[go: up one dir, main page]

TWI870564B - 用於轉移或處理層的可拆卸結構,以及利用該可拆卸結構轉移層的方法 - Google Patents

用於轉移或處理層的可拆卸結構,以及利用該可拆卸結構轉移層的方法 Download PDF

Info

Publication number
TWI870564B
TWI870564B TW110110066A TW110110066A TWI870564B TW I870564 B TWI870564 B TW I870564B TW 110110066 A TW110110066 A TW 110110066A TW 110110066 A TW110110066 A TW 110110066A TW I870564 B TWI870564 B TW I870564B
Authority
TW
Taiwan
Prior art keywords
interface
detachable structure
separation
assembly
working layer
Prior art date
Application number
TW110110066A
Other languages
English (en)
Other versions
TW202147488A (zh
Inventor
弗朗索瓦澤維爾 達拉斯
文森 拉瑞
Original Assignee
法商索泰克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2003263A external-priority patent/FR3109016B1/fr
Application filed by 法商索泰克公司 filed Critical 法商索泰克公司
Publication of TW202147488A publication Critical patent/TW202147488A/zh
Application granted granted Critical
Publication of TWI870564B publication Critical patent/TWI870564B/zh

Links

Abstract

本發明涉及一種可拆卸結構(100),其包括: - 至少兩個界面,一組裝界面(30)及一有利分離界面(1), - 一受體底材(20), - 一供體底材(10),其包含待移轉之一工作層(3)設置在一初始底材(2)上, 該有利分離界面(1)位於該工作層(3)與該初始底材(2)之間,且該組裝界面(30)位於該工作層(3)與該受體底材(20)之間。 該可拆卸結構(100)之特徵在於該組裝界面(30)設有一組裝中斷區(31),該組裝中斷區(31)包含存在於該受體底材(20)中或該工作層(3)中的至少一孔穴(31a),該組裝中斷區(31)位於該可拆卸結構(100)的邊緣區。

Description

用於轉移或處理層的可拆卸結構,以及利用該可拆卸結構轉移層的方法
本發明涉及移轉薄層之領域,以供微電子、光學、微系統等應用。詳言之,本發明係關於一種可用於移轉或處理薄層之可拆卸結構。
許多應用,尤其是在微電子、光學或微系統領域中,皆需要使用設置在特定底材(薄、有彈性、金屬、絕緣等底材)上之薄層(其可能包含元件)。這些特定底材並非總是與製作薄層之製程及/或將元件加入所述薄層之製程相容。
因此,若能夠將一薄層(當中可包含或不包含元件)從相容於上述製程之一初始底材,移轉至具有目標應用所需特性之一特定目標底材,便十分有利。
有若干方法可將製作於初始底材上的薄層移轉至目標底材。
一些移轉方法包含將薄層(其被設置在初始底材上)接合至目標底材,接著以機械或化學方法移除該初始底材,從而將該薄層移轉至目標底材。此 方法的主要缺點在於初始底材耗損的成本,以及容易在移轉期間對薄層造成負面影響的機械及化學處理。
其他方法則以使薄層從初始底材分離為主,方式為在薄層與初始底材間設置一層或一弱化界面,接著對該層或該弱化界面施加機械應力或化學處理;已被接合至目標底材之薄層,將在分離操作後移轉至目標底材。文件FR2748851、FR2823599或FR2823596皆描述了上述方法;可拆卸結構通常被描述為具有一層或一弱化界面,分離會在此進行,以使薄表面層脫離並移轉至目標底材上。
這些方法的一個難處在於,分離有時會在非弱化界面或弱化層的交界處或層發生,因為欲將機械應力及/或化學處理準確定位到弱化界面或弱化層,本身即具有潛在的難度。底材邊緣幾何形狀的變化、用於施加機械應力的方法或用於分離的化學蝕刻溶液,皆可能使分離在弱化界面以外的界面發生,即使其他界面之機械完整性(mechanical integrity)優於弱化界面之機械完整性亦然。
為了克服此問題,有人想到在底材邊緣處局部強化非弱化界面之機械完整性,及/或進一步降低弱化界面之機械完整性。然而,這些方法並非總是能夠防止分離在非預期之界面發生。
文件FR2995446涉及一種包括至少兩個界面之可拆卸結構,其中一個為預期發生分離之弱化界面。該文件提供的解決方案是,當分離在另一界面開始時,將分離前端(separation front)重新導向該弱化界面。
本發明涉及替代解決方案,其有助於將分離定位在可拆卸結構之弱化界面中。本發明的一個標的為包括至少兩個界面之可拆卸結構(detachable structure),其中一個為弱化界面,或稱為有利分離界面(favoured-detachment interface)。所述可拆卸結構可用於移轉或處理層。
本發明係關於一種用於移轉或處理層的可拆卸結構,其包括:- 至少兩個界面,一組裝界面及一有利分離界面,- 一受體底材,- 一供體底材,其包含待移轉之一工作層設置在一初始底材上,該有利分離界面位於該工作層與該初始底材之間,且該組裝界面位於該工作層與該受體底材之間。
該可拆卸結構之特徵在於,該組裝界面設有一組裝中斷區,該組裝中斷區包含存在於該受體底材中或該工作層中的至少一孔穴,在後一種情況下,該孔穴的深度嚴格地小於該工作層的厚度。該組裝中斷區位於該可拆卸結構的外圍區,且該組裝中斷區允許當一分離波在該組裝界面中因移轉或處理該工作層之目的而啟動時,該分離波的波前(wave front)頭部的應力場(stress field)可被調整。
藉由組裝中斷區的至少一孔穴調整應力場,可允許分離波從組裝界面偏轉向有利分離界面,從而允許工作層移轉至受體底材上。
依照本發明之其他有利的特徵,其可以單獨實施,或以任何技術上可行的組合來實施:- 該組裝中斷區沿著該可拆卸結構的周緣延伸小於或等於20毫米之長度;- 該組裝中斷區距離該可拆卸結構的邊緣小於10毫米; - 該(至少一)孔穴具有數微米至數毫米之間的橫向尺寸,優選在20微米及1毫米之間;- 該(至少一)孔穴具有0.5微米至數十微米之間的深度,通常為50微米;- 該(至少一)孔穴在平行於該組裝界面的平面中具有正方形、長方形、三角形、梯形或圓形的周緣;- 該(至少一)孔穴周緣的至少一直線段,平行於該可拆卸結構的一可分離邊緣,或平行於該可拆卸結構的一分離邊緣的切線;- 該(至少一)孔穴具有最大橫向尺寸之周緣的一直線段,平行於該可拆卸結構的一分離邊緣,或平行於該可拆卸結構的一分離邊緣的切線;- 該組裝中斷區包括以1微米至1毫米間的距離,通常在數微米至數百微米間的距離,所隔開的複數個孔穴;- 組裝中斷區中該複數個孔穴之間的接觸區百分比小於80%或甚至小於50%;- 該複數個孔穴係沿一直線對齊,或沿一曲線對齊,該曲線的凸部朝向該可拆卸結構的中心;- 該組裝中斷區距離該可拆卸結構的邊緣小於8毫米,或甚至小於3毫米;- 該工作層的厚度在數百奈米至數百微米之間,通常在200奈米至200微米之間;- 該有利分離界面具有第一界面表面能,該組裝界面具有第二界面表面能,該有利分離界面與該組裝界面的界面表面能二者之差異大於或等於1000mJ/m2;- 該有利分離界面為具有第一鍵合能之使用分子黏附之鍵合界面,該組裝界面為具有第二鍵合能之使用分子黏附之鍵合界面,該第一鍵合能小於該第二鍵合 能;- 該有利分離界面與該組裝界面的鍵合能二者之差異至少約1000mJ/m2。
本發明亦涉及一種用於將一工作層從一供體底材移轉到一受體底材之方法,該方法包括以下步驟:a)提供如前述之一可拆卸結構,b)向該可拆卸結構之一分離邊緣施加一機械應力,該分離邊緣盡可能靠近該組裝中斷區,且該機械應力能夠在該組裝界面或該有利分離界面之處啟動一分離波,c)若該分離波的啟動發生在該組裝界面,當該分離波通過該組裝中斷區時,該分離波會偏轉進入該有利分離界面,d)該分離波在該有利分離界面的傳播造成該可拆卸結構的完全分離。
依照本發明之其他有利的特徵,其可以單獨實施,或以任何技術上可行的組合來實施:- 該機械應力的施加方式,使得該分離波的傳播方向垂直於該組裝中斷區之該(至少一)孔穴周緣的至少一直線段;- 該機械應力的施加方式,使得該分離波的傳播方向垂直於具有最大橫向尺寸之該(至少一)孔穴周緣的直線段;- 該機械應力係經由在該受體底材的邊緣與該供體底材的邊緣之間插入一斜邊工具(bevel-edged tool)而施加;步驟a)包括:- 提供該供體底材使其包含該工作層設置在該初始底材上,該有利分離界面位於該工作層與該初始底材之間, - 提供一受體底材,- 在該工作層之一外圍區或該受體底材之一外圍區形成至少一孔穴,使其開口到該受體底材之待組裝面上或該工作層之待組裝面上,- 在該工作層及該受體底材各自的待組裝面處將該工作層及該受體底材組裝在一起。
1:有利分離界面
2:初始底材
3:工作層
3c,20c:面
10:供體底材
20:受體底材
30:組裝界面
31:組裝中斷區
31a:孔穴
40:斜邊工具
41:分離波
100:可拆卸結構
100a:邊緣
100a’:分離邊緣
100b:排除區
T:切線
下文關於本發明之實施方式一節,將更清楚說明本發明其他特徵和優點,實施方式係參照所附圖式提供,其中:
圖1a及1b分別繪示依照本發明之可拆卸結構之剖視圖及平面圖;在平面圖中,為了清楚說明其分布與位置而繪出孔穴,但實際上該些孔穴因為設置在工作層及受體底材之間,所以應該是隱藏的。
圖2a、2b及2c分別繪示依照本發明之可拆卸結構之剖視圖及兩張平面圖;在平面圖中,為了清楚說明其分布與位置而繪出孔穴,但實際上該些孔穴因為設置在工作層及受體底材之間,所以應該是隱藏的。
圖3a至3g繪示依照本發明之移轉方法之步驟。
圖4a繪示一可拆卸結構在施加機械應力步驟期間之平面圖,該步驟為依照本發明之移轉方法之一步驟;圖4b繪示依照本發明之移轉方法結束後,工作層移轉至受體底材,組裝中斷區附近之放大照片。
在以下說明中,圖式裡相同的元件符號代表同性質之元件。
為了可讀性,圖式係未按比例繪製之概要示意。詳言之,相對於x軸和y軸代表的橫向尺寸,z軸代表的層厚度未按比例繪製。
本發明涉及一種可拆卸結構100,其包括至少兩個界面,一組裝界面30及一有利分離界面1。在圖1a中,該兩個界面在平行於平面(x,y)的平面延伸。
「可拆卸結構」一詞意指用來接受機械應力,以在有利分離界面1處啟動所期望分離之結構100;因為第二界面(組裝界面30)的存在,該分離波可在兩個界面1、30中同時傳播。
可拆卸結構100包括一供體底材10,其包含待移轉之工作層3,該工作層3設置在初始底材2上;有利分離界面1位於工作層3與初始底材2之間。
作為示例,工作層3可由一半導體材料形成,例如矽、碳化矽、鍺、III-V族化合物等,及/或由一絕緣(尤其是壓電)材料形成,例如鉭酸鋰、鈮酸鋰。當然,此清單並非全面的,任何適合從供體底材10移轉至受體底材20之薄層形式材料,皆可用於形成工作層3。
工作層3在其朝向受體底材20的那一面上,亦可包括不同材料的複數個薄膜,及/或功能化結構(例如孔穴),及/或可全部或部分地包括微電子元件。當然,可預期的是,不同薄膜或元件堆疊之間的黏附性強於有利分離界面1的完整性;有利分離界面1的特性將在下文說明之。一般而言,工作層3的特性取決於目標應用及期望功能。
工作層3的厚度在數百奈米至數百微米之間,例如在200奈米至200微米之間,優選在1微米至50微米之間。
初始底材2有利地由可在工作層3處理期間提供良好機械支撐之低成本材料形成。雖然可設想到其他材料,但矽通常是首選,因可相容於任何微電子產線。
初始底材2可為一晶圓形狀,其直徑,舉例而言,可從100毫米至450毫米,其厚度,舉例而言,可在250微米至850微米之間。當然,初始底材2亦可為其他形狀(例如正方形)。
可拆卸結構100更包含組裝在供體底材10上之受體底材20:組裝界面30位於受體底材20及工作層3之間。
受體底材20可由一絕緣材料、一半導體材料或一導電材料製成,且受體底材20可為實心或包括複數個層或功能化表面結構(例如孔穴),或者,受體底材20亦可全部或部分包含主動或被動元件。受體底材20的特性主要取決於目標應用及期望功能。
如同初始底材2,受體底材20可為一晶圓形狀,其直徑,舉例而言,可從100毫米至450毫米之間,其厚度,舉例而言,可在250微米及850微米之間。
依照本發明之可拆卸結構100是為了要在有利分離界面1處被分離,以使工作層3可從供體底材10移轉至受體底材20上。
如同包含兩個界面的多數可拆卸結構,有利分離界面1的機械完整性通常低於,甚至大幅低於組裝界面30之機械完整性。優選目的為使兩個界面1、30在機械完整性或界面表面能(interfacial surface energy)的差異,達至少約1000mJ/m2等級。
依照一有利實施例,有利分離界面1為使用分子黏附之鍵合界面,具有第一鍵合能E1。組裝界面30可為使用分子黏附、熱壓鍵合(thermocompression bonding)或其他技術之直接鍵合界面,具有第二鍵合能E2,該第一鍵合能E1小於該第二鍵合能E2。
已知,第一鍵合能E1及第二鍵合能E2之間的差異,可透過調整待鍵合面之表面粗糙度、為達成分子黏附鍵合而互相接觸之材料、鍵合前施加至表面之化學處理(濕式清潔或電漿活化)等方式而獲得。可將例如矽氧化物、矽氮化物等材料沉積在待鍵合之表面上(以形成有利分離界面1或組裝界面30),且可透過處理(清潔、拋光、以電漿活化、蝕刻等)以調整所述表面之分子黏附鍵合之最終界面表面能。
如前所述,兩個界面1、30之間的鍵合能差異(E2-E1)有利者被選定成至少約1000mJ/m2。舉例而言,第一鍵合能E1可為約2000mJ/m2,第二鍵合能E2可大於3000mJ/m2。應記住的是,眾所周知,鍵合能可透過Maszara刀刃測量(Maszara blade measurement)技術加以評估。
依照本發明之可拆卸結構100值得注意之處為,該組裝界面30設有一組裝中斷區31,該組裝中斷區31包含存在於受體底材20中或工作層3中的至少一孔穴31a。組裝中斷區31對應於組裝界面被中斷的區域,亦即受體底材20及工作層3之間沒有接觸的區域。
組裝中斷區31位於可拆卸結構100的外圍區。該組裝中斷區31優選為距離該可拆卸結構100的邊緣100a小於10毫米。該組裝中斷區31有利者為距離該些邊緣100a小於8毫米,或甚至小於5毫米,或甚至小於3毫米。
對於由兩個微電子等級的晶圓10、20組合而成的可拆卸結構100而言,常見其具有未鍵合的外圍排除區(peripheral exclusion zone)100b,其與所述晶圓之邊緣幾何形狀(倒角)連接,或與所述兩個晶圓其中一者之工作層3之邊緣 幾何形狀連接;該排除區100b很少超過1毫米至2毫米。在排除區100b存在的情況下,組裝中斷區31會相對於排除區100b而朝可拆卸結構100的內部徑向偏移(offset radially),因為根據定義,組裝中斷區31必須使受體底材20和工作層3互相接觸的組裝界面30中斷。舉例而言,組裝中斷區與排除區100b可相距0.5毫米、1毫米或2毫米。
本發明有利的是,組裝中斷區31是高度局部化的,亦即其在外圍區中不會沿著可拆卸結構100的整個周緣延伸,而是只延伸數百微米(通常為200微米)至數十毫米(通常為50毫米至100毫米)的長度,例如1毫米至20毫米之間,優選為5毫米至15毫米之間。這麼做可有利地限制組裝中斷區31對工作層3之可用表面積(usable surface area)所造成的影響。
如前所述,組裝中斷區31包括至少一孔穴31a,其可形成於受體底材20中(如圖1a所繪示)或工作層3中(如圖2a所繪示)。應注意的是,當該(至少一)孔穴31a形成於工作層3中時,孔穴31a之深度,舉例而言,可在工作層3厚度的5%及95%之間變化,當然,該深度絕不會超過工作層3的厚度。
本發明有利的是,組裝中斷區31可包括複數個孔穴31a。
該些孔穴31a,舉例而言,可以1微米至1毫米間,通常為數微米至數百微米間的距離(例如500微米)所隔開。該些孔穴可沿一直線對齊,或沿平行於組裝界面30之平面(x,y)中的一曲線對齊。所述直線優選為平行於可拆卸結構100的邊緣100a,或平行於該邊緣100a的切線T(圖1b及2c)。所述曲線可具有朝向可拆卸結構100中心之一凸曲率(convex curvature);換言之,如圖2b所示,該曲線之曲率相反於可拆卸結構100之邊緣100a之曲率。
下文將說明孔穴31a,應了解的是,若組裝中斷區31包括多個孔穴31a,則所列特徵適用於構成組裝中斷區31的所有孔穴31a。
孔穴31a有利地具有數微米至數毫米之間的橫向尺寸,通常在20微米及1毫米之間。此外,所述孔穴31a可具有0.5微米至數十微米間的深度,通常多達20微米、50微米或甚至100微米;舉例而言,孔穴31a可具有3微米之深度。
當組裝中斷區31包括複數個孔穴31a時,受體底材20與工作層3之間的接觸區百分比(亦即組裝中斷區31之孔穴31a之間的接觸區之百分比)優選小於80%,或甚至小於50%。
在平行於組裝界面30的平面(x,y)中,組裝中斷區31的(至少一)孔穴31a可具有正方形、長方形、三角形、梯形或圓形的周緣。
優選者為,所述孔穴31a周緣的至少一直線段(rectilinear segment)平行於該可拆卸結構100的一分離邊緣100a’,或平行於該可拆卸結構100的一分離邊緣100a’的切線T。
另一優選者為,孔穴31a具有最大橫向尺寸之周緣的一直線段,平行於該可拆卸結構100的一分離邊緣100a’,或平行於該可拆卸結構100的一分離邊緣100a’的切線T。舉例而言,在孔穴為的長方形時,平面(x,y)中的孔穴31a長邊平行於切線T。
此外,當孔穴31a的形狀為非對稱時,孔穴31a圖案相對於分離邊緣100a’(或其切線T)的優選定向,或者詳言之,孔穴31a圖案相對於分離波傳播方向的優選定向,將於下文本發明之移轉方法進一步說明。使分離波最後穿過尺寸最大的線段看起來更有利。在圖2c的示例中,若組裝中斷區31中的孔穴31a具有 三角形周緣,那麼將孔穴31a定向成使三角形的頂點指向分離邊緣100a’是有利的。
本發明亦涉及一種用於將一工作層3從一供體底材10移轉到一受體底材20之方法。
該方法首先包括提供如前述之一可拆卸結構100之步驟a)。
依照第一實施例,步驟a)包括以下編號a1)至a4)之子步驟:
首先,步驟a1)提供供體底材10,其包含工作層3設置在初始底材2上,有利分離界面1位於工作層3與初始底材2之間(圖3a)。
供體底材10之工作層3可使用任何習知層移轉技術製作,例如:
- 在鍵合後進行基於研磨、拋光、化學蝕刻及清潔技術之機械/化學薄化;在此情況下,工作層3係源自與初始底材鍵合接著薄化之一工作底材。
- 使用Smart Cut®方法移轉一薄層,其厚度通常小於2微米;在此情況下,工作層3同樣源自一工作底材,該工作底材被植入輕質物種,與初始底材鍵合,然後沿著植入所界定之埋置脆弱平面被分離。
- 使用Smart Cut®方法,然後進行磊晶生長或沉積之步驟以增厚被移轉之工作層。
這些不同技術中的鍵合將形成有利分離界面1。因此,有必要客製化鍵合參數(互相接觸之材料、待鍵合表面之粗糙度、待鍵合表面之清潔操作及化學活化處理等),這樣才能在供體底材10可能已接受熱處理後,獲得期望範圍內的第一鍵合能(或第一界面表面能)E1。當薄膜已經沉積,功能化結構(functional structuration)已經形成,及/或在工作層3被移轉至受體底材20前,全部或部分元件已形成於工作層3當中或上面時,尤其如此。
第一鍵合能(或第一界面表面能)E1優選在1000mJ/m2至3000mJ/m2之間。如前所述,有利的目標是至少在有利分離界面1(能量E1)及組裝界面30之間實現1000mJ/m2之能量差異,組裝界面30將在此方法的後續步驟a4)形成。
本發明之方法包括提供受體底材20之步驟a2),如前所述,其特性取決於目標應用及期望功能(圖3b)。
下一步驟a3)包括在工作層3之外圍區或受體底材20之外圍區形成一個或多個孔穴31a,使其開口到受體底材20之待組裝面20c上(圖3c(i))或工作層3之待組裝面3c上(圖3c(ii))。當供體底材10與受體底材20組裝時,所述(至少一)孔穴31a可使組裝中斷區31形成。
組裝中斷區31被限制在供體底材10或受體底材20之外圍區,距離底材邊緣小於10毫米。本發明有利的是,組裝中斷區31距離該些底材邊緣可甚至小於8毫米,小於5毫米,或甚至小於3毫米。
組裝中斷區31優選為高度局部化,亦即不會在外圍區中沿著供體底材10或受體底材20的整個周緣延伸,而是只會延伸數百微米至數十毫米的長度。
孔穴31a可使用習知的微影及蝕刻技術形成。如前所述,每一孔穴31a優選為具有數微米至數毫米之間的橫向尺寸,0.5微米至數十微米之深度,並在平面(x,y)中具有不同形狀。
最後,步驟a4)包括在工作層3及受體底材20各自的待組裝面3c、20c處將工作層3及受體底材20組裝在一起,以形成可拆卸結構100(圖3d(i)及(ii))。
眾所周知,可根據目標應用及鍵合技術之相容性,透過分子黏附直接鍵結、金屬鍵合、黏附鍵合(adhesive bonding)等方式接合兩個底材。
步驟a4)可包括,在使底材10、20接觸前,進行清潔、沉積黏附促進(adhesion-promoting)層、表面活化或其他表面製備程序。步驟a4)亦可包括,在使底材10、20接觸後,在較高或較低的溫度下進行熱處理以強化組裝界面30,該熱處理之溫度係依照鍵合類型、所組裝材料之性質及底材10、20組成材料之性質而定。
在步驟a4)完成後形成之組裝界面30具有鍵合能E2,其大於有利分離界面1之鍵合能E1。詳言之,鍵合能E2及E1二者之差異為約1000mJ/m2或甚至更大。
在步驟a)結束時,其一特定實施例如方才所述,本發明之移轉方法包含向可拆卸結構100之分離邊緣100a’施加機械應力之步驟b)(圖3e(i)及(ii))。
該分離邊緣100a’係盡可能靠近組裝中斷區31,且該機械應力能夠在組裝界面30或有利分離界面1中啟動一分離波。舉例而言,機械應力可經由在已組裝的供體底材10與受體底材20的邊緣之間插入一斜邊工具40而施加。作為替代方案,機械應力可透過在前述邊緣之間注入液態或氣態流體而施加,或以其他適合技術施加。
一般而言,該分離波在平面(x,y)中的傳播方向垂直於分離邊緣100a’或分離邊緣100a’之切線T。
如前所述,因供體底材10及受體底材20的邊緣幾何形狀之故,可拆卸結構100經常有一外圍排除區(peripheral exclusion zone)。應注意的是,為簡潔起見,該排除區未繪示於圖3a至3g中。
當機械應力透過諸如插入斜邊工具40等方式施加時,雖然有利分離界面1具的機械完整性較低,但分離波41仍可能在組裝界面30處開始。排除區的存在顯然促進分離波41的啟動發生在組裝界面30,因為該排除區可直接通往組裝界面30。
因此,依照本發明之方法接著進行步驟c),在此步驟中,若分離波41的啟動發生在組裝界面30,當分離波41通過組裝中斷區31時,該分離波41會被偏轉而進入有利分離界面1(圖3f(i)及(ii))。組裝中斷區31之孔穴31a可有效地允許分離波41的波前頭部的應力場被調整,從而促使分離波41朝最低能量界面(在此示例中為有利分離界面1)偏轉。
本發明有利的是,機械應力的施加方式使得分離波41的傳播方向(其平行於圖式中的y軸),垂直於組裝中斷區31之該(至少一)孔穴31a周緣的至少一直線段(圖4a)。
依照另一有利實施例,機械應力的施加方式,使得分離波41的傳播方向垂直於該(至少一)孔穴31a具有最大橫向尺寸之周緣的一直線段。當該(至少一)孔穴31a為例如長方形時,即可能發生此情形。該長方形的最長尺寸(長邊)優選被定向成可垂直於分離波41之傳播方向。
如前所述,孔穴31a為三角形時,使三角形的頂點朝向分離邊緣100a’亦非常有利;換言之,對於在分離邊緣100a’處啟動的分離波,最好使其最後才通過三角形的底部(圖4a)。
應注意的是,在步驟b)中,當分離波41直接在有利分離界面1中啟動時,該分離波41在經過組裝中斷區31時不會改變其路徑:在穿過組裝中斷區31後,分離波41會持續沿著有利分離界面1傳播。
本發明之移轉方法接著包括該分離波在有利分離界面1傳播,以使可拆卸結構100完全分離之步驟d)(圖3g(i)及3g(ii))。
分離波41一旦偏轉進入正確的界面後,便可輕易沿著較低機械完整性之有利分離界面1傳播,若施加的機械應力足夠使分離波傳播,則該分離波將自發傳播,或是透過持續或間歇施加機械應力而維持傳播。
圖4b繪示依照本發明從可拆卸結構100移轉至(矽製)受體底材20上之(矽製)工作層3之頂視圖照片。該照片將形成於受體底材20中的組裝中斷區31附近放大。圖中可看見分離波在組裝中斷區31上游的組裝界面30(氧化物SiO2/矽類型之直接鍵結)及組裝中斷區31下游的有利分離界面1(SiO2/SiO2類型之直接鍵結)之間偏轉。在孔穴31a下游,工作層3被移轉至受體底材20上。在圖4b之示例中,形成組裝中斷區31的八個孔穴31a為正方形,其具有500微米x 500微米之橫向尺寸及3微米之深度。該些孔穴距離邊緣約3毫米。
依照本發明施加至可拆卸結構100之移轉方法,可允許分離波41有效地從可拆卸結構100之組裝界面30偏轉向有利分離界面1。如此可使移轉至受體底材20之工作層3的表面積最大化,並移轉高品質之工作層3。
當然,本發明不限於所述之實施方式與示例,且對於實施例所為之各種變化,均落入以下申請專利範圍所界定之範疇。
雖然可拆卸結構100之較佳實施例描述以分子黏附直接鍵結為基礎形成有利分離界面1,但本發明同樣適用於其他類型的界面。
舉例而言,有利分離界面1可由一埋置脆弱平面構成,其可透過輕質物種植入而獲得,透過形成一層多孔材料(例如多孔矽)而獲得,或透過形成其中一界面具有低能量之多層沉積物而獲得(例如文件FR3082997所述者)。在最後 一種情況中,該多層沉積物可涉及,舉例而言,一層矽氧化物或矽氮化物設置在一層貴金屬(金、鉑、銀等)上,且這兩層之間的界面具有低界面表面能。
一般而言,只要可拆卸結構100包括兩個界面1、30,且兩個界面的表面能(interfacial surface energy)具有足夠差異,即能量差異大於或等於1000mJ/m2,本發明之方法即可適用。
1:有利分離界面
2:初始底材
3:工作層
10:供體底材
20:受體底材
30:組裝界面
31:組裝中斷區
31a:孔穴
100:可拆卸結構
100a:邊緣
100b:排除區

Claims (20)

  1. 一種用於轉移或處理層的可拆卸結構(100),其包括:至少兩個界面,一組裝界面(30)及一有利分離界面(1),一受體底材(20),一供體底材(10),其包含待移轉之一工作層(3)設置在一初始底材(2)上,該有利分離界面(1)位於該工作層(3)與該初始底材(2)之間,且該組裝界面(30)位於該工作層(3)與該受體底材(20)之間,該可拆卸結構(100)之特徵在於:該組裝界面(30)設有一組裝中斷區(31),該組裝中斷區(31)包含存在於該受體底材(20)中或該工作層(3)中的至少一孔穴(31a),在後一種情況下,該孔穴(31a)的深度嚴格地小於該工作層(3)的厚度,該組裝中斷區(31)位於該可拆卸結構(100)的外圍區,且該組裝中斷區(31)允許當一分離波(41)在該組裝界面(30)中因轉移或處理該工作層(3)之目的而啟動時,該分離波的波前頭部的應力場可被調整。
  2. 如請求項1之可拆卸結構(100),其中該組裝中斷區(31)距離該可拆卸結構(100)的邊緣小於10毫米。
  3. 如請求項1或2之可拆卸結構(100),其中該組裝中斷區沿著該可拆卸結構的周緣延伸小於或等於20毫米之長度。
  4. 如請求項1之可拆卸結構(100),其中該(至少一)孔穴(31a)具有0.5微米至50微米之間的深度。
  5. 如請求項1或4之可拆卸結構(100),其中該(至少一)孔穴(31a)在平行於該組裝界面的平面中具有正方形、長方形、三角形、梯形或圓形的周緣。
  6. 如請求項5之可拆卸結構(100),其中該(至少一)孔穴(31a)周緣的至少一直線段,平行於該可拆卸結構(100)的一分離邊緣(100a’),或平行於該可拆卸結構(100)的一分離邊緣(100a’)的切線(T)。
  7. 如請求項5之可拆卸結構(100),其中該(至少一)孔穴(31a)具有最大橫向尺寸之周緣的一直線段,平行於該可拆卸結構(100)的一分離邊緣(100a’),或平行於該可拆卸結構(100)的一分離邊緣(100a’)的切線(T)。
  8. 如請求項1之可拆卸結構(100),其中該組裝中斷區(31)包括以1微米至1毫米間的距離所隔開的複數個孔穴(31a)。
  9. 如請求項8之可拆卸結構(100),其中該組裝中斷區(31)中該複數個孔穴(31a)之間的接觸區百分比小於80%或甚至小於50%。
  10. 如請求項8或9之可拆卸結構(100),其中該複數個孔穴(31a)係沿一直線對齊,或沿一曲線對齊,該曲線的凸部朝向該可拆卸結構(100)的中心。
  11. 如請求項1或2之可拆卸結構(100),其中該組裝中斷區(31)距離該可拆卸結構(100)的邊緣小於8毫米,或甚至小於3毫米。
  12. 如請求項1之可拆卸結構(100),其中該工作層(3)的厚度在200奈米至200微米之間。
  13. 如請求項1之可拆卸結構(100),其中該有利分離界面(1)具有第一界面表面能(E1),該組裝界面(30)具有第二界面表面能(E2),該有利分離界面(1)與該組裝界面(30)的界面表面能二者之差異大於或等於1000mJ/m2
  14. 如請求項1或13之可拆卸結構(100),其中該有利分離界面(1)為具有第一鍵合能(E1)之使用分子黏附之鍵合界面,該組裝界面(30)為具有第二鍵合能(E2)之使用分子黏附之鍵合界面,該第一鍵合能(E1)小於該第二鍵合能(E2)。
  15. 如請求項14之可拆卸結構(100),其中該有利分離界面(1)與該組裝界面(30)的鍵合能二者之差異為至少約1000mJ/m2
  16. 一種用於將一工作層(3)從一供體底材(10)移轉到一受體底材(20)之方法,該方法包括以下步驟:a)提供依照請求項1至15中任一項之一可拆卸結構(100),b)向該可拆卸結構(100)之一分離邊緣(100a’)施加一機械應力,該分離邊緣(100a’)盡可能靠近該組裝中斷區(31),且該機械應力能夠在該組裝界面(30)或該有利分離界面(1)之處啟動一分離波(41),c)若該分離波(41)的啟動發生在該組裝界面(30),當該分離波(41)通過該組裝中斷區(31)時,該分離波(41)會偏轉進入該有利分離界面(1),d)該分離波(41)在該有利分離界面(1)的傳播造成該可拆卸結構(100)的完全分離。
  17. 如請求項16之工作層移轉方法,其中該機械應力的施加方式,使得該分離波(41)的傳播方向垂直於該組裝中斷區(31)之該(至少一)孔穴(31a)周緣的至少一直線段。
  18. 如請求項16或17之工作層移轉方法,其中該機械應力的施加方式,使得該分離波(41)的傳播方向垂直於該(至少一)孔穴(31a)具有最大橫向尺寸之周緣的一直線段。
  19. 如請求項16之工作層移轉方法,其中該機械應力係經由在該受體底材(20)的邊緣與該供體底材(10)的邊緣之間插入一斜邊工具(40)而施加。
  20. 如請求項16之工作層移轉方法,其中步驟a)包括:提供該供體底材(10)使其包含該工作層(3)設置在該初始底材(2)上,該有利分離界面(1)位於該工作層(3)與該初始底材(2)之間,提供一受體底材(20),在該工作層(3)之一外圍區或該受體底材(20)之一外圍區形成至少一孔穴(31a),使其開口到該受體底材(20)之待組裝面(20c)上或該工作層(3)之待組裝面(3c)上,在該工作層(3)及該受體底材(20)各自的待組裝面(3c,20c)處將該工作層(3)及該受體底材(20)組裝在一起。
TW110110066A 2020-04-01 2021-03-19 用於轉移或處理層的可拆卸結構,以及利用該可拆卸結構轉移層的方法 TWI870564B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003263A FR3109016B1 (fr) 2020-04-01 2020-04-01 Structure demontable et procede de transfert d’une couche mettant en œuvre ladite structure demontable
FRFR2003263 2020-04-01

Publications (2)

Publication Number Publication Date
TW202147488A TW202147488A (zh) 2021-12-16
TWI870564B true TWI870564B (zh) 2025-01-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295083A1 (en) 2008-03-19 2010-11-25 Celler George K Substrates for monolithic optical circuits and electronic circuits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295083A1 (en) 2008-03-19 2010-11-25 Celler George K Substrates for monolithic optical circuits and electronic circuits

Similar Documents

Publication Publication Date Title
US20230154755A1 (en) Removable structure used for the transfer or manipulation of layers, and method for transfer of a layer using said removable structure
JP5319764B2 (ja) 漸進トリミング法
TWI462834B (zh) 利用熱機械效應製作經調節之多層構造之方法
KR102061369B1 (ko) 제품 기판을 캐리어 기판에 임시로 결합하기 위한 방법
JP2018157159A (ja) パッケージ及びパッケージの製造方法
WO2014091836A1 (ja) 半導体装置、撮像装置および半導体装置の製造方法
US8188799B2 (en) Microelectromechanical system device and method of manufacturing the microelectromechanical system device
JP5912117B2 (ja) ポリマー基板上に、膜、例えば単結晶膜を形成する方法
TWI870564B (zh) 用於轉移或處理層的可拆卸結構,以及利用該可拆卸結構轉移層的方法
KR20170132731A (ko) 웨이퍼로부터 마이크로 칩을 분리하고 기판 상에 마이크로 칩을 배치하기 위한 방법 및 장치
US9230850B2 (en) Method for manufacturing a multilayer structure on a substrate
TWI354325B (zh)
US11222824B2 (en) Method for transferring a layer by using a detachable structure
JP2009224577A (ja) 素子ウェハおよび素子ウェハの製造方法
US7790569B2 (en) Production of semiconductor substrates with buried layers by joining (bonding) semiconductor wafers
CN113228319A (zh) 将表面层转移到腔的方法
TWI406352B (zh) 晶圓承載基板及其製造方法
CN113871328A (zh) 利用微转移印刷的管芯到晶片接合
JP2009160673A (ja) マイクロデバイスの製造方法
JP2015205361A (ja) Mems構造体の製造方法、mems構造体
JP7242220B2 (ja) 接合ウェハ及びその製造方法、並びにスルーホール形成方法
JP2004361635A (ja) 曲面微細構造の形成方法
TWI855826B (zh) 微孔片及其製作方法
US20240110786A1 (en) Method for manufacturing vibrator
KR102788502B1 (ko) 효과적인 디본딩이 가능한 웨이퍼 모듈, 및 이의 본딩 및 디본딩 방법