole-9-yl)phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm) and other heterocyclic compounds with a diazine skeleton; 2-{4-[3-(N-phenyl-9H-carbazole-3-yl)-9H-carbazole-9-yl]phenyl}-4,6-diphenyl-1,3,5-triazine (abbreviation: PCCzPTzn) and other heterocyclic compounds with a triazine skeleton; 3,5-bis[3-(9H-carbazole-9-yl)phenyl]pyridine (abbreviation: 35DCzPPy), 1,3,5-tris[3-(3-pyridyl)phenyl]benzene (abbreviation: TmPyPB) and other heterocyclic compounds with a pyridine skeleton; 4,4'-bis(5-methylbenzoxazol-2-yl)stilbene (abbreviation: BzOs) and other heteroaromatic compounds. In addition, polymer compounds such as poly(2,5-pyridinediyl) (abbreviation: PPy), poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py), and poly[(9,9-dioctylfluorene-2,7-diyl)-co-(2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) can also be used. The substances described here are mainly substances having an electron mobility of 1×10 -6 cm 2 /Vs or more. Note that substances other than the above substances can be used as long as they have higher electron transport properties than hole transport properties.

化合物134較佳為可以與化合物131形成激態錯合物的材料。明確而言,可以使用如上所示的電洞傳輸性材料及電子傳輸性材料。此時,以由化合物131和化合物134形成的激態錯合物的發光峰值與化合物133(具有五員環骨架的磷光材料)的最長波長一側(低能量一側)的吸收帶重疊的方式選擇化合物131和化合物134、以及化合物133(具有五員環骨架的磷光材料)。由此,可以實現一種發光效率得到顯著提高的發光元件。Compound 134 is preferably a material that can form an excited state complex with compound 131. Specifically, the hole transporting material and the electron transporting material shown above can be used. At this time, compound 131 and compound 134 are selected in such a way that the luminescence peak of the excited state complex formed by compound 131 and compound 134 overlaps with the absorption band of compound 133 (phosphorescent material having a five-membered ring skeleton) on the longest wavelength side (low energy side). Thus, a light-emitting element with significantly improved luminescence efficiency can be achieved.

發光層130也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層130的情況下,可以將具有電洞傳輸性的物質用作第一發光層的主體材料,並且將具有電子傳輸性的物質用作第二發光層的主體材料。The light-emitting layer 130 may also be formed of two or more layers. For example, when the light-emitting layer 130 is formed by stacking a first light-emitting layer and a second light-emitting layer in sequence from one side of the hole transport layer, a substance having hole transport properties may be used as a main material of the first light-emitting layer, and a substance having electron transport properties may be used as a main material of the second light-emitting layer.

此外,在發光層130中,也可以包含化合物131、化合物132、化合物133以及化合物134以外的材料(化合物135)。在此情況下,為了使化合物131和化合物133(或化合物134)高效地形成激態錯合物,較佳的是,化合物131和化合物133(或化合物134)中的一個的HOMO能階在發光層130中的材料中最高,而化合物131和化合物132中的另一個的LUMO能階在發光層130中的材料中最低。藉由採用這種能階相關,可以抑制由化合物131和化合物135形成激態錯合物的反應。Furthermore, the light-emitting layer 130 may contain a material (compound 135) other than compound 131, compound 132, compound 133, and compound 134. In this case, in order to allow compound 131 and compound 133 (or compound 134) to efficiently form an excited complex, it is preferred that the HOMO energy level of one of compound 131 and compound 133 (or compound 134) is the highest among the materials in the light-emitting layer 130, and the LUMO energy level of the other of compound 131 and compound 132 is the lowest among the materials in the light-emitting layer 130. By adopting such an energy level correlation, the reaction of compound 131 and compound 135 to form an excited complex can be suppressed.

例如,在化合物131具有電洞傳輸性且化合物133(或化合物134)具有電子傳輸性的情況下,較佳的是,化合物131的HOMO能階高於化合物133的HOMO能階及化合物135的HOMO能階,而化合物133的LUMO能階低於化合物131的LUMO能階及化合物135的LUMO能階。在此情況下,化合物135的LUMO能階既可高於又可低於化合物131的LUMO能階。另外,化合物135的HOMO能階既可高於又可低於化合物133的HOMO能階。For example, when compound 131 has hole transport properties and compound 133 (or compound 134) has electron transport properties, it is preferred that the HOMO energy level of compound 131 is higher than the HOMO energy level of compound 133 and the HOMO energy level of compound 135, and the LUMO energy level of compound 133 is lower than the LUMO energy level of compound 131 and the LUMO energy level of compound 135. In this case, the LUMO energy level of compound 135 may be higher or lower than the LUMO energy level of compound 131. In addition, the HOMO energy level of compound 135 may be higher or lower than the HOMO energy level of compound 133.

雖然對能夠用於發光層130的材料(化合物135)沒有特別的限制,但是例如可以舉出:三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、2,2’,2’’-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)等雜環化合物;4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等芳香胺化合物。另外,可以舉出蒽衍生物、菲衍生物、芘衍生物、䓛衍生物、二苯并[g,p]䓛衍生物等稠合多環芳香化合物(condensed polycyclic aromatic compound)。明確地說,可以舉出9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、N,9-二苯基-N-(9,10-二苯基-2-蒽基)-9H-咔唑-3-胺(簡稱:2PCAPA)、6,12-二甲氧基-5,11-二苯䓛、N,N,N’,N’,N’’,N’’,N’’’,N’’’-八苯基二苯并[g,p]䓛-2,7,10,15-四胺(簡稱:DBC1)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(簡稱:DPNS2)以及1,3,5-三(1-芘基)苯(簡稱:TPB3)等。從這些物質及已知的物質中選擇一種或多種具有比上述化合物131及化合物132的能隙大的能隙的物質即可。Although there is no particular limitation on the material (compound 135) that can be used for the light-emitting layer 130, for example, tris(8-hydroxyquinoline)aluminum(III) (abbreviated as Alq), tris(4-methyl-8-hydroxyquinoline)aluminum(III) (abbreviated as Almq 3 ), bis(10-hydroxybenzo[h]quinoline)borate(II) (abbreviated as BeBq 2 ), bis(2-methyl-8-hydroxyquinoline)(4-phenylphenol)aluminum(III) (abbreviated as BAlq), bis(8-hydroxyquinoline)zinc(II) (abbreviated as Znq), bis[2-(2-benzoxazolyl)phenol]zinc(II) (abbreviated as ZnPBO), bis[2-(2-benzothiazolyl)phenol]zinc(II) (abbreviated as ZnBTZ) and other metal complexes Compounds; 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-biphenyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) 、2,2',2''-(1,3,5-phenyltriyl)tris(1-phenyl-1H-benzimidazole)(abbreviated as: TPBI), red phenanthroline (abbreviated as: BPhen), bathocophine (abbreviated as: BCP), 9-[4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl]-9H-carbazole (abbreviated as: CO11) and other heterocyclic compounds; 4,4'-bis[N- Aromatic amine compounds include (1-naphthyl)-N-phenylamino]biphenyl (abbreviated as NPB or α-NPD), N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (abbreviated as TPD), and 4,4'-bis[N-(spiro-9,9'-bifluoren-2-yl)-N-phenylamino]biphenyl (abbreviated as BSPB). In addition, condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo[g,p]chrysene derivatives can be mentioned. Specifically, 9,10-diphenylanthracene (DPAnth), N,N-diphenyl-9-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole-3-amine (CzA1PA), 4-(10-phenyl-9-anthracenyl)triphenylamine (DPhPA), 4-(9H-carbazole-9-yl)-4'-(10-phenyl-9-anthracenyl)triphenylamine (YGAPA), N,9-diphenyl-N-[4- (10-phenyl-9-anthracenyl)phenyl]-9H-carbazole-3-amine (abbreviated as: PCAPA), N,9-diphenyl-N-{4-[4-(10-phenyl-9-anthracenyl)phenyl]phenyl}-9H-carbazole-3-amine (abbreviated as: PCAPBA), N,9-diphenyl-N-(9,10-diphenyl-2-anthracenyl)-9H-carbazole-3-amine (abbreviated as: 2PCAPA), 6,12-dimethoxy-5,11-diphenylchrysene, N,N,N',N',N'',N'',N''',N'''-octaphenyldibenzo[g,p]chrysene-2,7,10,15-tetramine (abbreviated as: DBC1), 9-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole (abbreviated as: CzPA), 3,6-diphenyl-9-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole (abbreviated as: DPCzPA), 9,10-bis(3,5-diphenylphenyl)anthracene (abbreviated as: DPP A), 9,10-di(2-naphthyl)anthracene (DNA), 2-tert-butyl-9,10-di(2-naphthyl)anthracene (t-BuDNA), 9,9'-bianthracene (BANT), 9,9'-(stilbene-3,3'-diyl)phenanthrene (DPNS), 9,9'-(stilbene-4,4'-diyl)phenanthrene (DPNS2), and 1,3,5-tri(1-pyrene)benzene (TPB3). From these substances and known substances, one or more substances having a larger energy gap than the energy gap of the above-mentioned compounds 131 and 132 can be selected.

<<一對電極>> 電極101及電極102具有對發光層130注入電洞及電子的功能。電極101及電極102可以使用金屬、合金、導電性化合物以及它們的混合物或疊層體等形成。金屬的典型例子是鋁(Al),除此之外,可以使用銀(Ag)、鎢、鉻、鉬、銅、鈦等過渡金屬;鋰(Li)或銫等鹼金屬;鈣或鎂(Mg)等第2族金屬。作為過渡金屬,也可以使用鐿(Yb)等稀土金屬。作為合金,可以使用包括上述金屬的合金,例如可以舉出MgAg、AlLi等。作為導電性化合物,例如,可以舉出銦錫氧化物(Indium Tin Oxide,以下稱為ITO)、包含矽或氧化矽的銦錫氧化物(簡稱:ITSO)、銦鋅氧化物(Indium Zinc Oxide)、包含鎢及鋅的銦氧化物等金屬氧化物。作為導電性化合物也可以使用石墨烯等無機碳類材料。如上所述,可以藉由層疊多個這些材料形成電極101和電極102中的一個或兩個。<<A pair of electrodes>> Electrode 101 and electrode 102 have the function of injecting holes and electrons into the light-emitting layer 130. Electrode 101 and electrode 102 can be formed using metals, alloys, conductive compounds, and mixtures or stacks thereof. A typical example of metal is aluminum (Al), and in addition, transition metals such as silver (Ag), tungsten, chromium, molybdenum, copper, and titanium; alkali metals such as lithium (Li) or cesium; and Group 2 metals such as calcium or magnesium (Mg) can be used. As a transition metal, a rare earth metal such as ytterbium (Yb) can also be used. As an alloy, an alloy including the above metals can be used, for example, MgAg, AlLi, etc. As the conductive compound, for example, metal oxides such as indium tin oxide (hereinafter referred to as ITO), indium tin oxide containing silicon or silicon oxide (abbreviated as: ITSO), indium zinc oxide (Indium Zinc Oxide), and indium oxide containing tungsten and zinc can be cited. Inorganic carbon materials such as graphene can also be used as the conductive compound. As described above, one or both of the electrode 101 and the electrode 102 can be formed by stacking a plurality of these materials.

另外,從發光層130獲得的發光透過電極101和電極102中的一個或兩個被提取。因此,電極101和電極102中的至少一個具有使可見光透過的功能。作為具有透光功能的導電性材料,可以舉出可見光的穿透率為40%以上且100%以下,較佳為60%以上且100%以下,且電阻率為1×10-2 Ω∙cm以下的導電性材料。另外,提取光一側的電極也可以是由具有透光的功能及反射光的功能的導電性材料形成的。作為該導電性材料,可以舉出可見光的反射率為20%以上且80%以下,較佳為40%以上且70%以下,且電阻率為1×10-2 Ω∙cm以下的導電性材料。當將金屬或合金等透光性低的材料用於提取光的電極時,只要以能夠使可見光透過的左右的厚度(例如,1nm至10nm的厚度)形成電極101和電極102中的一個或兩個即可。In addition, the light obtained from the light-emitting layer 130 is extracted through one or both of the electrode 101 and the electrode 102. Therefore, at least one of the electrode 101 and the electrode 102 has the function of transmitting visible light. As a conductive material having a light-transmitting function, a conductive material having a visible light transmittance of 40% or more and 100% or less, preferably 60% or more and 100% or less, and a resistivity of 1× 10-2 Ω∙cm or less can be cited. In addition, the electrode on the light-extracting side can also be formed of a conductive material having a light-transmitting function and a light-reflecting function. As the conductive material, a conductive material having a visible light reflectance of 20% or more and 80% or less, preferably 40% or more and 70% or less, and a resistivity of 1× 10-2 Ω∙cm or less can be cited. When a material with low light transmittance such as metal or alloy is used for the light extracting electrode, one or both of the electrode 101 and the electrode 102 may be formed with a thickness that allows visible light to pass therethrough (for example, a thickness of 1 nm to 10 nm).

注意,在本說明書等中,作為具有透光的功能的電極,使用具有使可見光透光的功能且具有導電性的材料即可,例如有上述以ITO為代表的氧化物導電體層、氧化物半導體層或包含有機物的有機導電體層。作為包含有機物的有機導電體層,例如可以舉出包含混合有機化合物與電子予體(施體)而成的複合材料的層、包含混合有機化合物與電子受體(受體)而成的複合材料的層等。另外,透明導電層的電阻率較佳為1×105 Ω∙cm以下,更佳為1×104 Ω∙cm以下。Note that in this specification, etc., as an electrode having a light-transmitting function, a material having a function of transmitting visible light and having conductivity may be used, such as an oxide conductive layer represented by ITO, an oxide semiconductor layer, or an organic conductive layer containing organic substances. As an organic conductive layer containing organic substances, for example, a layer containing a composite material formed by mixing an organic compound and an electron donor (donor), a layer containing a composite material formed by mixing an organic compound and an electron acceptor (acceptor), etc. can be cited. In addition, the resistivity of the transparent conductive layer is preferably 1×10 5 Ω∙cm or less, and more preferably 1×10 4 Ω∙cm or less.

另外,作為電極101及電極102的成膜方法,可以適用濺射法、蒸鍍法、印刷法、塗佈法、MBE(Molecular Beam Epitaxy:分子束磊晶)法、CVD法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。In addition, as a film forming method of the electrode 101 and the electrode 102, a sputtering method, an evaporation method, a printing method, a coating method, an MBE (Molecular Beam Epitaxy) method, a CVD method, a pulsed laser deposition method, an ALD (Atomic Layer Deposition) method, or the like can be applied.

<<電洞注入層>> 電洞注入層111具有降低來自一對電極中的一個(電極101或電極102)的電洞的注入能障促進電洞注入的功能,並例如使用過渡金屬氧化物、酞青衍生物或芳香胺等形成。作為過渡金屬氧化物可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。作為酞青衍生物,可以舉出酞青或金屬酞青等。作為芳香胺,可以舉出聯苯胺衍生物或伸苯基二胺衍生物等。也可以使用聚噻吩或聚苯胺等高分子化合物,典型的是:作為被自摻雜的聚噻吩的聚(乙基二氧噻吩)/聚(苯乙烯磺酸)等。<<Hole injection layer>> The hole injection layer 111 has the function of reducing the injection barrier of holes from one of a pair of electrodes (electrode 101 or electrode 102) to promote hole injection, and is formed using, for example, transition metal oxides, phthalocyanine derivatives, or aromatic amines. Examples of transition metal oxides include molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide. Examples of phthalocyanine derivatives include phthalocyanine or metal phthalocyanine. Examples of aromatic amines include benzidine derivatives or phenylenediamine derivatives. Polymer compounds such as polythiophene or polyaniline may also be used, typically: poly(ethylenedioxythiophene)/poly(styrenesulfonic acid) as self-doped polythiophene.

作為電洞注入層111,可以使用具有由電洞傳輸性材料和具有接收來自電洞傳輸性材料的電子的特性的材料構成的複合材料的層。或者,也可以使用包含具有接收電子的特性的材料的層與包含電洞傳輸性材料的層的疊層。在定態或者在存在有電場的狀態下,電荷的授受可以在這些材料之間進行。作為具有接收電子的特性的材料,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確而言,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(簡稱:F6-TCNNQ)等具有拉電子基團(尤其是如氟基等鹵基、氰基)的化合物。尤其是,拉電子基團鍵合於具有多個雜原子的稠合芳香環的化合物諸如HAT-CN等熱穩定,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以特別較佳的,明確而言,可以舉出:α,α’,α’’-1,2,3-環烷三亞基(ylidene)三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α’’-1,2,3-環丙三亞基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α’’-1,2,3-環烷三亞基三[2,3,4,5,6-五氟苯乙腈]等。此外,可以使用過渡金屬氧化物,例如第4族至第8族金屬的氧化物。明確而言,可以使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。As the hole injection layer 111, a layer of a composite material composed of a hole transport material and a material having the property of receiving electrons from the hole transport material can be used. Alternatively, a stack of a layer containing a material having the property of receiving electrons and a layer containing a hole transport material can be used. In a steady state or in the presence of an electric field, charge transfer can be performed between these materials. As materials having the property of receiving electrons, organic acceptors such as quinone dimethane derivatives, tetrachlorobenzoquinone derivatives, and hexaazatriphenylbenzene derivatives can be cited. Specifically, compounds having an electron-withdrawing group (especially a halogen group such as a fluorine group, or a cyano group) such as 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviated as F 4 -TCNQ), chloranil, 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (abbreviated as HAT-CN), and 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (abbreviated as F6-TCNNQ) can be cited. In particular, compounds such as HAT-CN in which an electron-withdrawing group is bonded to a condensed aromatic ring having a plurality of heteroatoms are thermally stable and therefore are preferred. In addition, [3] ylidene derivatives containing electron-withdrawing groups (especially halogen groups such as fluorine groups and cyano groups) are particularly preferred because of their very high electron accepting properties. Specifically, α, α', α''-1,2,3-cycloalkanetriylidene tris[4-cyano-2,3,5,6-tetrafluorophenylacetonitrile], α, α', α''-1,2,3-cyclopropanetriylidene tris[2,6-dichloro-3,5-difluoro-4-(trifluoromethyl)phenylacetonitrile], α, α', α''-1,2,3-cycloalkanetriylidene tris[2,3,4,5,6-pentafluorophenylacetonitrile], etc. can be cited. In addition, transition metal oxides, such as oxides of Group 4 to Group 8 metals, can be used. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, uranium oxide, etc. can be used. In particular, molybdenum oxide is preferably used because it is stable even in the atmosphere, has low hygroscopicity, and is easy to handle.

作為電洞傳輸性材料,可以使用電洞傳輸性比電子傳輸性高的材料,較佳為使用具有1×10-6 cm2 /Vs以上的電洞移動率的材料。明確而言,可以使用作為能夠用於發光層130的電洞傳輸性材料而舉出的芳香胺及咔唑衍生物。另外,還可以使用芳烴及二苯乙烯衍生物等。上述電洞傳輸性材料也可以是高分子化合物。As the hole transport material, a material having a hole transport property higher than an electron transport property can be used, and preferably a material having a hole mobility of 1×10 -6 cm 2 /Vs or more can be used. Specifically, aromatic amines and carbazole derivatives listed as hole transport materials that can be used for the light emitting layer 130 can be used. In addition, aromatic hydrocarbons and stilbene derivatives can also be used. The above-mentioned hole transport material can also be a polymer compound.

作為芳烴,例如可以舉出2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-三級丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-三級丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-三級丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-三級丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(三級丁基)苝等。另外,除此之外,還可以使用稠五苯、蔻等。如此,更佳為使用具有1×10-6 cm2 /Vs以上的電洞移動率且碳原子數為14至42的芳烴。Examples of the aromatic hydrocarbon include 2-tert-butyl-9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 2-tert-butyl-9,10-di(1-naphthyl)anthracene, 9,10-bis(3,5-diphenylphenyl)anthracene (abbreviation: DPPA), 2-tert-butyl-9,10-bis(4-phenylphenyl)anthracene (abbreviation: t-BuDBA), 9,10-di(2-naphthyl)anthracene (abbreviation: DNA), 9,10-diphenylanthracene (abbreviation: DPAnth), 2-tert-butylanthracene (abbreviation: t-BuAnth), and 9,10-bis(4-methyl-1-naphthyl)anthracene (abbreviation: DMNA). , 2-tert-butyl-9,10-bis[2-(1-naphthyl)phenyl]anthracene, 9,10-bis[2-(1-naphthyl)phenyl]anthracene, 2,3,6,7-tetramethyl-9,10-di(1-naphthyl)anthracene, 2,3,6,7-tetramethyl-9,10-di(2-naphthyl)anthracene, 9,9'-bianthracene, 10,10'-diphenyl-9,9'-bianthracene, 10,10'-bis(2-phenylphenyl)-9,9'-bianthracene, 10,10'-bis[(2,3,4,5,6-pentaphenyl)phenyl]-9,9'-bianthracene, anthracene, fused tetraphenyl, rubrene, perylene, 2,5,8,11-tetra(tert-butyl)perylene, etc. In addition, fused pentadiene, coronene, etc. can also be used. Thus, it is more preferable to use an aromatic hydrocarbon having a hole mobility of 1×10 -6 cm 2 /Vs or more and having 14 to 42 carbon atoms.

注意,芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如,可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。Note that the aromatic hydrocarbon may have a vinyl skeleton. Examples of aromatic hydrocarbons having a vinyl group include 4,4'-bis(2,2-diphenylvinyl)biphenyl (abbreviation: DPVBi) and 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene (abbreviation: DPVPA).

另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。In addition, high molecular weight compounds such as poly(N-vinylcarbazole) (abbreviation: PVK), poly(4-vinyltriphenylamine) (abbreviation: PVTPA), poly[N-(4-{N’-[4-(4-diphenylamino)phenyl]phenyl-N’-phenylamino}phenyl)methacrylamide] (abbreviation: PTPDMA), and poly[N,N’-bis(4-butylphenyl)-N,N’-bis(phenyl)benzidine] (abbreviation: Poly-TPD) can also be used.

<<電洞傳輸層>> 電洞傳輸層112是包含電洞傳輸性材料的層,可以使用作為電洞注入層111的材料所例示的材料。電洞傳輸層112具有將注入到電洞注入層111的電洞傳輸到發光層130的功能,所以較佳為具有與電洞注入層111的HOMO能階相同或接近的HOMO能階。<<Hole transport layer>> The hole transport layer 112 is a layer containing a hole transport material, and the material exemplified as the material of the hole injection layer 111 can be used. The hole transport layer 112 has the function of transferring holes injected into the hole injection layer 111 to the light emitting layer 130, so it is preferred to have a HOMO energy level that is the same as or close to the HOMO energy level of the hole injection layer 111.

作為上述電洞傳輸性材料,可以使用作為電洞注入層111的材料例示出的材料。另外,較佳為使用具有1×10-6 cm2 /Vs以上的電洞移動率的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述物質以外的物質。另外,包括具有高電洞傳輸性的物質的層不限於單層,還可以層疊兩層以上的由上述物質構成的層。As the hole-transporting material, the materials exemplified as the materials of the hole injection layer 111 can be used. In addition, it is preferable to use a substance having a hole mobility of 1×10 -6 cm 2 /Vs or more. However, as long as the hole-transporting property is higher than the electron-transporting property, a substance other than the above-mentioned substances can be used. In addition, the layer including the substance having high hole-transporting property is not limited to a single layer, and two or more layers composed of the above-mentioned substances can be stacked.

<<電子傳輸層>> 電子傳輸層118具有將從一對電極中的另一個(電極101或電極102)經過電子注入層119注入的電子傳輸到發光層130的功能。作為電子傳輸性材料,可以使用電子傳輸性比電洞傳輸性高的材料,較佳為使用具有1×10-6 cm2 /Vs以上的電子移動率的材料。作為容易接收電子的化合物(具有電子傳輸性的材料),可以使用含氮雜芳族化合物等的缺π電子雜芳族化合物或金屬錯合物等。明確而言,可以舉出作為可用於發光層130的電子傳輸性材料而舉出的包括喹啉配體、苯并喹啉配體、㗁唑配體或噻唑配體的金屬錯合物。另外,可以舉出㗁二唑衍生物、三唑衍生物、啡啉衍生物、吡啶衍生物、聯吡啶衍生物、嘧啶衍生物等。另外,較佳為具有1×10-6 cm2 /Vs以上的電子移動率的物質。但是,作為電子傳輸層,只要是電子傳輸性高於電洞傳輸性的物質,就可以採用上述以外的物質。另外,電子傳輸層118不限於單層,還可以層疊兩層以上的由上述物質構成的層。<<Electron transport layer>> The electron transport layer 118 has a function of transporting electrons injected from the other of a pair of electrodes (electrode 101 or electrode 102) through the electron injection layer 119 to the light-emitting layer 130. As the electron transport material, a material having higher electron transport than hole transport can be used, and preferably a material having an electron mobility of 1× 10-6 cm2 /Vs or more can be used. As a compound that easily receives electrons (a material having electron transport), a π-electron-deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound or a metal complex can be used. Specifically, metal complexes including quinoline ligands, benzoquinoline ligands, oxazole ligands, or thiazole ligands can be cited as electron transport materials that can be used for the light-emitting layer 130. In addition, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, etc. can be cited. In addition, a substance having an electron mobility of 1×10 -6 cm 2 /Vs or more is preferred. However, as the electron transport layer, as long as the electron transport property is higher than the hole transport property, a substance other than the above can be used. In addition, the electron transport layer 118 is not limited to a single layer, and two or more layers composed of the above substances can be stacked.

另外,還可以在電子傳輸層118與發光層130之間設置控制電子載子的移動的層。該控制電子載子的移動的層是對上述電子傳輸性高的材料添加少量的電子俘獲性高的物質的層,藉由抑制電子載子的移動,可以調節載子的平衡。這種結構對抑制因電子穿過發光層而引起的問題(例如元件壽命的下降)發揮很大的效果。In addition, a layer for controlling the movement of electron carriers can be provided between the electron transport layer 118 and the light emitting layer 130. The layer for controlling the movement of electron carriers is a layer in which a small amount of a substance with high electron capture property is added to the above-mentioned material with high electron transport property, and the balance of carriers can be adjusted by suppressing the movement of electron carriers. This structure has a great effect on suppressing problems caused by electrons passing through the light emitting layer (such as a reduction in the life of the device).

<<電子注入層>> 電子注入層119具有降低來自電極102的電子的注入能障促進電子注入的功能,例如可以使用第1族金屬、第2族金屬或它們的氧化物、鹵化物、碳酸鹽等。也可以使用上述電子傳輸性材料和具有對電子傳輸性材料供應電子的特性的材料的複合材料。作為具有供電子特性的材料,可以舉出第1族金屬、第2族金屬或它們的氧化物等。明確而言,可以使用氟化鋰(LiF)、氟化鈉(NaF)、氟化銫(CsF)、氟化鈣(CaF2 )及鋰氧化物(LiOx )等鹼金屬、鹼土金屬或這些金屬的化合物。另外,可以使用氟化鉺(ErF3 )等稀土金屬化合物。另外,也可以將電子鹽用於電子注入層119。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以將能夠用於電子傳輸層118的物質用於電子注入層119。<<Electron injection layer>> The electron injection layer 119 has the function of lowering the injection barrier of electrons from the electrode 102 to promote electron injection, and for example, Group 1 metals, Group 2 metals or their oxides, halides, carbonates, etc. can be used. A composite material of the above-mentioned electron-transmitting material and a material having the property of supplying electrons to the electron-transmitting material can also be used. As the material having the electron-supplying property, Group 1 metals, Group 2 metals or their oxides, etc. can be cited. Specifically, alkaline metals, alkaline earth metals or compounds of these metals such as lithium fluoride (LiF), sodium fluoride (NaF), cesium fluoride (CsF), calcium fluoride (CaF 2 ) and lithium oxide (LiO x ) can be used. In addition, rare earth metal compounds such as erbium fluoride (ErF 3 ) can be used. Alternatively, an electron salt may be used for the electron injection layer 119. Examples of the electron salt include a mixed oxide of calcium and aluminum to which electrons are added at a high concentration. Alternatively, a substance that can be used for the electron transport layer 118 may be used for the electron injection layer 119.

另外,也可以將有機化合物與電子予體(施體)混合形成的複合材料用於電子注入層119。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用如上所述的構成電子傳輸層118的物質(金屬錯合物、雜芳香化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。另外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。In addition, a composite material formed by mixing an organic compound with an electron donor can also be used for the electron injection layer 119. This composite material has excellent electron injection and electron transport properties because the electron donor generates electrons in the organic compound. In this case, the organic compound is preferably a material that has excellent performance in transporting the generated electrons. Specifically, for example, the substances constituting the electron transport layer 118 as described above (metal complexes, heteroaromatic compounds, etc.) can be used. As an electron donor, any substance that can donate electrons to the organic compound can be used. Specifically, it is preferred to use alkali metals, alkali earth metals, and rare earth metals, and lithium, cesium, magnesium, calcium, beryl, and yttrium can be mentioned. In addition, it is preferred to use an alkali metal oxide or an alkali earth metal oxide, and lithium oxide, calcium oxide, barium oxide, etc. can be mentioned. In addition, a Lewis base such as magnesium oxide can also be used. In addition, an organic compound such as tetrathiafulvalene (abbreviated as: TTF) can also be used.

另外,上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層都可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、噴嘴印刷法、凹版印刷等方法形成。另外,作為上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層,除了上述材料之外,也可以使用量子點等無機化合物或高分子化合物(低聚物、樹枝狀聚合物、聚合物等)。In addition, the above-mentioned light-emitting layer, hole injection layer, hole transport layer, electron transport layer and electron injection layer can be formed by evaporation (including vacuum evaporation), inkjet method, coating method, nozzle printing method, gravure printing, etc. In addition, as the above-mentioned light-emitting layer, hole injection layer, hole transport layer, electron transport layer and electron injection layer, in addition to the above-mentioned materials, inorganic compounds such as quantum dots or high molecular compounds (oligomers, dendrimers, polymers, etc.) can also be used.

作為量子點,可以使用膠狀量子點、合金型量子點、核殼(Core Shell)型量子點、核型量子點等。此外,也可以使用包含第2族與第16族、第13族與第15族、第13族與第17族、第11族與第17族或第14族與第15族的元素群的量子點。或者,可以使用包含鎘(Cd)、硒(Se)、鋅(Zn)、硫(S)、磷(P)、銦(In)、碲(Te)、鉛(Pb)、鎵(Ga)、砷(As)、鋁(Al)等元素的量子點。As quantum dots, colloidal quantum dots, alloy quantum dots, core-shell quantum dots, core-type quantum dots, etc. can be used. In addition, quantum dots containing element groups of Group 2 and Group 16, Group 13 and Group 15, Group 13 and Group 17, Group 11 and Group 17, or Group 14 and Group 15 can also be used. Alternatively, quantum dots containing elements such as cadmium (Cd), selenium (Se), zinc (Zn), sulfur (S), phosphorus (P), indium (In), tellurium (Te), lead (Pb), gallium (Ga), arsenic (As), aluminum (Al) can be used.

作為用於濕處理的液體介質,例如可以使用:甲乙酮、環己酮等的酮類;乙酸乙酯等的甘油脂肪酸酯類;二氯苯等的鹵化芳烴類;甲苯、二甲苯、均三甲苯、環己基苯等的芳烴類;環己烷、十氫化萘、十二烷等的脂肪烴類;二甲基甲醯胺(DMF)、二甲亞碸(DMSO)等的有機溶劑。As the liquid medium used for wet treatment, for example, ketones such as methyl ethyl ketone and cyclohexanone; glycerol fatty acid esters such as ethyl acetate; halogenated aromatic hydrocarbons such as dichlorobenzene; aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene; aliphatic hydrocarbons such as cyclohexane, decahydronaphthalene, dodecane; and organic solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).

作為可以用於發光層的高分子化合物,例如可以舉出:聚伸苯基伸乙烯基(PPV)衍生物諸如聚[2-甲氧基-5-(2-乙基己氧基)-1,4-伸苯基伸乙烯基](簡稱:MEH-PPV)、聚(2,5-二辛基-1,4-伸苯基亞乙烯)等;聚茀衍生物諸如聚(9,9-二正辛基茀基-2,7-二基)(簡稱:PF8)、聚[(9,9-二正辛基茀基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)](簡稱:F8BT)、聚[(9,9-二正辛基茀基-2,7-二基)-alt-(2,2’-聯噻吩-5,5’-二基)](簡稱:F8T2)、聚[(9,9-二辛基-2,7-二伸乙烯基伸茀基(divinylenefluorenylene))-alt-(9,10-蒽)]、聚[(9,9-二己基茀-2,7-二基)-alt-(2,5-二甲基-1,4-亞苯)]等;聚烷基噻吩(PAT)衍生物諸如聚(3-己基噻吩-2,5-二基)(簡稱:P3HT)等、聚亞苯衍生物等。另外,也可以對上述高分子化合物、聚(N-乙烯基咔唑)(簡稱:PVK)、聚(2-乙烯基萘)、聚[雙(4-苯基)(2,4,6-三甲基苯基)胺](簡稱:PTAA)等高分子化合物摻雜發光性化合物,而將其用於發光層。作為發光性化合物,可以使用以上舉例的發光性化合物。Examples of polymer compounds that can be used in the light-emitting layer include polyphenylene vinylene (PPV) derivatives such as poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (abbreviated as MEH-PPV) and poly(2,5-dioctyl-1,4-phenylene vinylene); polyfluorene derivatives such as poly(9,9-di-n-octylfluorenyl-2,7-diyl) (abbreviated as PF8), poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazole-4,8-diyl)] (abbreviated as F8BT), poly[( [(9,9-dioctylfluorenyl-2,7-diyl)-alt-(2,2'-bithiophene-5,5'-diyl)] (abbreviated as F8T2), poly[(9,9-dioctyl-2,7-divinylfluorenyl)-alt-(9,10-anthracene)], poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-(2,5-dimethyl-1,4-phenylene)], etc.; polyalkylthiophene (PAT) derivatives such as poly(3-hexylthiophene-2,5-diyl) (abbreviated as P3HT), etc., polyphenylene derivatives, etc. In addition, the above-mentioned polymer compounds, poly(N-vinylcarbazole) (abbreviated as PVK), poly(2-vinylnaphthalene), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (abbreviated as PTAA) and other polymer compounds may be doped with luminescent compounds and used in the luminescent layer. As the luminescent compound, the luminescent compounds exemplified above may be used.

<<基板>> 另外,本發明的一個實施方式的發光元件可以在由玻璃、塑膠等構成的基板上製造。作為在基板上層疊的順序,既可以從電極101一側依次層疊又可以從電極102一側依次層疊。<<Substrate>> In addition, the light-emitting element of one embodiment of the present invention can be manufactured on a substrate made of glass, plastic, etc. As the order of stacking on the substrate, it can be stacked in sequence from the electrode 101 side or from the electrode 102 side.

另外,作為能夠形成本發明的一個實施方式的發光元件的基板,例如可以使用玻璃、石英或塑膠等。或者,也可以使用撓性基板。撓性基板是可以彎曲的基板,例如由聚碳酸酯、聚芳酯製成的塑膠基板等。另外,可以使用薄膜、無機蒸鍍薄膜等。注意,只要在發光元件及光學裝置的製造過程中起支撐物的作用,就可以使用其他材料。或者,只要具有保護發光元件及光學裝置的功能即可。In addition, as a substrate for a light-emitting element that can form an embodiment of the present invention, for example, glass, quartz or plastic can be used. Alternatively, a flexible substrate can also be used. A flexible substrate is a substrate that can be bent, such as a plastic substrate made of polycarbonate or polyarylate. In addition, a film, an inorganic evaporated film, etc. can be used. Note that other materials can be used as long as they serve as a support in the manufacturing process of the light-emitting element and the optical device. Alternatively, any material can be used as long as it has the function of protecting the light-emitting element and the optical device.

例如,在本說明書等中,可以使用各種基板形成發光元件。對基板的種類沒有特別的限制。作為該基板的例子,例如可以使用半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、具有不鏽鋼箔的基板、鎢基板、具有鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀材料的纖維素奈米纖維(CNF)、紙或基材薄膜等。作為玻璃基板的例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出如下例子。例如,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)、聚四氟乙烯(PTFE)為代表的塑膠。或者,作為一個例子,可以舉出丙烯酸樹脂等樹脂等。或者,作為例子,可以舉出聚丙烯、聚酯、聚氟化乙烯或聚氯乙烯等。或者,作為例子,可以舉出聚醯胺、聚醯亞胺、芳香族聚醯胺、環氧樹脂、無機蒸鍍薄膜、紙類等。For example, in this specification, etc., various substrates can be used to form a light-emitting element. There is no particular limitation on the type of substrate. As examples of the substrate, for example, a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate with a stainless steel foil, a tungsten substrate, a substrate with a tungsten foil, a flexible substrate, a bonding film, a cellulose nanofiber (CNF) containing a fibrous material, paper or a base film, etc. can be used. As examples of glass substrates, there are barium borosilicate glass, aluminum borosilicate glass, sodium calcium glass, etc. As flexible substrates, bonding films, base films, etc., the following examples can be cited. For example, plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE) can be cited. Alternatively, resins such as acrylic resins can be cited as an example. Alternatively, polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride can be cited as an example. Alternatively, polyamide, polyimide, aromatic polyamide, epoxy resin, inorganic vapor-deposited film, paper, etc. can be cited as an example.

另外,也可以作為基板使用撓性基板,並在撓性基板上直接形成發光元件。或者,也可以在基板與發光元件之間設置剝離層。當剝離層上製造發光元件的一部分或全部,然後將其從基板分離並轉置到其他基板上時可以使用剝離層。此時,也可以將發光元件轉置到耐熱性低的基板或撓性基板上。另外,作為上述剝離層,例如可以使用鎢膜和氧化矽膜的無機膜的疊層結構或在基板上形成有聚醯亞胺等樹脂膜的結構等。In addition, a flexible substrate may be used as a substrate, and a light-emitting element may be directly formed on the flexible substrate. Alternatively, a peeling layer may be provided between the substrate and the light-emitting element. The peeling layer may be used when a part or all of the light-emitting element is manufactured on the peeling layer, and then it is separated from the substrate and transferred to another substrate. In this case, the light-emitting element may be transferred to a substrate or a flexible substrate having low heat resistance. In addition, as the above-mentioned peeling layer, for example, a stacked structure of an inorganic film of a tungsten film and a silicon oxide film or a structure in which a resin film such as polyimide is formed on a substrate may be used.

也就是說,也可以使用一個基板來形成發光元件,然後將發光元件轉置到另一個基板上。作為發光元件被轉置的基板的例子,除了上述基板之外,還可以舉出玻璃紙基板、石材基板、木材基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、橡膠基板等。藉由採用這些基板,可以製造不易損壞的發光元件、耐熱性高的發光元件、實現輕量化的發光元件或實現薄型化的發光元件。That is, a light-emitting element may be formed using one substrate and then transferred to another substrate. Examples of substrates to which the light-emitting element is transferred include, in addition to the above-mentioned substrates, cellophane substrates, stone substrates, wood substrates, cloth substrates (including natural fibers (silk, cotton, linen), synthetic fibers (nylon, polyurethane, polyester) or recycled fibers (acetate, cuprammonium, rayon, recycled polyester), etc.), leather substrates, rubber substrates, etc. By using these substrates, it is possible to manufacture light-emitting elements that are not easily damaged, light-emitting elements with high heat resistance, light-emitting elements that are lightweight, or light-emitting elements that are thin.

另外,也可以在上述基板上例如形成場效應電晶體(FET),並且在與FET電連接的電極上製造發光元件150。由此,可以製造藉由FET控制發光元件的驅動的主動矩陣型顯示裝置。Alternatively, a field effect transistor (FET) may be formed on the substrate, and the light emitting element 150 may be manufactured on an electrode electrically connected to the FET. Thus, an active matrix display device in which the driving of the light emitting element is controlled by the FET may be manufactured.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。The structure shown in this embodiment can be used in combination with the structures shown in other embodiments as appropriate.

實施方式2 在本實施方式中,以由通式(G1)及(G2)表示的有機化合物為例,說明可適用於本發明的一個實施方式的發光元件的有機化合物的合成方法的一個例子。Embodiment 2 In this embodiment, an example of a method for synthesizing an organic compound of a light-emitting element applicable to an embodiment of the present invention is described by taking an organic compound represented by general formula (G1) and (G2) as an example.

<由通式(G1)表示的有機化合物的合成方法> 由上述通式(G1)表示的有機化合物藉由利用各種反應的合成方法可以合成。例如,可以藉由下述合成方案(S-1)及(S-2)進行合成。藉由使化合物1、芳基胺(化合物2)及芳基胺(化合物3)耦合,得到二胺化合物(化合物4)。<Method for synthesizing an organic compound represented by general formula (G1)> The organic compound represented by the above general formula (G1) can be synthesized by a synthesis method utilizing various reactions. For example, it can be synthesized by the following synthesis schemes (S-1) and (S-2). By coupling compound 1, arylamine (compound 2) and arylamine (compound 3), a diamine compound (compound 4) is obtained.

然後,藉由使二胺化合物(化合物4)、鹵化芳基(化合物5)及鹵化芳基(化合物6)耦合,可以得到由上述通式(G1)表示的有機化合物。Then, by coupling the diamine compound (Compound 4), the halogenated aryl group (Compound 5), and the halogenated aryl group (Compound 6), the organic compound represented by the above general formula (G1) can be obtained.

注意,在上述合成方案(S-1)及(S-2)中,A表示碳原子數為10至30的取代或未取代的稠合芳香環或者碳原子數為10至30的取代或未取代的稠合雜芳環,Ar1 至Ar4 分別獨立地表示取代或未取代的碳原子數為6至13的芳烴基,X1 至X8 分別獨立地表示碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基以及碳原子數為3以上且12以下的三烷基矽基中的任一個。作為該稠合芳香環或稠合雜芳環,可以舉出䓛、菲、二苯乙烯、吖啶酮、啡㗁𠯤、啡噻𠯤等。尤其較佳的是蒽、芘、香豆素、喹吖啶酮、苝、稠四苯、萘并雙苯并呋喃。Note that in the above-mentioned synthesis schemes (S-1) and (S-2), A represents a substituted or unsubstituted fused aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted fused heteroaromatic ring having 10 to 30 carbon atoms, Ar1 to Ar4 each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms, and X1 to X8 each independently represent any one of an alkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, and a trialkylsilyl group having 3 to 12 carbon atoms. Examples of the fused aromatic ring or fused heteroaromatic ring include chrysene, phenanthrene, stilbene, acridone, phenanthrene, phenanthrene, and phenanthrene. Particularly preferred are anthracene, pyrene, coumarin, quinacridone, perylene, fused tetraphenylene, and naphthobisbenzofuran.

注意,在上述合成方案(S-1)及(S-2)中,進行使用鈀催化劑的布赫瓦爾德-哈特維希反應的情況下,X10 至X13 表示鹵基或三氟甲磺酸酯基,並且作為鹵素,較佳為碘、溴或氯。在上述反應中,可以使用雙(二亞苄基丙酮)鈀(0)、醋酸鈀(II)等鈀化合物、三(三級丁基)膦、三(正己基)膦、三環己基膦、二(1-金剛烷)-正丁基膦、以及2-二環己基膦基-2’,6’-二甲氧基-1,1’-聯苯等的配體。另外,在上述反應中,可以使用三級丁醇鈉等有機鹼、碳酸鉀、碳酸銫、碳酸鈉等無機鹼等。作為溶劑,可以使用甲苯、二甲苯、均三甲苯、苯、四氫呋喃、二氧六環等。注意,能夠用於上述反應的試劑類不侷限於上述試劑類。Note that in the above-mentioned synthesis schemes (S-1) and (S-2), when the Buchwald-Hartwig reaction using a palladium catalyst is performed, X10 to X13 represent a halogen group or a trifluoromethanesulfonate group, and the halogen is preferably iodine, bromine or chlorine. In the above-mentioned reaction, palladium compounds such as bis(dibenzylideneacetone)palladium(0) and palladium(II) acetate, tri(tributyl)phosphine, tri(n-hexyl)phosphine, tricyclohexylphosphine, di(1-adamantane)-n-butylphosphine, and 2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl can be used as ligands. In addition, in the above reaction, organic bases such as sodium tertiary butoxide, inorganic bases such as potassium carbonate, cesium carbonate, sodium carbonate, etc. can be used. As a solvent, toluene, xylene, mesitylene, benzene, tetrahydrofuran, dioxane, etc. can be used. Note that the reagents that can be used in the above reaction are not limited to the above reagents.

在上述合成方案(S-1)及(S-2)中進行的反應不侷限於布赫瓦爾德-哈特維希反應,也可以利用使用有機錫化合物的右田-小杉-Stille耦合反應、使用格林納試劑的耦合反應、使用銅或銅化合物的烏爾曼(Ullmann)反應等。The reaction performed in the above-mentioned synthesis schemes (S-1) and (S-2) is not limited to the Buchwald-Hartwig reaction, and the Ueda-Kosugi-Stille coupling reaction using an organotin compound, the coupling reaction using a Grignard reagent, the Ullmann reaction using copper or a copper compound, etc. can also be utilized.

在上述合成方案(S-1)中,在化合物2和化合物3具有不同結構的情況下,較佳為使化合物1與化合物2起反應而形成耦合體,然後使所得到的耦合體與化合物3起反應。注意,在使化合物1與化合物2及化合物3逐個地起反應的情況下,化合物1較佳為二鹵化體,並且X10 及X11 較佳為使用不同鹵素並逐個選擇地進行胺化反應。In the above synthesis scheme (S-1), when compound 2 and compound 3 have different structures, it is preferred to react compound 1 with compound 2 to form a coupled product, and then react the obtained coupled product with compound 3. Note that, when compound 1 is reacted with compound 2 and compound 3 one by one, compound 1 is preferably a dihalide, and X10 and X11 are preferably subjected to amination reaction selectively one by one using different halogens.

再者,在上述合成方案(S-2)中,在化合物5和化合物6具有不同結構的情況下,較佳為使化合物4與化合物5起反應而形成耦合體,然後使所得到的耦合體與化合物6起反應。Furthermore, in the above synthesis scheme (S-2), when compound 5 and compound 6 have different structures, it is preferred to react compound 4 with compound 5 to form a coupled product, and then react the obtained coupled product with compound 6.

<由通式(G2)表示的有機化合物的合成方法> 由通式(G2)表示的本發明的一個實施方式的有機化合物可以利用各種各樣的有機反應進行合成。以下,作為例子示出兩種方法。<Method for synthesizing an organic compound represented by general formula (G2)> The organic compound represented by general formula (G2) according to one embodiment of the present invention can be synthesized by various organic reactions. Two methods are shown below as examples.

第一個方法由以下的合成方案(S-3)至(S-8)構成。在最初的製程中,藉由苯胺化合物(化合物7)與1,4-環己二烯-1,4-二羧酸化合物(化合物8)的縮合反應,得到胺化合物(化合物9)。合成方案(S-3)示出該製程。注意,當可以以一個步驟使具有同一取代基的兩個苯胺化合物(化合物7)稠合,以鍵合具有同一取代基的胺基時,較佳為添加2等效的苯胺化合物(化合物7)進行上述反應。此時,即使化合物8的羰基沒有反應選擇性,也可以得到目的物。The first method consists of the following synthesis schemes (S-3) to (S-8). In the initial process, an amine compound (Compound 9) is obtained by a condensation reaction of an aniline compound (Compound 7) and a 1,4-cyclohexadiene-1,4-dicarboxylic acid compound (Compound 8). Synthesis scheme (S-3) shows the process. Note that when two aniline compounds (Compound 7) having the same substituent can be fused in one step to bond the amine group having the same substituent, it is preferred to add 2 equivalent aniline compounds (Compound 7) to carry out the above reaction. At this time, even if the carbonyl group of Compound 8 does not react selectively, the target product can be obtained.

接著,藉由使胺化合物(化合物9)和苯胺衍生物(化合物10)起縮合反應,可以得到1,4-環己二烯化合物(化合物11)。合成方案(S-4)示出得到化合物11的製程。Next, by subjecting the amine compound (Compound 9) and the aniline derivative (Compound 10) to a condensation reaction, a 1,4-cyclohexadiene compound (Compound 11) can be obtained. Synthesis Scheme (S-4) shows the process for obtaining Compound 11.

接著,藉由在空氣中使1,4-環己二烯化合物(化合物11)氧化,可以得到對苯二甲酸化合物(化合物12)。合成方案(S-5)示出得到化合物12的製程。Next, by oxidizing the 1,4-cyclohexadiene compound (Compound 11) in air, a terephthalic acid compound (Compound 12) can be obtained. Synthesis Scheme (S-5) shows the process for obtaining Compound 12.

接著,藉由利用酸使對苯二甲酸化合物(化合物12)稠合,可以得到喹吖啶酮化合物(化合物13)。合成方案(S-6)示出得到化合物13的製程。Next, the terephthalic acid compound (Compound 12) is condensed with an acid to obtain a quinacridone compound (Compound 13). Synthesis Scheme (S-6) shows the process for obtaining Compound 13.

接著,藉由使喹吖啶酮化合物(化合物13)和鹵化芳基(化合物14)耦合,可以得到喹吖啶酮化合物(化合物15)。合成方案(S-7)示出得到化合物15的製程。注意,當可以以一個步驟使具有同一取代基的兩個鹵化芳基(化合物8)耦合以鍵合具有同一取代基的胺基時,較佳為添加2等效的鹵化芳基(化合物14)進行上述反應。此時,即使化合物14的胺基沒有反應選擇性,也可以得到目的物。Next, by coupling the quinacridone compound (Compound 13) and the halogenated aryl group (Compound 14), the quinacridone compound (Compound 15) can be obtained. Synthesis Scheme (S-7) shows the process for obtaining Compound 15. Note that when two halogenated aryl groups (Compound 8) having the same substituent can be coupled in one step to bond to an amine group having the same substituent, it is preferred to add 2 equivalent halogenated aryl groups (Compound 14) to carry out the above reaction. At this time, even if the amine group of Compound 14 does not react selectively, the target product can be obtained.

接著,藉由使喹吖啶酮化合物(化合物15)和鹵化芳基(化合物16)耦合,可以得到由上述通式(G2)表示的有機化合物。合成方案(S-8)示出該製程。Next, by coupling the quinacridone compound (Compound 15) and the halogenated aryl group (Compound 16), an organic compound represented by the above general formula (G2) can be obtained. Synthesis Scheme (S-8) shows this process.

第二個方法由合成方案(S-3)至(S-5)、以下的(S-9)、(S-10)及(S-11)構成。(S-3)至(S-5)的說明為如上。藉由使對苯二甲酸化合物(化合物12)和鹵化芳基(化合物14)耦合,可以得到二胺化合物(化合物17)。合成方案(S-9)示出得到化合物17的製程。注意,當可以以一個步驟使具有同一取代基的兩個分子的鹵化芳基耦合以鍵合具有同一取代基的胺基時,較佳為添加2等效的鹵化芳基(化合物14)進行上述反應。此時,即使化合物12的胺基沒有反應選擇性,也可以得到目的物。The second method consists of synthesis schemes (S-3) to (S-5), and the following (S-9), (S-10) and (S-11). The explanations of (S-3) to (S-5) are as above. By coupling a terephthalic acid compound (compound 12) and a halogenated aryl group (compound 14), a diamine compound (compound 17) can be obtained. Synthesis scheme (S-9) shows the process for obtaining compound 17. Note that when two molecules of halogenated aryl groups having the same substituent can be coupled in one step to bond to an amine group having the same substituent, it is preferred to add 2 equivalent halogenated aryl groups (compound 14) to carry out the above reaction. At this time, even if the amine group of compound 12 does not react selectively, the target product can be obtained.

接著,藉由使二胺化合物(化合物17)和鹵化芳基(化合物16)耦合,可以得到二胺化合物(化合物18)。合成方案(S-10)示出得到化合物18的製程。Next, by coupling the diamine compound (Compound 17) and the halogenated aryl group (Compound 16), a diamine compound (Compound 18) can be obtained. Synthesis Scheme (S-10) shows the process for obtaining Compound 18.

最後,藉由利用酸使二胺化合物(化合物18)稠合,可以得到由上述通式(G2)表示的有機化合物。合成方案(S-11)示出該製程。注意,在縮合反應中,Ar5 或Ar6 的鄰位的氫起反應,有可能產生由上述通式(G2)表示的有機化合物的異構物。Finally, by condensing the diamine compound (Compound 18) with an acid, an organic compound represented by the general formula (G2) can be obtained. Synthesis Scheme (S-11) shows the process. Note that in the condensation reaction, hydrogen adjacent to Ar 5 or Ar 6 reacts, and isomers of the organic compound represented by the general formula (G2) may be produced.

在合成方案(S-11)中,藉由使用具有對稱結構的二胺化合物(化合物18),可以合成由上述通式(G2)表示的有機化合物。In the synthesis scheme (S-11), the organic compound represented by the above general formula (G2) can be synthesized by using a diamine compound (Compound 18) having a symmetrical structure.

在合成方案(S-3)至(S-6)及(S-9)至(S-11)中,Al1 表示甲基等烷基。In the synthesis schemes (S-3) to (S-6) and (S-9) to (S-11), Al 1 represents an alkyl group such as a methyl group.

在合成方案(S-7)至(S-10)中,Y1 和Y2 表示氯、溴、碘、三氟甲磺酸酯基。In the synthesis schemes (S-7) to (S-10), Y1 and Y2 represent chlorine, bromine, iodine, or triflate.

在合成方案(S-7)至(S-10)中,較佳為進行烏爾曼反應,以在高溫下進行反應,並以較高的產率得到目的化合物。作為在該反應中可以使用的試劑,可以舉出銅或銅化合物、作為鹼的碳酸鉀、氫化鈉等無機鹼。作為在該反應中可以使用的溶劑,可以舉出2,2,6,6-四甲基-3,5-庚二酮、1,3-二甲基-3,4,5,6-四氫-2(1H)嘧啶酮(DMPU)、甲苯、二甲苯、苯等。在烏爾曼反應中,在反應溫度為100℃以上時,可以以更短的時間以及更高的產率得到目的物,因此較佳為使用沸點較高的2,2,6,6-四甲基-3,5-庚二酮、DMPU、二甲苯。此外,反應溫度更佳為150℃以上,因此更佳為使用DMPU。在該反應中可以使用的試劑類不侷限於上述試劑類。In the synthesis schemes (S-7) to (S-10), it is preferred to perform the Ullmann reaction to carry out the reaction at a high temperature and obtain the target compound in a higher yield. As the reagent that can be used in the reaction, copper or copper compounds, potassium carbonate as a base, sodium hydride and other inorganic bases can be cited. As the solvent that can be used in the reaction, 2,2,6,6-tetramethyl-3,5-heptanedione, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (DMPU), toluene, xylene, benzene and the like can be cited. In the Ullmann reaction, when the reaction temperature is 100°C or higher, the target product can be obtained in a shorter time and with a higher yield, so it is preferred to use 2,2,6,6-tetramethyl-3,5-heptanedione, DMPU, and xylene with a higher boiling point. In addition, the reaction temperature is more preferably 150°C or higher, so it is more preferred to use DMPU. The reagents that can be used in this reaction are not limited to the above reagents.

在合成方案(S-7)至(S-10)中,可以進行使用鈀催化劑的布赫瓦爾德-哈特維希反應,在該反應中,可以使用雙(二亞苄基丙酮)鈀(0)、醋酸鈀(II)、[1,1-雙(二苯基膦基)二茂鐵]鈀(II)二氯化鈀、四(三苯基膦)鈀(0)、氯化烯丙基鈀(II)二聚物等鈀化合物、三(三級丁基)膦、三(正己基)膦、三環己基膦、二(1-金剛烷)-正丁基膦、2-二環己基膦基-2’,6’-二甲氧基聯苯、三(鄰-甲苯基)膦、(S)-(6,6’-二甲氧基聯苯-2,2’-二基)雙(二異丙基膦)(簡稱:cBRIDP(註冊商標))等配體。在該反應中,可以使用有機鹼諸如三級丁醇鈉等、無機鹼諸如碳酸鉀、碳酸銫、碳酸鈉等。在該反應中,作為溶劑,可以使用甲苯、二甲苯、苯、四氫呋喃、二氧六環等。在該反應中可以使用的試劑類不侷限於上述試劑類。In the synthesis schemes (S-7) to (S-10), a Buchwald-Hartwig reaction using a palladium catalyst can be performed. In this reaction, bis(dibenzylideneacetone)palladium(0), palladium(II) acetate, [1,1-bis(diphenylphosphino)ferrocene]palladium(II)dichloride, tetrakis(triphenylphosphine)palladium(0), allylpalladium(II) chloride dimer, etc. can be used. Ligands such as palladium compounds, tri(tert-butyl)phosphine, tri(n-hexyl)phosphine, tricyclohexylphosphine, di(1-adamantane)-n-butylphosphine, 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl, tri(o-tolyl)phosphine, (S)-(6,6'-dimethoxybiphenyl-2,2'-diyl)bis(diisopropylphosphine) (abbreviation: cBRIDP (registered trademark)) can be used in the reaction. In the reaction, organic bases such as sodium tert-butylate and inorganic bases such as potassium carbonate, cesium carbonate, sodium carbonate and the like can be used. In the reaction, toluene, xylene, benzene, tetrahydrofuran, dioxane and the like can be used as solvents. The reagents that can be used in this reaction are not limited to the above-mentioned reagents.

用來合成本發明的由通式(G2)表示的有機化合物的方法不侷限於合成方案(S-1)至(S-11)。The method for synthesizing the organic compound represented by the general formula (G2) of the present invention is not limited to the synthesis schemes (S-1) to (S-11).

作為鍵合到喹吖啶酮骨架的R1 至R10 的具體例子,可以舉出正丙基、異丙基、正丁基、異丁基、三級丁基、環丙基、環丁基、環戊基、環己基、三甲基矽基、三乙基矽基、三丁基矽基等。As specific examples of R1 to R10 bonded to the quinacridone skeleton, there can be mentioned n-propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, trimethylsilyl, triethylsilyl, tributylsilyl and the like.

作為鍵合有X9 及X10 的Ar5 以及鍵合有X11 及X12 的Ar6 的具體例子,可以舉出2-異丙基苯基、2-丁基苯基、2-異丁基苯基、2-三級丁基苯基、2-異丙基苯基、2-丁基苯基、3-丙基苯基、3-異丁基苯基、3-三級丁基苯基、4-丙基苯基、4-異丙基苯基、4-丁基苯基、4-異丁基苯基、4-三級丁基苯基、3,5-二丙基苯基、3,5-二-異丙基苯基、3,5-二丁基苯基、3,5-二-異丁基苯基、(3,5-二-三級丁基)苯基、1,3-二丙基苯基、1,3-二-異丙基苯基、1,3-二丁基苯基、1,3-二-異丁基苯基、(1,3-二-三級丁基)苯基、1,3,5-三異丙基苯基、(1,3,5-三-三級丁基)苯基、4-環己苯基等。Specific examples of Ar5 to which X9 and X10 are bonded and Ar6 to which X11 and X12 are bonded include 2-isopropylphenyl, 2-butylphenyl, 2-isobutylphenyl, 2-tert-butylphenyl, 2-isopropylphenyl, 2-butylphenyl, 3-propylphenyl, 3-isobutylphenyl, 3-tert-butylphenyl, 4-propylphenyl, 4-isopropylphenyl, 4-butylphenyl, 4-isobutylphenyl, 4-tert-butylphenyl, 3,5-dipropylphenyl, 3,5-di-isopropylphenyl, 3,5-di-isobutyl ... Propylphenyl, 3,5-dibutylphenyl, 3,5-di-isobutylphenyl, (3,5-di-tert-butyl)phenyl, 1,3-dipropylphenyl, 1,3-di-isopropylphenyl, 1,3-dibutylphenyl, 1,3-di-isobutylphenyl, (1,3-di-tert-butyl)phenyl, 1,3,5-tri-isopropylphenyl, (1,3,5-tri-tert-butyl)phenyl, 4-cyclohexylphenyl, etc.

以上,說明本發明的一個實施方式的由通式(G1)及通式(G2)表示的有機化合物的合成方法,但是本發明不侷限於此,也可以利用其它的合成方法進行合成。The above is a description of a method for synthesizing organic compounds represented by the general formula (G1) and the general formula (G2) according to one embodiment of the present invention. However, the present invention is not limited thereto, and the organic compounds may be synthesized using other synthesis methods.

實施方式3 在本實施方式中,參照圖6對具有與實施方式1所示的發光元件的結構不同的結構的發光元件進行說明。注意,在圖6中,在具有與圖1A所示的元件符號相同功能的部分,使用相同的陰影,而有時省略元件符號。此外,具有與圖1A相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。Implementation method 3 In this implementation method, a light-emitting element having a structure different from that of the light-emitting element shown in implementation method 1 is described with reference to FIG. 6. Note that in FIG. 6, the same shading is used for parts having the same functions as those of the element symbols shown in FIG. 1A, and the element symbols are sometimes omitted. In addition, parts having the same functions as those in FIG. 1A are represented by the same element symbols, and their detailed descriptions are sometimes omitted.

<發光元件的結構例子2> 圖6是發光元件250的剖面示意圖。<Structural example 2 of light-emitting element> FIG. 6 is a schematic cross-sectional view of the light-emitting element 250.

圖6所示的發光元件250在一對電極(電極101與電極102)之間具有多個發光單元(發光單元106和發光單元108)。多個發光單元中的一個發光單元較佳為具有與圖1A所示的EL層100同樣的結構。也就是說,圖1A所示的發光元件150較佳為具有一個發光單元,而發光元件250較佳為具有多個發光單元。注意,在發光元件250中,雖然對電極101為陽極且電極102為陰極時的情況進行說明,但是作為發光元件250的結構也可以採用與此相反的結構。The light-emitting element 250 shown in FIG6 has a plurality of light-emitting units (light-emitting unit 106 and light-emitting unit 108) between a pair of electrodes (electrode 101 and electrode 102). One of the plurality of light-emitting units preferably has the same structure as the EL layer 100 shown in FIG1A. That is, the light-emitting element 150 shown in FIG1A preferably has one light-emitting unit, and the light-emitting element 250 preferably has a plurality of light-emitting units. Note that in the light-emitting element 250, although the case where the electrode 101 is an anode and the electrode 102 is a cathode is described, the opposite structure may also be adopted as the structure of the light-emitting element 250.

在圖6所示的發光元件250中,層疊有發光單元106和發光單元108,並且在發光單元106與發光單元108之間設置有電荷產生層115。另外,發光單元106和發光單元108可以具有相同結構或不同結構。例如,發光單元108較佳為採用與EL層100相同的結構。In the light-emitting element 250 shown in FIG6 , the light-emitting unit 106 and the light-emitting unit 108 are stacked, and the charge generation layer 115 is provided between the light-emitting unit 106 and the light-emitting unit 108. In addition, the light-emitting unit 106 and the light-emitting unit 108 may have the same structure or different structures. For example, the light-emitting unit 108 preferably has the same structure as the EL layer 100.

發光元件250包括發光層120和發光層170。發光單元106除了發光層120之外還包括電洞注入層111、電洞傳輸層112、電子傳輸層113及電子注入層114。發光單元108除了發光層170之外還包括電洞注入層116、電洞傳輸層117、電子傳輸層118及電子注入層119。The light emitting element 250 includes the light emitting layer 120 and the light emitting layer 170. The light emitting unit 106 includes a hole injection layer 111, a hole transport layer 112, an electron transport layer 113, and an electron injection layer 114 in addition to the light emitting layer 120. The light emitting unit 108 includes a hole injection layer 116, a hole transport layer 117, an electron transport layer 118, and an electron injection layer 119 in addition to the light emitting layer 170.

在發光元件250中,發光單元106及發光單元108中的任意層包含根據本發明的一個實施方式的化合物即可。注意,作為包含該化合物的層,發光層120或發光層170較佳。In the light-emitting element 250, any one of the light-emitting units 106 and 108 may contain the compound according to one embodiment of the present invention. Note that the light-emitting layer 120 or the light-emitting layer 170 is preferably the layer containing the compound.

電荷產生層115既可以是對電洞傳輸性材料添加作為電子受體的受體性物質的結構,又可以是對電子傳輸性材料添加作為電子予體的施體性物質的結構。另外,也可以層疊這兩種結構。The charge generation layer 115 may have a structure in which an acceptor substance serving as an electron acceptor is added to a hole transport material, or a structure in which a donor substance serving as an electron donor is added to an electron transport material. Alternatively, these two structures may be stacked.

當電荷產生層115包含由有機化合物與受體性物質構成的複合材料時,作為該複合材料使用可以用於實施方式1所示的電洞注入層111的複合材料即可。作為有機化合物,可以使用芳香胺化合物、咔唑化合物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等各種化合物。另外,作為有機化合物,較佳為使用其電洞移動率為1×10-6 cm2 /Vs以上的物質。但是,只要是其電洞傳輸性高於電子傳輸性的物質,就可以使用這些以外的物質。因為由有機化合物和受體性物質構成的複合材料具有良好的載子注入性以及載子傳輸性,所以可以實現低電壓驅動以及低電流驅動。注意,在發光單元的陽極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電洞注入層或電洞傳輸層的功能,所以在該發光單元中也可以不設置電洞注入層或電洞傳輸層。或者,在發光單元的陰極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電子注入層或電子傳輸層的功能,所以在該發光單元中也可以不設置電子注入層或電子傳輸層。When the charge generating layer 115 includes a composite material composed of an organic compound and an acceptor substance, the composite material that can be used for the hole injection layer 111 shown in Embodiment 1 may be used as the composite material. As the organic compound, various compounds such as aromatic amine compounds, carbazole compounds, aromatic hydrocarbons, and high molecular compounds (oligomers, dendrimers, polymers, etc.) may be used. In addition, as the organic compound, it is preferred to use a substance whose hole mobility is greater than 1×10 -6 cm 2 /Vs. However, any substance other than these may be used as long as the hole transport property is higher than the electron transport property. Since the composite material composed of an organic compound and an acceptor substance has good carrier injection and carrier transport properties, low voltage drive and low current drive can be achieved. Note that when the surface of the anode side of the light-emitting unit contacts the charge generation layer 115, the charge generation layer 115 can also have the function of the hole injection layer or the hole transport layer of the light-emitting unit, so the hole injection layer or the hole transport layer may not be provided in the light-emitting unit. Alternatively, when the surface of the cathode side of the light-emitting unit contacts the charge generation layer 115, the charge generation layer 115 can also have the function of the electron injection layer or the electron transport layer of the light-emitting unit, so the electron injection layer or the electron transport layer may not be provided in the light-emitting unit.

注意,電荷產生層115也可以是組合包含有機化合物和受體性物質的複合材料的層與由其他材料構成的層的疊層結構。例如,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含選自供電子性物質中的一個化合物和高電子傳輸性的化合物的層的結構。另外,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含透明導電膜的層的結構。Note that the charge generating layer 115 may also be a stacked structure of a layer of a composite material including an organic compound and an acceptor substance and a layer composed of other materials. For example, a layer of a composite material including an organic compound and an acceptor substance and a layer including a compound selected from electron-donating substances and a compound with high electron transport properties may be combined. Alternatively, a layer of a composite material including an organic compound and an acceptor substance and a layer including a transparent conductive film may be combined.

夾在發光單元106與發光單元108之間的電荷產生層115只要具有在將電壓施加到電極101和電極102之間時,將電子注入到一個發光單元且將電洞注入到另一個發光單元的結構即可。例如,在圖6中,在以使電極101的電位高於電極102的電位的方式施加電壓時,電荷產生層115將電子注入到發光單元106且將電洞注入到發光單元108。The charge generation layer 115 sandwiched between the light-emitting cell 106 and the light-emitting cell 108 only needs to have a structure that injects electrons into one light-emitting cell and injects holes into the other light-emitting cell when a voltage is applied between the electrode 101 and the electrode 102. For example, in FIG6 , when a voltage is applied in such a manner that the potential of the electrode 101 is higher than the potential of the electrode 102, the charge generation layer 115 injects electrons into the light-emitting cell 106 and injects holes into the light-emitting cell 108.

從光提取效率的觀點來看,電荷產生層115較佳為具有可見光透射性(明確而言,可見光的透射率為40%以上)。另外,電荷產生層115即使其導電率小於一對電極(電極101及電極102)也發揮作用。From the viewpoint of light extraction efficiency, the charge generation layer 115 preferably has visible light transmittance (specifically, the transmittance of visible light is 40% or more). In addition, the charge generation layer 115 functions even if its conductivity is lower than that of a pair of electrodes (electrode 101 and electrode 102).

藉由使用上述材料形成電荷產生層115,可以抑制在層疊發光層時的驅動電壓的增大。By forming the charge generation layer 115 using the above-mentioned material, it is possible to suppress an increase in the driving voltage when light-emitting layers are stacked.

雖然在圖6中說明了具有兩個發光單元的發光元件,但是可以將同樣的結構應用於層疊有三個以上的發光單元的發光元件。如發光元件250所示,藉由在一對電極之間以由電荷產生層將其隔開的方式配置多個發光單元,可以實現在保持低電流密度的同時還可以進行高亮度發光,並且具有更長的壽命的發光元件。另外,還可以實現低功耗的發光元件。Although FIG6 illustrates a light-emitting element having two light-emitting units, the same structure can be applied to a light-emitting element having three or more light-emitting units stacked. As shown in the light-emitting element 250, by arranging a plurality of light-emitting units between a pair of electrodes in a manner separated by a charge generating layer, a light-emitting element can be realized that can emit light with high brightness while maintaining a low current density and has a longer life. In addition, a light-emitting element with low power consumption can also be realized.

另外,在上述各結構中,用於發光單元106及發光單元108的客體材料的發光顏色既可以相同又可以不同。當發光單元106和發光單元108包含具有發射相同顏色的光的功能的客體材料時,發光元件250成為以較低的電流值呈現高發光亮度的發光元件,所以是較佳的。另外,當發光單元106和發光單元108包含具有發射彼此不同顏色的光的功能的客體材料時,發光元件250發射多個顏色的光,所以是較佳的。此時,當將發光波長不同的多個發光材料用於發光層120和發光層170中的一者或兩者時,合成具有不同的發光峰值的光,因此發光元件250的發射光譜具有至少兩個極大值。In addition, in each of the above structures, the luminescent colors of the object materials used for the light-emitting unit 106 and the light-emitting unit 108 can be the same or different. When the light-emitting unit 106 and the light-emitting unit 108 include object materials having the function of emitting light of the same color, the light-emitting element 250 becomes a light-emitting element that exhibits high luminescence brightness at a lower current value, so it is preferred. In addition, when the light-emitting unit 106 and the light-emitting unit 108 include object materials having the function of emitting light of different colors from each other, the light-emitting element 250 emits light of multiple colors, so it is preferred. At this time, when multiple light-emitting materials with different luminescent wavelengths are used for one or both of the light-emitting layer 120 and the light-emitting layer 170, light with different luminescent peaks is synthesized, so the emission spectrum of the light-emitting element 250 has at least two maximum values.

上述結構適合獲得白色發光的情況。藉由使發光層120與發光層170的光為互補色的關係,可以獲得白色發光。尤其較佳為以實現演色性高的白色發光或至少具有紅色、綠色、藍色的發光的方式選擇客體材料。The above structure is suitable for obtaining white luminescence. White luminescence can be obtained by making the light from the luminescent layer 120 and the light from the luminescent layer 170 complementary to each other. It is particularly preferred to select the object material in a manner that realizes white luminescence with high color rendering or luminescence with at least red, green, and blue.

較佳為將實施方式1所示的發光層130的結構用於發光層120及發光層170的一者或兩者。藉由採用該結構,可以得到發光效率及可靠性良好的發光元件。包括在發光層130中的客體材料為螢光材料。因此,藉由將實施方式1所示的發光層130的結構用於發光層120及發光層170的一者或兩者,可以得到具有高效率及高可靠性的發光元件。It is preferred that the structure of the light-emitting layer 130 shown in Embodiment 1 is used for one or both of the light-emitting layer 120 and the light-emitting layer 170. By adopting this structure, a light-emitting element with good light-emitting efficiency and reliability can be obtained. The guest material included in the light-emitting layer 130 is a fluorescent material. Therefore, by using the structure of the light-emitting layer 130 shown in Embodiment 1 for one or both of the light-emitting layer 120 and the light-emitting layer 170, a light-emitting element with high efficiency and high reliability can be obtained.

另外,在層疊三個以上的發光單元的發光元件中,用於各發光單元的客體材料的發光顏色可以相同或不同。在發光元件包括發射相同顏色的光的多個發光單元的情況下,這些多個發光單元可以以較小電流值發射高強度的光。這種結構適於發光顏色的調整。尤其較佳為用於使用發光效率不同且呈現不同發光顏色的客體材料的情況。例如,在設置有三個發光單元的情況下,藉由設置包含呈現相同發光顏色的螢光材料的兩個發光單元及包含呈現與該螢光材料不同的發光顏色的磷光材料的一個發光單元,可以調整螢光發光及磷光發光的發光強度。換言之,可以根據發光單元的個數調整發光顏色的強度。In addition, in a light-emitting element in which more than three light-emitting units are stacked, the light-emitting color of the guest material used for each light-emitting unit can be the same or different. In the case where the light-emitting element includes multiple light-emitting units that emit light of the same color, these multiple light-emitting units can emit high-intensity light with a smaller current value. This structure is suitable for adjusting the light-emitting color. It is particularly preferred for use in the case of using guest materials with different light-emitting efficiencies and exhibiting different light-emitting colors. For example, in the case where three light-emitting units are provided, by providing two light-emitting units including a fluorescent material exhibiting the same light-emitting color and one light-emitting unit including a phosphorescent material exhibiting a light-emitting color different from that of the fluorescent material, the light-emitting intensity of the fluorescent luminescence and the phosphorescent luminescence can be adjusted. In other words, the intensity of the luminous color can be adjusted according to the number of light-emitting units.

在採用上述包括兩個螢光發光單元及一個磷光發光單元的發光元件的情況下,藉由採用如下發光元件,可以高效地得到白色發光,所以是較佳的:包括包含藍色螢光材料的兩個發光單元及包含黃色磷光材料的一個發光單元的發光元件;包括包含藍色螢光材料的兩個發光單元及包含紅色磷光材料及綠色磷光材料的一個發光單元的發光元件;或者包括包含藍色螢光材料的兩個發光單元及包含紅色磷光材料、黃色磷光材料及綠色磷光材料的一個發光單元的發光元件。如此,可以適當地組合本發明的一個實施方式的發光元件與磷光發光層。In the case of using the above-mentioned light-emitting element including two fluorescent light-emitting units and one phosphorescent light-emitting unit, it is preferred that white light emission can be efficiently obtained by using the following light-emitting elements: a light-emitting element including two light-emitting units including blue fluorescent materials and one light-emitting unit including yellow phosphorescent materials; a light-emitting element including two light-emitting units including blue fluorescent materials and one light-emitting unit including red phosphorescent materials and green phosphorescent materials; or a light-emitting element including two light-emitting units including blue fluorescent materials and one light-emitting unit including red phosphorescent materials, yellow phosphorescent materials and green phosphorescent materials. In this way, the light-emitting element and the phosphorescent light-emitting layer of one embodiment of the present invention can be appropriately combined.

在上述包括兩個螢光發光單元及一個磷光發光單元的發光元件中,可以將磷光發光單元替換為具有上述實施方式1所說明的發光層130的結構的發光單元。這是因為:藉由使用上述實施方式1所說明的發光層130的結構,可以得到其發光效率與磷光發光層相同的螢光發光層。In the above-mentioned light-emitting element including two fluorescent light-emitting units and one phosphorescent light-emitting unit, the phosphorescent light-emitting unit can be replaced by a light-emitting unit having the structure of the light-emitting layer 130 described in the above-mentioned embodiment 1. This is because: by using the structure of the light-emitting layer 130 described in the above-mentioned embodiment 1, a fluorescent light-emitting layer having the same light-emitting efficiency as the phosphorescent light-emitting layer can be obtained.

此外,也可以將發光層120和發光層170中的至少一個進一步分割為層狀並使各層含有不同的發光材料。也就是說,發光層120和發光層170中的至少一個也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層的情況下,可以將具有電洞傳輸性的材料用於第一發光層的主體材料,並且將具有電子傳輸性的材料用於第二發光層的主體材料。在此情況下,第一發光層和第二發光層所包含的發光材料也可以是相同或不同的材料。另外,第一發光層和第二發光層所包含的發光材料可以是具有發射相同顏色的光的功能的材料,也可以是具有發射不同顏色的光的功能的材料。藉由採用具有發射彼此不同顏色的光的功能的多個發光材料的結構,也可以得到由三原色或四種以上的發光顏色構成的演色性高的白色發光。In addition, at least one of the light-emitting layer 120 and the light-emitting layer 170 may be further divided into layers and each layer may contain a different light-emitting material. That is, at least one of the light-emitting layer 120 and the light-emitting layer 170 may be formed of two or more layers. For example, when the light-emitting layer is formed by stacking the first light-emitting layer and the second light-emitting layer in sequence from the hole transport layer side, a material having a hole transport property may be used as the main material of the first light-emitting layer, and a material having an electron transport property may be used as the main material of the second light-emitting layer. In this case, the light-emitting materials contained in the first light-emitting layer and the second light-emitting layer may be the same or different materials. In addition, the luminescent materials included in the first luminescent layer and the second luminescent layer may be materials having the function of emitting light of the same color or materials having the function of emitting light of different colors. By adopting a structure in which a plurality of luminescent materials having the function of emitting light of different colors are used, white luminescence with high color rendering properties composed of three primary colors or four or more luminescent colors can be obtained.

注意,作為用於實施方式3中說明的磷光發光單元的發光層的客體材料,例如可以使用如下所示的磷光材料。Note that as a guest material for the light-emitting layer of the phosphorescent light-emitting unit described in Embodiment 3, for example, the phosphorescent material shown below can be used.

作為藍色或綠色處具有發光峰值的磷光材料,例如可以舉出:三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:Ir(mpptz-dmp)3 )、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz)3 )、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b)3 )、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPr5btz)3 )等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptz1-mp)3 )、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptz1-Me)3 )等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi)3 )、三[3-(2,6-二甲基苯)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:Ir(dmpimpt-Me)3 )等具有咪唑骨架的有機金屬銥錯合物;雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)四(1-吡唑)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’ }銥(III)吡啶甲酸鹽(簡稱:Ir(CF3 ppy)2 (pic))、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)乙醯丙酮(簡稱:FIr(acac))等具有拉電子基團的苯基吡啶衍生物為配體的有機金屬銥錯合物。上述磷光材料中,4H-三唑骨架、1H-三唑骨架及咪唑骨架等具有含氮五元雜環骨架的有機金屬銥錯合物具有高三重激發能,並且可靠性及發光效率良好,所以尤其較佳的。另外,也可以使用:2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3 (Phen))等稀土金屬錯合物。Examples of phosphorescent materials having a blue or green luminescence peak include tris{2-[5-(2-methylphenyl)-4-(2,6-dimethylphenyl)-4H-1,2,4-triazol-3-yl-κN2]phenyl-κC}iridium(III) (abbreviated as Ir(mpptz-dmp) 3 ), tris(5-methyl-3,4-diphenyl-4H-1,2,4-triazole)iridium(III) (abbreviated as Ir(Mptz) 3 ), tris[4-(3-biphenyl)-5-isopropyl-3-phenyl-4H-1,2,4-triazole]iridium(III) (abbreviated as Ir(iPrptz-3b) 3 ), tris[3-(5-biphenyl)-5-isopropyl-4-phenyl-4H-1,2,4-triazole] iridium(III) (abbreviated as Ir(iPr5btz) 3 ), tris[3-methyl-1-(2-methylphenyl)-5-phenyl-1H-1,2,4-triazole] iridium(III) (abbreviated as Ir(Mptz1-mp) 3 ), tris(1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole) iridium(III) (abbreviated as Ir(Prptz1-Me) 3 ) and other organometallic iridium complexes with a 1H-triazole skeleton; fac-tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole] iridium(III) (abbreviated as: Ir(iPrpmi) 3 ), tris[3-(2,6-dimethylphenyl)-7-methylimidazo[1,2-f]phenanthridinato] iridium(III) (abbreviated as: Ir(dmpimpt-Me) 3 ) and other organometallic iridium complexes with an imidazole skeleton; bis[2-(4',6'-difluorophenyl)pyridinium-N,C 2' ] iridium(III)tetrakis(1-pyrazole)borate (abbreviated as: FIr6), bis[2-(4',6'-difluorophenyl)pyridinium-N,C 2' ] iridium (III) picolinate (abbreviated as FIrpic), bis{2-[3',5'-bis(trifluoromethyl)phenyl]pyridinium-N,C 2' } iridium (III) picolinate (abbreviated as Ir(CF 3 ppy) 2 (pic)), bis[2-(4',6'-difluorophenyl)pyridinium-N,C 2' ]iridium (III) acetylacetone (abbreviated as FIr(acac)) and the like, which are organometallic iridium complexes having phenylpyridine derivatives with electron-withdrawing groups as ligands. Among the above-mentioned phosphorescent materials, organometallic iridium complexes having nitrogen-containing five-membered heterocyclic skeletons such as 4H-triazole skeletons, 1H-triazole skeletons and imidazole skeletons are particularly preferred because they have high triplet excitation energy, good reliability and luminescence efficiency. In addition, platinum complexes such as 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (abbreviated as PtOEP) and rare earth metal complexes such as tris[1-(2-thienylcarbonyl)-3,3,3-trifluoroacetone](monophenanthridine)piperidinium (III) (abbreviated as Eu(TTA) 3 (Phen)) can also be used.

另外,作為綠色或黃色處具有發光峰值的物質,例如可以舉出:三(4-甲基-6-苯基嘧啶根)銥(III)(簡稱:Ir(mppm)3 )、三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:Ir(tBuppm)3 )、(乙醯丙酮)雙(6-甲基-4-苯基嘧啶根)銥(III)(簡稱:Ir(mppm)2 (acac))、(乙醯丙酮)雙(6-三級丁基-4-苯基嘧啶根)銥(III)(簡稱:Ir(tBuppm)2 (acac))、(乙醯丙酮)雙[4-(2-降莰基)-6-苯基嘧啶根]銥(III)(簡稱:Ir(nbppm)2 (acac))、(乙醯丙酮)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]銥(III)(簡稱:Ir(mpmppm)2 (acac))、(乙醯丙酮)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-吡啶基-κN3]苯基-κC}銥(III)(簡稱:Ir(dmppm-dmp)2 (acac))、(乙醯丙酮)雙(4,6-二苯基嘧啶根)銥(III)(簡稱:Ir(dppm)2 (acac))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮)雙(3,5-二甲基-2-苯基吡嗪根)銥(III)(簡稱:Ir(mppr-Me)2 (acac))、(乙醯丙酮)雙(5-異丙基-3-甲基-2-苯基吡嗪根)銥(III)(簡稱:Ir(mppr-iPr)2 (acac))等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶根-N,C2’ )銥(III)(簡稱:Ir(ppy)3 )、雙(2-苯基吡啶根-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(ppy)2 (acac))、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:Ir(bzq)2 (acac))、三(苯并[h]喹啉)銥(III)(簡稱:Ir(bzq)3 )、三(2-苯基喹啉-N,C2’ )銥(III)(簡稱:Ir(pq)3 )、雙(2-苯基喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(pq)2 (acac))等具有吡嗪骨架的有機金屬銥錯合物;雙(2,4-二苯基-1,3-㗁唑-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(dpo)2 (acac))、雙{2-[4’-(全氟苯基)苯基]吡啶根-N,C2’ }銥(III)乙醯丙酮(簡稱:Ir(p-PF-ph)2 (acac))、雙(2-苯基苯并噻唑-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(bt)2 (acac))等有機金屬銥錯合物。除此之外,可以舉出:三(乙醯丙酮)(單啡啉)鋱(III)(簡稱:Tb(acac)3 (Phen))等稀土金屬錯合物。在上述錯合物中,具有嘧啶骨架的有機金屬銥錯合物可靠性及發光效率特別良好,所以是尤其較佳的。In addition, examples of substances having a luminescence peak in green or yellow include tris(4-methyl-6-phenylpyrimidinyl) iridium(III) (abbreviated as Ir(mppm) 3 ), tris(4-tert-butyl-6-phenylpyrimidinyl) iridium(III) (abbreviated as Ir(tBuppm) 3 ), (acetylacetone)bis(6-methyl-4-phenylpyrimidinyl) iridium(III) (abbreviated as Ir(mppm) 2 (acac)), (acetylacetone)bis(6-tert-butyl-4-phenylpyrimidinyl) iridium(III) (abbreviated as Ir(tBuppm) 2 (acac)), (acetylacetone)bis(4-(2-norbornyl)-6-phenylpyrimidinyl) iridium(III) (abbreviated as Ir(nbppm) 2 (acac)), (acetylacetonate)bis[5-methyl-6-(2-methylphenyl)-4-phenylpyrimidinyl] iridium(III) (abbreviated as Ir(mpmppm) 2 (acac)), (acetylacetonate)bis{4,6-dimethyl-2-[6-(2,6-dimethylphenyl)-4-pyridinyl-κN3]phenyl-κC} iridium(III) (abbreviated as Ir(dmppm-dmp) 2 (acac)), (acetylacetonate)bis(4,6-diphenylpyrimidinyl) iridium(III) (abbreviated as Ir(dppm) 2 (acac)), etc.; (acetylacetonate)bis(3,5-dimethyl-2-phenylpyrazinyl) iridium(III) (abbreviated as Ir(mppr-Me) 2 (acac)), (acetylacetonato)bis(5-isopropyl-3-methyl-2-phenylpyrazino)iridium(III) (abbreviated as Ir(mppr-iPr) 2 (acac)), etc.; tris(2-phenylpyridino-N,C 2' )iridium(III) (abbreviated as Ir(ppy) 3 ), bis(2-phenylpyridino-N,C 2' )iridium(III) acetylacetonate (abbreviated as Ir(ppy) 2 (acac)), bis(benzo[h]quinoline)iridium(III) acetylacetonate (abbreviated as Ir(bzq) 2 (acac)), tris(benzo[h]quinoline)iridium(III) (abbreviated as Ir(bzq) 3 ), tris(2-phenylquinoline-N,C 2' )iridium(III) (abbreviated as Ir(pq) 3 ), bis(2-phenylquinoline-N,C 2' )iridium(III) acetylacetone (abbreviated as Ir(pq) 2 (acac)), bis(2,4-diphenyl-1,3-oxazolyl-N,C 2' )iridium(III) acetylacetone (abbreviated as Ir(dpo) 2 (acac)), bis{2-[4'-(perfluorophenyl)phenyl]pyridinyl-N,C 2' }iridium(III) acetylacetone (abbreviated as Ir(p-PF-ph) 2 (acac)), bis(2-phenylbenzothiazole-N,C 2' ) iridium (III) acetylacetonate (abbreviated as Ir(bt) 2 (acac)). In addition, rare earth metal complexes such as tris(acetylacetonate)(monophenanthenate)zirconia (III) (abbreviated as Tb(acac) 3 (Phen)) can be cited. Among the above complexes, organic metal iridium complexes having a pyrimidine skeleton are particularly preferred because of their excellent reliability and luminescence efficiency.

另外,在黃色或紅色處具有發光峰值的物質,例如可以舉出:(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:Ir(5mdppm)2 (dibm))、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:Ir(5mdppm)2 (dpm))、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:Ir(d1npm)2 (dpm))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:Ir(tppr)2 (acac))、雙(2,3,5-三苯基吡嗪根)(二新戊醯甲烷)銥(III)(簡稱:Ir(tppr)2 (dpm))、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹㗁啉合(quinoxalinato)]銥(III)(簡稱:Ir(Fdpq)2 (acac))等具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’ )銥(III)(簡稱:Ir(piq)3 )、雙(1-苯基異喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(piq)2 (acac))等具有吡啶骨架的有機金屬銥錯合物。除此之外,可以舉出:2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:Eu(DBM)3 (Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3 (Phen))等稀土金屬錯合物。在上述磷光材料中,具有嘧啶骨架的有機金屬銥錯合物的可靠性及發光效率特別良好,所以是尤其較佳的。另外,具有吡嗪骨架的有機金屬銥錯合物可以獲得色度良好的紅色發光。In addition, examples of substances having a luminescence peak in yellow or red include: (diisobutylenemethano)bis[4,6-bis(3-methylphenyl)pyrimidinyl]iridium(III) (abbreviated as Ir(5mdppm) 2 (dibm)), bis[4,6-bis(3-methylphenyl)pyrimidinyl](diniopentylmethane)iridium(III) (abbreviated as Ir(5mdppm) 2 (dpm)), bis[4,6-di(naphthalene-1-yl)pyrimidinyl](diniopentylmethane)iridium(III) (abbreviated as Ir(d1npm) 2 (dpm)) and other organometallic iridium complexes with a pyrimidine skeleton; (acetylacetonato)bis(2,3,5-triphenylpyrazine) iridium(III) (abbreviated as Ir(tppr) 2 (acac)), bis(2,3,5-triphenylpyrazine) (diniopentylmethane) iridium(III) (abbreviated as Ir(tppr) 2 (dpm)), (acetylacetonato)bis[2,3-bis(4-fluorophenyl)quinoxalinato] iridium(III) (abbreviated as Ir(Fdpq) 2 (acac)) and other organometallic iridium complexes with a pyrazine skeleton; tris(1-phenylisoquinoline-N,C 2' ) iridium(III) (abbreviated as Ir(piq) 3 ), bis(1-phenylisoquinoline-N,C 2' )iridium(III) acetylacetonate (abbreviated as: Ir(piq) 2 (acac)) and other organometallic iridium complexes having a pyridine skeleton. In addition, platinum complexes such as 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (abbreviated as PtOEP); rare earth metal complexes such as tris(1,3-diphenyl-1,3-propanedione (propanedionato))(monomorphinyl)piperidinium (III) (abbreviated as Eu(DBM) 3 (Phen)), tris[1-(2-thienylcarbonyl)-3,3,3-trifluoroacetone](monomorphinyl)piperidinium (III) (abbreviated as Eu(TTA) 3 (Phen)) can be cited. Among the above phosphorescent materials, organometallic iridium complexes having a pyrimidine skeleton are particularly preferred because of their excellent reliability and luminous efficiency. In addition, organometallic iridium complexes with a pyrazine skeleton can obtain red luminescence with good chromaticity.

另外,作為磷光發光單元的主體材料,可以使用上述電洞傳輸性材料及/或電子傳輸性材料。In addition, as a host material of the phosphorescent light-emitting unit, the above-mentioned hole-transporting material and/or electron-transporting material can be used.

另外,作為上述螢光發光單元也可以採用實施方式1所說明的發光層130的結構以外的結構。對用於螢光發光單元的客體材料沒有特別的限制,作為螢光性化合物較佳為使用蒽衍生物、稠四苯衍生物、䓛衍生物、菲衍生物、芘衍生物、苝衍生物、二苯乙烯衍生物、吖啶酮衍生物、香豆素衍生物、啡㗁𠯤衍生物、啡噻𠯤衍生物等,例如可以使用以下物質。In addition, the fluorescent light-emitting unit may also adopt a structure other than the structure of the light-emitting layer 130 described in Embodiment 1. There is no particular limitation on the guest material used for the fluorescent light-emitting unit. Anthracene derivatives, tetraphenylene derivatives, chrysene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, stilbene derivatives, acridone derivatives, coumarin derivatives, phenanthrene derivatives, phenanthrene derivatives, etc. are preferably used as fluorescent compounds. For example, the following substances can be used.

明確而言,可以舉出5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯基-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-雙(4-三級丁基苯基)-芘-1,6-二胺(簡稱:1,6tBu-FLPAPrn)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-二苯基-3,8-二環己芘-1,6-二胺(簡稱:ch-1,6FLPAPrn)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯基胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯基胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBAPA)、N,N’’-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-伸苯基二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-伸苯基二胺(簡稱:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-八苯基二苯并[g,p]䓛-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-[9,10-雙(1,1’-聯苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-伸苯基二胺(簡稱:2DPAPA)、N-[9,10-雙(1,1’-聯苯基-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-伸苯基二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯基-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素6、香豆素545T、N,N’-二苯基喹吖啶酮(簡稱:DPQd)、紅螢烯、2,8-二-三級丁基-5,11-雙(4-三級丁基苯基)-6,12-二苯基稠四苯(簡稱:TBRb)、尼羅紅、5,12-雙(1,1’-聯苯基-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲基胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并(acenaphtho)[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲基胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)、5,10,15,20-四苯基雙苯并[5,6]茚并[1,2,3-cd:1’,2’,3’-lm]苝(簡稱:DBP)等。Specifically, 5,6-bis[4-(10-phenyl-9-anthracenyl)phenyl]-2,2'-bipyridine (abbreviated as PAP2BPy), 5,6-bis[4'-(10-phenyl-9-anthracenyl)biphenyl-4-yl]-2,2'-bipyridine (abbreviated as PAPP2BPy), N,N'-diphenyl-N,N'-bis[4-(9-phenyl-9H-fluoren-9-yl)phenyl]pyrene-1,6-diamine (abbreviated as 1,6FLPAPrn), N,N'-bis(3-methylphenyl)-N,N'-bis[3-(9-phenyl-9H-fluoren-9-yl)phenyl]pyrene-1,6-diamine (abbreviated as 1,6mMemFLPAPrn), N,N'-bis[4-(9 -phenyl-9H-fluoren-9-yl)phenyl]-N,N'-bis(4-tributylphenyl)-pyrene-1,6-diamine (abbreviated as: 1,6tBu-FLPAPrn), N,N'-bis[4-(9-phenyl-9H-fluoren-9-yl)phenyl]-N,N'-diphenyl-3,8-dicyclohexylpyrene-1,6-diamine (abbreviated as: ch-1,6FLPAPrn), N,N'-bis[4-(9H-carbazol-9-yl)phenyl]-N,N'-diphenylstilbene-4,4'-diamine (abbreviated as: YGA2S), 4-(9H-carbazol-9-yl)-4'-(10-phenyl-9-anthracenyl)triphenylamine (abbreviated as: YGAPA), 4-(9H-carbazol-9-yl)-4 '-(9,10-diphenyl-2-anthracenyl)triphenylamine (abbreviated as: 2YGAPPA), N,9-diphenyl-N-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole-3-amine (abbreviated as: PCAPA), perylene, 2,5,8,11-tetra(tributyl)perylene (abbreviated as: TBP), 4-(10-phenyl-9-anthracenyl)-4'-(9-phenyl-9H-carbazole-3-yl)triphenylamine (abbreviated as: PCBAPA), N,N''-(2-tributylanthracene-9,10-diyldi-4,1-phenylene)bis[N,N',N'-triphenyl-1,4-phenylene diamine] (abbreviated as: DPABPA), N,9-diphenyl-N-[4-(9,10 -diphenyl-2-anthracenyl)phenyl]-9H-carbazole-3-amine (abbreviated as: 2PCAPPA), N-[4-(9,10-diphenyl-2-anthracenyl)phenyl]-N,N’,N’-triphenyl-1,4-phenylenediamine (abbreviated as: 2DPAPPA), N,N,N’,N’,N’’,N’’,N’’’,N’’’-octaphenyldibenzo[g,p]chrysene-2,7,10,15-tetraamine (abbreviated as: DBC1), Coumarin 30, N-(9,10-diphenyl-2-anthracenyl)-N,9-diphenyl-9H-carbazole-3-amine (abbreviated as: 2PCAPA), N-[9,10-bis(1,1’-biphenyl-2-yl)-2-anthracenyl]-N,9-diphenyl- 9H-carbazole-3-amine (abbreviated as: 2PCABPhA), N-(9,10-diphenyl-2-anthryl)-N,N’,N’-triphenyl-1,4-phenylenediamine (abbreviated as: 2DPAPA), N-[9,10-bis(1,1’-biphenyl-2-yl)-2-anthryl]-N,N’,N’-triphenyl-1,4-phenylenediamine (abbreviated as: 2DPABPhA), 9,10-bis(1,1’-biphenyl-2-yl)-N-[4-(9H-carbazole-9-yl)phenyl]-N-phenylanthracen-2-amine (abbreviated as: 2YGABPhA), N,N,9-triphenylanthracen-9-amine (abbreviated as: DPhAPhA), Coumarin 6, Coumarin 545T, N,N’ -diphenylquinacridone (abbreviation: DPQd), red fluorene, 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyl fused tetraphenyl (abbreviation: TBRb), Nile Red, 5,12-bis(1,1'-biphenyl-4-yl)-6,11-diphenyl fused tetraphenyl (abbreviation: BPT), 2-(2-{2-[4-(dimethylamino)phenyl]vinyl}-6-methyl-4H-pyran-4-ylidene)malononitrile (abbreviation: DCM1), 2-{2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran-4-ylidene}malononitrile (abbreviation: DCM2), N,N , N’,N’-tetrakis(4-methylphenyl) fused tetraphenyl-5,11-diamine (abbreviated as: p-mPhTD), 7,14-diphenyl-N,N,N’,N’-tetrakis(4-methylphenyl)acenaphtho[1,2-a]propadienylfluorene-3,10-diamine (abbreviated as: p-mPhAFD), 2-{2-isopropyl-6-[2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran-4-ylidene}malononitrile (abbreviated as: DCJTI), 2-{2-tert-butyl-6-[2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H -benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran-4-ylidene}malononitrile (abbreviation: DCJTB), 2-(2,6-bis{2-[4-(dimethylamino)phenyl]vinyl}-4H-pyran-4-ylidene)malononitrile (abbreviation: BisDCM), 2-{2,6-bis[2-(8-methoxy-1,1,7,7-tetramethyl-2,3,6,7-hydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran-4-ylidene}malononitrile (abbreviation: BisDCJTM), 5,10,15,20-tetraphenylbisbenzo[5,6]indeno[1,2,3-cd:1’,2’,3’-lm]perylene (abbreviation: DBP), etc.

另外,作為螢光發光單元的客體材料,可以使用上述電洞傳輸性材料及/或電子傳輸性材料。本實施方式可以與其他實施方式適當地組合。In addition, as the guest material of the fluorescent light-emitting unit, the hole transport material and/or the electron transport material mentioned above can be used. This embodiment can be combined with other embodiments as appropriate.

實施方式4 在本實施方式中,參照圖7A及圖7B對使用實施方式1及實施方式3中說明的發光元件的發光機器進行說明。Implementation method 4 In this implementation method, a light-emitting device using the light-emitting element described in implementation methods 1 and 3 is described with reference to FIG. 7A and FIG. 7B.

圖7A是示出發光機器的俯視圖,圖7B是沿圖7A中的A-B以及C-D切割的剖面圖。該發光機器包括以虛線表示的用來控制發光元件的發光的驅動電路部(源極一側驅動電路)601、像素部602以及驅動電路部(閘極一側驅動電路)603。另外,元件符號604是密封基板,元件符號625是乾燥劑,元件符號605是密封劑,由密封劑605圍繞的內側是空間607。FIG7A is a top view of the light-emitting device, and FIG7B is a cross-sectional view cut along A-B and C-D in FIG7A. The light-emitting device includes a driving circuit portion (source-side driving circuit) 601 for controlling the light emission of the light-emitting element, a pixel portion 602, and a driving circuit portion (gate-side driving circuit) 603, which are indicated by dotted lines. In addition, component symbol 604 is a sealing substrate, component symbol 625 is a desiccant, component symbol 605 is a sealant, and the inner side surrounded by the sealant 605 is a space 607.

另外,引導佈線608是用來傳送輸入到源極一側驅動電路601及閘極一側驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(軟性印刷電路)609接收視訊信號、時脈信號、啟動信號、重設信號等。另外,雖然在此只圖示FPC,但是該FPC也可以安裝有印刷線路板(PWB:Printed Wiring Board)。本說明書中的發光機器不僅包括發光機器主體,並且還包括安裝有FPC或PWB的發光機器。In addition, the guide wiring 608 is used to transmit the signal input to the source side driving circuit 601 and the gate side driving circuit 603, and receives the video signal, clock signal, start signal, reset signal, etc. from the FPC (flexible printed circuit) 609 used as an external input terminal. In addition, although only the FPC is shown here, the FPC can also be installed with a printed wiring board (PWB). The light-emitting device in this specification includes not only the light-emitting device body, but also the light-emitting device installed with the FPC or PWB.

接下來,參照圖7B說明上述發光機器的剖面結構。在此示出作為驅動電路部的源極一側驅動電路601及像素部602中的一個像素。Next, the cross-sectional structure of the light emitting device will be described with reference to Fig. 7B , where a source-side driver circuit 601 as a driver circuit portion and one pixel in a pixel portion 602 are shown.

另外,在源極一側驅動電路601中,形成組合n通道TFT623和p通道TFT624的CMOS電路。此外,驅動電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。另外,在本實施方式中,雖然示出將驅動電路形成於基板上的驅動器一體型,但不需要必須採用該結構,也可以將驅動電路形成於外部而不形成於基板上。In addition, in the source side driver circuit 601, a CMOS circuit combining an n-channel TFT 623 and a p-channel TFT 624 is formed. In addition, the driver circuit can also be formed using various CMOS circuits, PMOS circuits, or NMOS circuits. In addition, in the present embodiment, although a driver-integrated type in which the driver circuit is formed on the substrate is shown, this structure does not necessarily have to be adopted, and the driver circuit can also be formed outside instead of being formed on the substrate.

此外,像素部602由包括開關用TFT611、電流控制用TFT612、電連接於該電流控制用TFT612的汲極的第一電極613的像素形成。另外,以覆蓋第一電極613的端部的方式形成有絕緣物614。絕緣物614可以使用正型光敏樹脂膜來形成。The pixel portion 602 is formed of a pixel including a switching TFT 611, a current control TFT 612, and a first electrode 613 electrically connected to the drain of the current control TFT 612. An insulator 614 is formed to cover an end of the first electrode 613. The insulator 614 can be formed using a positive photosensitive resin film.

另外,為了提高形成於絕緣物614上的膜的覆蓋率,將絕緣物614上端部或下端部形成為具有曲率的曲面。例如,在作為絕緣物614的材料使用光敏丙烯酸樹脂的情況下,較佳為僅使絕緣物614上端部具有曲面。該曲面的曲率半徑較佳為0.2μm以上且0.3μm以下。此外,作為絕緣物614,可以使用負型光敏材料或正型光敏材料。In order to improve the coverage of the film formed on the insulator 614, the upper end or the lower end of the insulator 614 is formed into a curved surface having a curvature. For example, when a photosensitive acrylic resin is used as the material of the insulator 614, it is preferred that only the upper end of the insulator 614 has a curved surface. The curvature radius of the curved surface is preferably greater than or equal to 0.2 μm and less than or equal to 0.3 μm. In addition, as the insulator 614, a negative photosensitive material or a positive photosensitive material can be used.

在第一電極613上形成有EL層616及第二電極617。在此,作為用作陽極的第一電極613的材料較佳為使用功函數大的材料。例如,除了ITO膜、包含矽的銦錫氧化物膜、包含2wt%以上且20wt%以下的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、Zn膜、Pt膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜以及由氮化鈦膜、以鋁為主要成分的膜和氮化鈦膜構成的三層的疊層膜等。注意,當採用疊層結構時,佈線電阻也低,可以得到良好的歐姆接觸,並且可以將其用作陽極。An EL layer 616 and a second electrode 617 are formed on the first electrode 613. Here, as the material of the first electrode 613 serving as an anode, a material having a large work function is preferably used. For example, in addition to a single-layer film such as an ITO film, an indium tin oxide film containing silicon, an indium oxide film containing 2 wt% or more and 20 wt% or less of zinc oxide, a titanium nitride film, a chromium film, a tungsten film, a Zn film, and a Pt film, a stacked film composed of a titanium nitride film and a film containing aluminum as a main component, and a three-layer stacked film composed of a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film can also be used. Note that when a stacked structure is used, the wiring resistance is also low, good ohmic contact can be obtained, and it can be used as an anode.

另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋塗法等各種方法形成。作為構成EL層616的材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、樹枝狀聚合物)。The EL layer 616 is formed by various methods such as evaporation using an evaporation mask, inkjet, spin coating, etc. As a material constituting the EL layer 616, a low molecular compound or a high molecular compound (including an oligomer and a dendrimer) may be used.

另外,作為形成在EL層616上並用作陰極的第二電極617的材料,較佳為使用功函數小的材料(Al、Mg、Li、Ca、或它們的合金及化合物、MgAg、MgIn、AlLi等)。注意,當產生在EL層616中的光透過第二電極617時,作為第二電極617較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt%以上且20wt%以下的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層。In addition, as a material of the second electrode 617 formed on the EL layer 616 and used as a cathode, it is preferable to use a material with a small work function (Al, Mg, Li, Ca, or alloys and compounds thereof, MgAg, MgIn, AlLi, etc.). Note that when light generated in the EL layer 616 passes through the second electrode 617, it is preferable to use a stacked layer composed of a metal thin film with a reduced film thickness and a transparent conductive film (ITO, indium oxide containing 2 wt% or more and 20 wt% or less of zinc oxide, indium tin oxide containing silicon, zinc oxide (ZnO), etc.) as the second electrode 617.

此外,發光元件618由第一電極613、EL層616、第二電極617形成。發光元件618較佳為具有實施方式1及實施方式2所示的結構。另外,像素部包括多個發光元件,本實施方式的發光機器也可以包括具有實施方式1及實施方式3所說明的結構的發光元件和具有其他結構的發光元件的兩者。In addition, the light-emitting element 618 is formed by the first electrode 613, the EL layer 616, and the second electrode 617. The light-emitting element 618 preferably has the structure shown in Embodiment 1 and Embodiment 2. In addition, the pixel portion includes a plurality of light-emitting elements, and the light-emitting device of this embodiment may include both the light-emitting elements having the structures described in Embodiment 1 and Embodiment 3 and the light-emitting elements having other structures.

再者,藉由利用密封劑605將密封基板604與發光元件的基板610貼合在一起,在由基板610、密封基板604及密封劑605圍繞的空間607中設置有發光元件618。另外,在空間607中填充有填充劑,除了填充有惰性氣體(氮、氬等)以外,還有時填充有樹脂或乾燥材料、或者樹脂與乾燥材料的兩者。Furthermore, by bonding the sealing substrate 604 and the substrate 610 of the light-emitting element together using the sealant 605, the light-emitting element 618 is provided in the space 607 surrounded by the substrate 610, the sealing substrate 604 and the sealant 605. In addition, the space 607 is filled with a filler, and in addition to being filled with an inert gas (nitrogen, argon, etc.), it is sometimes filled with a resin or a dry material, or both a resin and a dry material.

作為密封劑605,較佳為使用環氧類樹脂或玻璃粉。另外,這些材料較佳為儘量不使水分、氧透過的材料。此外,作為用於密封基板604的材料,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiber Reinforced Plastics:玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。As the sealant 605, epoxy resin or glass powder is preferably used. In addition, these materials are preferably materials that do not allow moisture and oxygen to pass through as much as possible. In addition, as a material for the sealing substrate 604, in addition to a glass substrate and a quartz substrate, a plastic substrate composed of FRP (Fiber Reinforced Plastics), PVF (polyvinyl fluoride), polyester or acrylic resin can also be used.

藉由上述方法可以得到使用實施方式1及實施方式3中說明的發光元件的發光機器。By the above method, a light-emitting device using the light-emitting element described in Embodiment 1 and Embodiment 3 can be obtained.

<發光元件的結構例子1> 在圖8A和圖8B中,作為顯示裝置的一個例子示出形成有發射白色光的發光元件及彩色層(濾色片)的發光機器的例子。<Structural example 1 of light-emitting element> In FIG. 8A and FIG. 8B, an example of a light-emitting device having a light-emitting element emitting white light and a color layer (color filter) is shown as an example of a display device.

圖8A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光元件的第一電極1024W、1024R、1024G、1024B、EL層1028、發光元件的第二電極1029、密封基板1031、密封劑1032、紅色像素1044R、綠色像素1044G、藍色像素1044B、白色像素1044W等。8A shows a substrate 1001, a base insulating film 1002, a gate insulating film 1003, gate electrodes 1006, 1007, 1008, a first interlayer insulating film 1020, a second interlayer insulating film 1021, a peripheral portion 1042, a pixel portion 1040, a driving circuit portion 1041, a first electrode 1024W, 1024R, 1024G, 1024B of a light-emitting element, an EL layer 1028, a second electrode 1029 of the light-emitting element, a sealing substrate 1031, a sealant 1032, a red pixel 1044R, a green pixel 1044G, a blue pixel 1044B, a white pixel 1044W, and the like.

另外,在圖8A和圖8B中將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)設置於透明基材1033上。另外,還可以設置黑色層(黑矩陣)1035。對設置有彩色層及黑色層的透明基材1033進行對準將其固定在基板1001上。此外,彩色層及黑色層由覆蓋層1036覆蓋。另外,圖8A示出光不透過彩色層而透射到外部的發光層及光透過各顏色的彩色層而透射到外部的發光層,不透過彩色層的光成為白色光且透過彩色層的光成為紅色光、藍色光、綠色光,因此能夠以四個顏色的像素顯示影像。In addition, in FIG. 8A and FIG. 8B , color layers (red color layer 1034R, green color layer 1034G, blue color layer 1034B) are provided on a transparent substrate 1033. In addition, a black layer (black matrix) 1035 may also be provided. The transparent substrate 1033 provided with the color layers and the black layer is aligned and fixed on the substrate 1001. In addition, the color layers and the black layer are covered by a covering layer 1036. In addition, FIG. 8A shows a light-emitting layer through which light is transmitted to the outside without passing through the color layers and a light-emitting layer through which light is transmitted to the outside through the color layers of each color. The light that does not pass through the color layers becomes white light and the light that passes through the color layers becomes red light, blue light, and green light, so that an image can be displayed with pixels of four colors.

圖8B示出將紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B形成在閘極絕緣膜1003與第一層間絕緣膜1020之間的例子。如圖8B所示,也可以將彩色層設置在基板1001與密封基板1031之間。8B shows an example in which a red color layer 1034R, a green color layer 1034G, and a blue color layer 1034B are formed between the gate insulating film 1003 and the first interlayer insulating film 1020. As shown in FIG8B, the color layers may be provided between the substrate 1001 and the sealing substrate 1031.

另外,雖然作為上述說明的發光機器採用從形成有TFT的基板1001一側取出發光的結構(底部發射型)的發光元件,但是也可以採用從密封基板1031一側取出發光的結構(頂部發射型)的發光元件。In addition, although the light-emitting device described above uses a light-emitting element having a structure in which light is emitted from the substrate 1001 side on which TFTs are formed (bottom emission type), a light-emitting element having a structure in which light is emitted from the sealing substrate 1031 side (top emission type) may also be used.

<發光元件的結構例子2> 圖9A及圖9B示出頂部發射型發光機器的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。直到製造連接TFT與發光元件的陽極的連接電極為止的製程與底部發射型發光機器同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜1021相同的材料或其他各種材料形成。<Structural example 2 of light-emitting element> Figures 9A and 9B show cross-sectional views of a top-emitting light-emitting device. In this case, a substrate that does not allow light to pass through can be used as the substrate 1001. The process up to the manufacture of the connection electrode connecting the TFT and the anode of the light-emitting element is performed in the same manner as the bottom-emitting light-emitting device. Then, a third interlayer insulating film 1037 is formed in a manner covering the electrode 1022. The insulating film may also have a planarizing function. The third interlayer insulating film 1037 may be formed using the same material as the second interlayer insulating film 1021 or various other materials.

雖然發光元件的下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B在這裡都為陽極,但是也可以為陰極。另外,在圖9A及圖9B所示的頂部發射型發光機器中,較佳為下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B為反射電極。另外,較佳為第二電極1029具有發射光的功能以及使光透過的功能。另外,較佳為在第二電極1029與下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B間採用微腔結構,來放大特定波長的光。EL層1028的結構採用如實施方式1及實施方式3所說明那樣的結構,並且採用能夠得到白色發光的元件結構。Although the lower electrode 1025W, the lower electrode 1025R, the lower electrode 1025G, and the lower electrode 1025B of the light-emitting element are all anodes here, they can also be cathodes. In addition, in the top emission type light-emitting device shown in Figures 9A and 9B, it is preferred that the lower electrode 1025W, the lower electrode 1025R, the lower electrode 1025G, and the lower electrode 1025B are reflective electrodes. In addition, it is preferred that the second electrode 1029 has the function of emitting light and the function of allowing light to pass. In addition, it is preferred to use a microcavity structure between the second electrode 1029 and the lower electrodes 1025W, 1025R, 1025G, and 1025B to amplify light of a specific wavelength. The structure of the EL layer 1028 is the same as that described in Embodiments 1 and 3, and is an element structure capable of obtaining white light emission.

在圖8A及圖8B和圖9A及圖9B中,藉由使用多個發光層或者使用多個發光單元等來實現能夠得到白色發光的EL層的結構,即可。注意,獲得白色發光的結構不侷限於此。In FIG8A and FIG8B and FIG9A and FIG9B, a structure of an EL layer capable of obtaining white luminescence may be realized by using a plurality of luminescent layers or a plurality of luminescent units, etc. Note that the structure for obtaining white luminescence is not limited to this.

在採用如圖9A及圖9B所示的頂部發射結構的情況下,可以使用設置有彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)的密封基板1031進行密封。可以在密封基板1031上設置有位於像素與像素之間的黑色層(黑矩陣)1030。彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)、黑色層(黑矩陣)也可以由覆蓋層覆蓋。另外,作為密封基板1031使用具有透光性的基板。When the top emission structure shown in FIG. 9A and FIG. 9B is adopted, a sealing substrate 1031 provided with color layers (red color layer 1034R, green color layer 1034G, blue color layer 1034B) can be used for sealing. A black layer (black matrix) 1030 located between pixels can be provided on the sealing substrate 1031. The color layers (red color layer 1034R, green color layer 1034G, blue color layer 1034B) and the black layer (black matrix) can also be covered by a cover layer. In addition, a light-transmitting substrate is used as the sealing substrate 1031.

此外,雖然在圖9A中示出以紅色、綠色、藍色的三種顏色進行全彩色顯示的結構,但是如圖9B所示,也可以以紅色、綠色、藍色、白色的四種顏色進行全彩色顯示。此外,進行全彩色顯示的結構不侷限於這些結構。例如,也可以以紅色、綠色、藍色、黃色的四種顏色進行全彩色顯示。In addition, although FIG9A shows a structure for full-color display in three colors of red, green, and blue, as shown in FIG9B , full-color display may be performed in four colors of red, green, blue, and white. In addition, the structure for full-color display is not limited to these structures. For example, full-color display may be performed in four colors of red, green, blue, and yellow.

根據本發明的一個實施方式的發光元件將螢光材料用作客體材料。因為螢光材料具有比磷光材料尖銳的光譜,所以可以得到色純度高的發光。因此,藉由將該發光元件用於本實施方式所示的發光機器,可以得到顏色再現性高的發光元件。According to one embodiment of the present invention, a light-emitting element uses a fluorescent material as a guest material. Since the fluorescent material has a sharper spectrum than the phosphorescent material, light with high color purity can be obtained. Therefore, by using the light-emitting element in the light-emitting device shown in this embodiment, a light-emitting element with high color reproducibility can be obtained.

實施方式5 在本實施方式中,說明本發明的一個實施方式的電子機器及顯示裝置。Implementation method 5 In this implementation method, an electronic device and a display device according to an implementation method of the present invention are described.

根據本發明的一個實施方式可以製造具有平面、發光效率高且可靠性高的電子機器及顯示裝置。根據本發明的一個實施方式,可以製造具有曲面、發光效率高且可靠性高的電子機器及顯示裝置。此外,如上所述,可以得到顏色再現性高的發光元件。According to one embodiment of the present invention, an electronic device and a display device having a flat surface, high luminous efficiency and high reliability can be manufactured. According to one embodiment of the present invention, an electronic device and a display device having a curved surface, high luminous efficiency and high reliability can be manufactured. In addition, as described above, a luminous element with high color reproducibility can be obtained.

作為電子機器,例如可以舉出:電視機;桌上型或膝上型個人電腦;用於電腦等的顯示器;數位相機;數位攝影機;數位相框;行動電話機;可攜式遊戲機;可攜式資訊終端;音頻再生裝置;彈珠機等大型遊戲機等。Examples of electronic devices include televisions; desktop or laptop personal computers; displays for computers, etc.; digital cameras; digital video cameras; digital photo frames; mobile phones; portable game consoles; portable information terminals; audio playback devices; and large-scale game consoles such as pinball machines.

圖10A和圖10B所示的可攜式資訊終端900包括外殼901、外殼902、顯示部903及鉸鏈部905等。The portable information terminal 900 shown in FIG. 10A and FIG. 10B includes a housing 901, a casing 902, a display portion 903, a hinge portion 905, and the like.

外殼901與外殼902藉由鉸鏈部905連接在一起。可攜式資訊終端900可以從折疊狀態(圖10A)轉換成如圖10B所示的展開狀態。由此,攜帶時的可攜性好,並且由於具有大顯示區域,所以使用時的可見度高。The housing 901 and the housing 902 are connected together by a hinge 905. The portable information terminal 900 can be transformed from a folded state (FIG. 10A) to an unfolded state as shown in FIG10B. Thus, the portable terminal 900 has good portability when carried, and has a large display area, so the visibility when in use is high.

可攜式資訊終端900跨著由鉸鏈部905連接的外殼901和外殼902設置有撓性顯示部903。The portable information terminal 900 is provided with a flexible display portion 903 across a housing 901 and a housing 902 connected by a hinge portion 905.

可以將使用本發明的一個實施方式製造的發光機器用於顯示部903。由此,可以製造可靠性高的可攜式資訊終端。The light emitting device manufactured using one embodiment of the present invention can be used for the display unit 903. Thus, a highly reliable portable information terminal can be manufactured.

顯示部903可以顯示文件資訊、靜態影像和動態影像等中的至少一個。當在顯示部903中顯示文件資訊時,可以將可攜式資訊終端900用作電子書閱讀器。The display unit 903 can display at least one of document information, still images, and moving images, etc. When the document information is displayed on the display unit 903, the portable information terminal 900 can be used as an electronic book reader.

當使可攜式資訊終端900展開時,顯示部903被保持為曲率半徑大的狀態。例如,可以以包括以1mm以上且50mm以下,較佳為5mm以上且30mm以下的曲率半徑彎曲的部分的方式保持顯示部903。顯示部903的一部分跨著外殼901和外殼902連續地配置有像素,從而能夠進行曲面顯示。When the portable information terminal 900 is unfolded, the display portion 903 is maintained in a state with a large radius of curvature. For example, the display portion 903 may be maintained in a manner including a portion bent with a radius of curvature of 1 mm or more and 50 mm or less, preferably 5 mm or more and 30 mm or less. A portion of the display portion 903 is continuously provided with pixels across the housing 901 and the housing 902, thereby enabling curved display.

顯示部903被用作觸控面板,可以用手指或觸控筆等進行操作。The display portion 903 is used as a touch panel and can be operated with a finger, a touch pen, or the like.

顯示部903較佳為由一個撓性顯示器構成。由此,可以跨著外殼901和外殼902進行連續的顯示。此外,外殼901和外殼902也可以分別設置有顯示器。The display unit 903 is preferably formed of a flexible display. Thus, continuous display can be performed across the housing 901 and the housing 902. In addition, the housing 901 and the housing 902 may be provided with displays respectively.

為了避免在使可攜式資訊終端900展開時外殼901和外殼902所形成的角度超過預定角度,鉸鏈部905較佳為具有鎖定機構。例如,鎖定角度(達到該角度時不能再繼續打開)較佳為90°以上且小於180°,典型的是,可以為90°、120°、135°、150°或175°等。由此,可以提高可攜式資訊終端900的方便性、安全性和可靠性。In order to prevent the angle formed by the housing 901 and the housing 902 from exceeding a predetermined angle when the portable information terminal 900 is unfolded, the hinge part 905 preferably has a locking mechanism. For example, the locking angle (at which the terminal cannot be opened further) is preferably greater than 90° and less than 180°, and typically can be 90°, 120°, 135°, 150°, or 175°, etc. Thus, the convenience, safety, and reliability of the portable information terminal 900 can be improved.

當鉸鏈部905具有上述鎖定機構時,可以抑制過大的力施加到顯示部903,從而可以防止顯示部903的損壞。由此,可以實現可靠性高的可攜式資訊終端。When the hinge portion 905 has the above-described locking mechanism, it is possible to suppress excessive force from being applied to the display portion 903, thereby preventing damage to the display portion 903. Thus, a highly reliable portable information terminal can be realized.

外殼901和外殼902也可以包括電源按鈕、操作按鈕、外部連接埠、揚聲器、麥克風等。Housing 901 and housing 902 may also include a power button, an operation button, an external connection port, a speaker, a microphone, etc.

外殼901和外殼902中的任一個可以設置有無線通訊模組,可以藉由網際網路、區域網路(LAN)、無線保真(Wi-Fi:註冊商標)等電腦網路進行資料收發。Either housing 901 or housing 902 may be provided with a wireless communication module, and data may be sent and received via a computer network such as the Internet, a local area network (LAN), or wireless fidelity (Wi-Fi: a registered trademark).

圖10C所示的可攜式資訊終端910包括外殼911、顯示部912、操作按鈕913、外部連接埠914、揚聲器915、麥克風916、照相機917等。The portable information terminal 910 shown in FIG. 10C includes a housing 911, a display portion 912, operation buttons 913, an external connection port 914, a speaker 915, a microphone 916, a camera 917, and the like.

可以將利用本發明的一個實施方式製造的發光機器用於顯示部912。由此,可以以高良率製造可攜式資訊終端。The light emitting device manufactured using one embodiment of the present invention can be used for the display unit 912. Thus, the portable information terminal can be manufactured with a high yield.

在可攜式資訊終端910中,在顯示部912中具有觸控感測器。藉由用手指或觸控筆等觸摸顯示部912可以進行打電話或輸入文字等各種操作。In the portable information terminal 910, a touch sensor is provided in the display portion 912. By touching the display portion 912 with a finger or a stylus pen, various operations such as making a call and inputting text can be performed.

另外,藉由操作按鈕913的操作,可以進行電源的ON、OFF工作或切換顯示在顯示部912上的影像的種類。例如,可以將電子郵件的編寫畫面切換為主功能表畫面。In addition, by operating the operation button 913, the power can be turned on and off or the type of image displayed on the display portion 912 can be switched. For example, the e-mail writing screen can be switched to the main menu screen.

另外,藉由在可攜式資訊終端910內部設置陀螺儀感測器或加速度感測器等檢測裝置,可以判斷可攜式資訊終端910的方向(縱向或橫向),而對顯示部912的螢幕顯示方向進行自動切換。另外,螢幕顯示方向的切換也可以藉由觸摸顯示部912、操作操作按鈕913或者使用麥克風916輸入聲音來進行。In addition, by providing a detection device such as a gyroscope sensor or an acceleration sensor inside the portable information terminal 910, the direction (vertical or horizontal) of the portable information terminal 910 can be determined, and the screen display direction of the display unit 912 can be automatically switched. In addition, the screen display direction can also be switched by touching the display unit 912, operating the operation button 913, or using the microphone 916 to input sound.

可攜式資訊終端910例如具有選自電話機、筆記本和資訊閱讀裝置等中的一種或多種功能。明確地說,可攜式資訊終端910可以被用作智慧手機。可攜式資訊終端910例如可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、動畫播放、網路通訊、電腦遊戲等各種應用程式。The portable information terminal 910 has one or more functions selected from a phone, a notebook, an information reading device, etc. Specifically, the portable information terminal 910 can be used as a smart phone. The portable information terminal 910 can execute various applications such as mobile phone, e-mail, article reading and editing, music playback, animation playback, Internet communication, computer games, etc.

圖10D所示的照相機920包括外殼921、顯示部922、操作按鈕923、快門按鈕924等。另外,照相機920安裝有可裝卸的鏡頭926。10D includes a housing 921, a display portion 922, operation buttons 923, a shutter button 924, etc. In addition, the camera 920 is equipped with a detachable lens 926.

可以將利用本發明的一個實施方式製造的發光機器用於顯示部922。由此,可以製造可靠性高的照相機。The light emitting device manufactured by one embodiment of the present invention can be used for the display portion 922. Thus, a camera with high reliability can be manufactured.

在此,雖然照相機920具有能夠從外殼921拆卸下鏡頭926而交換的結構,但是鏡頭926和外殼921也可以被形成為一體。Here, although the camera 920 has a structure in which the lens 926 can be removed from the housing 921 and exchanged, the lens 926 and the housing 921 may be formed as one body.

藉由按下快門按鈕924,照相機920可以拍攝靜態影像或動態影像。另外,也可以使顯示部922具有觸控面板的功能,藉由觸摸顯示部922進行攝像。The camera 920 can take still images or moving images by pressing the shutter button 924. In addition, the display unit 922 can also have a touch panel function, and the image can be taken by touching the display unit 922.

另外,照相機920還可以具備另外安裝的閃光燈裝置及取景器等。另外,這些構件也可以組裝在外殼921中。In addition, camera 920 can also have flash device and viewfinder etc. installed separately.In addition, these components can also be assembled in housing 921.

圖11A為示出掃地機器人的例子的示意圖。FIG. 11A is a schematic diagram showing an example of a sweeping robot.

掃地機器人5100包括頂面上的顯示器5101及側面上的多個照相機5102、刷子5103及操作按鈕5104。雖然未圖示,但是掃地機器人5100的底面設置有輪胎和吸入口等。此外,掃地機器人5100還包括紅外線感測器、超音波感測器、加速度感測器、壓電感測器、光感測器、陀螺儀感測器等各種感測器。另外,掃地機器人5100包括無線通訊單元。The sweeping robot 5100 includes a display 5101 on the top and multiple cameras 5102, a brush 5103, and an operation button 5104 on the side. Although not shown, tires and a suction port are provided on the bottom of the sweeping robot 5100. In addition, the sweeping robot 5100 also includes various sensors such as infrared sensors, ultrasonic sensors, acceleration sensors, piezoelectric inductors, optical sensors, and gyroscope sensors. In addition, the sweeping robot 5100 includes a wireless communication unit.

掃地機器人5100可以自動行走,檢測垃圾5120,可以從底面的吸入口吸引垃圾。The sweeping robot 5100 can walk automatically, detect garbage 5120, and suck the garbage from a suction port on the bottom.

另外,掃地機器人5100對照相機5102所拍攝的影像進行分析,可以判斷牆壁、家具或步階等障礙物的有無。另外,在藉由影像分析檢測佈線等可能會繞在刷子5103上的物體的情況下,可以停止刷子5103的旋轉。In addition, the sweeping robot 5100 can determine the presence or absence of obstacles such as walls, furniture, or steps by analyzing the image taken by the camera 5102. In addition, when objects such as wiring that may be wrapped around the brush 5103 are detected through image analysis, the rotation of the brush 5103 can be stopped.

可以在顯示器5101上顯示電池的剩餘電量和所吸引的垃圾的量等。另外,也可以在顯示器5101上顯示掃地機器人5100的行走路徑。另外,顯示器5101可以是觸控面板,可以將操作按鈕5104顯示在顯示器5101上。The remaining battery power and the amount of garbage attracted can be displayed on the display 5101. In addition, the walking path of the sweeping robot 5100 can also be displayed on the display 5101. In addition, the display 5101 can be a touch panel, and the operation button 5104 can be displayed on the display 5101.

掃地機器人5100可以與智慧手機等可攜式電子機器5140互相通訊。照相機5102所拍攝的影像可以顯示在可攜式電子機器5140上。因此,掃地機器人5100的擁有者在出門時也可以知道房間的情況。另外,可以使用智慧手機等可攜式電子機器5140確認顯示器5101的顯示內容。The sweeping robot 5100 can communicate with a portable electronic device 5140 such as a smartphone. The image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the sweeping robot 5100 can know the situation of the room when going out. In addition, the display content of the display 5101 can be confirmed using the portable electronic device 5140 such as a smartphone.

可以將本發明的一個實施方式的發光機器用於顯示器5101。A light emitting device according to one embodiment of the present invention can be used in a display 5101.

圖11B所示的機器人2100包括運算裝置2110、照度感測器2101、麥克風2102、上部照相機2103、揚聲器2104、顯示器2105、下部照相機2106、障礙物感測器2107及移動機構2108。The robot 2100 shown in FIG. 11B includes a computing device 2110 , an illumination sensor 2101 , a microphone 2102 , an upper camera 2103 , a speaker 2104 , a display 2105 , a lower camera 2106 , an obstacle sensor 2107 , and a moving mechanism 2108 .

麥克風2102具有檢測使用者的聲音及周圍的聲音等的功能。另外,揚聲器2104具有發出聲音的功能。機器人2100可以使用麥克風2102及揚聲器2104與使用者交流。The microphone 2102 has a function of detecting the user's voice and surrounding sounds, etc. In addition, the speaker 2104 has a function of emitting sounds. The robot 2100 can communicate with the user using the microphone 2102 and the speaker 2104.

顯示器2105具有顯示各種資訊的功能。機器人2100可以將使用者所希望的資訊顯示在顯示器2105上。顯示器2105可以安裝有觸控面板。顯示器2105可以是可拆卸的資訊終端,藉由將該資訊終端設置在機器人2100的所定位置,可以進行充電及資料的收發。The display 2105 has the function of displaying various information. The robot 2100 can display the information desired by the user on the display 2105. The display 2105 can be equipped with a touch panel. The display 2105 can be a detachable information terminal. By setting the information terminal at a predetermined position of the robot 2100, charging and data transmission and reception can be performed.

上部照相機2103及下部照相機2106具有對機器人2100的周圍環境進行攝像的功能。另外,障礙物感測器2107可以檢測機器人2100使用移動機構2108移動時的前方的障礙物的有無。機器人2100可以使用上部照相機2103、下部照相機2106及障礙物感測器2107認知周囲環境而安全地移動。The upper camera 2103 and the lower camera 2106 have the function of photographing the surrounding environment of the robot 2100. In addition, the obstacle sensor 2107 can detect the presence or absence of obstacles in front of the robot 2100 when the robot 2100 moves using the moving mechanism 2108. The robot 2100 can recognize the surrounding environment using the upper camera 2103, the lower camera 2106, and the obstacle sensor 2107 and move safely.

可以將本發明的一個實施方式的發光機器用於顯示器2105。A light emitting device of one embodiment of the present invention can be used in a display 2105.

圖11C是示出護目鏡型顯示器的一個例子的圖。護目鏡型顯示器例如包括外殼5000、顯示部5001、揚聲器5003、LED燈5004、操作鍵(包括電源開關或操作開關)、連接端子5006、感測器5007(它具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風5008、第二顯示部5002、支撐部5012、耳機5013等。Fig. 11C is a diagram showing an example of a goggle-type display. The goggle-type display includes, for example, a housing 5000, a display portion 5001, a speaker 5003, an LED lamp 5004, an operation key (including a power switch or an operation switch), a connection terminal 5006, a sensor 5007 (which has a function of measuring the following factors: force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electricity, radiation, flow, humidity, inclination, vibration, smell or infrared), a microphone 5008, a second display portion 5002, a support portion 5012, an earphone 5013, and the like.

可以將本發明的一個實施方式的發光機器用於顯示部5001及第二顯示部5002。The light emitting device of one embodiment of the present invention can be used in the display portion 5001 and the second display portion 5002.

圖12A和圖12B示出可折疊的可攜式資訊終端5150。可折疊的可攜式資訊終端5150包括外殼5151、顯示區域5152及彎曲部5153。圖12A示出展開狀態的可攜式資訊終端5150。圖12B示出折疊狀態的可攜式資訊終端5150。雖然可攜式資訊終端5150具有較大的顯示區域5152,但是藉由將可攜式資訊終端5150折疊,可攜式資訊終端5150變小而可攜性好。12A and 12B show a foldable portable information terminal 5150. The foldable portable information terminal 5150 includes a housing 5151, a display area 5152, and a bent portion 5153. FIG12A shows the portable information terminal 5150 in an unfolded state. FIG12B shows the portable information terminal 5150 in a folded state. Although the portable information terminal 5150 has a large display area 5152, by folding the portable information terminal 5150, the portable information terminal 5150 becomes smaller and more portable.

可以由彎曲部5153將顯示區域5152折疊成一半。彎曲部5153由可伸縮的構件和多個支撐構件構成,在折疊時,可伸縮的構件被拉伸,以彎曲部5153具有2mm以上,較佳為5mm以上的曲率半徑的方式進行折疊。The display area 5152 can be folded into half by the curved portion 5153. The curved portion 5153 is composed of a retractable member and a plurality of supporting members. When folding, the retractable member is stretched so that the curved portion 5153 has a curvature radius of more than 2 mm, preferably more than 5 mm.

另外,顯示區域5152也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入/輸出裝置)。可以將本發明的一個實施方式的發光元件用於顯示區域5152。In addition, the display area 5152 may also be a touch panel (input/output device) equipped with a touch sensor (input device). The light-emitting element of one embodiment of the present invention may be used for the display area 5152.

本實施方式可以與其他實施方式適當地組合。This implementation method can be appropriately combined with other implementation methods.

實施方式6 在本實施方式中,參照圖13說明將本發明的一個實施方式的發光元件適用於各種照明裝置的情況的例子。藉由使用本發明的一個實施方式的發光元件,可以製造發光效率及可靠性高的照明裝置。Embodiment 6 In this embodiment, an example of applying a light-emitting element of an embodiment of the present invention to various lighting devices is described with reference to FIG. 13. By using a light-emitting element of an embodiment of the present invention, a lighting device with high light-emitting efficiency and reliability can be manufactured.

藉由將本發明的一個實施方式的發光元件形成在具有撓性的基板上,能夠實現在曲面上具有發光區域的電子機器或照明裝置。By forming a light-emitting element according to an embodiment of the present invention on a flexible substrate, an electronic device or lighting device having a light-emitting area on a curved surface can be realized.

另外,還可以將應用了本發明的一個實施方式的發光元件的發光裝置適用於汽車的照明,其中該照明被設置於擋風玻璃、天花板等。In addition, a light-emitting device to which a light-emitting element according to an embodiment of the present invention is applied can also be applied to automobile lighting, wherein the lighting is provided on a windshield, a ceiling, or the like.

圖13是將發光元件用於室內照明裝置8501的例子。另外,因為發光元件可以實現大面積化,所以也可以形成大面積的照明裝置。另外,也可以藉由使用具有曲面的外殼來形成發光區域具有曲面的照明裝置8502。本實施方式所示的發光元件為薄膜狀,所以外殼的設計的彈性高。因此,可以形成能夠對應各種設計的照明裝置。並且,室內的牆面也可以設置有大型的照明裝置8503。也可以在照明裝置8501、照明裝置8502、照明裝置8503中設置觸控感測器,啟動或關閉電源。FIG13 is an example of using a light-emitting element in an indoor lighting device 8501. In addition, since the light-emitting element can be large in area, a large-area lighting device can also be formed. In addition, a lighting device 8502 having a curved surface in the light-emitting area can be formed by using a shell having a curved surface. The light-emitting element shown in this embodiment is in the form of a film, so the design of the shell is highly flexible. Therefore, a lighting device that can correspond to various designs can be formed. In addition, a large lighting device 8503 can also be installed on the indoor wall. Touch sensors can also be installed in the lighting device 8501, the lighting device 8502, and the lighting device 8503 to start or turn off the power.

另外,藉由將發光元件用於桌子的表面一側,可以提供具有桌子的功能的照明裝置8504。另外,藉由將發光元件用於其他家具的一部分,可以提供具有家具的功能的照明裝置。In addition, by using the light emitting element on the surface side of the table, it is possible to provide a lighting device 8504 having the function of a table. In addition, by using the light emitting element on a part of other furniture, it is possible to provide a lighting device having the function of furniture.

如上所述,藉由應用本發明的一個實施方式的發光元件,能夠得到照明裝置及電子機器。注意,不侷限於本實施方式所示的照明裝置及電子機器,可以應用於各種領域的電子機器。As described above, by applying the light emitting element of one embodiment of the present invention, a lighting device and an electronic device can be obtained. Note that the present invention is not limited to the lighting device and the electronic device shown in this embodiment, but can be applied to electronic devices in various fields.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。 實施例1The structure shown in this embodiment can be used in combination with the structures shown in other embodiments as appropriate. Embodiment 1

在本實施例中,說明本發明的一個實施方式的發光元件及比較發光元件的製造例子以及該發光元件的特性。在本實施例中製造的發光元件的結構與圖1A所示的發光元件的結構相同。表1至表6示出元件的詳細結構。在表1至表4中,以x1 表示的值是在表5中示出的值,以x2 表示的值是在表6中示出的值。另外,以下示出所使用的化合物的結構及簡稱。In this embodiment, a light-emitting element of an embodiment of the present invention and a manufacturing example of a comparative light-emitting element and the characteristics of the light-emitting element are described. The structure of the light-emitting element manufactured in this embodiment is the same as the structure of the light-emitting element shown in FIG. 1A. Tables 1 to 6 show the detailed structure of the element. In Tables 1 to 4, the value represented by x1 is the value shown in Table 5, and the value represented by x2 is the value shown in Table 6. In addition, the structures and abbreviations of the compounds used are shown below.

<發光元件的製造> 以下示出在本實施例中製造的發光元件的製造方法。<Manufacturing of light-emitting element> The following is a method for manufacturing the light-emitting element manufactured in this embodiment.

《發光元件2至發光元件5的製造》 在玻璃基板上作為電極101形成厚度為70nm的ITSO膜。電極101的電極面積為4mm2 (2mm×2mm)。<<Manufacturing of Light-Emitting Elements 2 to 5>> On a glass substrate, an ITSO film with a thickness of 70 nm was formed as an electrode 101. The electrode area of the electrode 101 was 4 mm 2 (2 mm×2 mm).

接著,在電極101上以重量比(DBT3P-II:MoO3 )為1:0.5且厚度為40nm的方式將DBT3P-II及氧化鉬(MoO3 )共蒸鍍來形成電洞注入層111。Next, DBT3P-II and molybdenum oxide (MoO 3 ) were co-evaporated on the electrode 101 at a weight ratio (DBT3P-II:MoO 3 ) of 1:0.5 and a thickness of 40 nm to form a hole injection layer 111 .

接著,在電洞注入層111上作為電洞傳輸層112蒸鍍厚度為20nm的PCCP。Next, PCCP with a thickness of 20 nm is evaporated on the hole injection layer 111 as the hole transport layer 112 .

接著,在電洞傳輸層112上以重量比(mPCCzPTzn-02:PCCP:Ir(mpptz-diBuCNp)3 :2tBu-ptBuDPhA2Anth)為0.5:0.5:0.1:x1 且厚度為30nm的方式將mPCCzPTzn-02、PCCP、Ir(mpptz-diBuCNp)3 以及2tBu-ptBuDPhA2Anth共蒸鍍來形成發光層130。接著,以重量比(mPCCzPTzn-02:PCCP:Ir(mpptz-diBuCNp)3 :2tBu-ptBuDPhA2Anth)為0.8:0.2:0.1:x1 且厚度為10nm的方式將mPCCzPTzn-02、PCCP、Ir(mpptz-diBuCNp)3 以及2tBu-ptBuDPhA2Anth共蒸鍍。在發光層130中,Ir(mpptz-diBuCNp)3 是具有五員環的磷光材料。另外,2tBu-ptBuDPhA2Anth是具有保護基的螢光材料。注意,x1 的值根據各發光元件不同,表5示出各發光元件中的x1 的值。Next, mPCCzPTzn-02, PCCP, Ir(mpptz-diBuCNp) 3 and 2tBu-ptBuDPhA2Anth were co-evaporated on the hole transport layer 112 at a weight ratio (mPCCzPTzn- 02 :PCCP:Ir(mpptz-diBuCNp) 3:2tBu-ptBuDPhA2Anth) of 0.5:0.5:0.1:x 1 and a thickness of 30 nm to form a light-emitting layer 130. Next, mPCCzPTzn-02, PCCP, Ir(mpptz-diBuCNp) 3 and 2tBu-ptBuDPhA2Anth were co-evaporated in a weight ratio (mPCCzPTzn-02:PCCP:Ir(mpptz-diBuCNp) 3 :2tBu-ptBuDPhA2Anth) of 0.8:0.2:0.1:x 1 and a thickness of 10 nm. In the light-emitting layer 130, Ir(mpptz-diBuCNp) 3 is a phosphorescent material having a five-membered ring. In addition, 2tBu-ptBuDPhA2Anth is a fluorescent material having a protective group. Note that the value of x 1 varies depending on each light-emitting element, and Table 5 shows the value of x 1 in each light-emitting element.

接著,在發光層130上,依次蒸鍍厚度為20nm的mPCCzPTzn-02及厚度為10nm的NBPhen來形成傳輸層118。接著,在電子傳輸層118上,作為電子注入層119蒸鍍厚度為1nm的LiF。Next, mPCCzPTzn-02 with a thickness of 20 nm and NBPhen with a thickness of 10 nm were sequentially evaporated on the light-emitting layer 130 to form a transport layer 118. Next, LiF with a thickness of 1 nm was evaporated on the electron transport layer 118 as an electron injection layer 119.

接著,在電子注入層119上作為電極102形成厚度為200nm的鋁(Al)。Next, aluminum (Al) is formed to a thickness of 200 nm on the electron injection layer 119 as the electrode 102.

接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件2至發光元件5。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和用來密封的玻璃基板,以6J/cm2 照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程獲得發光元件2至發光元件5。Next, in a glove box in a nitrogen atmosphere, a sealing glass substrate is fixed to a glass substrate on which an organic material is formed using a sealing agent for organic EL, thereby sealing light-emitting elements 2 to 5. Specifically, a sealing agent is applied around the organic material formed on the glass substrate, the glass substrate and the glass substrate for sealing are attached, and ultraviolet light with a wavelength of 365 nm is irradiated at 6 J/ cm2 , and a heat treatment is performed at 80°C for 1 hour. Light-emitting elements 2 to 5 are obtained through the above process.

《發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28、發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38的製造》 與上面說明的發光元件2至發光元件5同樣,藉由真空蒸鍍法製造發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28、發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38。表1至表4示出發光元件的詳細結構,所以省略詳細的製造方法。另外,表5示出在表1至表4中以x1 表示的值,表6示出以x2 表示的值。《Manufacturing of light-emitting elements 7 to 10, light-emitting elements 12 to 15, light-emitting elements 17 to 19, light-emitting elements 21 to 24, light-emitting elements 26 to 28, light-emitting elements 30 to 33, comparative light-emitting elements 1, 6, 11, 16, 20, 25, 29, and comparative light-emitting elements 34 to 38》 Light-emitting elements 7 to 10, 12 to 15, 17 to 19, 21 to 24, 26 to 28, 30 to 33, comparative light-emitting elements 1, 6, 11, 16, 20, 25, 29, and 34 to 38 are manufactured by vacuum evaporation in the same manner as light-emitting elements 2 to 5 described above. Tables 1 to 4 show the detailed structures of the light-emitting elements, so the detailed manufacturing method is omitted. In addition, Table 5 shows the values represented by x1 in Tables 1 to 4, and Table 6 shows the values represented by x2 .

比較發光元件1、6、11、16、20、25、29及比較發光元件34是在發光層130中不包含螢光材料的發光元件。因此,在發光元件中,包含在各發光層中的磷光材料發射光。上述發光元件是磷光材料被用作客體材料(能量受體)的發光元件且是作為磷光材料被用作能量施體的本發明的一個實施方式的發光元件的比較例子而示出的。Comparative light-emitting elements 1, 6, 11, 16, 20, 25, 29 and comparative light-emitting element 34 are light-emitting elements that do not include a fluorescent material in the light-emitting layer 130. Therefore, in the light-emitting element, the phosphorescent material included in each light-emitting layer emits light. The above-mentioned light-emitting elements are light-emitting elements in which a phosphorescent material is used as a guest material (energy acceptor) and are shown as comparative examples of light-emitting elements of one embodiment of the present invention in which a phosphorescent material is used as an energy donor.

發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33是本發明的一個實施方式的發光元件。並且,包括在各發光層130中具有保護基的螢光材料的2tBu-ptBuDPhA2Anth。因此,發光元件發射螢光發光。另外,比較發光元件35至比較發光元件38也是包括在發光層130中具有保護基的螢光材料的2tBu-ptBuDPhA2Anth的螢光發光元件。Light-emitting elements 2 to 5, 7 to 10, 12 to 15, 21 to 24, 26 to 28, and 30 to 33 are light-emitting elements of an embodiment of the present invention. And, each light-emitting layer 130 includes 2tBu-ptBuDPhA2Anth, a fluorescent material having a protective group. Therefore, the light-emitting element emits fluorescent light. In addition, comparative light-emitting elements 35 to 38 are also fluorescent light-emitting elements including 2tBu-ptBuDPhA2Anth, a fluorescent material having a protective group, in the light-emitting layer 130.

在發光元件2至發光元件5中作為具有五員環的磷光材料使用Ir(mpptz-diBuCNp)3 ,在發光元件7至發光元件10中作為具有五員環的磷光材料使用Ir(mpptz-diPrp)3 ,在發光元件12至發光元件15中作為具有五員環的磷光材料使用Ir(Mptz1-mp)3 ,在發光元件17至發光元件19中作為具有五員環的磷光材料使用Ir(pbi-diBuCNp)3 ,在發光元件20至發光元件24中作為具有五員環的磷光材料使用fac-Ir(pbi-diBup)3 ,在發光元件26至發光元件28中作為具有五員環的磷光材料使用Ir(pni-diBup)2 (mdppy),在發光元件30至發光元件33中作為具有五員環的磷光材料使用Ir(pni-diBup)3 。上述具有五員環的磷光材料是具有三唑骨架或咪唑骨架的磷光材料的一個例子。另外,比較發光元件35至比較發光元件38使用不具有五員環骨架的磷光材料的Ir(ppy)3 ,比較發光元件35至比較發光元件38是為了與本發明的一個實施方式的發光元件的元件特性進行比較而製造的。In light-emitting elements 2 to 5, Ir(mpptz-diBuCNp) 3 is used as a phosphorescent material having a five-membered ring. In light-emitting elements 7 to 10, Ir(mpptz-diPrp) 3 is used as a phosphorescent material having a five-membered ring. In light-emitting elements 12 to 15, Ir(Mptz1-mp) 3 is used as a phosphorescent material having a five-membered ring. In light-emitting elements 17 to 19, Ir(pbi-diBuCNp) 3 is used as a phosphorescent material having a five-membered ring. In light-emitting elements 20 to 24 , fac-Ir(pbi-diBup) 3 is used as a phosphorescent material having a five-membered ring. In light-emitting elements 26 to 28, Ir(pni-diBup) 2 is used as a phosphorescent material having a five-membered ring. (mdppy), Ir(pni-diBup) 3 is used as a phosphorescent material having a five-membered ring in light-emitting elements 30 to 33. The phosphorescent material having a five-membered ring is an example of a phosphorescent material having a triazole skeleton or an imidazole skeleton. In addition, Ir(ppy) 3 which is a phosphorescent material not having a five-membered ring skeleton is used in comparison light-emitting elements 35 to 38, and comparison light-emitting elements 35 to 38 are manufactured for comparison with the element characteristics of the light-emitting element of one embodiment of the present invention.

mPCCzPTzn-02與PCCP是形成激態錯合物的組合,4,6mCzP2Pm與PCCP是形成激態錯合物的組合。mPCCzPTzn-02 and PCCP form an excited complex, and 4,6mCzP2Pm and PCCP form an excited complex.

<發光元件的特性> 接著,測量上述製造的發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38的特性。在亮度及CIE色度的測量中,利用色亮度計(由Topcon Technohouse公司製造的BM-5A)。在電致發射光譜的測量中,利用多通道光譜分析儀(由日本濱松光子學株式會社製造的PMA-11)。<Characteristics of light-emitting elements> Next, the characteristics of the light-emitting elements 2 to 5, 7 to 10, 12 to 15, 17 to 19, 21 to 24, 26 to 28, 30 to 33, comparison light-emitting elements 1, 6, 11, 16, 20, 25, 29, and 34 to 38 manufactured as described above were measured. A colorimeter (BM-5A manufactured by Topcon Technohouse) was used for the measurement of brightness and CIE chromaticity. A multi-channel spectrometer (PMA-11 manufactured by Hamamatsu Photonics Co., Ltd.) was used for the measurement of electroluminescence spectra.

圖14、16、18、20、22、24、26、28分別示出發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38的外部量子效率-亮度特性。另外,圖15、17、19、21、23、25、27、29分別示出在發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38中以2.5mA/cm2 的電流密度使電流流過時的電致發射光譜。注意,各發光元件的測量在室溫(保持為23℃的氛圍)下進行。Figures 14, 16, 18, 20, 22, 24, 26, and 28 respectively show the external quantum efficiency-brightness characteristics of light-emitting element 2 to light-emitting element 5, light-emitting element 7 to light-emitting element 10, light-emitting element 12 to light-emitting element 15, light-emitting element 17 to light-emitting element 19, light-emitting element 21 to light-emitting element 24, light-emitting element 26 to light-emitting element 28, and light-emitting element 30 to light-emitting element 33, comparison light-emitting elements 1, 6, 11, 16, 20, 25, 29, and comparison light-emitting element 34 to comparison light-emitting element 38. 15, 17, 19, 21, 23, 25, 27, and 29 respectively show electroluminescence spectra when a current of 2.5 mA/cm2 is passed through light-emitting elements 2 to 5, light-emitting elements 7 to 10, light-emitting elements 12 to 15, light-emitting elements 17 to 19, light-emitting elements 21 to 24, light-emitting elements 26 to 28, light-emitting elements 30 to 33, comparative light-emitting elements 1, 6, 11, 16, 20, 25, 29 , and comparative light-emitting elements 34 to 38. Note that the measurement of each light-emitting element was performed at room temperature (an atmosphere maintained at 23°C).

另外,表7及表8示出1000cd/m2 附近的發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33、比較發光元件1、6、11、16、20、25、29及比較發光元件34至比較發光元件38的元件特性。In addition, Tables 7 and 8 show the element characteristics of light-emitting element 2 to light-emitting element 5, light-emitting element 7 to light-emitting element 10, light-emitting element 12 to light-emitting element 15, light-emitting element 17 to light-emitting element 19, light-emitting element 21 to light-emitting element 24, light-emitting element 26 to light-emitting element 28 and light-emitting element 30 to light-emitting element 33, comparison light-emitting elements 1, 6, 11, 16, 20, 25, 29 and comparison light-emitting element 34 to comparison light-emitting element 38 near 1000 cd/m2.

<從能量施體(具有五員環骨架的磷光材料)到能量受體(具有保護基的螢光材料)的能量轉移> 如圖15所示,發光元件2至發光元件5的發射光譜的峰值波長為528nm左右且半寬為62nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。另一方面,比較發光元件1的發射光譜的峰值波長為492nm且半寬為67nm,呈現來源於Ir(mpptz-diBuCNp)3 的發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。<Energy transfer from energy donor (phosphorescent material with five-membered ring skeleton) to energy acceptor (fluorescent material with protective group)> As shown in FIG15, the peak wavelength of the emission spectrum of light-emitting element 2 to light-emitting element 5 is about 528nm and the half width is about 62nm, showing green light originating from 2tBu-ptBuDPhA2Anth. On the other hand, the peak wavelength of the emission spectrum of comparison light-emitting element 1 is 492nm and the half width is 67nm, showing light originating from Ir(mpptz-diBuCNp) 3. Therefore, it can be seen that: in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖17所示,發光元件7至發光元件10的發射光譜的峰值波長為530nm左右且半寬為66nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。另一方面,比較發光元件6的發射光譜的峰值波長為508nm且半寬為85nm,呈現來源於Ir(mpptz-diPrp)3 的發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG17 , the peak wavelength of the emission spectrum of light-emitting element 7 to light-emitting element 10 is about 530 nm and the half width is about 66 nm, showing green light originating from 2tBu-ptBuDPhA2Anth. On the other hand, the peak wavelength of the emission spectrum of comparison light-emitting element 6 is 508 nm and the half width is 85 nm, showing light originating from Ir(mpptz-diPrp) 3. Therefore, it can be seen that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖19所示,發光元件12至發光元件15的發射光譜的峰值波長為529nm左右且半寬為64nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。另一方面,比較發光元件11的發射光譜的峰值波長為502nm且半寬為91nm,呈現來源於Ir(Mptz1-mp)3 的發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG19 , the peak wavelength of the emission spectrum of the light-emitting element 12 to the light-emitting element 15 is about 529 nm and the half width is about 64 nm, showing green light originating from 2tBu-ptBuDPhA2Anth. On the other hand, the peak wavelength of the emission spectrum of the comparison light-emitting element 11 is 502 nm and the half width is 91 nm, showing light originating from Ir(Mptz1-mp) 3. Therefore, it can be seen that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖21所示,比較發光元件16的發射光譜的最大峰值波長為513nm且半寬為64nm,呈現來源於Ir(pbi-diBuCNp)3 的發光。發光元件17的發射光譜與比較發光元件16的發射光譜不同。這是因為檢測出來源於Ir(pbi-diBuCNp)3 的發光和來源於2tBu-ptBuDPhA2Anth的發光。因此,可知:從發光元件17獲得螢光發光。另外,發光元件18及發光元件19的發射光譜的峰值波長為535nm左右且半寬為69nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG21 , the emission spectrum of the comparison light-emitting element 16 has a maximum peak wavelength of 513 nm and a half-width of 64 nm, showing light emission from Ir(pbi-diBuCNp) 3. The emission spectrum of the light-emitting element 17 is different from the emission spectrum of the comparison light-emitting element 16. This is because light emission from Ir(pbi-diBuCNp) 3 and light emission from 2tBu-ptBuDPhA2Anth are detected. Therefore, it can be seen that fluorescent light emission is obtained from the light-emitting element 17. In addition, the emission spectrums of the light-emitting elements 18 and 19 have a peak wavelength of about 535 nm and a half-width of about 69 nm, showing green light emission from 2tBu-ptBuDPhA2Anth. Therefore, it can be understood that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖23所示,比較發光元件20的發射光譜的最大峰值波長為508nm且半寬為64nm,呈現來源於fac-Ir(pbi-diBup)3 的發光。發光元件21的發射光譜與比較發光元件20的發射光譜不同。這是因為檢測出來源於fac-Ir(pbi-diBup)3 的發光和來源於2tBu-ptBuDPhA2Anth的發光。因此,可知:從發光元件21獲得螢光發光。另外,發光元件22及發光元件24的發射光譜的峰值波長為538nm左右且半寬為69nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG23, the emission spectrum of the comparison light-emitting element 20 has a maximum peak wavelength of 508 nm and a half-width of 64 nm, showing light emission from fac-Ir(pbi-diBup) 3. The emission spectrum of the light-emitting element 21 is different from the emission spectrum of the comparison light-emitting element 20. This is because light emission from fac-Ir(pbi-diBup) 3 and light emission from 2tBu-ptBuDPhA2Anth are detected. Therefore, it can be seen that fluorescent light is obtained from the light-emitting element 21. In addition, the emission spectrums of the light-emitting elements 22 and 24 have a peak wavelength of about 538 nm and a half-width of about 69 nm, showing green light emission from 2tBu-ptBuDPhA2Anth. Therefore, it can be understood that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖25所示,比較發光元件25的發射光譜的最大峰值波長為525nm且半寬為73nm,呈現來源於Ir(pni-diBup)2 (mdppy)的發光。發光元件26的發射光譜與比較發光元件25的發射光譜不同。這是因為檢測出來源於Ir(pni-diBup)2 (mdppy)的發光和來源於2tBu-ptBuDPhA2Anth的發光。因此,可知:從發光元件26獲得螢光發光。另外,發光元件27及發光元件28的發射光譜的峰值波長為535nm左右且半寬為69nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG25 , the emission spectrum of the comparative light-emitting element 25 has a maximum peak wavelength of 525 nm and a half width of 73 nm, showing light emission from Ir(pni-diBup) 2 (mdppy). The emission spectrum of the light-emitting element 26 is different from the emission spectrum of the comparative light-emitting element 25. This is because light emission from Ir(pni-diBup) 2 (mdppy) and light emission from 2tBu-ptBuDPhA2Anth are detected. Therefore, it can be seen that fluorescent light emission is obtained from the light-emitting element 26. In addition, the emission spectrums of the light-emitting elements 27 and 28 have a peak wavelength of about 535 nm and a half width of about 69 nm, showing green light emission from 2tBu-ptBuDPhA2Anth. Therefore, it can be understood that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖27所示,比較發光元件29的發射光譜的最大峰值波長為500nm且半寬為59nm,呈現來源於Ir(pni-diBup)3 的發光。發光元件30的發射光譜與比較發光元件29的發射光譜不同。這是因為檢測出來源於Ir(pni-diBup)3 的發光和來源於2tBu-ptBuDPhA2Anth的發光。因此,可知:從發光元件29獲得螢光發光。另外,發光元件31至發光元件33的發射光譜的峰值波長為536nm左右且半寬為65nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。As shown in FIG27 , the emission spectrum of the comparative light-emitting element 29 has a maximum peak wavelength of 500 nm and a half-width of 59 nm, showing light emission from Ir(pni-diBup) 3. The emission spectrum of the light-emitting element 30 is different from the emission spectrum of the comparative light-emitting element 29. This is because light emission from Ir(pni-diBup) 3 and light emission from 2tBu-ptBuDPhA2Anth are detected. Therefore, it can be seen that fluorescent light emission is obtained from the light-emitting element 29. In addition, the emission spectrums of the light-emitting elements 31 to 33 have a peak wavelength of about 536 nm and a half-width of about 65 nm, showing green light emission from 2tBu-ptBuDPhA2Anth. Therefore, it can be understood that in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

如圖29所示,比較發光元件34的發射光譜的最大峰值波長為517nm且半寬為70nm,呈現來源於Ir(ppy)3 的發光。另外,比較發光元件35至比較發光元件38發射光譜的峰值波長為535nm左右且半寬為69nm左右,呈現來源於2tBu-ptBuDPhA2Anth的綠色發光。As shown in Fig. 29, the emission spectrum of comparative luminescent element 34 has a maximum peak wavelength of 517 nm and a half width of 70 nm, showing luminescence originating from Ir(ppy) 3. In addition, the emission spectrum of comparative luminescent element 35 to comparative luminescent element 38 has a peak wavelength of about 535 nm and a half width of about 69 nm, showing green luminescence originating from 2tBu-ptBuDPhA2Anth.

發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33呈現來源於螢光材料的發光,但是如圖16、圖18、圖20、圖22、圖24、圖26、表7及表8所示,螢光材料的2tBu-ptBuDPhA2Anth的濃度高的發光元件也呈現高發光效率,亦即呈現至少超過14%的外部量子效率。另外,本發明的一個實施方式的發光元件的發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33在任何濃度也呈現高於比較發光元件37的外部量子效率。Light-emitting elements 2 to 5, 7 to 10, 12 to 15, 17 to 19, 21 to 24, 26 to 28 and 30 to 33 exhibit luminescence originating from the fluorescent material, but as shown in FIGS. 16 , 18 , 20 , 22 , 24 , 26 , Tables 7 and 8, the light-emitting elements having a high concentration of 2tBu-ptBuDPhA2Anth of the fluorescent material also exhibit high luminescence efficiency, that is, an external quantum efficiency of at least more than 14%. In addition, the light-emitting elements 2 to 5, 7 to 10, 12 to 15, 17 to 19, 21 to 24, 26 to 28 and 30 to 33 of the light-emitting elements of an embodiment of the present invention also exhibit an external quantum efficiency higher than that of the comparison light-emitting element 37 at any concentration.

因從一對電極注入的載子(電洞及電子)的再結合而產生的單重激子的產生概率最大為25%,因此當向外部的光提取效率為30%時,螢光發光元件的外部量子效率最大為7.5%。但是,在發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33中得到高效率,亦即高於7.5%的外部量子效率。這是因為:除了來源於從一對電極注入的載子(電洞及電子)的再結合而生成的單重激子的發光以外,還從螢光材料得到來源於三重激子的能量轉移的發光。根據本結果,可以說:在本發明的一個實施方式的發光元件中,藉由使用具有保護基的螢光材料及具有五員環骨架的磷光材料,抑制三重激子的無輻射失活而在發光層中生成的單重激發能和三重激發能高效地被轉換為螢光材料的發光。The maximum probability of generating a singlet exciton generated by the recombination of carriers (holes and electrons) injected from a pair of electrodes is 25%, so when the light extraction efficiency to the outside is 30%, the external quantum efficiency of the fluorescent light-emitting element is 7.5% at most. However, high efficiency, that is, an external quantum efficiency higher than 7.5%, is obtained in light-emitting element 2 to light-emitting element 5, light-emitting element 7 to light-emitting element 10, light-emitting element 12 to light-emitting element 15, light-emitting element 21 to light-emitting element 24, light-emitting element 26 to light-emitting element 28, and light-emitting element 30 to light-emitting element 33. This is because: in addition to the luminescence derived from the singlet exciton generated by the recombination of carriers (holes and electrons) injected from a pair of electrodes, luminescence derived from the energy transfer of triplet excitons is also obtained from the fluorescent material. Based on the present results, it can be said that in a light-emitting element of an embodiment of the present invention, by using a fluorescent material having a protecting group and a phosphorescent material having a five-membered ring skeleton, the non-radiative deactivation of triplet excitons is suppressed, and the singlet excitation energy and triplet excitation energy generated in the light-emitting layer are efficiently converted into luminescence of the fluorescent material.

<螢光材料的吸收光譜與具有五員環的磷光材料的發射光譜的重疊> 接著,調查螢光材料的2tBu-ptBuDPhA2Anth的吸收光譜與用於各發光元件的磷光材料的EL發射光譜的關係。圖30至圖36示出其結果。<Overlap of the absorption spectrum of the fluorescent material and the emission spectrum of the phosphorescent material having a five-membered ring> Next, the relationship between the absorption spectrum of the fluorescent material 2tBu-ptBuDPhA2Anth and the EL emission spectrum of the phosphorescent material used in each light-emitting element was investigated. The results are shown in Figures 30 to 36.

如上所述,比較發光元件1、6、11、16、20、25、29呈現來源於用於各發光層的磷光材料的發光。從圖30至圖36可知:各磷光材料的發射光譜與2tBu-ptBuDPhA2Anth的吸收光譜具有彼此重疊的部分。因此,在作為發光層使用各磷光材料和2tBu-ptBuDPhA2Anth時,有可能發生從各磷光材料到2tBu-ptBuDPhA2Anth的能量轉移。在此,如上所述,本發明的一個實施方式的發光元件呈現高發光效率。就是說,可知:在一般的螢光元件中會發生的發光層中的三重激子的失活被抑制。這是具有保護基的螢光材料的使用帶來的效果。另外,也是如下因素帶來的效果:藉由使用具有五員環的磷光材料,抑制螢光材料中的載子的再結合,並且抑制基於德克斯特機制從磷光材料到螢光材料的三重激子的能量轉移及三重激子的能量失活。As described above, the comparison light-emitting elements 1, 6, 11, 16, 20, 25, and 29 show light emission from the phosphorescent materials used in each light-emitting layer. From Figures 30 to 36, it can be seen that the emission spectrum of each phosphorescent material and the absorption spectrum of 2tBu-ptBuDPhA2Anth have overlapping parts. Therefore, when each phosphorescent material and 2tBu-ptBuDPhA2Anth are used as the light-emitting layer, energy transfer from each phosphorescent material to 2tBu-ptBuDPhA2Anth may occur. Here, as described above, the light-emitting element of an embodiment of the present invention shows high light-emitting efficiency. That is, it can be seen that the deactivation of triplet excitons in the light-emitting layer that occurs in a general fluorescent element is suppressed. This is an effect brought about by the use of a fluorescent material having a protecting group. In addition, the following factors also contribute to the effect: by using a phosphorescent material having a five-membered ring, the recombination of carriers in the fluorescent material is suppressed, and the energy transfer of triplet excitons from the phosphorescent material to the fluorescent material based on the Dexter mechanism and the energy deactivation of triplet excitons are suppressed.

<客體材料濃度所引起的外部量子效率的變化> 圖37示出使用各磷光材料的發光元件中的客體材料濃度與外部量子效率的關係。從圖37可知:與使用不具有五員環骨架的磷光材料的Ir(ppy)3 的比較發光元件34至38相比,使用具有五員環的磷光材料的本發明的一個實施方式的發光元件抑制螢光材料的濃度增加所引起的外部量子效率的下降。這是因為:藉由將具有保護基的客體材料用於發光層且使用具有五員環的磷光材料,抑制基於德克斯特機制三重激發能的能量從主體材料到客體材料轉移且三重激發能失活。再者,由於藉由提高客體材料的濃度可以高效地利用基於福斯特機制的激發能的從主體材料到客體材料的能量轉移,並且將發光層中的三重激發能和單重激發能高效地轉換為螢光材料的發光。由此可知,藉由本發明的一個實施方式的發光元件,可以得到客體材料濃度高且發光效率高的發光元件。<Changes in external quantum efficiency caused by guest material concentration> FIG. 37 shows the relationship between guest material concentration and external quantum efficiency in light-emitting elements using various phosphorescent materials. As can be seen from FIG. 37, compared with comparative light-emitting elements 34 to 38 using Ir(ppy) 3 , a phosphorescent material not having a five-membered ring skeleton, the light-emitting element of one embodiment of the present invention using a phosphorescent material having a five-membered ring suppresses the decrease in external quantum efficiency caused by an increase in the concentration of the phosphorescent material. This is because: by using a guest material having a protective group for the light-emitting layer and using a phosphorescent material having a five-membered ring, the energy transfer of triplet excitation energy based on the Dexter mechanism from the host material to the guest material is suppressed and the triplet excitation energy is deactivated. Furthermore, since the energy transfer from the host material to the guest material based on the Förster mechanism can be efficiently utilized by increasing the concentration of the guest material, and the triplet excitation energy and the singlet excitation energy in the luminescent layer can be efficiently converted into the luminescence of the fluorescent material, it can be seen that a light-emitting element with a high concentration of the guest material and high luminescence efficiency can be obtained by a light-emitting element of an embodiment of the present invention.

另外,也可知:在使用Ir(mpptz-diPrp)3 、Ir(Mptz1-mp)3 的發光元件中,藉由提高客體材料濃度,發光效率提高。In addition, it is also known that in the light-emitting element using Ir(mpptz-diPrp) 3 and Ir(Mptz1-mp) 3 , the light-emitting efficiency is improved by increasing the concentration of the guest material.

<發光元件的可靠性測量> 接著,對發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15、發光元件17至發光元件19、發光元件21至發光元件24、發光元件26至發光元件28及發光元件30至發光元件33、以及比較發光元件1、6、11、16、20、25、29進行在2.0mA下的定電流驅動測試。圖38至圖44示出其結果。從圖38至圖44可知:藉由提高客體材料濃度,可靠性提高。這意味著藉由增高客體材料的濃度可以將發光層中的激發能高效地轉換為客體材料的發光。就是說,意味著藉由增高客體材料的濃度,可以增高從主體材料到客體材料的基於福斯特機制的三重激發能的能量轉移速度。<Reliability measurement of light-emitting elements> Next, a constant current drive test at 2.0 mA was performed on light-emitting elements 2 to 5, light-emitting elements 7 to 10, light-emitting elements 12 to 15, light-emitting elements 17 to 19, light-emitting elements 21 to 24, light-emitting elements 26 to 28, and light-emitting elements 30 to 33, as well as comparison light-emitting elements 1, 6, 11, 16, 20, 25, and 29. The results are shown in Figures 38 to 44. It can be seen from Figures 38 to 44 that reliability is improved by increasing the concentration of the guest material. This means that by increasing the concentration of the guest material, the excitation energy in the light-emitting layer can be efficiently converted into the luminescence of the guest material. In other words, it means that by increasing the concentration of the guest material, the energy transfer rate of the triplet excitation energy from the host material to the guest material based on the Förster mechanism can be increased.

在此,在發光層中,從能量施體到客體材料的能量轉移,亦即與發光有關的能量轉移與雜質或劣化物的影響造成的淬滅過程競爭。因此,為了得到可靠性良好的發光元件,提高與發光有關的能量轉移速度是重要的。Here, in the light-emitting layer, the energy transfer from the energy donor to the guest material, that is, the energy transfer associated with the light emission, competes with the quenching process caused by the influence of impurities or deterioration products. Therefore, in order to obtain a light-emitting element with good reliability, it is important to increase the energy transfer speed associated with the light emission.

<發光元件的螢光壽命測量> 接著,為了調查客體材料的濃度的不同所帶來的發光速度之差,測量發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15以及比較發光元件1、6、11的螢光壽命。在測量中,使用皮秒螢光壽命測量系統(日本濱松光子學公司製造)。在本測量中,為了測量發光元件中的螢光發光的壽命,對發光元件施加矩形脈衝電壓,並且使用條紋攝影機對在電壓下降後衰減的發光進行時間分辨測量。脈衝電壓以10Hz的頻率施加,並且藉由將反復測量的資料累計起來獲得S/N比例高的資料。另外,以如下條件進行測試:在室溫(300K)下,以發光元件的亮度為1000cd/m2 附近的方式施加3V至4V左右的施加脈衝電壓,施加脈衝時間寬度為100μ秒,負偏壓為-5V(元件驅動為OFF時),測量時間範圍為10μ秒。圖49至圖51示出測量結果。注意,在圖49至圖51中,縱軸表示以持續注入載子的狀態(脈衝電壓為ON時)下的發光強度正規化的強度。此外,橫軸表示脈衝電壓下降後的經過時間。<Measurement of fluorescence lifetime of light-emitting elements> Next, in order to investigate the difference in light emission speed caused by the difference in the concentration of the object material, the fluorescence lifetime of light-emitting elements 2 to 5, light-emitting elements 7 to 10, light-emitting elements 12 to 15, and light-emitting elements 1, 6, and 11 were measured. In the measurement, a picosecond fluorescence lifetime measurement system (manufactured by Hamamatsu Photonics Co., Ltd., Japan) was used. In this measurement, in order to measure the lifetime of the fluorescent light emission in the light-emitting element, a rectangular pulse voltage was applied to the light-emitting element, and the light emission that decayed after the voltage dropped was time-resolved measured using a streak camera. The pulse voltage is applied at a frequency of 10 Hz, and data with a high S/N ratio are obtained by accumulating the data of repeated measurements. In addition, the test is carried out under the following conditions: at room temperature (300K), an applied pulse voltage of about 3V to 4V is applied in such a way that the brightness of the light-emitting element is around 1000cd/ m2 , the applied pulse time width is 100μsec, the negative bias voltage is -5V (when the element drive is OFF), and the measurement time range is 10μsec. Figures 49 to 51 show the measurement results. Note that in Figures 49 to 51, the vertical axis represents the normalized intensity of the luminescence intensity in the state of continuous carrier injection (when the pulse voltage is ON). In addition, the horizontal axis represents the time after the pulse voltage drops.

藉由對圖49至圖51所示的衰減曲線使用指數函數進行擬合,可知:發光元件2至發光元件5、發光元件7至發光元件10呈現具有0.4μ秒以下的瞬時螢光成分及2μ秒左右的延遲螢光成分的發光,發光元件12至發光元件15呈現具有0.4μ秒以下的瞬時螢光成分及4μ秒左右的延遲螢光成分的發光。另外,也可知:在作為客體材料添加螢光材料時,螢光材料的濃度越高,瞬時螢光成分的比例越高且延遲螢光成分的比例越低。另外,也可知:比較發光元件1呈現來源於磷光材料的發光且呈現具有0.5μ秒以下的瞬時螢光成分及4μ秒左右的延遲螢光成分的發光,比較發光元件6及比較發光元件11呈現來源於磷光材料的發光且呈現具有0.5μ秒以下的瞬時螢光成分及2μ秒左右的延遲螢光成分的發光。By fitting the decay curves shown in FIGS. 49 to 51 with an exponential function, it can be seen that: light-emitting elements 2 to 5, and light-emitting elements 7 to 10 emit light having an instantaneous fluorescence component of less than 0.4 μs and a delayed fluorescence component of about 2 μs, and light-emitting elements 12 to 15 emit light having an instantaneous fluorescence component of less than 0.4 μs and a delayed fluorescence component of about 4 μs. In addition, it can be seen that: when a fluorescent material is added as a guest material, the higher the concentration of the fluorescent material, the higher the proportion of the instantaneous fluorescence component and the lower the proportion of the delayed fluorescence component. In addition, it can be seen that: the comparison luminescent element 1 exhibits luminescence originating from the phosphorescent material and exhibits luminescence having an instantaneous fluorescent component of less than 0.5 μ second and a delayed fluorescent component of about 4 μ second, and the comparison luminescent element 6 and the comparison luminescent element 11 exhibit luminescence originating from the phosphorescent material and exhibits luminescence having an instantaneous fluorescent component of less than 0.5 μ second and a delayed fluorescent component of about 2 μ second.

由此可知,藉由將螢光材料作為客體材料添加到發光層,發光速度提高且來源於螢光材料的瞬時螢光成分的比例增加。在此,如上所述,本發明的一個實施方式的發光元件2至發光元件5、發光元件7至發光元件10、發光元件12至發光元件15即使螢光材料的濃度高也呈現高外部量子效率。就是說,可知在本發明的一個實施方式的發光元件中,即使來源於螢光材料的發光的比例增加,也呈現高發光效率。這意味著:在本發明的一個實施方式的發光元件中,可以抑制從主體材料到客體材料的基於德克斯特機制的三重激發能的能量轉移及三重激發能的失活,而可以增高客體材料的濃度,因此可以提高基於福斯特機制的激發能的能量轉移效率。因此,在本發明的一個實施方式的發光元件中,可以將單重激發能和三重激發能都高效地用於發光。It can be seen that by adding the fluorescent material as the guest material to the light-emitting layer, the light-emitting speed is improved and the proportion of the instantaneous fluorescent component originating from the fluorescent material is increased. Here, as described above, the light-emitting element 2 to the light-emitting element 5, the light-emitting element 7 to the light-emitting element 10, and the light-emitting element 12 to the light-emitting element 15 of an embodiment of the present invention show high external quantum efficiency even if the concentration of the fluorescent material is high. That is, it can be seen that in the light-emitting element of an embodiment of the present invention, even if the proportion of light emission originating from the fluorescent material increases, it still shows high light-emitting efficiency. This means: in the light-emitting element of an embodiment of the present invention, the energy transfer of the triplet excitation energy based on the Dexter mechanism from the host material to the guest material and the deactivation of the triplet excitation energy can be suppressed, and the concentration of the guest material can be increased, so that the energy transfer efficiency of the excitation energy based on the Foster mechanism can be improved. Therefore, in the light-emitting element of one embodiment of the present invention, both singlet excitation energy and triplet excitation energy can be efficiently used for light emission.

另外,如圖49至圖51所示,為了提高能量轉移速度,較佳為提高發光層中的客體材料濃度。本發明的一個實施方式的發光元件可以抑制基於德克斯特機制的能量轉移,同時提高基於福斯特機制的能量轉移速度,藉由減少與淬滅過程的競爭所造成的影響,可以得到具有良好發光效率及良好可靠性的發光元件。另外,在各比較發光元件中觀察到磷光發光所以發光壽命長,但是本發明的一個實施方式的發光元件是螢光發光所以發光壽命短。因此,可以減少與上述淬滅過程的競爭所造成的影響。因此,在本發明的一個實施方式的發光元件中,可以增高客體材料的濃度,而可以得到發光效率及可靠性高的發光元件。 實施例2In addition, as shown in Figures 49 to 51, in order to increase the energy transfer rate, it is better to increase the concentration of the guest material in the light-emitting layer. The light-emitting element of an embodiment of the present invention can suppress the energy transfer based on the Dexter mechanism and increase the energy transfer rate based on the Foster mechanism. By reducing the impact of the competition with the quenching process, a light-emitting element with good luminous efficiency and good reliability can be obtained. In addition, phosphorescence is observed in each comparative light-emitting element, so the luminescence life is long, but the light-emitting element of an embodiment of the present invention is fluorescent, so the luminescence life is short. Therefore, the impact of the competition with the above-mentioned quenching process can be reduced. Therefore, in a light-emitting element of an embodiment of the present invention, the concentration of the object material can be increased, and a light-emitting element with high light-emitting efficiency and reliability can be obtained. Example 2

在本實施例中,說明與實施例1不同的本發明的一個實施方式的發光元件及比較發光元件的製造例子及該發光元件的特性。在本實施例中製造的發光元件的結構與圖1A所示的發光元件的結構相同。表9示出元件的詳細結構。另外,以下示出所使用的化合物的結構及簡稱。關於其他有機化合物,可以參照上述實施例及上述實施方式。In this embodiment, a light-emitting element of an embodiment of the present invention different from Embodiment 1 and a manufacturing example of a comparative light-emitting element and the characteristics of the light-emitting element are described. The structure of the light-emitting element manufactured in this embodiment is the same as the structure of the light-emitting element shown in FIG. 1A. Table 9 shows the detailed structure of the element. In addition, the structure and abbreviation of the compound used are shown below. For other organic compounds, reference can be made to the above-mentioned embodiments and the above-mentioned embodiments.

《比較發光元件39及發光元件40至發光元件43的製造》 與上述發光元件2至發光元件5同樣,比較發光元件39及發光元件40至發光元件43藉由真空蒸鍍法製造。表9及表10示出各發光元件的詳細結構,所以省略詳細的製造方法。另外,表10示出在表9中以x3 表示的值。<<Manufacturing of Comparative Light-Emitting Element 39 and Light-Emitting Element 40 to Light-Emitting Element 43>> Similar to the above-mentioned Light-Emitting Element 2 to Light-Emitting Element 5, Comparative Light-Emitting Element 39 and Light-Emitting Element 40 to Light-Emitting Element 43 are manufactured by vacuum evaporation. Tables 9 and 10 show the detailed structure of each light-emitting element, so the detailed manufacturing method is omitted. In addition, Table 10 shows the value represented by x 3 in Table 9.

在比較發光元件39中,磷光材料的Ir(pbi-diBuCNp)3 用作能量受體。比較發光元件39是作為磷光材料被用作能量施體的本發明的一個實施方式的發光元件的比較例子而示出的。In the comparative light-emitting element 39, Ir(pbi-diBuCNp) 3 of the phosphorescent material is used as an energy acceptor. The comparative light-emitting element 39 is shown as a comparative example of a light-emitting element of one embodiment of the present invention in which a phosphorescent material is used as an energy donor.

<發光元件的特性> 接著,測量上述製造了的比較發光元件39及發光元件40至發光元件43的特性。測量方法與實施例1相同。<Characteristics of light-emitting elements> Next, the characteristics of the comparison light-emitting element 39 and the light-emitting elements 40 to 43 manufactured as described above were measured. The measurement method was the same as that of Example 1.

圖52示出比較發光元件39及發光元件40至發光元件43的外部量子效率-亮度特性。另外,圖53示出分別在比較發光元件39及比較發光元件40至發光元件43中以2.5mA/cm2 的電流密度使電流流過時的電致發射光譜。注意,各發光元件的測量在室溫(保持為23℃的氛圍)下進行。FIG52 shows the external quantum efficiency-luminance characteristics of the comparative light-emitting element 39 and the light-emitting elements 40 to 43. FIG53 shows the electroluminescence spectrum when a current of 2.5 mA/ cm2 is passed through the comparative light-emitting element 39 and the comparative light-emitting element 40 to 43. Note that the measurement of each light-emitting element was performed at room temperature (an atmosphere maintained at 23°C).

另外,表11示出1000cd/m2 附近的比較發光元件39及比較發光元件40至發光元件43的元件特性。Table 11 shows the device characteristics of the comparative light emitting element 39 and the comparative light emitting elements 40 to 43 at around 1000 cd/m 2 .

<從能量施體(具有五員環骨架的磷光材料)到能量受體(具有保護基的螢光材料)的能量轉移> 如圖53所示,發光元件40至發光元件43的發射光譜的峰值波長為520nm左右且半寬為69nm左右,呈現來源於2,6tBu-mmtBuDPhA2Anth 的綠色發光。另一方面,比較發光元件39的發射光譜的峰值波長為513nm且半寬為63nm,呈現來源於Ir(pbi-diBuCNp)3 的發光。因此,可知:在本發明的一個實施方式的發光元件中,能量從磷光材料到螢光材料轉移。<Energy transfer from energy donor (phosphorescent material with five-membered ring skeleton) to energy acceptor (fluorescent material with protective group)> As shown in FIG. 53, the peak wavelength of the emission spectrum of light-emitting element 40 to light-emitting element 43 is about 520nm and the half width is about 69nm, showing green light originating from 2,6tBu-mmtBuDPhA2Anth. On the other hand, the peak wavelength of the emission spectrum of comparison light-emitting element 39 is 513nm and the half width is 63nm, showing light originating from Ir(pbi-diBuCNp) 3. Therefore, it can be seen that: in the light-emitting element of one embodiment of the present invention, energy is transferred from the phosphorescent material to the fluorescent material.

發光元件40至發光元件43雖然呈現來源於螢光材料的發光,但是如圖52及表11所示,也在螢光材料的濃度高的發光元件中呈現高發光效率,亦即至少超過15%的外部量子效率。根據本結果,可以說:在本發明的一個實施方式的發光元件中,藉由使用具有保護基的螢光材料及具有五員環骨架的磷光材料,抑制三重激子的無輻射失活而在發光層中生成的單重激發能和三重激發能高效地被轉換為螢光材料的發光。Although the light-emitting elements 40 to 43 exhibit light emission from the fluorescent material, as shown in FIG. 52 and Table 11, the light-emitting elements having a high concentration of the fluorescent material also exhibit high light emission efficiency, that is, an external quantum efficiency of at least more than 15%. Based on this result, it can be said that in the light-emitting element of one embodiment of the present invention, by using a fluorescent material having a protective group and a phosphorescent material having a five-membered ring skeleton, the singlet excitation energy and triplet excitation energy generated in the light-emitting layer are efficiently converted into light emission of the fluorescent material by suppressing the non-radiative deactivation of triplet excitons.

<發光元件的可靠性測量> 接著,進行比較發光元件39及發光元件40至發光元件43的在2.0mA下的定電流驅動測試。圖54示出其結果。從圖54可知:藉由提高客體材料濃度,可靠性提高。這意味著藉由增高客體材料的濃度可以將發光層中的激發能高效地轉換為客體材料的發光。就是說,意味著藉由增高客體材料的濃度,可以增高從主體材料到客體材料的基於福斯特機制的三重激發能的能量轉移速度。<Reliability measurement of light-emitting element> Next, a constant current drive test at 2.0 mA was performed to compare light-emitting element 39 and light-emitting element 40 to light-emitting element 43. The results are shown in FIG54. As can be seen from FIG54, reliability is improved by increasing the concentration of the guest material. This means that by increasing the concentration of the guest material, the excitation energy in the light-emitting layer can be efficiently converted into the luminescence of the guest material. In other words, by increasing the concentration of the guest material, the energy transfer rate of the triple excitation energy based on the Förster mechanism from the host material to the guest material can be increased.

<發光元件的螢光壽命測量> 接著,為了調查客體材料的濃度的不同所帶來的發光速度之差,測量比較發光元件39及發光元件40至發光元件43的螢光壽命。測量方法與實施例1同樣。圖55示出其結果。<Measurement of fluorescence life of light-emitting element> Next, in order to investigate the difference in light emission speed caused by the difference in the concentration of the object material, the fluorescence life of light-emitting element 39 and light-emitting element 40 to light-emitting element 43 was measured and compared. The measurement method was the same as that of Example 1. The results are shown in FIG55.

從圖55可知:螢光材料(客體材料)的濃度越高,發光速度快的螢光成分的比例越高且延遲螢光成分的比例越低。由此可知,藉由將螢光材料作為客體材料添加到發光層,發光速度提高且來源於螢光材料的瞬時螢光成分的比例增加。As can be seen from FIG55, the higher the concentration of the fluorescent material (guest material), the higher the proportion of the fluorescent component with a fast luminescence speed and the lower the proportion of the delayed fluorescent component. It can be seen that by adding the fluorescent material as the guest material to the luminescent layer, the luminescence speed is increased and the proportion of the instantaneous fluorescent component originating from the fluorescent material is increased.

在此,如上所述,即使使用螢光材料的濃度高的發光元件,本發明的一個實施方式的發光元件40至發光元件43也呈現高外部量子效率。就是說,可知在本發明的一個實施方式的發光元件中,即使來源於螢光材料的發光的比例增加,也呈現高發光效率。這意味著:在本發明的一個實施方式的發光元件中,可以抑制從主體材料到客體材料的基於德克斯特機制的三重激發能的能量轉移及三重激發能的失活,而可以增高客體材料的濃度,因此可以提高基於福斯特機制的激發能的能量轉移效率。因此,在本發明的一個實施方式的發光元件中,可以將單重激發能和三重激發能都高效地用於發光。Here, as described above, even when a light-emitting element having a high concentration of fluorescent material is used, the light-emitting elements 40 to 43 of one embodiment of the present invention exhibit high external quantum efficiency. That is, it can be seen that in the light-emitting element of one embodiment of the present invention, even if the proportion of luminescence originating from the fluorescent material increases, high luminescence efficiency is exhibited. This means that: in the light-emitting element of one embodiment of the present invention, the energy transfer of triplet excitation energy based on the Dexter mechanism from the host material to the guest material and the deactivation of triplet excitation energy can be suppressed, and the concentration of the guest material can be increased, thereby improving the energy transfer efficiency of the excitation energy based on the Foster mechanism. Therefore, in the light-emitting element of one embodiment of the present invention, both singlet excitation energy and triplet excitation energy can be efficiently used for luminescence.

(參考例1) 在本參考例中,說明用於實施例1的具有保護基的螢光材料,亦即2tBu-ptBuDPhA2Anth的合成方法。(Reference Example 1) This reference example describes the synthesis method of the fluorescent material with a protective group used in Example 1, namely 2tBu-ptBuDPhA2Anth.

將1.2g(3.1mmol)的2-三級丁基蒽、1.8g(6.4mmol)的雙(4-三級丁基苯基)胺、1.2g(13mmol)的三級丁醇鈉以及60mg(0.15mmol)的2-二環己基膦基-2’,6’-二甲氧基-1,1’-聯苯(簡稱:SPhos)放在200mL三頸燒瓶中,用氮氣置換燒瓶內的空氣。對該混合物加入35mL的均三甲苯,對該混合物進行減壓脫氣,對該混合物加入40mg(70μmol)的雙(二亞苄基丙酮)鈀(0),然後在氮氣流下以170℃攪拌該混合物4小時。1.2 g (3.1 mmol) of 2-tert-butylanthracene, 1.8 g (6.4 mmol) of bis(4-tert-butylphenyl)amine, 1.2 g (13 mmol) of sodium tert-butoxide, and 60 mg (0.15 mmol) of 2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl (abbreviated as: SPhos) were placed in a 200 mL three-necked flask, and the air in the flask was replaced with nitrogen. 35 mL of mesitylene was added to the mixture, and the mixture was degassed under reduced pressure. 40 mg (70 μmol) of bis(dibenzylideneacetone)palladium(0) was added to the mixture, and then the mixture was stirred at 170°C for 4 hours under a nitrogen flow.

在攪拌之後,對所得到的混合物加入400mL的甲苯,然後藉由矽酸鎂(日本和光純藥工業公司、目錄號碼:066-05265)、矽藻土(日本和光純藥工業公司、目錄號碼:537-02305)、礬土進行吸引過濾而得到濾液。濃縮所得到的濾液得到褐色固體。After stirring, 400 mL of toluene was added to the obtained mixture, and then the mixture was filtered by suction through magnesium silicate (Wako Pure Chemical Industries, Ltd., catalog number: 066-05265), diatomaceous earth (Wako Pure Chemical Industries, Ltd., catalog number: 537-02305), and alum to obtain a filtrate. The obtained filtrate was concentrated to obtain a brown solid.

利用矽膠管柱層析法(展開溶劑:己烷:甲苯=9:1)對該固體進行純化,得到目的物的黃色固體。使用甲苯、己烷和乙醇使所得到的黃色固體再結合,以61%的產率得到1.5g的目的物的黃色固體。以下示出本合成方案(A-1)。The solid was purified by silica gel column chromatography (developing solvent: hexane: toluene = 9:1) to obtain the target yellow solid. The yellow solid was recombined with toluene, hexane and ethanol to obtain 1.5 g of the target yellow solid with a yield of 61%. The synthesis scheme (A-1) is shown below.

藉由梯度昇華法,使1.5g的所得到的黃色固體昇華純化。在壓力為4.5Pa的條件下,以315℃加熱黃色固體15小時來進行昇華純化。在昇華純化之後,以89%的回收率得到1.3g的目的物的黃色固體。1.5 g of the obtained yellow solid was purified by gradient sublimation. The yellow solid was heated at 315°C for 15 hours under a pressure of 4.5 Pa for sublimation purification. After sublimation purification, 1.3 g of the target yellow solid was obtained at a recovery rate of 89%.

此外,以下示出藉由本合成得到的黃色固體的利用1 H-NMR的測量結果。另外,圖45A和圖45B、圖46示出1 H-NMR譜。圖45B是圖45A的6.5ppm至9.0ppm範圍的放大圖。另外,圖46是圖45A的0.5ppm至2.0ppm範圍的放大圖。由該結果可知得到目的物的2tBu-ptBuDPhA2Anth。In addition, the measurement results of the yellow solid obtained by this synthesis using 1 H-NMR are shown below. In addition, Figures 45A, 45B and 46 show 1 H-NMR spectra. Figure 45B is an enlarged view of the range of 6.5ppm to 9.0ppm of Figure 45A. In addition, Figure 46 is an enlarged view of the range of 0.5ppm to 2.0ppm of Figure 45A. From this result, it can be seen that the target 2tBu-ptBuDPhA2Anth is obtained.

1 H-NMR(CDCl3 , 300MHz):σ=8.20-8.13(m、2H)、8.12(d、J=8.8Hz、1H)、8.05(d、J=2.0Hz、1H)、7.42(dd、J=9.3Hz、2.0Hz、1H)、7.32-7.26(m、2H)7.20(d、J=8.8Hz、8H)、7.04(dd、J=8.8Hz、2.4Hz、8H)、1.26(s、36H)、1.18(s、9H)。 1 H-NMR (CDCl 3 , 300MHz): σ=8.20-8.13 (m, 2H), 8.12 (d, J=8.8Hz, 1H), 8.05 (d, J=2.0Hz, 1H), 7.42 (dd, J=9.3Hz, 2.0Hz, 1H), 7.32-7.26 (m, 2H) 7.20 (d, J=8.8Hz, 8H), 7.04 (dd, J=8.8Hz, 2.4Hz, 8H), 1.26 (s, 36H), 1.18 (s, 9H).

(參考例2) 在本參考例中,說明用於實施例1的具有五員環的磷光材料的一個例子,亦即Ir(pni-diBup)3 的合成方法。(Reference Example 2) In this reference example, a method for synthesizing Ir(pni-diBup) 3 , which is an example of a phosphorescent material having a five-membered ring used in Example 1, is described.

<步驟1:2,6-二異丁基苯胺的合成> 將2,6-二氯苯胺100g(617mmol)、異丁基硼酸230g(2256mmol)、磷酸三鉀479g(2256mmol)、2-二環己基膦基-2’,6’-二甲氧基聯苯(S-phos)10g(24.7mmol)、甲苯3000mL放在5000mL三頸燒瓶中,用氮氣置換燒瓶內的空氣,一邊對燒瓶內進行減壓一邊攪拌,使該混合物脫氣。脫氣後,追加三(二亞苄基丙酮)二鈀(0)11g(11.5mmol),在氮氣流下以120℃攪拌12小時。經過規定時間後,對所得到的反應溶液進行吸引過濾。所得到的反應溶液藉由使用甲苯抽出而純化。然後,藉由矽膠管柱層析法進行純化。作為展開溶劑,使用己烷:甲苯=15:1。濃縮所得到的餾分而以62%的収率得到目的物的黑色油狀物79g。以下式子(B-1)示出步驟1的合成方案。<Step 1: Synthesis of 2,6-diisobutylaniline> 100 g (617 mmol) of 2,6-dichloroaniline, 230 g (2256 mmol) of isobutylboric acid, 479 g (2256 mmol) of tripotassium phosphate, 10 g (24.7 mmol) of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-phos), and 3000 mL of toluene were placed in a 5000 mL three-necked flask, the air in the flask was replaced with nitrogen, and the mixture was degassed while being stirred while reducing the pressure in the flask. After degassing, 11 g (11.5 mmol) of tris(dibenzylideneacetone)dipalladium (0) was added, and the mixture was stirred at 120°C for 12 hours under a nitrogen flow. After a predetermined time, the obtained reaction solution was subjected to suction filtration. The obtained reaction solution was purified by extraction with toluene. Then, it was purified by silica gel column chromatography. As a developing solvent, hexane: toluene = 15: 1 was used. The obtained distillate was concentrated to obtain 79 g of a black oily substance of the target substance at a yield of 62%. The following formula (B-1) shows the synthesis scheme of step 1.

<步驟2;2-硝萘-1-三氟甲烷磺酸鹽的合成> 將2-硝-1-萘酚35g(182mmol)、脫水二氯甲烷500mL、三乙基胺51mL(365mmol)放在1000mL三頸燒瓶,用氮氣置換燒瓶內的空氣,冷卻到0℃。在此,滴下三氟甲烷磺酸酐(簡稱:Tf2 O)40mL(243mmol),以0℃攪拌1小時,以室溫攪拌20小時。經過指定時間後,對所得到的混合物添加水300mL、1M鹽酸30mL。然後,藉由使用二氯甲烷的抽出使該混合物純化。然後,藉由矽膠管柱層析法進行純化。作為展開溶劑,使用己烷:二氯甲烷=5:1。濃縮所得到的餾分而以80%的収率得到目的物的黃色油狀物47g。以下式子(B-2)示出步驟2的合成方案。<Step 2; Synthesis of 2-nitronaphthalene-1-trifluoromethanesulfonate> 35 g (182 mmol) of 2-nitro-1-naphthol, 500 mL of dehydrated dichloromethane, and 51 mL (365 mmol) of triethylamine were placed in a 1000 mL three-necked flask, the air in the flask was replaced with nitrogen, and the temperature was cooled to 0°C. 40 mL (243 mmol) of trifluoromethanesulfonic anhydride (abbreviated as: Tf 2 O) was added dropwise, and the mixture was stirred at 0°C for 1 hour and at room temperature for 20 hours. After a specified time, 300 mL of water and 30 mL of 1M hydrochloric acid were added to the obtained mixture. Then, the mixture was purified by extraction using dichloromethane. Then, the mixture was purified by silica gel column chromatography. As a developing solvent, hexane: dichloromethane = 5:1 was used. The obtained distillation fraction was concentrated to obtain 47 g of the target compound as a yellow oil with a yield of 80%. The following formula (B-2) shows the synthesis scheme of step 2.

<步驟3;N-(2,6-二異丁基苯基)-2-硝-1-萘胺的合成> 將在步驟1合成的2,6-二異丁基苯胺30g(146mmol)、在步驟2合成的2-硝萘-1-三氟甲烷磺酸鹽47g(146mmol)、碳酸銫81g(248mmol)、甲苯750mL放在2000mL三頸燒瓶中,用氮氣置換燒瓶內的空氣,一邊對燒瓶內進行減壓一邊攪拌,使該混合物脫氣。脫氣之後,添加S-phos4.8g(11.7mmol)、三(二亞苄基丙酮)二鈀(0)2.7g(2.9mmol),在氮氣流下以130℃攪拌28小時。經過指定時間後,藉由使用甲苯的抽出使所得到的混合物純化。然後,藉由矽膠管柱層析法進行純化。作為展開溶劑,使用己烷:乙酸乙酯=15:1。濃縮所得到的餾分而以23%的収率得到黃色油狀物13g。以下式子(B-3)示出步驟3的合成方案。<Step 3; Synthesis of N-(2,6-diisobutylphenyl)-2-nitro-1-naphthylamine> Put 30 g (146 mmol) of 2,6-diisobutylaniline synthesized in step 1, 47 g (146 mmol) of 2-nitronaphthalene-1-trifluoromethanesulfonate synthesized in step 2, 81 g (248 mmol) of cesium carbonate, and 750 mL of toluene in a 2000 mL three-necked flask, replace the air in the flask with nitrogen, and depressurize the flask while stirring to degas the mixture. After degassing, add S-phos 4.8g (11.7mmol) and tris(dibenzylideneacetone)dipalladium (0) 2.7g (2.9mmol), and stir at 130°C for 28 hours under a nitrogen flow. After the specified time, the obtained mixture is purified by extraction using toluene. Then, it is purified by silica gel column chromatography. As a developing solvent, hexane: ethyl acetate = 15:1 is used. The obtained distillate is concentrated to obtain 13g of a yellow oily substance at a yield of 23%. The following formula (B-3) shows the synthesis scheme of step 3.

<步驟4;N-(2,6-二異丁基苯基)-1,2-萘二胺的合成> 將在步驟3合成的N-(2,6-二異丁基苯)-2-硝-1-萘胺13g(34mmol)、水6.1mL(0.34mol)、乙醇400mL放在1000mL三頸燒瓶,攪拌。對該混合物添加氯化錫(II)32g(0.17mol),在氮氣流下以80℃攪拌5小時。經過指定時間後,藉由將所得到的反應混合物倒入2M氫氧化鈉水溶液500mL,以室溫攪拌2小時。對所析出的沉澱物進行吸引過濾,使用氯仿洗淨,得到濾液。藉由使用氯仿的抽出使所得到的濾液純化。然後,藉由矽膠管柱層析法進行純化。作為展開溶劑,使用己烷:乙酸乙酯=15:1。濃縮所得到的餾分而以81%的収率得到目的物的黑色油狀物9.5g。以下式子(B-4)示出步驟4的合成方案。<Step 4; Synthesis of N-(2,6-diisobutylphenyl)-1,2-naphthalenediamine> Put 13 g (34 mmol) of N-(2,6-diisobutylphenyl)-2-nitro-1-naphthylamine synthesized in Step 3, 6.1 mL (0.34 mol) of water, and 400 mL of ethanol in a 1000 mL three-necked flask and stir. Add 32 g (0.17 mol) of tin (II) chloride to the mixture, and stir at 80°C for 5 hours under a nitrogen flow. After a specified time, pour the obtained reaction mixture into 500 mL of a 2M sodium hydroxide aqueous solution and stir at room temperature for 2 hours. The precipitate is filtered by suction and washed with chloroform to obtain a filtrate. The obtained filtrate was purified by extraction with chloroform. Then, it was purified by silica gel column chromatography. As a developing solvent, hexane:ethyl acetate = 15:1 was used. The obtained distillate was concentrated to obtain 9.5 g of the target black oily substance with a yield of 81%. The following formula (B-4) shows the synthesis scheme of step 4.

<步驟5;1-(2,6-二異丁基苯基)-2-苯基-1H-萘并[1,2-d]咪唑(簡稱:Hpni-diBup)的合成> 將在步驟4合成的N-(2,6-二異丁基苯基)-1,2-萘二胺9.5g(27mmol)、乙腈100mL、苯甲醛2.9g(27mmol)放在300mL茄形燒瓶,以100℃攪拌6小時。對該混合物添加氯化鐵(III)0.044g(0.274mmol),以100℃攪拌16小時。經過指定時間後,使用乙酸乙酯抽出所得到的反應混合物,對所得到的油狀物添加甲苯100mL、氧化錳(IV)10g而將其放在300mL茄形燒瓶,以130℃攪拌7小時。經過指定時間後,經過矽藻土(日本和光純藥工業公司,目錄號碼:537-02305)/矽酸鎂(日本和光純藥工業公司,目錄號碼:066-05265)/礬土而對得到的反應混合物進行吸引過濾。濃縮所得到的濾液,得到油狀物。藉由矽膠管柱層析法使所得到的油狀物純化。作為展開溶劑,使用甲苯。濃縮所得到的餾分而以66%的収率得到目的物的白色固體7.9g。以下式子(B-5)示出步驟5的合成方案。<Step 5; Synthesis of 1-(2,6-diisobutylphenyl)-2-phenyl-1H-naphtho[1,2-d]imidazole (abbreviated as: Hpni-diBup)> 9.5 g (27 mmol) of N-(2,6-diisobutylphenyl)-1,2-naphthalenediamine synthesized in Step 4, 100 mL of acetonitrile, and 2.9 g (27 mmol) of benzaldehyde were placed in a 300 mL eggplant-shaped flask and stirred at 100°C for 6 hours. 0.044 g (0.274 mmol) of iron (III) chloride was added to the mixture and stirred at 100°C for 16 hours. After the specified time, the obtained reaction mixture was extracted with ethyl acetate, and 100 mL of toluene and 10 g of manganese (IV) oxide were added to the obtained oily substance, and the mixture was placed in a 300 mL eggplant-shaped flask and stirred at 130°C for 7 hours. After the specified time, the obtained reaction mixture was suction filtered through diatomaceous earth (Wako Pure Chemical Industries, Ltd., catalog number: 537-02305)/magnesium silicate (Wako Pure Chemical Industries, Ltd., catalog number: 066-05265)/aluminum. The obtained filtrate was concentrated to obtain an oily substance. The obtained oily substance was purified by silica gel column chromatography. Toluene was used as a developing solvent. The obtained distillate was concentrated to obtain 7.9 g of the target compound as a white solid with a yield of 66%. The following formula (B-5) shows the synthesis scheme of step 5.

<步驟6;二-μ-氯-四{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}二銥(III)(簡稱:[Ir(pni-diBup)2 Cl]2 )的合成> 將在步驟5合成的1-(2,6-二異丁基苯基)-2-苯基-1H-萘并[1,2-d]咪唑(簡稱:Hpni-diBup)3.3g(7.7mmol)、氯化銥一水合物1.6g(3.7mmol)、2-乙氧基乙醇30mL、水10mL放在100mL圓底燒瓶中,用氬置換燒瓶內的空氣。藉由對該反應容器照射微波(2.45GHz、100W)2小時,起反應。反應之後,對反應溶液進行吸引過濾,以69%的產率得到目的物的黃色固體2.8g。以下式子(B-6)示出步驟6的合成方案。<Step 6; Synthesis of di-μ-chloro-tetrakis{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}diiridium(III) (abbreviated as [Ir(pni-diBup) 2 Cl] 2 )> 3.3 g (7.7 mmol) of 1-(2,6-diisobutylphenyl)-2-phenyl-1H-naphtho[1,2-d]imidazole (abbreviated as Hpni-diBup) synthesized in Step 5, 1.6 g (3.7 mmol) of iridium chloride monohydrate, 30 mL of 2-ethoxyethanol, and 10 mL of water were placed in a 100 mL round-bottom flask, and the air in the flask was replaced with hydrogen. The reaction vessel was irradiated with microwaves (2.45 GHz, 100 W) for 2 hours to initiate a reaction. After the reaction, the reaction solution was filtered by suction to obtain 2.8 g of the target compound as a yellow solid with a yield of 69%. The following formula (B-6) shows the synthesis scheme of step 6.

<步驟7;三{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}銥(III)(簡稱:[Ir(pni-diBup)3 ])的合成> 將藉由步驟1至6的方法合成的二-μ-氯-四{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}二銥(III)(簡稱:[Ir(pni-diBup)2 Cl]2 )2.0g(0.92mmol)、二氯甲烷150mL放在500mL三頸燒瓶,在氮氣流下攪拌。對該混合溶液滴下三氟甲烷磺酸銀0.72g(2.8mmol)及甲醇150mL的混合溶液,在暗處攪拌3天。經過指定時間的反應之後,使反應混合物透過矽藻土,過濾。濃縮所得到的濾液,得到黃色固體2.7g。將所得到的固體2.7g、乙醇50mL、藉由步驟1至5的方法合成的1-(2,6-二異丁基苯基)-2-苯基-1H-萘并[1,2-d]咪唑(簡稱:Hpni-diBup)1.6g(3.7mmol)放在500mL茄形燒瓶,在氮氣流下進行20小時的加熱回流。經過指定時間的反應之後,對反應混合物進行吸引過濾而得到固體。將所得到的固體溶解於二氯甲烷,透過矽藻土/中性矽膠/矽藻土進行吸引過濾。濃縮所得到的濾液而得到固體。藉由矽膠管柱層析法對所得到的固體進行純化。作為展開溶劑使用二氯甲烷:己烷=1:3。濃縮所得到的餾分而得到固體。使用乙酸乙酯/己烷使所得到的固體再結晶,以40%的収率得到固體1.1g。以下式子(B-7)示出合成方案。<Step 7; Synthesis of tri{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}iridium(III) (abbreviated as [Ir(pni-diBup) 3 ])> 2.0 g (0.92 mmol) of di-μ-chloro-tetrakis{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}diiridium(III) (abbreviated as [Ir(pni-diBup) 2 Cl] 2 ) synthesized by the method of Steps 1 to 6 and 150 mL of dichloromethane were placed in a 500 mL three-necked flask and stirred under a nitrogen flow. To the mixed solution, a mixed solution of 0.72 g (2.8 mmol) of silver trifluoromethanesulfonate and 150 mL of methanol was dropped, and the mixture was stirred in the dark for 3 days. After the reaction was allowed to proceed for a specified time, the reaction mixture was filtered through diatomaceous earth. The filtrate obtained was concentrated to obtain 2.7 g of a yellow solid. The obtained solid 2.7 g, 50 mL of ethanol, and 1.6 g (3.7 mmol) of 1-(2,6-diisobutylphenyl)-2-phenyl-1H-naphtho[1,2-d]imidazole (abbreviated as: Hpni-diBup) synthesized by the method of steps 1 to 5 were placed in a 500 mL eggplant-shaped flask, and heated to reflux for 20 hours under a nitrogen flow. After the reaction was allowed to proceed for a specified time, the reaction mixture was filtered by suction to obtain a solid. The obtained solid was dissolved in dichloromethane and filtered by attraction through diatomaceous earth/neutral silica gel/diatomaceous earth. The obtained filtrate was concentrated to obtain a solid. The obtained solid was purified by silica gel column chromatography. Dichloromethane:hexane=1:3 was used as the developing solvent. The obtained distillate was concentrated to obtain a solid. The obtained solid was recrystallized using ethyl acetate/hexane to obtain 1.1 g of a solid at a yield of 40%. The following formula (B-7) shows the synthesis scheme.

藉由梯度昇華法,使1.1g的所得到的固體昇華純化。在壓力為2.6Pa,氬流量為10.5mL/min的條件下以340℃加熱所得到的固體41小時來進行昇華純化。在昇華純化之後,以88%的回收率得到0.93g的黃色固體。1.1 g of the obtained solid was purified by gradient sublimation. The obtained solid was heated at 340°C for 41 hours under the conditions of a pressure of 2.6 Pa and a hydrogen flow rate of 10.5 mL/min for sublimation purification. After sublimation purification, 0.93 g of a yellow solid was obtained at a recovery rate of 88%.

對上面得到的黃色固體進行質子NMR(1 H-NMR)測量。以下示出所得到的值。另外,圖47示出1 H-NMR譜。從圖47可知:得到本發明的一個實施方式的有機金屬錯合物的Ir(pni-diBup)3The yellow solid obtained above was subjected to proton NMR ( 1 H-NMR) measurement. The obtained values are shown below. In addition, FIG47 shows the 1 H-NMR spectrum. FIG47 shows that Ir(pni-diBup) 3 of the organometallic complex of one embodiment of the present invention was obtained.

1 H-NMR.δ(CD2 Cl2 ):0.15(d, 9H), 0.39-0.42(m, 18H), 0.59(d, 9H), 1.27-1.35(m, 3H), 1.78-1.86(m, 3H), 1.93-2.02(m, 6H), 2.33(d, 6H), 6.35-6.40(m, 6H), 6.56-6.61(m, 6H), 7.04-7.07(m, 6H), 7.16(t, 3H), 7.25(d, 3H), 7.30(t, 3H), 7.40(d, 3H), 7.48(d, 3H), 7.63(t, 3H), 7.73(d, 3H)。 1 H-NMR.δ(CD 2 Cl 2 ):0.15(d, 9H), 0.39-0.42(m, 18H), 0.59(d, 9H), 1.27-1.35(m, 3H), 1.78-1.86(m, 3H), 1.93-2.02(m, 6H), 2.33(d, 6H), 6.35-6.40(m, 6H), 6.56-6.61(m, 6H), 7.04-7.07(m, 6H), 7.16(t, 3H), 7.25(d, 3H), 7.30(t, 3H), 7.40(d, 3H), 7.48(d, 3H), 7.63(t, 3H), 7.73(d, 3H).

(參考例3) 在本參考例中,說明用於實施例1的具有五員環的磷光材料的一個例子,亦即Ir(pni-diBup)2 (mdppy)的合成方法。(Reference Example 3) In this reference example, a method for synthesizing Ir(pni-diBup) 2 (mdppy), which is an example of the phosphorescent material having a five-membered ring used in Example 1, is described.

<步驟1;雙{2-[1-(2,6-二異丁基苯基)-1H-萘并[1,2-d]咪唑-2-基-κN3]苯基-κC}[2-(4-甲基-5-苯基-2-吡啶基-κN2)苯基-κC]銥(III)(簡稱:[Ir(pni-diBup)2 (mdppy)])的合成> 將[Ir(mdppy)2 Cl]2 1.3g(0.9mmol)、二氯甲烷180mL放在500mL三頸燒瓶,在氮氣流下進行攪拌。對該混合溶液滴下三氟甲烷磺酸銀0.7g(2.7mmol)及甲醇35mL的混合溶液,在暗處攪拌18小時。經過指定時間的反應之後,使反應混合物透過矽藻土,過濾。濃縮所得到的濾液,得到黃色固體1.9g。將所得到的黃色固體1.9g、甲醇30mL、乙醇30mL、Hpni-diBup1.6g(3.6mmol)放在300mL茄形燒瓶,在氮氣流下進行23小時的加熱回流。經過指定時間之後,對反應混合物吸引過濾而去除不溶物,然後濃縮濾液來得到固體。對所得到的固體添加1-丁醇60mL,在氮氣流下進行加熱回流22小時。經過指定時間的反應之後,對反應混合物進行吸引過濾而得到固體。藉由矽膠管柱層析法對所得到的固體進行純化。作為展開溶劑使用己烷:二氯甲烷=3:1的混合溶劑。濃縮所得到的餾分而得到固體。使用乙酸乙酯/己烷使所得到的固體再結晶,以9%的収率得到目的物的黃色固體0.20g。以下式子(C-1)示出合成方案。<Step 1; Synthesis of bis{2-[1-(2,6-diisobutylphenyl)-1H-naphtho[1,2-d]imidazol-2-yl-κN3]phenyl-κC}[2-(4-methyl-5-phenyl-2-pyridyl-κN2)phenyl-κC]iridium(III) (abbreviated as [Ir(pni-diBup) 2 (mdppy)])> 1.3 g (0.9 mmol) of [Ir(mdppy) 2 Cl] 2 and 180 mL of dichloromethane were placed in a 500 mL three-necked flask and stirred under a nitrogen flow. A mixed solution of 0.7 g (2.7 mmol) of silver trifluoromethanesulfonate and 35 mL of methanol was added dropwise to the mixed solution, and the mixture was stirred in a dark place for 18 hours. After the specified time of reaction, the reaction mixture is filtered through diatomaceous earth. The filtrate obtained is concentrated to obtain 1.9 g of a yellow solid. The obtained yellow solid 1.9 g, methanol 30 mL, ethanol 30 mL, Hpni-diBup 1.6 g (3.6 mmol) are placed in a 300 mL eggplant-shaped flask and heated to reflux for 23 hours under a nitrogen flow. After the specified time, the reaction mixture is suction filtered to remove insoluble matter, and then the filtrate is concentrated to obtain a solid. 1-butanol 60 mL is added to the obtained solid, and heated to reflux for 22 hours under a nitrogen flow. After the specified time of reaction, the reaction mixture is suction filtered to obtain a solid. The obtained solid was purified by silica gel column chromatography. A mixed solvent of hexane: dichloromethane = 3:1 was used as the developing solvent. The obtained distillate was concentrated to obtain a solid. The obtained solid was recrystallized using ethyl acetate/hexane to obtain 0.20 g of the target yellow solid at a yield of 9%. The following formula (C-1) shows the synthesis scheme.

藉由梯度昇華法,使0.19g的所得到的固體昇華純化。在壓力為2.5Pa,氬流量為10.3mL/min的條件下以320℃加熱所得到的固體18小時來進行昇華純化。在昇華純化之後,以72%的回收率得到目的物的黃色固體0.14g。0.19 g of the obtained solid was purified by gradient sublimation. The obtained solid was heated at 320°C for 18 hours under the conditions of a pressure of 2.5 Pa and a hydrogen flow rate of 10.3 mL/min for sublimation purification. After sublimation purification, 0.14 g of the target yellow solid was obtained at a recovery rate of 72%.

對上面得到的黃色固體進行1 H-NMR測量。以下示出所得到的值。另外,圖48示出1 H-NMR譜。從圖48可知:得到本發明的一個實施方式的有機金屬錯合物的[Ir(pni-diBup)2 (mdppy)]。The yellow solid obtained above was subjected to 1 H-NMR measurement. The obtained values are shown below. In addition, FIG48 shows the 1 H-NMR spectrum. As can be seen from FIG48, [Ir(pni-diBup) 2 (mdppy)] of the organometallic complex of one embodiment of the present invention was obtained.

1 H-NMR.δ(CD2 Cl2 ):0.09-0.15(m, 9H), 0.29-0.34(m, 9H), 0.40(t, 1H), 0.45(d, 3H), 0.51(d, 3H), 1.18-1.24(m, 1H), 1.34-1.49(m, 1H), 1.70-1.78(m, 1H), 1.88-2.09(m, 6H), 2.17-2.25(m, 2H), 2.51(s, 3H), 6.30-6.40(m, 3H), 6.48(t, 1H), 6.61-6.52(m, 3H), 6.64-6.69(m, 2H), 6.74-6.79(m, 2H), 6.83(t, 1H), 6.93-7.01(m, 3H), 7.08(t, 1H), 7.13-7.25(m, 8H), 7.34-7.51(m, 6H), 7.57-7.73(m, 4H), 7.87(d, 1H), 7.94(s, 1H), 8.31(s, 1H)。 1 H-NMR.δ(CD 2 Cl 2 ):0.09-0.15(m, 9H), 0.29-0.34(m, 9H), 0.40(t, 1H), 0.45(d, 3H), 0.51(d, 3H), 1.18-1.24(m, 1H), 1.34-1.49(m, 1H), 1.70-1.78(m, 1H), 1.88-2.09(m, 6H), 2.17-2.25(m, 2H), 2.51(s, 3H), 6.30-6.40(m, 3H), 6.48(t, 1H), 6.61-6.52(m, 3H), 6.64-6.69(m, 2H), 6.74-6.79(m, 2H), 6.83(t, 1H), 6.93-7.01(m, 3H), 7.08(t, 1H), 7.13-7.25(m, 8H), 7.34-7.51(m, 6H), 7.57-7.73(m, 4H), 7.87(d, 1H), 7.94(s, 1H), 8.31(s, 1H).

(參考例4) 在本參考例中,說明用於實施例2的具有保護基的螢光材料,亦即2,6tBu-mmtBuDPhA2Anth的合成方法。(Reference Example 4) This reference example describes the synthesis method of the fluorescent material with a protective group used in Example 2, namely 2,6tBu-mmtBuDPhA2Anth.

將1.1g(2.5mmol)的2,6-二-三級丁基蒽、2.3g(5.8mmol)的雙(3,5-三級丁基苯基)胺、1.1g(11mmol)的三級丁醇鈉以及60mg(0.15mmol)的SPhos放在200mL三頸燒瓶中,用氮氣置換燒瓶內的空氣。對該混合物加入25mL的二甲苯,對該混合物進行減壓脫氣,對該混合物加入40mg(70μmol)的雙(二亞苄基丙酮)鈀(0),然後在氮氣流下以150℃攪拌該混合物6小時。1.1 g (2.5 mmol) of 2,6-di-tert-butylanthracene, 2.3 g (5.8 mmol) of bis(3,5-tert-butylphenyl)amine, 1.1 g (11 mmol) of sodium tert-butoxide, and 60 mg (0.15 mmol) of SPhos were placed in a 200 mL three-necked flask, and the air in the flask was replaced with nitrogen. 25 mL of xylene was added to the mixture, and the mixture was degassed under reduced pressure. 40 mg (70 μmol) of bis(dibenzylideneacetone)palladium(0) was added to the mixture, and then the mixture was stirred at 150° C. for 6 hours under a nitrogen flow.

在攪拌之後,對所得到的混合物加入400mL的甲苯,然後藉由矽酸鎂、矽藻土、礬土進行吸引過濾而得到濾液。濃縮所得到的濾液得到褐色固體。After stirring, 400 mL of toluene was added to the obtained mixture, and then the mixture was suction filtered through magnesium silicate, diatomaceous earth, or alum to obtain a filtrate. The obtained filtrate was concentrated to obtain a brown solid.

利用矽膠管柱層析法(展開溶劑使用己烷:甲苯=9:1)對該固體進行純化,得到目的物的黃色固體。使用己烷和甲醇使所得到的黃色固體再結合,以17%的產率得到0.45g的目的物的黃色固體。下述(D-1)示出步驟1的合成方案。The solid was purified by silica gel column chromatography (developing solvent: hexane: toluene = 9:1) to obtain the target yellow solid. The yellow solid was recombined with hexane and methanol to obtain 0.45 g of the target yellow solid with a yield of 17%. The following (D-1) shows the synthesis scheme of step 1.

藉由梯度昇華法,使0.45g的所得到的黃色固體昇華純化。在壓力為5.0Pa的條件下,以275℃加熱黃色固體15小時來進行昇華純化。在昇華純化之後,以82%的回收率得到0.37g的目的物的黃色固體。0.45 g of the obtained yellow solid was purified by gradient sublimation. The yellow solid was heated at 275°C for 15 hours under a pressure of 5.0 Pa for sublimation purification. After sublimation purification, 0.37 g of the target yellow solid was obtained at a recovery rate of 82%.

注意,以下示出上述步驟1中得到的黃色固體的利用1 H-NMR的測量結果。另外,圖56A、圖56B及圖57示出1 H-NMR譜。圖56B是圖56A的6.5ppm至9.0ppm範圍的放大圖。另外,圖57是圖56A的0.5ppm至2.0ppm範圍的放大圖。由該結果可知得到2,6tBu-mmtBuDPhA2Anth。Note that the measurement results of the yellow solid obtained in the above step 1 using 1 H-NMR are shown below. In addition, FIG. 56A, FIG. 56B and FIG. 57 show 1 H-NMR spectra. FIG. 56B is an enlarged view of the range of 6.5 ppm to 9.0 ppm of FIG. 56A. In addition, FIG. 57 is an enlarged view of the range of 0.5 ppm to 2.0 ppm of FIG. 56A. From this result, it can be seen that 2,6tBu-mmtBuDPhA2Anth was obtained.

1 H-NMR(CDCl3 , 300MHz):σ=8.11(d、J=9.3Hz、2H)、7.92(d、J=1.5Hz、1H)、7.34(dd、J=9.3Hz、2.0Hz、2H)、6.96-6.95(m、8H)、6.91-6.90(m、4H)、1.13-1.12(m、90H)。 1 H-NMR (CDCl 3 , 300MHz): σ=8.11(d, J=9.3Hz, 2H), 7.92(d, J=1.5Hz, 1H), 7.34(dd, J=9.3Hz, 2.0Hz, 2H), 6.96-6.95(m, 8H), 6.91-6.90(m, 4H), 1.13-1.12(m, 90H).

100:EL層 101:電極 102:電極 106:發光單元 108:發光單元 111:電洞注入層 112:電洞傳輸層 113:電子傳輸層 114:電子注入層 115:電荷產生層 116:電洞注入層 117:電洞傳輸層 118:電子傳輸層 119:電子注入層 120:發光層 130:發光層 131:化合物 132:化合物 133:化合物 134:化合物 135:化合物 150:發光元件 170:發光層 250:發光元件 301:客體材料 302:客體材料 310:發光體 320:保護基 330:主體材料 601:源極一側驅動電路 602:像素部 603:閘極一側驅動電路 604:密封基板 605:密封劑 607:空間 608:佈線 610:基板 611:開關用TFT 612:電流控制用TFT 613:電極 614:絕緣物 616:EL層 617:電極 618:發光元件 623:n通道TFT 624:p通道TFT 900:可攜式資訊終端 901:外殼 902:外殼 903:顯示部 905:鉸鏈部 910:可攜式資訊終端 911:外殼 912:顯示部 913:操作按鈕 914:外部連接埠 915:揚聲器 916:麥克風 917:照相機 920:照相機 921:外殼 922:顯示部 923:操作按鈕 924:快門按鈕 926:透鏡 1001:基板 1002:基底絕緣膜 1003:閘極絕緣膜 1006:閘極電極 1007:閘極電極 1008:閘極電極 1020:層間絕緣膜 1021:層間絕緣膜 1022:電極 1024B:電極 1024G:電極 1024R:電極 1024W:電極 1025B:下部電極 1025G:下部電極 1025R:下部電極 1025W:下部電極 1026:分隔壁 1028:EL層 1029:電極 1031:密封基板 1032:密封劑 1033:基材 1034B:彩色層 1034G:彩色層 1034R:彩色層 1036:保護層 1037:層間絕緣膜 1040:像素部 1041:驅動電路部 1042:邊緣部 1044R:紅色像素 1044G:綠色像素 1044B:藍色像素 1044W:白色像素 2100:機器人 2101:照度感測器 2102:麥克風 2103:上部照相機 2104:揚聲器 2105:顯示器 2106:下部照相機 2107:障礙物感測器 2108:移動機構 2110:運算裝置 5000:外殼 5001:顯示部 5002:顯示部 5003:揚聲器 5004:LED燈 5006:連接端子 5007:感測器 5008:麥克風 5012:支撐部 5013:耳機 5100:掃地機器人 5101:顯示器 5102:照相機 5103:刷子 5104:操作按鈕 5120:垃圾 5140:可攜式電子機器 5150:可攜式資訊終端 5151:外殼 5152:顯示區域 5153:彎曲部 8501:照明裝置 8502:照明裝置 8503:照明裝置 8504:照明裝置100:EL layer 101:electrode 102:electrode 106:luminescent unit 108:luminescent unit 111:hole injection layer 112:hole transport layer 113:electron transport layer 114:electron injection layer 115:charge generation layer 116:hole injection layer 117:hole transport layer 118:electron transport layer 119:electron injection layer 120:luminescent layer 130:luminescent layer 131:compound 132 : Compound 133: Compound 134: Compound 135: Compound 150: Light-emitting element 170: Light-emitting layer 250: Light-emitting element 301: Guest material 302: Guest material 310: Light-emitting body 320: Protective base 330: Host material 601: Source side drive circuit 602: Pixel part 603: Gate side drive circuit 604: Sealing substrate 605: Sealing agent 607: Space 6 08: Wiring 610: Substrate 611: Switching TFT 612: Current Control TFT 613: Electrode 614: Insulator 616: EL layer 617: Electrode 618: Light-emitting element 623: n-channel TFT 624: p-channel TFT 900: Portable information terminal 901: Casing 902: Casing 903: Display unit 905: Hinge unit 910: Portable information terminal 911: External Case 912: Display 913: Operation button 914: External connection port 915: Speaker 916: Microphone 917: Camera 920: Camera 921: Case 922: Display 923: Operation button 924: Shutter button 926: Lens 1001: Substrate 1002: Base insulation film 1003: Gate insulation film 1006: Gate electrode 1007: Gate electrode 1008: Gate Electrode 1020: Interlayer insulating film 1021: Interlayer insulating film 1022: Electrode 1024B: Electrode 1024G: Electrode 1024R: Electrode 1024W: Electrode 1025B: Lower electrode 1025G: Lower electrode 1025R: Lower electrode 1025W: Lower electrode 1026: Partition wall 1028: EL layer 1029: Electrode 1031: Sealing substrate 1032: Sealing Agent 1033: Base material 1034B: Color layer 1034G: Color layer 1034R: Color layer 1036: Protective layer 1037: Interlayer insulation film 1040: Pixel part 1041: Drive circuit part 1042: Edge part 1044R: Red pixel 1044G: Green pixel 1044B: Blue pixel 1044W: White pixel 2100: Robot 2101: Illuminance sensor 2102 : Microphone 2103: Upper camera 2104: Speaker 2105: Display 2106: Lower camera 2107: Obstacle sensor 2108: Moving mechanism 2110: Computing device 5000: Housing 5001: Display 5002: Display 5003: Speaker 5004: LED light 5006: Connector 5007: Sensor 5008: Microphone 5012: Support 5013: Headphones 5100: Sweeping robot 5101: Display 5102: Camera 5103: Brush 5104: Operation button 5120: Trash 5140: Portable electronic device 5150: Portable information terminal 5151: Housing 5152: Display area 5153: Bending part 8501: Lighting device 8502: Lighting device 8503: Lighting device 8504: Lighting device

在圖式中: [圖1A]及[圖1B]是本發明的一個實施方式的發光元件的發光層的剖面示意圖。[圖1C]是說明本發明的一個實施方式的發光元件的能階相關的圖。 [圖2A]是習知的客體材料的示意圖。[圖2B]是用於本發明的一個實施方式的發光元件的客體材料的示意圖。 [圖3A]是本發明的一個實施方式的發光元件所使用的客體材料的結構式。[圖3B]是本發明的一個實施方式的發光元件所使用的客體材料的球棍圖。 [圖4A]是本發明的一個實施方式的發光元件的發光層的剖面示意圖。[圖4B]及[圖4C]是說明本發明的一個實施方式的發光元件的能階相關的圖。 [圖5A]是本發明的一個實施方式的發光元件的發光層的剖面示意圖。[圖5B]及[圖5C]是說明本發明的一個實施方式的發光元件的發光層的能階相關的圖。 [圖6]是本發明的一個實施方式的發光元件的剖面示意圖。 [圖7A]是說明本發明的一個實施方式的顯示裝置的俯視圖。[圖7B]是說明本發明的一個實施方式的顯示裝置的剖面示意圖。 [圖8A]及[圖8B]是說明本發明的一個實施方式的顯示裝置的剖面示意圖。 [圖9A]及[圖9B]是說明本發明的一個實施方式的顯示裝置的剖面示意圖。 [圖10A]至[圖10D]是說明本發明的一個實施方式的顯示模組的立體圖。 [圖11A]至[圖11C]是說明本發明的一個實施方式的電子機器的圖。 [圖12A]及[圖12B]是說明本發明的一個實施方式的顯示裝置的立體圖。 [圖13]是說明本發明的一個實施方式的照明裝置的圖。 [圖14]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖15]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖16]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖17]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖18]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖19]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖20]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖21]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖22]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖23]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖24]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖25]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖26]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖27]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖28]是說明根據實施例的比較發光元件的外部量子效率-亮度特性的圖。 [圖29]是說明根據實施例的比較發光元件的電致發射光譜的圖。 [圖30]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖31]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖32]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖33]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖34]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖35]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖36]是說明根據實施例的發射光譜與吸收光譜的關係的圖。 [圖37]是說明根據實施例的外部量子效率與客體材料濃度的關係的圖。 [圖38]是說明根據實施例的可靠性測試的結果的圖。 [圖39]是說明根據實施例的可靠性測試的結果的圖。 [圖40]是說明根據實施例的可靠性測試的結果的圖。 [圖41]是說明根據實施例的可靠性測試的結果的圖。 [圖42]是說明根據實施例的可靠性測試的結果的圖。 [圖43]是說明根據實施例的可靠性測試的結果的圖。 [圖44]是說明根據實施例的可靠性測試的結果的圖。 [圖45A]、[圖45B]是說明根據參考例的化合物的NMR譜的圖。 [圖46]是說明根據參考例的化合物的NMR譜的圖。 [圖47]是說明根據參考例的化合物的NMR譜的圖。 [圖48]是說明根據參考例的化合物的NMR譜的圖。 [圖49]是說明根據實施例的發光元件的發光壽命測量結果的圖。 [圖50]是說明根據實施例的發光元件的發光壽命測量結果的圖。 [圖51]是說明根據實施例的發光元件的發光壽命測量結果的圖。 [圖52]是說明根據實施例的發光元件的外部量子效率-亮度特性的圖。 [圖53]是說明根據實施例的發光元件的電致發射光譜的圖。 [圖54]是說明根據實施例的可靠性測試的結果的圖。 [圖55]是說明根據實施例的發光元件的發光壽命測量結果的圖。 [圖56A]及[圖56B]是說明根據參考例的化合物的NMR譜的圖。 [圖57]是說明根據參考例的化合物的NMR譜的圖。In the drawings: [FIG. 1A] and [FIG. 1B] are schematic cross-sectional views of a light-emitting layer of a light-emitting element of an embodiment of the present invention. [FIG. 1C] is a diagram illustrating the energy level correlation of a light-emitting element of an embodiment of the present invention. [FIG. 2A] is a schematic view of a known guest material. [FIG. 2B] is a schematic view of a guest material used in a light-emitting element of an embodiment of the present invention. [FIG. 3A] is a structural formula of a guest material used in a light-emitting element of an embodiment of the present invention. [FIG. 3B] is a ball-and-stick diagram of a guest material used in a light-emitting element of an embodiment of the present invention. [FIG. 4A] is a schematic cross-sectional view of a light-emitting layer of a light-emitting element of an embodiment of the present invention. [FIG. 4B] and [FIG. 4C] are diagrams illustrating the energy level correlation of a light-emitting element of an embodiment of the present invention. [FIG. 5A] is a schematic cross-sectional view of a light-emitting layer of a light-emitting element of an embodiment of the present invention. [FIG. 5B] and [FIG. 5C] are diagrams illustrating the energy level correlation of the light-emitting layer of a light-emitting element of an embodiment of the present invention. [FIG. 6] is a schematic cross-sectional view of a light-emitting element of an embodiment of the present invention. [FIG. 7A] is a top view of a display device of an embodiment of the present invention. [FIG. 7B] is a schematic cross-sectional view of a display device of an embodiment of the present invention. [FIG. 8A] and [FIG. 8B] are schematic cross-sectional views of a display device of an embodiment of the present invention. [FIG. 9A] and [FIG. 9B] are schematic cross-sectional views of a display device of an embodiment of the present invention. [FIG. 10A] to [FIG. 10D] are three-dimensional diagrams of a display module according to an embodiment of the present invention. [FIG. 11A] to [FIG. 11C] are diagrams of an electronic device according to an embodiment of the present invention. [FIG. 12A] and [FIG. 12B] are three-dimensional diagrams of a display device according to an embodiment of the present invention. [FIG. 13] is a diagram of an illumination device according to an embodiment of the present invention. [FIG. 14] is a diagram illustrating the external quantum efficiency-brightness characteristics of a light-emitting element according to an embodiment. [FIG. 15] is a diagram illustrating the electroluminescence spectrum of a light-emitting element according to an embodiment. [FIG. 16] is a diagram illustrating the external quantum efficiency-brightness characteristics of a light-emitting element according to an embodiment. [FIG. 17] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 18] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [FIG. 19] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 20] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [FIG. 21] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 22] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [FIG. 23] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 24] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [FIG. 25] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 26] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [FIG. 27] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [FIG. 28] is a diagram illustrating the external quantum efficiency-brightness characteristics of the comparative light-emitting element according to the embodiment. [FIG. 29] is a diagram illustrating the electroluminescence spectrum of the comparative light-emitting element according to the embodiment. [FIG. 30] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [FIG. 31] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 32] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 33] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 34] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 35] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 36] is a diagram illustrating the relationship between the emission spectrum and the absorption spectrum according to the embodiment. [Figure 37] is a diagram illustrating the relationship between the external quantum efficiency and the guest material concentration according to the embodiment. [Figure 38] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 39] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 40] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 41] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 42] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 43] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 44] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 45A] and [Figure 45B] are diagrams illustrating the NMR spectrum of the compound according to the reference example. [Figure 46] is a diagram illustrating the NMR spectrum of the compound according to the reference example. [Figure 47] is a diagram illustrating the NMR spectrum of the compound according to the reference example. [Figure 48] is a diagram illustrating the NMR spectrum of the compound according to the reference example. [Figure 49] is a diagram illustrating the measurement results of the luminescence life of the light-emitting element according to the embodiment. [Figure 50] is a diagram illustrating the measurement results of the luminescence life of the light-emitting element according to the embodiment. [Figure 51] is a diagram illustrating the measurement results of the luminescence life of the light-emitting element according to the embodiment. [Figure 52] is a diagram illustrating the external quantum efficiency-brightness characteristics of the light-emitting element according to the embodiment. [Figure 53] is a diagram illustrating the electroluminescence spectrum of the light-emitting element according to the embodiment. [Figure 54] is a diagram illustrating the results of the reliability test according to the embodiment. [Figure 55] is a diagram illustrating the measurement results of the luminescence life of the light-emitting element according to the embodiment. [Figure 56A] and [Figure 56B] are diagrams showing the NMR spectra of the compounds according to the reference examples. [Figure 57] is a diagram showing the NMR spectra of the compounds according to the reference examples.

Claims (18)

一種在一對電極間包括發光層的發光元件,其中,該發光層包含第一材料、第二材料及第三材料,該第一材料為能夠將三重激發能轉換為發光且具有五員環骨架的金屬錯合物,該第二材料能夠將單重激發能轉換為發光且具有發光體及五個以上的保護基,該發光體是稠合芳香環或稠合雜芳環,該五個以上的保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,該第三材料具有二嗪骨架或三嗪骨架,並且,該第一材料的T1能階高於該第二材料的S1能階。 A light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer includes a first material, a second material, and a third material, wherein the first material is a metal complex capable of converting triplet excitation energy into light emission and having a five-membered ring skeleton, the second material is capable of converting singlet excitation energy into light emission and having a light-emitting body and five or more protective groups, the light-emitting body is a fused aromatic ring or a fused heteroaromatic ring, the five or more protective groups independently have any one of an alkyl group having 3 or more and 10 or less carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 or more and 10 or less carbon atoms, and a trialkylsilyl group having 3 or more and 12 or less carbon atoms, the third material has a diazine skeleton or a triazine skeleton, and the T1 energy level of the first material is higher than the S1 energy level of the second material. 根據請求項1之發光元件,其中該五個以上的保護基中的至少四個分別獨立為碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個。 According to claim 1, at least four of the five or more protecting groups are independently any one of an alkyl group having 3 or more and 10 or less carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 or more and 10 or less carbon atoms, and a trialkylsilyl group having 3 or more and 12 or less carbon atoms. 一種在一對電極間包括發光層的發光元件,其中,該發光層包含第一材料、第二材料及第三材料,該第一材料為能夠將三重激發能轉換為發光且具有五員環骨架的金屬錯合物,該第二材料能夠將單重激發能轉換為發光且具有發光體及至少四個保護基,該發光體是稠合芳香環或稠合雜芳環,該四個保護基不直接鍵合於該稠合芳香環或該稠合雜芳環,該四個保護基分別獨立地具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,該第三材料具有二嗪骨架或三嗪骨架,並且,該第一材料的T1能階高於該第二材料的S1能階。 A light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer comprises a first material, a second material and a third material, wherein the first material is a metal complex capable of converting triplet excitation energy into light emission and having a five-membered ring skeleton, wherein the second material is capable of converting singlet excitation energy into light emission and having a light emitter and at least four protecting groups, wherein the light emitter is a fused aromatic ring or a fused heteroaromatic ring, wherein the four protecting groups are not directly bonded to the third material. In the fused aromatic ring or the fused heteroaromatic ring, the four protecting groups independently have any one of an alkyl group having 3 or more and 10 or less carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 or more and 10 or less carbon atoms, and a trialkylsilyl group having 3 or more and 12 or less carbon atoms, the third material has a diazine skeleton or a triazine skeleton, and the T1 energy level of the first material is higher than the S1 energy level of the second material. 一種在一對電極間包括發光層的發光元件,其中,該發光層包含第一材料及第二材料,該第一材料為能夠將三重激發能轉換為發光且具有五員環骨架的金屬錯合物,該第二材料能夠將單重激發能轉換為發光,該第二材料具有發光體及兩個以上的二芳基胺基, 該發光體是稠合芳香環或稠合雜芳環,該稠合芳香環或該稠合雜芳環鍵合於該兩個以上的二芳基胺基,該兩個以上的二芳基胺基中的芳基分別獨立地具有至少一個保護基,該保護基具有碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基和碳原子數為3以上且12以下的三烷基矽基中的任一個,並且,該第一材料的T1能階高於該第二材料的S1能階。 A light-emitting element including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer comprises a first material and a second material, the first material is a metal complex having a five-membered ring skeleton and capable of converting triplet excitation energy into light-emitting, the second material is capable of converting singlet excitation energy into light-emitting, the second material has a light-emitting body and two or more diarylamine groups, the light-emitting body is a fused aromatic ring or a fused heteroaromatic ring, the fused aromatic ring or the fused heteroaromatic ring Bonded to the two or more diarylamine groups, the aryl groups in the two or more diarylamine groups each independently have at least one protecting group, the protecting group having any one of an alkyl group having 3 or more and 10 or less carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 or more and 10 or less carbon atoms, and a trialkylsilyl group having 3 or more and 12 or less carbon atoms, and the T1 energy level of the first material is higher than the S1 energy level of the second material. 根據請求項4之發光元件,其中,該兩個以上的二芳基胺基中的芳基分別獨立地具有至少兩個保護基。 According to the light-emitting element of claim 4, the aryl groups in the two or more diarylamine groups each independently have at least two protecting groups. 根據請求項4之發光元件,其中該二芳基胺基為二苯基胺基。 According to the light-emitting element of claim 4, the diarylamine group is a diphenylamine group. 根據請求項4之發光元件,其中該發光層還包含第三材料,並且該第三材料具有二嗪骨架或三嗪骨架。 According to the light-emitting element of claim 4, the light-emitting layer further comprises a third material, and the third material has a diazine skeleton or a triazine skeleton. 根據請求項1之發光元件,其中,構成該5個以上之保護基的原子的至少一個位 於該稠合芳香環和該稠合雜芳環中的一個的面的正上,構成該5個以上之保護基的原子的至少一個位於該稠合芳香環和該稠合雜芳環中的另一個的面的正上。 According to claim 1, at least one of the atoms constituting the five or more protecting groups is located directly on the surface of one of the fused aromatic ring and the fused heteroaromatic ring, and at least one of the atoms constituting the five or more protecting groups is located directly on the surface of the other of the fused aromatic ring and the fused heteroaromatic ring. 根據請求項6之發光元件,其中,該兩個以上的二苯基胺基中的苯基在3位及5位分別獨立地具有保護基。 According to the light-emitting element of claim 6, the phenyl groups in the two or more diphenylamine groups have protective groups at the 3-position and the 5-position, respectively and independently. 根據請求項1、3及4中任一項之發光元件,其中該五員環骨架具有吡唑骨架、咪唑骨架和三唑骨架中的任一個。 A light-emitting element according to any one of claims 1, 3 and 4, wherein the five-membered ring skeleton has any one of a pyrazole skeleton, an imidazole skeleton and a triazole skeleton. 根據請求項10之發光元件,其中該咪唑骨架及該三唑骨架所具有的與雙鍵無關的氮原子鍵合於取代或未取代的碳原子數為6至13的芳烴基。 According to the light-emitting element of claim 10, the nitrogen atoms unrelated to the double bond of the imidazole skeleton and the triazole skeleton are bonded to a substituted or unsubstituted aromatic group having 6 to 13 carbon atoms. 根據請求項1、3及4中任一項之發光元件,其中該烷基為支鏈烷基。 A light-emitting element according to any one of claims 1, 3 and 4, wherein the alkyl group is a branched alkyl group. 根據請求項1、3及4中任一項之發光元件,其中該稠合芳香環或該稠合雜芳環包含萘、蒽、茀、
Figure 108139434-A0305-13-0004-1
、聯伸三苯、稠四苯、芘、苝、香豆素、喹吖啶酮以及萘并雙苯并呋喃中的任一個。
The light-emitting element according to any one of claims 1, 3 and 4, wherein the fused aromatic ring or the fused heteroaromatic ring comprises naphthalene, anthracene, fluorene,
Figure 108139434-A0305-13-0004-1
, triphenylmethane, tetraphenylmethane, pyrene, perylene, coumarin, quinacridone and naphthodibenzofuran.
根據請求項1或3之發光元件,其中該第一材料及該第三材料形成激態錯合物。 A light-emitting element according to claim 1 or 3, wherein the first material and the third material form an excited state complex. 根據請求項4之發光元件,其中該發光層還具有第三材料,並且該第一材料及該第三材料形成激態錯合物。 According to the light-emitting element of claim 4, the light-emitting layer also has a third material, and the first material and the third material form an excited state complex. 根據請求項1、3及4中任一項之發光元件,其中該第一材料的發射光譜與該第二材料的最長波長一側的吸收帶重疊。 A light-emitting element according to any one of claims 1, 3 and 4, wherein the emission spectrum of the first material overlaps with the absorption band on the longest wavelength side of the second material. 一種電子機器,包括:請求項1、3及4中任一項之發光元件;以及外殼和觸控感測器中的至少一個。 An electronic device comprising: a light-emitting element according to any one of claims 1, 3 and 4; and at least one of a housing and a touch sensor. 一種照明裝置,包括:請求項1、3及4中任一項之發光元件;以及外殼和觸控感測器中的至少一個。A lighting device comprises: a light-emitting element according to any one of claims 1, 3 and 4; and at least one of a housing and a touch sensor.
TW108139434A 2018-11-09 2019-10-31 Light-emitting element, light-emitting device, display device, electronic device and lighting device TWI871293B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211101 2018-11-09
JP2018211101 2018-11-09

Publications (2)

Publication Number Publication Date
TW202030303A TW202030303A (en) 2020-08-16
TWI871293B true TWI871293B (en) 2025-02-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097153A1 (en) 2016-11-25 2018-05-31 コニカミノルタ株式会社 Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097153A1 (en) 2016-11-25 2018-05-31 コニカミノルタ株式会社 Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP7257952B2 (en) Electronic devices, display devices, electronic equipment, and lighting devices
TWI844530B (en) Light-emitting element, display device, electronic device, organic compound and lighting equipment
TWI787279B (en) Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP7044475B2 (en) Light emitting elements, display devices, electronic devices, and lighting devices
TWI848752B (en) Light-emitting element, display device, electronic device, and lighting device
TWI856017B (en) Light-emitting device, display device, electronic device, organic compound, and lighting device
JP7330176B2 (en) Light-emitting elements, light-emitting devices, electronic devices and lighting devices
JP7573082B2 (en) Light-emitting devices, electronic devices and lighting devices
TW202444868A (en) Light-emitting element, display device, electronic device, and lighting device
TWI791649B (en) Light-emitting element, display device, electronic device, and lighting device
JP2023164891A (en) Light-emitting device, electronic device, and illumination device
JP2025013612A (en) Light emitting devices, electronic devices and lighting devices
CN110785422A (en) Organic compounds, light-emitting elements, light-emitting devices, electronic equipment, and lighting devices
TWI871293B (en) Light-emitting element, light-emitting device, display device, electronic device and lighting device
JP7538132B2 (en) Organic compounds, materials for light-emitting devices, light-emitting devices, light-emitting devices, electronic devices and lighting devices
TW202500719A (en) Light-emitting device, display device, electronic device, organic compound, and lighting device
WO2020026106A1 (en) Organic compound, light-emitting element, light-emitting device, electronic equipment, and lighting device