TWI870307B - 抗體-藥物結合物之用途 - Google Patents
抗體-藥物結合物之用途 Download PDFInfo
- Publication number
- TWI870307B TWI870307B TW113121616A TW113121616A TWI870307B TW I870307 B TWI870307 B TW I870307B TW 113121616 A TW113121616 A TW 113121616A TW 113121616 A TW113121616 A TW 113121616A TW I870307 B TWI870307 B TW I870307B
- Authority
- TW
- Taiwan
- Prior art keywords
- antibody
- compound
- drug conjugate
- ggfg
- drug
- Prior art date
Links
Abstract
本發明提供一種製造抗體-藥物結合物之方法,該抗體-藥物結合物作為抗腫瘤效果及安全性面優異之具有優異治療效果的抗腫瘤藥,其特徵為使下式所示的抗腫瘤性化合物與抗HER2抗體,經由下式:
-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-
所示的構造之連接物(linker)而結合(抗HER2抗體係於L
1之末端結合,抗腫瘤性化合物係將1位之胺基之氮原子作為結合部位,而與-(CH
2)n
2-C(=O)-部分之羰基結合)。
Description
本發明係關於經由連接物(linker)構造部分使抗HER2抗體與抗腫瘤性藥物結合之有用於作為抗腫瘤藥的抗體-藥物結合物。
使在癌細胞表面表現且結合可於細胞中內在化的抗原的抗體與具有細胞毒性的藥物結合之抗體-藥物結合物(Antibody-Drug Conjugate;ADC),因可選擇性地將藥物送達至癌細胞,可期待使藥物蓄積於癌細胞內、使癌細胞死亡(參照非專利文獻1~3)。作為ADC,例如使抗CD33抗體與卡奇黴素(calicheamicin)結合的Mylotarg(註冊商標;吉妥珠單抗奧唑米星(gemtuzumab ozogamicin))被認可作為急性骨髓性白血病之治療藥。又,使抗CD30抗體與奧利司他汀E(auristatin E)結合的Adcetris(註冊商標;布妥昔單抗維多汀(brentuximab vedotin))最近已被認可作為何杰金氏淋巴瘤(Hodgkin’s lymphoma)與未分化大細胞淋巴瘤之治療藥(參照非專利文獻4)。迄今被認可的ADC所含有的藥物係以DNA或微管蛋白(tubulin)作為標的。
就抗腫瘤性之低分子化合物而言,已知有抑制拓樸異構酶I(topoisomerase I)而表現抗腫瘤作用的化合物之喜樹鹼(camptothecin)衍生物。其中下式
所示的抗腫瘤性化合物(依喜替康(exatecan),化學名:(1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲□并(indolizino)[1,2-b]喹啉-10,13(9H,15H)-二酮)係水溶性之喜樹鹼衍生物(專利文獻1、2)。此化合物係與現在臨床上使用的愛萊諾迪肯(irinotecan)相異,抗腫瘤效果之表現上不需要藉由酵素的活性化。又,愛萊諾迪肯之藥效本體的SN-38,較同樣於臨床上使用的拓樸替康(topotecan)被觀察到有更強的拓樸異構酶I抑制活性,被認為於活體外對各種癌細胞具有更強的殺細胞活性。尤其藉由P-糖蛋白之表現,被認為對於對SN-38等顯示耐性的癌細胞亦有效果。又,小鼠之人類腫瘤皮下移植模式中亦被認為呈現強的抗腫瘤效果,雖然已進行臨床試驗,但仍未上市(參照非專利文獻5~10)。對於依喜替康作為ADC是否有效地作用並不清楚。
DE-310係於生物分解性之羧基甲基葡聚糖多元醇聚合物上使依喜替康藉由GGFG胜肽間隔物而結合的複合體(專利文獻3)。使依喜替康藉由高分子前藥化,而保持高血中滯留性,進一步利用腫瘤新生血管之透過性的亢進及腫瘤組織滯留性,被動地提高對腫瘤部位的指向性。DE-310係藉由利用酵素之胜肽間隔物之切斷,而使活性本體的依喜替康、及甘胺酸與胺基結合的依喜替康持續地游離,其結果改善藥物動態。於非臨床試驗中的各種腫瘤之評價模式,儘管DE-310其中所含的依喜替康之總量較依喜替康單劑投予時更為減少,但較單劑投予時顯示更高的有效性。與DE-310有關之臨床試驗經實施而有效例亦經確認,已有確認活性本體相較於正常組織更聚積於腫瘤的報告。另一方面,亦有DE-310及活性本體對腫瘤之聚積與對正常組織之聚積沒有顯著差異,於人類未見到被動標靶(passive targeting)的報告(參照非專利文獻11~14)。就結果而言,DE-310亦未上市,對於依喜替康作為此種指向標的的藥物是否有效地作用並不清楚。
作為DE-310之關連化合物,雖亦已知有將-NH-(CH
2)
4-C(=O)-所示的構造部分插入-GGFG-間隔物與依喜替康之間,而將-GGFG-NH-(CH
2)
4-C(=O)-作為間隔物構造的複合體(專利文獻4),但對於相同複合體之抗腫瘤效果則完全未知。
HER2係被鑑定為人類上皮細胞增殖因子受體2型相關癌基因的代表性的增殖因子受體型之癌基因產物之一者,為分子量185kDa之具有酪胺酸激酶功能域的膜貫通型受體蛋白(非專利文獻15)。HER2之DNA序列及胺基酸序列已被公開於公眾資料庫,例如,可藉由M11730(Genbank)、NP_004439.2(NCBI)等之登錄號而參考。
HER2(neu,ErbB-2)係EGFR(epidermal growth factor receptor:上皮增殖因子受體)家族之一者,已知藉由同質二聚體(homodimer)或與其他之EGFR受體的HER1(EGFR,ErbB-1)、HER3(ErbB-3)、HER4(ErbB-4)之異二聚體(heterodimer)形成(非專利文獻16-18),細胞內酪胺酸殘基被自體磷酸化而活性化,藉此於正常細胞及癌細胞中負擔細胞增殖・分化・生存上的重要任務(非專利文獻19、20)。已報告HER2係於乳癌、胃癌、卵巢癌等各式各樣的癌種類中過度表現(非專利文獻21-26),於乳癌為負向的預後因子(非專利文獻27、28)。
曲妥珠單抗(trastuzumab)係被稱為重組人化抗HER2單株抗體(huMAb4D5-8、rhuMAb HER2、Herceptin(註冊商標))的小鼠抗HER2抗體4D5(非專利文獻29、專利文獻5)之人化抗體(專利文獻6)。曲妥珠單抗係與HER2之細胞外功能域IV特異性結合,經由抗體依存性細胞毒殺(ADCC)誘導或來自HER2之訊號傳遞抑制,而發揮抗癌效果(非專利文獻30、31)。由於曲妥珠單抗對過度表現HER2的腫瘤呈現高效果(非專利文獻32),故美國於1999年、日本於2001年已上市作為於過度表現HER2的轉移性乳癌患者之治療藥。
乳癌中的曲妥珠單抗的治療效果被充分證明的另一方面(非專利文獻33),對曲妥珠單抗反應者,可謂為接受廣範圍之歷來抗癌治療的過度表現HER2的乳癌患者之約15%,而此集團之約85%的患者對曲妥珠單抗處置無反應、或反應僅為微弱。
據此,為了對於患有對曲妥珠單抗無反應、或反應微弱的過度表現HER2的腫瘤或HER2表現相關的障礙的患者,以HER2表現有關的疾病作為標的之治療藥之必要性已被認識,已開發有於曲妥珠單抗藉由連接物構造而結合抗腫瘤性藥物的T-DM1(曲妥珠單抗依坦辛(Trastuzumab emtansine)、KADCYLA(註冊商標);非專利文獻34)或將HER2之細胞外功能域II作為標的,設計為抑制異二聚體形成的帕妥珠單抗(pertuzumab)(Perjeta(註冊商標);非專利文獻35、專利文獻7)。然而,反應性或活性強度、以及適應範圍尚未充分,存有以HER2作為標的的未滿足需求。
[先前技術文獻]
[專利文獻]
專利文獻1 日本特開平5-59061號公報
專利文獻2 日本特開平8-337584號公報
專利文獻3 國際公開第1997/46260號
專利文獻4 國際公開第2000/25825號
專利文獻5 美國專利第5677171號說明書
專利文獻6 美國專利第5821337號說明書
專利文獻7 國際公開第01/00244號
[非專利文獻]
非專利文獻1 Ducry, L., et al., Bioconjugate Chem. (2010) 21, 5-13.
非專利文獻2 Alley, S. C., et al., Current Opinion in Chemical Biology (2010) 14, 529-537.
非專利文獻3 Damle N. K. Expert Opin. Biol. Ther. (2004) 4, 1445-1452.
非專利文獻4 Senter P. D., et al., Nature Biotechnology (2012) 30, 631-637.
非專利文獻5 Kumazawa, E., Tohgo, A., Exp. Opin. Invest. Drugs (1998) 7, 625-632.
非專利文獻6 Mitsui, I., et al., Jpn J. Cancer Res. (1995) 86, 776-786.
非專利文獻7 Takiguchi, S., et al., Jpn J. Cancer Res. (1997) 88, 760-769.
非專利文獻8 Joto, N. et al., Int J Cancer (1997) 72, 680-686.
非專利文獻9 Kumazawa, E. et al., Cancer Chemother. Pharmacol. (1998) 42, 210-220.
非專利文獻10 De Jager, R., et al., Ann N Y Acad Sci (2000) 922, 260-273.
非專利文獻11 Inoue, K. et al., Polymer Drugs in the Clinical Stage, Edited by Maeda et al. (2003) 145-153.
非專利文獻12 Kumazawa, E. et al., Cancer Sci (2004) 95, 168-175.
非專利文獻13 Soepenberg, O. et al., Clinical Cancer Research, (2005) 11, 703-711.
非專利文獻14 Wente M. N. et al., Investigational New Drugs (2005) 23, 339-347.
非專利文獻15 Coussens L, et al., Science. 1985;230(4730):1132-1139.
非專利文獻16 Graus-Porta G, et al., EMBO J. 1997;16:1647-1655.
非專利文獻17 Karnagaran D, et al., EMBO J. 1996;15:254-264.
非專利文獻18 Sliwkowski MX, et al., J Biom Chem. 1994;269:14661-14665.
非專利文獻19 Di Fore PP, et al., Science. 1987;237:178-182.
非專利文獻20 Hudziak RM, et al., Proc Natl Acad Sci U S A. 1987;84:7159-7163.
非專利文獻21 Hardwick R, et al., Eur. J Surg Oncol. 1997 (23):30-35.
非專利文獻22 Korkaya H, et al., Oncogene. 2008;27(47):6120-6130.
非專利文獻23 Yano T, et al., Oncol Rep. 2006;15(1):65-71.
非專利文獻24 Slamon DJ, et al., Science. 1987;235:177-182.
非專利文獻25 Gravalos C, et al., Ann Oncol 19: 1523-1529, 2008.
非專利文獻26 Fukushige S et al., Mol Cell Biol 6: 955-958, 1986.
非專利文獻27 Slamon DJ, et al. Science. 1989;244:707-712.
非專利文獻28 Kaptain S et al., Diagn Mol Pathol 10:139-152, 2001.
非專利文獻29 Fendly. et al., Cancer Research 1990(50):1550-1558.
非專利文獻30 Sliwkowski MX, et al., Semin Oncol. 1999;26(4,Suppl 12):60-70.
非專利文獻31 Hudis CA, et al., N Engl J Med. 357: 39-51, 2007.
非專利文獻32 Vogel CL, et al., J Clin Oncol. 2002;20(3):719-726.
非專利文獻33 Baselga et al., J. Clin. Oncol. 14:737-744 (1996).
非專利文獻34 Howard A. et al., J Clin Oncol 29:398-405.
非專利文獻35 Adams CW, et al., Cancer Immunol Immunother. 2006;6:717-727.
[發明概要]
[發明所欲解決的課題]
於藉由抗體的腫瘤治療,亦有觀察到即使抗體辨識抗原而與腫瘤細胞結合,但抗腫瘤效果亦不充分的情形,有更高效果的抗腫瘤抗體為必要的情形。又,於抗腫瘤性之低分子化合物,即使抗腫瘤效果優異,具有副作用或毒性面等之安全性上之問題者多,藉由進一步提高安全性而獲得更優異的治療效果者係成為課題。即,本發明之課題係獲得並提供抗腫瘤效果與安全性面優異之具有優異治療效果的抗腫瘤藥。
[用以解決課題之手段]
因為抗HER2抗體係可以腫瘤細胞為標的的抗體,即因為其係具備可辨識腫瘤細胞的特性、可與腫瘤細胞結合的特性、可於腫瘤細胞中內在化的特性、對腫瘤細胞具有細胞毒殺性的特性、或對腫瘤細胞的殺細胞活性等的抗體,故本發明者們認為達成下列效果為可能的:藉由將抗腫瘤性化合物之依喜替康,變換為藉由連接物構造部分而與該抗體結合的抗體-藥物結合物,可使抗腫瘤性化合物更確實地移動至腫瘤細胞而使該化合物之抗腫瘤效果特異性地於腫瘤細胞中發揮;據此抗腫瘤效果確實發揮的同時,可期待抗HER2抗體之殺細胞效果之增強;再者,可將抗腫瘤性化合物之投予量較該化合物之單體投予時更為減少;即由於藉由此等而可使抗腫瘤性化合物對正常細胞的影響緩和,可達成較高的安全性。
因此,本發明者們創造出特定構造之連接物,成功獲得藉由此連接物而使抗HER2抗體與依喜替康結合的抗體-藥物結合物,發現該結合物發揮優異的抗腫瘤效果而完成本發明。
即,本發明係關於:
[1]一種抗體-藥物結合物,其特徵為使下式
所示的抗腫瘤性化合物與抗HER2抗體,經由下式:
-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-所示的構造之連接物,藉由於抗HER2抗體之鉸鏈(hinge)部存在的雙硫鍵部分所形成的硫醚鍵而結合。
其中,抗HER2抗體係於L
1之末端結合,抗腫瘤性化合物係將1位之胺基之氮原子作為結合部位,而與-(CH
2)n
2-C(=O)-部分之羰基結合。
式中,n
1表示0至6之整數,
n
2表示0至5之整數,
L
1表示-(琥珀醯亞胺-3-基-N)-(CH
2)n
3-C(=O)-,
其中,n
3表示2至8之整數,
L
2表示-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-或單鍵,
其中,n
4表示1至6之整數,
L
P表示由2至7個之胺基酸所構成的胜肽殘基,
L
a表示-O-或單鍵,
-(琥珀醯亞胺-3-基-N)-係下式所示的構造:
於其之3位與抗HER2抗體結合,於1位之氮原子上與含其的連接物構造內之亞甲基結合。
再者,本案發明亦關於以下各者。
[2]如[1]記載之抗體-藥物結合物,其中L
P之胜肽殘基係選自包含苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸的胺基酸的胜肽殘基。
[3]如[1]或[2]記載之抗體-藥物結合物,其中L
P係選自以下之群組的胜肽殘基:
-GGF-、
-DGGF-、
-(D-)D-GGF-、
-EGGF-、
-GGFG-、
-SGGF-、
-KGGF-、
-DGGFG-、
-GGFGG-、
-DDGGFG-、
-KDGGFG-、及
-GGFGGGF-;
其中『(D-)D』係表示D-天冬胺酸。
[4]如[1]或[2]記載之抗體-藥物結合物,其中L
P係由4個胺基酸所構成的胜肽殘基。
[5]如[1]至[4]中任一項記載之抗體-藥物結合物,其中L
P係四胜肽殘基之-GGFG-。
[6]如[1]至[5]中任一項記載之抗體-藥物結合物,其中n
3係2至5之整數,L
2係單鍵。
[7]如[1]至[5]中任一項記載之抗體-藥物結合物,其中n
3係2至5之整數,L
2係-NH- (CH
2CH
2-O) n
4- CH
2CH
2-C (=O)-,n
4係2或4。
[8]如[1]至[7]中任一項記載之抗體-藥物結合物,其中-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-係具有4至7個原子之鏈長的部分構造。
[9]如[1]至[7]中任一項記載之抗體-藥物結合物,其中-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-係具有5或6個原子之鏈長的部分構造。
[10]如[1]至[9]中任一項記載之抗體-藥物結合物,其中-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-係
-NH-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2CH
2-C(=O)-、
-NH-CH
2CH
2CH
2CH
2-C(=O)-、
-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-、
-NH-CH
2-O-CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2-C(=O)-、或
-NH-CH
2CH
2-O-C(=O)-。
[11]如[1]至[9]中任一項記載之抗體-藥物結合物,其中-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-係
-NH-CH
2CH
2CH
2-C(=O)-、
-NH-CH
2-O-CH
2-C(=O)-、或
-NH-CH
2CH
2-O-CH
2-C(=O)-。
[12]如[1]至[9]中任一項記載之抗體-藥物結合物,其中使-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-與藥物結合的藥物-連接物構造部分係選自下列群組的1種之藥物-連接物構造:
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -GGFG -NH- CH
2CH
2- C (=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -GGFG -NH- CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG- NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C (=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C (=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2-O-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O)-NH-CH
2CH
2-O -CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH -CH
2CH
2-O- CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O- CH
2CH
2-O- CH
2CH
2-O- CH
2CH
2-O- CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
其中,-(琥珀醯亞胺-3-基-N)-係下式
所示的構造,於其之3位與抗HER2抗體結合,於1位之氮原子上與含其之連接物構造內的亞甲基結合。
-(NH-DX)係表示下式:
所示的1位之胺基之氮原子成為結合部位的基。
-GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[13]如[1]至[9]中任一項記載之抗體-藥物結合物,其中使-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-與藥物結合的藥物-連接物構造部分係選自下列群組的1種之藥物-連接物構造:
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH- CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
其中,-(琥珀醯亞胺-3-基-N)-、-(NH-DX)、及-GGFG-係如上述。
[14]一種抗體-藥物結合物,其特徵為使下式
所示的抗腫瘤性化合物與抗HER2抗體,經由下式:
-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-
所示的構造之連接物,且經由於抗HER2抗體之鉸鏈部存在的雙硫鍵部分所形成的硫醚鍵而結合。
其中,抗HER2抗體係於L
1之末端結合,抗腫瘤性化合物係與-(CH
2)n
2-C(=O)-部分之羰基結合。
式中,n
1表示0至6之整數,
n
2表示0至5之整數,
L
1表示-(琥珀醯亞胺-3-基-N)-(CH
2)n
3-C(=O)-,
其中,n
3表示2至8之整數,
L
2表示-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-或單鍵,
其中,n
4表示1至6之整數,
L
P表示-GGFG-之四胜肽殘基,
L
a表示-O-或單鍵,
-(琥珀醯亞胺-3-基-N)-係下式:
所示的構造,於其之3位與抗HER2抗體結合,於1位之氮原子上與含其之連接物構造內的亞甲基結合。
[15]如[14]記載之抗體-藥物結合物,其中
n
1為3,n
2為0,n
3為2,L
2為-NH- (CH
2CH
2-O) n
4-CH
2CH
2-C (=O)-,n
4為2,L
a為單鍵;或
n
1為1,n
2為1,n
3為5,L
2為單鍵,L
a為-O-;或
n
1為2,n
2為1,n
3為5,L
2為單鍵,L
a為-O-。
[16]如[14]或[15]記載之抗體-藥物結合物,其中n
3為2或5,L
2為單鍵。
[17]如[14]或[15]記載之抗體-藥物結合物,其中n
3為2或5,L
2為-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-,n
4為2或4。
[18]如[14]至[17]中任一項記載之抗體-藥物結合物,其中-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-係
-NH-CH
2CH
2CH
2-C(=O)-、
-NH-CH
2-O-CH
2-C(=O)-、或
-NH-CH
2CH
2-O-CH
2-C(=O)-。
[19]如[14]至[18]中任一項記載之抗體-藥物結合物,其中使-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2) n
2-C (=O)-與藥物結合的藥物-連接物構造部分係選自下列群組的1種之藥物-連接物構造:
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG-NH- CH
2CH
2-C (=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2CH
2- C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-C (=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH- CH
2CH
2- O- CH
2CH
2- O-CH
2CH
2- C(=O) -GGFG- NH- CH
2CH
2- C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH- CH
2CH
2-O- CH
2CH
2-O-CH
2CH
2- C(=O) -GGFG- NH -CH
2CH
2CH
2- C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O -CH
2CH
2- O-CH
2CH
2- O-CH
2CH
2- O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O)-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX);
其中,-(琥珀醯亞胺-3-基-N)-係下式:
所示的構造,於其之3位與抗HER2抗體結合,於1位之氮原子上與含其之連接物構造內的亞甲基結合。
-(NH-DX)係表示下式:
所示的1位之胺基之氮原子成為結合部位的基。
-GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[20]如[14]至[18]中任一項記載之抗體-藥物結合物,其中使-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-與藥物結合的藥物-連接物構造部分係選自下列群組的1種之藥物-連接物構造:
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2- O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH- CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
其中,-(琥珀醯亞胺-3-基-N)-、-(NH-DX)、及-GGFG-係如上述。
[21]如[1]至[20]中任一項記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係1至10個之範圍。
[22]如[1]至[20]中任一項記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係2至8個之範圍。
[23]如[1]至[20]中任一項記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係3至8個之範圍。
[24]一種醫藥,其含有如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。
[25]一種抗腫瘤藥及/或抗癌藥,其含有如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。
[26]如[25]記載之抗腫瘤藥及/或抗癌藥,其係用以應用於肺癌、尿道上皮癌(urothelial carcinoma)、大腸癌、前列腺癌、卵巢癌、胰癌、乳癌、膀胱癌、胃癌、胃腸道基質腫瘤(gastrointestinal stromal tumor)、子宮頸癌、食道癌、鱗狀上皮癌(squamous carcinoma)、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮內膜癌、子宮癌、唾液腺癌、腎臓癌、外陰癌、甲狀腺癌、陰莖癌、白血病、惡性淋巴瘤、漿細胞瘤(plasmacytoma)、骨髓瘤、或肉瘤。
[27]一種醫藥組成物,其含有作為活性成分之如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物,及藥學上可容許的製劑成分。
[28]如[27]記載之醫藥組成物,其係用以應用於肺癌、尿道上皮癌、大腸癌、前列腺癌、卵巢癌、胰癌、乳癌、膀胱癌、胃癌、胃腸道基質腫瘤、子宮頸癌、食道癌、鱗狀上皮癌、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮內膜癌、子宮癌、唾液腺癌、腎臓癌、外陰癌、甲狀腺癌、陰莖癌、白血病、惡性淋巴瘤、漿細胞瘤、骨髓瘤、或肉瘤。
[29]一種腫瘤及/或癌之治療方法,其特徵為投予如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。
[30]一種抗體-藥物結合物之製造方法,其特徵為使下式所示的化合物:
(順丁烯二醯亞胺-N-基) - (CH
2)n
3-C (=O) -L
2-L
P- NH- (CH
2)n
1-L
a- (CH
2)n
2-C(=O)-(NH-DX)
與抗HER2抗體或其反應性衍生物反應,藉由於該抗體之鉸鏈部存在的雙硫鍵部分形成硫醚鍵的方法使藥物-連接物部分與該抗體結合。
式中,n
3表示整數之2至8,
L
2表示-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-或單鍵,
其中,n
4表示1至6之整數,
L
P表示由選自苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸的2至7個之胺基酸所構成的胜肽殘基,
n
1表示0至6之整數,
n
2表示0至5之整數,
L
a表示-O-或單鍵,
(順丁烯二醯亞胺-N-基)-係下式
所示的氮原子成為結合部位的基。
-(NH-DX)係下式
所示的1位之胺基之氮原子成為結合部位的基。
[31]如[30]記載之製造方法,其中使藥物-連接物部分與抗HER2抗體結合的方法係將該抗體作還原處理而變換為反應性衍生物的方法。
[32]如[30]或[31]記載之製造方法,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係1至10個之範圍。
[33]如[30]或[31]記載之製造方法,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係2至8個之範圍。
[34]如[30]或[31]記載之製造方法,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係3至8個之範圍。
[35]一種抗體-藥物結合物,其係藉由如[30]至[34]中任一項之製造方法而獲得。
[36]一種抗體-藥物結合物,其特徵為將抗HER2抗體於還原條件下處理後,使選自以下之群組的化合物反應,於該抗體之鉸鏈部之雙硫鍵部分形成硫醚鍵而獲得:
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、及
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)。
其中,(順丁烯二醯亞胺-N-基)-係下式
所示的氮原子成為結合部位的基。
-(NH-DX)係下式
所示的1位之胺基之氮原子成為結合部位的基。
-GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[37]一種抗體-藥物結合物,其特徵為將抗HER2抗體於還原條件下處理後,使選自以下之群組的化合物反應,於該抗體之鉸鏈部之雙硫鍵部分形成硫醚鍵而獲得:
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2-C (=O)-GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、及
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)。
其中,(順丁烯二醯亞胺-N-基)-、-(NH-DX)、及-GGFG-係如上述。
[38]如[36]或[37]記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係1至10個之範圍。
[39]如[36]或[37]記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係2至8個之範圍。
[40]如[36]或[37]記載之抗體-藥物結合物,其中所選擇的1種之藥物-連接物構造的每1抗體的平均結合數係3至8個之範圍。
[發明之效果]
經由特定構造之連接物使抗腫瘤性化合物依喜替康結合的抗HER2抗體-藥物結合物,藉此可達成優異的抗腫瘤效果及安全性。
[用以實施發明之形態]
以下,一邊參照圖式一邊說明用以實施本發明之較佳形態。又,以下説明的實施形態係呈示本發明之代表性的實施形態之一例,並非藉由此等而狹隘解釋本發明之範圍。
本發明之抗HER2抗體-藥物結合物係於抗HER2抗體,使抗腫瘤性化合物經由連接物構造部分而結合的抗腫瘤性藥物,詳細説明如下。
[抗體]
本發明之抗HER2抗體-藥物結合物所使用的抗HER2抗體可來自任一物種,但較佳可例示人類、大鼠、小鼠、及兔。抗體來自人類以外之物種的情形,使用周知之技術而嵌合化或人類化較佳。本發明之抗體可為多株抗體,亦可為單株抗體,但單株抗體較佳。
抗HER2抗體係可以腫瘤細胞為標的的抗體,即具備可辨識腫瘤細胞的特性、可與腫瘤細胞結合的特性、被攝入腫瘤細胞內而內在化的特性、而且具備對腫瘤細胞的殺細胞活性等,使具有抗腫瘤活性的化合物經由連接物結合而可作成抗體-藥物結合物。
抗體之對腫瘤細胞的結合性係可使用流動式細胞測量術(flow cytometry)而確認。至腫瘤細胞內之抗體之攝入,可使用下列檢驗而確認(1)使用與治療抗體結合的二次抗體(螢光標識)而將被攝入細胞內的抗體藉由螢光顯微鏡加以可視化的檢驗(Cell Death and Differentiation (2008) 15, 751-761)、(2)使用與治療抗體結合的二次抗體(螢光標識)而測量被攝入細胞內的螢光量的檢驗(Molecular Biology of the Cell Vol. 15, 5268-5282, December 2004)、或(3)使用與治療抗體結合的免疫毒素,若被攝入細胞內則毒素被釋放而細胞增殖被抑制的Mab-ZAP檢驗(Bio Techniques 28:162-165, January 2000)。就免疫毒素而言,亦可使用白喉毒素之觸媒區與蛋白質G(Protein G)之重組複合蛋白質。
抗體之抗腫瘤活性,於活體外可藉由測定細胞之增殖的抑制活性而確認。例如,培養過度表現抗體之標的蛋白質的癌細胞株,於培養系統中以各種濃度添加抗體,可測定對病灶形成、菌落形成及類球狀體(spheroid)增殖的抑制活性。於活體內,例如,藉由對移植高度表現標的蛋白質的腫瘤細胞株的裸鼠投予抗體,測定癌細胞之變化,而可確認抗腫瘤活性。
抗體-藥物結合物由於使發揮抗腫瘤效果的化合物結合,故抗體本身具有抗腫瘤效果雖較佳,但非必須。由使抗腫瘤性化合物之細胞毒殺性於腫瘤細胞特異性・選擇性地發揮之目的而言,重要且較佳的是具有抗體內在化而移動至腫瘤細胞內的性質。
抗HER2抗體可藉由周知手段取得。例如,可藉由使用此領域通常實施的方法,將成為抗原的多胜肽對動物免疫,採取、純化活體內產生的抗體而獲得。抗原之來源並未限於人類,亦可將來自小鼠、大鼠等之人類以外之動物的抗原對動物免疫。於此情形,藉由試驗與取得的異種抗原結合的抗體與人類抗原之交叉反應性,可選出可應用於人類疾病的抗體。
又,依據周知之方法(例如,Kohler and Milstein, Nature (1975) 256, p.495-497;Kennet, R.ed., Monoclonal Antibodies, p.365-367, Plenum Press, N.Y.(1980)),藉由使產生對抗原的抗體之抗體產生細胞與骨髓瘤細胞融合,亦可建立融合瘤,獲得單株抗體。
又,抗原可藉由利用基因操作使編碼抗原蛋白質的基因於宿主細胞中產生而獲得。具體而言,製作可表現抗原基因的載體(vector),將其導入宿主細胞而使該基因表現,純化表現的抗原即可。使用將利用上述之基因操作的抗原表現細胞或表現抗原的細胞株對動物進行免疫的方法,藉此亦可取得抗體。
於本發明可使用的抗HER2抗體並未特別限制,但例如期望為具有以下特性者。
(1)一種抗HER2抗體,其特徵為具有以下之特性;
(a)與HER2特異性結合。
(b)具有藉由與HER2結合,而於HER2表現細胞內在化的活性。
(2)如上述(1)記載之抗體,其結合於HER2之細胞外功能域。
(3)如上述(1)或(2)記載之抗體,其係單株抗體。
(4)如上述(1)至(3)中任一項記載之抗體,其具有抗體依存性細胞毒殺(ADCC)活性及/或補體依存性細胞毒殺(CDC)活性。
(5)如上述(1)乃至(4)中任一項記載之抗體,其係小鼠單株抗體、嵌合單株抗體、或人化單株抗體。
(6)如上述(1)至(5)中任一項記載之抗體,其係包含含序列識別號1記載之胺基酸序列的重鏈及含序列識別號2記載之胺基酸序列的輕鏈而成的人化單株抗體。
(7)如上述(1)乃至(6)中任一項記載之抗體,其重鏈羧基末端之離胺酸殘基缺失。
(8)如上述(7)記載之抗體,其包含含序列識別號1中胺基酸編號1至449記載之胺基酸序列的重鏈及含序列識別號2中胺基酸編號1至214記載之胺基酸序列的輕鏈而成。
(9)一種抗體,其係藉由下列抗體之製造方法而獲得的抗體,該方法包含培養宿主細胞的步驟,該宿主細胞係藉由含有編碼如上述(1)至(8)中任一項記載之抗體的多核苷酸的表現載體而轉形;及自該步驟獲得的培養物採集目的抗體的步驟。
以下,説明於本發明所使用的抗HER2抗體。
於本說明書,「癌」與「腫瘤」係以相同意義被使用。
於本說明書,所謂「基因」之用語不僅包含DNA,亦包含其mRNA、cDNA、及其cRNA。
於本說明書,所謂「多核苷酸」之用語係以與核酸相同的意義使用,亦包含DNA、RNA、探針、寡核苷酸、及引子。
於本說明書,「多胜肽」、「蛋白質」、「蛋白」並未區別地使用。
於本說明書,「細胞」亦包含動物個體內之細胞、培養細胞。
於本說明書,所謂「HER2」之用語係以與HER2蛋白相同的意義使用。
於本說明書,抗HER2抗體並未特別限制,但可列舉帕妥珠單抗(國際公開01/00245號)、曲妥珠單抗(美國專利第5821337號)等,但曲妥珠單抗較佳。惟,只要為與HER2特異性結合的抗HER2抗體,更佳為具有藉由與HER2結合而於HER2表現細胞內在化的活性的抗HER2抗體即可,並未限制。
於本說明書,「曲妥珠單抗」亦稱為HERCEPTIN(註冊商標)、huMAb4D5-8、rhuMAb4D5-8,為包含含序列識別號1(第1圖)中胺基酸編號1至449記載之胺基酸序列的重鏈及含序列識別號2(第2圖)中胺基酸編號1至214記載之胺基酸序列的輕鏈而成的人化抗體。
於本說明書,所謂「特異性結合」之用語係意指不為非特異性吸附的結合。就結合是否為特異性之判定基準而言,例如,可列舉解離常數(以下,「KD」)。適合的抗體之對HER2蛋白的KD値係1×10
-5M以下,5×10
-6M以下,2×10
-6M以下,或1×10
-6M以下;更適合為5×10
-7M以下,2×10
-7M以下,或1×10
-7M以下;又更適合為5×10
-8M以下,2×10
-8M以下,或1×10
-8M以下;最適合為5×10
-9M以下,2×10
-9M以下,或1×10
-9M以下。HER2蛋白與抗體之結合係可使用表面電漿共振(Surface Plasmon Resonance)法、ELISA法、RIA法等周知方法而測定。
本說明書中的「CDR」係意指互補性決定區(CDR:Complemetarity deterring region)。已知於抗體分子之重鏈及輕鏈各自有3處之CDR。CDR亦稱為超可變區(hypervariable domain),位於抗體之重鏈及輕鏈之可變區內,為一次構造之變異性特高的部位,於重鏈及輕鏈之多胜肽鏈之一次構造上,各自分離於3處。於本說明書中,針對抗體之CDR,將重鏈之CDR自重鏈胺基酸序列之胺基末端側標記為CDRH1、CDRH2、CDRH3,將輕鏈之CDR自輕鏈胺基酸序列之胺基末端側標記為CDRL1、CDRL2、CDRL3。此等之部位係於立體構造上相互近接,而決定對結合的抗原的特異性。
於本發明,「於嚴格條件下雜交」係指於市售之雜交溶液ExpressHyb Hybridization Solution(Clontech公司製)中,於68℃雜交,或指藉由使用將DNA固定的濾紙,於0.7-1.0M之NaCl存在下、於68℃進行雜交後,使用0.1-2倍濃度之SSC溶液(1倍濃度SSC係包含150mM NaCl、15mM檸檬酸鈉),於68℃洗淨,而可鑑定的條件或與其同等的條件下雜交。
1. HER2
HER2係被鑑定為人類上皮細胞增殖因子受體2型關連癌基因的代表性的增殖因子受體型之癌基因產物之一者,為分子量185kDa之具有酪胺酸激酶功能域的膜貫通型受體蛋白。已知其為包含HER1(EGFR,ErbB-1)、HER2(neu,ErbB-2)、HER3(ErbB-3)、HER4(ErbB-4)的EGFR家族之一者,藉由同質或與其他EGFR的HER1、HER3、或HER4之異二聚體形成,細胞內酪胺酸殘基被自體磷酸化而加以活性化,藉此於正常細胞及腫瘤細胞之細胞的增殖・分化・生存上負擔重要任務。
本發明所使用的HER2蛋白係可由人類、非人類哺乳動物(大鼠、小鼠等)之HER2表現細胞直接純化而使用,或者可調製該細胞之細胞膜劃分而使用,又可藉由將HER2於活體外合成而獲得、或者可藉由基因操作使其於宿主細胞中產生而獲得。基因操作具體而言,藉由將HER2 cDNA組入可表現的載體後,於含轉錄及轉譯所必要的酵素、基質及能量物質的溶液中合成,或藉由使其他原核生物、或真核生物之宿主細胞轉形來使HER2表現,而可獲得該蛋白質。又,亦可將利用前述之基因操作之HER2表現細胞、或表現HER2的細胞株作為HER2蛋白使用。
HER2之DNA序列及胺基酸序列已於公眾的資料庫被公開,例如,可藉由M11730(Genbank)、NP_004439.2(NCBI)等之登錄號而參照。
又,於上述HER2之胺基酸序列,由1或數個之胺基酸被取代、刪除及/或添加的胺基酸序列所構成,且具有與該蛋白質同等之生物活性的蛋白質亦包含於HER2。
人類HER2蛋白係由下列所構成:由N末端22個胺基酸殘基所構成的訊號序列、由630個胺基酸殘基所構成的細胞外功能域、由23個胺基酸殘基所構成的細胞膜貫通功能域、由580個胺基酸殘基所構成的細胞內功能域。
2.抗HER2抗體之製造
本發明之抗HER2的抗體係可藉由例如,依據此領域通常實施的方法,將HER2或選自HER2之胺基酸序列的任意多胜肽對動物免疫,採取、純化活體內產生的抗體而獲得。成為抗原的HER2之生物種類並未限定於人類,亦可將來自小鼠、大鼠等之人類以外的動物的HER2、大鼠p185neu等對動物作免疫。於此情形,藉由試驗與所取得的異種HER2結合的抗體及人類HER2之交叉反應性,可選出可應用於人類疾病的抗體。
又,依據周知之方法(例如,Kohler and Milstein,Nature(1975)256,p.495-497;Kennet,R.ed.,Monoclonal Antibodies,p.365-367,Plenum Press,N.Y.(1980)),藉由使產生抗HER2的抗體的抗體產生細胞與骨髓瘤細胞融合,亦可建立融合瘤,獲得單株抗體。
又,成為抗原的HER2可藉由利用基因操作使HER2基因於宿主細胞中表現而獲得。
具體而言,製作可表現HER2基因的載體,將其導入宿主細胞而使該基因表現,純化表現的HER2即可。
又,亦可將利用上述之基因操作之HER2表現細胞、或表現HER2的細胞株作為HER2蛋白來使用。抗HER2抗體係可藉由周知手段而取得。以下,具體說明抗HER2的抗體之取得方法。
(1)抗原之調製
就用以製作抗HER2抗體之抗原而言,可列舉HER2或包含其至少6個連續的部分胺基酸序列的多胜肽、或於彼等附加有任意之胺基酸序列或載體(carrier)的衍生物。
HER2係可自人類之腫瘤組織或腫瘤細胞直接純化而使用,又,可藉由將HER2於活體外合成而獲得、或可藉由利用基因操作使其於宿主細胞中產生而獲得。
基因操作具體而言,藉由將HER2之cDNA組入可表現的載體後,於含轉錄及轉譯所必要的酵素、基質及能量物質的溶液中合成,或藉由將其他原核生物或真核生物之宿主細胞轉形來使HER2表現,而可獲得抗原。
又,藉由使連結膜蛋白質的HER2之細胞外區域與抗體之恆定區的融合蛋白質於適當宿主・載體系統中表現,亦可獲得呈分泌蛋白質之抗原。
HER2之cDNA,例如可藉由將表現HER2之cDNA的cDNA庫作為模板,使用將HER2 cDNA特異性增幅的引子,而進行聚合酶連鎖反應(PCR;參照Saiki,R. K.,et al.,Science(1988)239,p.487-489)之所謂的PCR法而取得。
就多胜肽之活體外(in vitro)合成而言,例如,可列舉Roche Diagnostics公司製之快速轉譯系統(Rapid Translation System)(RTS),但未限定於此。
就原核細胞之宿主而言,例如,可列舉大腸菌(Escherichia coli)或枯草菌(Bacillus subtilis)等。為了使目的基因於此等之宿主細胞內轉形,係以含有來自可適合作為宿主物種之複製單元(replicon),即複製起點,及調節序列的質體載體使宿主細胞轉形。又,就載體而言,具有可對轉形細胞賦予表型(表現型)之選擇性的序列者為較佳。
真核細胞之宿主細胞包含脊椎動物、昆蟲、酵母等之細胞,就脊椎動物細胞而言,例如,可使用猴之細胞的COS細胞(Gluzman,Y.Cell(1981)23,p.175-182、ATCC CRL-1650;ATCC:美國菌種保存中心(American Type Culture Collection))、小鼠纖維母細胞NIH3T3(ATCC No.CRL-1658)或中國倉鼠卵巢細胞(CHO細胞、ATCC CCL-61)之二氫葉酸還原酵素缺損株(Urlaub,G. and Chasin,L.A.Proc.Natl.Acad.Sci.USA(1980)77,p.4126-4220)等,但未限定於此等。
如上述進行而獲得的轉形體,可依據此領域通常實施的方法加以培養,藉由該培養而於細胞內或細胞外產生目的之多胜肽。
就該培養所使用的培養基而言,可因應採用的宿主細胞而適宜選擇慣用的各種者,若為大腸菌,例如,因應必要可於LB培養基中添加安比西林(ampicillin)等之抗生素或IPMG而使用。
藉由上述培養,轉形體之細胞內或細胞外所產生的重組蛋白質可藉由利用該蛋白質之物理性質或化學性質等的各種周知的分離操作法而分離・純化。
就該方法而言,具體而言,例如可例示利用通常之蛋白質沉澱劑的處理、超過濾、分子篩層析(凝膠過濾)、吸附層析、離子交換層析、親和性層析等之各種液體層析、透析法、此等之組合等。
又,藉由於所表現的重組蛋白質連接包含6個殘基的組胺酸標籤(histidine tag),可以鎳親和性管柱有效率地純化。或者,藉由於所表現的重組蛋白質連接IgG之Fc區域,可以蛋白質A(Protein A)管柱有效率地純化。
藉由組合上述方法,可容易地大量製造以高產率、高純度為目的之多胜肽。
亦可將上述所述轉形體本身作為抗原而使用。又,亦可將表現HER2的細胞株作為抗原來使用。就此類細胞株而言,可列舉人類乳癌株SK-BR-3、BT-474、KPL-4、或JIMT-1、人類胃癌株NCI-N87、及人類卵巢癌株SK-OV-3,但只要表現HER2即可,並未限定於此等細胞株。
(2)抗HER2單株抗體之製造
就與HER2特異性結合的抗體之例而言,可列舉與HER2特異性結合的單株抗體,但其取得方法係如以下記載。
於單株抗體之製造,一般而言如下述的作業步驟係必要的。
即,
(a)作為抗原使用的生物高分子之純化、或抗原表現細胞之調製
(b)藉由將抗原注射於動物而免疫後,採取血液,檢定其抗體力價而決定脾臓摘出之時期後,調製抗體產生細胞的步驟
(c)骨髓瘤細胞(以下稱為「骨髓瘤」)之調製
(d)抗體產生細胞與骨髓瘤之細胞融合
(e)產生作為目的之抗體的融合瘤群之選出
(f)對單一細胞選殖株的分割(選殖)
(g)依據情形,用以大量製造單株抗體的融合瘤之培養、或移植融合瘤的動物之飼育
(h)如此製造的單株抗體之生理活性、及其結合特異性之檢討、或作為標識試藥之特性之檢定等。
以下,將單株抗體之製作法依上述步驟詳述,但該抗體之製作法並未限制於此,例如,亦可使用脾細胞以外之抗體產生細胞及骨髓瘤。
(a)抗原之純化
就抗原而言,可使用如前述方法所調製的HER2或其一部分。
又,亦可將下列作為抗原來使用:藉由HER2表現重組體細胞所調製的膜劃分,或HER2表現重組體細胞本身,再者,使用本技術領域者所周知之方法而化學合成的本發明之蛋白質之部分胜肽。
再者,亦可將HER2表現細胞株作為抗原來使用。
(b)抗體產生細胞之調製
將步驟(a)所獲得的抗原與弗氏完全或不完全佐劑、或鉀礬(potash alum)之類的輔助劑混合,作為免疫原對實驗動物免疫。除此之外,亦有將抗原表現細胞作為免疫原對實驗動物免疫的方法。實驗動物可無障礙地使用周知融合瘤製作法所使用的動物。具體而言,例如可使用小鼠、大鼠、山羊、綿羊、牛、馬等。惟,由與摘出的抗體產生細胞融合的骨髓瘤細胞之取得容易性等之觀點,將小鼠或大鼠作為被免疫動物較佳。
又,實際上使用的小鼠及大鼠之系統並未別限制,於小鼠之情形,例如,可使用各系統A、AKR、BALB/c、BDP、BA、CE、C3H、57BL、C57BL、C57L、DBA、FL、HTH、HT1、LP、NZB、NZW、RF、R III、SJL、SWR、WB、129等,又大鼠的情形,例如,可使用Wistar、Low、Lewis、Sprague、Dawley、ACI、BN、Fischer等。
此等之小鼠及大鼠可例如獲自日本CLEA股份有限公司、日本Charles River股份有限公司等之實驗動物飼育販售業者。
就被免疫動物而言,若考慮後述之與骨髓瘤細胞之融合適合性,則小鼠係BALB/c系統為特佳,大鼠係Wistar及Low系統為特佳。
又,考慮抗原之於人類與小鼠之相同性,使用去除自體抗體之使生物機制降低的小鼠,即使用自體免疫疾病小鼠為較佳。
又,此等小鼠或大鼠之免疫時的週齡,較佳為5至12週齡,更佳為6至8週齡。
藉由HER2或其重組體而免疫動物時,例如,可使用Weir,D.M.,Handbook of Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987);Kabat,E.A.and Mayer,M.M.,Experimental Immunochemistry,Charles C Thomas Publisher Springfield,Illinois(1964)等所詳細記載的周知方法。
此等之免疫法中,若具體呈示本發明之較佳方法,例如,如以下所示。
即,首先,將作為抗原的膜蛋白質劃分、或使表現抗原的細胞投予至動物之皮內或腹腔內。惟,為了提高免疫效率,兩者之併用為較佳,前半進行皮內投予、後半或僅最終次進行腹腔內投予時,可特別地提高免疫效率。
抗原之投予時程係依被免疫動物之種類、個體差等而異,但一般而言,抗原投予次數3~6次、投予間隔2~6週較佳,投予次數3~4次、投予間隔2~4週更佳。
又,抗原之投予量係依動物之種類、個體差等而異,但一般而言,作成0.05~5mg,較佳為作成0.1~0.5mg左右。
追加免疫係在如以上之抗原投予1~6週後,較佳為1~4週後,更佳為1~3週後進行。免疫原為細胞的情形,使用1×10
6至1×10
7個之細胞。
又,進行追加免疫之際之抗原投予量,依動物種類、大小等而異,但一般而言,例如小鼠的情形作成0.05~5mg,較佳為0.1~0.5mg,更佳為0.1~0.2mg左右。免疫原為細胞的情形,使用1×10
6至1×10
7個之細胞。
上述追加免疫後1~10日後,較佳為2~5日後,更佳為2~3日後,自被免疫動物無菌地取出含抗體產生細胞的脾臓細胞或淋巴球。此時,測量抗體力價,若將抗體力價變的充分高的動物作為抗體產生細胞之供給源使用,可提高以後操作之效率。
就本文使用的抗體力價之測定法而言,例如,可列舉RIA法或ELISA法,但未限定於此等方法。本發明中的抗體力價之測定,例如,若依據ELISA法,可藉由如以下記載的順序進行。
首先,使純化或部分純化的抗原吸附於ELISA用96孔盤等之固相表面,進一步將抗原未吸附的固相表面以與抗原無關係的蛋白質覆蓋,例如,藉由牛血清白蛋白(BSA)覆蓋,將該表面洗淨後,與作為第一抗體之連續稀釋的試料(例如,小鼠血清)接觸,使上述抗原與試料中之抗體結合。
進一步作為第二抗體,添加經酵素標識的抗小鼠抗體之抗體而與小鼠抗體結合,洗淨後添加該酵素之基質,藉由測量由於基於基質分解的顯色之吸光度變化等,而算出抗體力價。
自被免疫動物的脾臓細胞或淋巴球之抗體產生細胞的分離,可依據周知方法(例如,Kohler et al.,Nature(1975)256,p.495;Kohler et al.,Eur.J.Immunol.(1977)6,p.511;Milstein et al.,Nature(1977),266,p.550;Walsh,Nature,(1977)266,p.495)而進行。例如,脾臓細胞之情形,可採用將脾臓細切而將細胞以不鏽鋼篩網過濾後,使其游離於伊格爾最低必須培養基(Eagle minimal essential medium)(MEM)而將抗體產生細胞加以分離的一般方法。
(c)骨髓瘤細胞(以下,稱為「骨髓瘤」)之調製
用於細胞融合的骨髓瘤細胞並未特別限定,可由周知之細胞株適當選擇來使用。惟,考慮自融合細胞選擇融合瘤之際之便利性,較佳使用其選擇手續已確立的HGPRT(次黃嘌呤-鳥糞嘌呤磷酸核糖轉移酵素,Hypoxanthine-guanine phosphoribosyl transferase)缺損株。
即,來自小鼠之X63-Ag8(X63)、NS1-ANS/1(NS1)、P3X63-Ag8.U1(P3U1)、X63-Ag8.653(X63.653)、SP2/0-Ag14(SP2/0)、MPC11-45.6TG1.7(45.6TG)、FO、S149/5XXO、BU.1等、來自大鼠之210.RSY3.Ag.1.2.3(Y3)等、來自人類之U266AR(SKO-007)、GM1500・GTG-A12(GM1500)、UC729-6、LICR-LOW-HMy2 (HMy2)、8226AR/NIP4-1 (NP41)等。此等之HGPRT缺損株例如可獲自ATCC等。
此等之細胞株係以適當培養基,例如8-氮鳥嘌呤培養基(於RPMI-1640培養基中添加麩醯胺酸、2-巰基乙醇、健它黴素(gentamycin)、及胎牛血清(以下稱為「FBS」)的培養基中添加8-氮鳥嘌呤的培養基)、伊斯科夫氏改良杜爾貝科氏培養基(Iscove’s Modified Dulbecco’s Medium;以下稱為IMDM)、或杜爾貝科氏改良伊格爾培養基(Dulbecco’s Modified Eagle Medium;以下稱為DMEM)繼代培養,但細胞融合之3至4日前以正常培養基(例如,含10% FCS的ASF104培養基(味之素股份有限公司製))繼代培養,於融合當日確保2×10
7以上之細胞數目。
(d)細胞融合
抗體產生細胞與骨髓瘤細胞之融合可依據周知之方法(Weir,D.M.,Handbookof Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987);Kabat,E.A.and Mayer,M.M.,Experimental Immunochemistry,Charles C Thomas Publisher Springfield,Illinois(1964)等),於使細胞生存率未極度降低的程度的條件下適當實施。
就此類方法而言,例如,可使用於聚乙二醇等之高濃度聚合物溶液中將抗體產生細胞與骨髓瘤細胞混合的化學方法、利用電刺激的物理方法等。其中,若呈示上述化學方法之具體例係如以下。
即,使用聚乙二醇作為高濃度聚合物溶液的情形,於分子量1500~6000,較佳為2000~4000之聚乙二醇溶液中,於30~40℃,較佳為於35~38℃之溫度下,將抗體產生細胞與骨髓瘤細胞混合1~10分鐘,較佳為5~8分鐘。
(e)融合瘤群之選擇
藉由上述細胞融合獲得的融合瘤之選擇方法並未特別限制,但通常使用HAT(次黃嘌呤・胺基喋呤・胸苷)選擇法(Kohler et al.,Nature(1975)256,p.495;Milstein et al.,Nature(1977)266,p.550)。
此方法對使用於胺基喋呤中無法生存的HGPRT缺損株之骨髓瘤細胞而獲得融合瘤的情形為有效的。即,藉由將未融合細胞及融合瘤以HAT培養基培養,可僅使具有對胺基喋呤之耐性的融合瘤選擇性殘存,且使其增殖。
(f)對單一細胞選殖株之分割(選殖)
就融合瘤之選殖法而言,例如,可使用甲基纖維素法、軟瓊脂糖法、極限稀釋法等之周知方法(例如,參照Barbara,B.M.and Stanley,M.S.:Selected Methods in Cellular Immunology,W.H.Freeman and Company,San Francisco(1980))。此等之方法中,尤其是甲基纖維素法等之三次元培養法較佳。例如,藉由將利用細胞融合所形成的融合瘤群懸浮於ClonaCell-HY Selection Medium D(StemCell Technologies公司製 #03804)等之甲基纖維素培養基而培養,回收形成的融合瘤群落,而可取得單株融合瘤。培養所回收的各融合瘤群落,將於獲得的融合瘤培養上清液中安定而被認可抗體力價者,選擇作為HER2單株抗體產生融合瘤株。
(g)利用融合瘤的培養之單株抗體之調製
如此選擇的融合瘤,藉由將其培養,可有效率地獲得單株抗體,但期望於培養之前,篩選產生目的單株抗體的融合瘤。
此篩選係可採用本身已知之方法。
本發明中的抗體力價的測定可藉由例如,上述(b)之項目中説明的ELISA法而進行。
藉由以上之方法所獲得的融合瘤可於液態氮中或-80℃以下之冷凍庫中以凍結狀態保存。
完成選殖的融合瘤係將培養基由HT培養基換成正常培養基而被培養。
大量培養係以使用大型培養瓶的旋轉培養、或旋轉器(spinner)培養來進行。自此大量培養中的上清液,藉由使用膠體過濾等之本技術領域者所周知之方法而純化,可獲得與本發明之蛋白質特異性結合的單株抗體。
又,藉由於同系統之小鼠(例如,上述之BALB/c)、或Nu/Nu小鼠之腹腔內注射融合瘤,使該融合瘤增殖,可獲得含大量本發明之單株抗體的腹水。
投予腹腔內的情形,於事前(3~7日前),投予2,6,10,14-四甲基十五烷(2, 6, 10, 14 -tetramethylpentadecane;姥鮫烷(pristane))等之礦物油時,可獲得較多量之腹水。
例如,於與融合瘤同系統的小鼠腹腔內預先注射免疫抑制劑,使T細胞不活化後,於20日後,使10
6~10
7個之融合瘤・選殖株細胞於不含血清的培養基中游離(0.5ml)而投予至腹腔內,通常於腹部為膨滿、腹水累積時,自小鼠採取腹水。藉由此方法,與培養液相比,獲得約100倍以上之濃度之單株抗體。
藉由上述方法所獲得的單株抗體,可以例如Weir,D.M.:Handbook of Experimental Immunology,Vol.I,II,III,Blackwell Scientific Publications,Oxford(1978)記載的方法而加以純化。
如此獲得的單株抗體係對HER2具有高抗原特異性。就本發明之單株抗體而言,並未特別限制,但可列舉小鼠單株抗體4D5(ATCC CRL 10463)。
(h)單株抗體之檢定
如此獲得的單株抗體之同型及亞型之決定係可如以下方式進行。
首先,可列舉歐氏(Ouchterlony)法、ELISA法、或RIA法作為鑑定法。
歐氏法係為簡便,但單株抗體濃度低的情形,需要濃縮操作。
另一方面,使用ELISA法或RIA法的情形,藉由使培養上清液直接與抗原吸附固相反應,進一步使用對應各種免疫球蛋白同型、亞型的抗體作為二次抗體,而可鑑定單株抗體之同型、亞型。
又,就更簡便的方法而言,亦可利用市售之鑑定用之套組(例如,Mouse typer kit:Bio-Rad公司製)等。
再者,蛋白質之定量係可藉由自斐林-洛瑞法(Folin Lowry method)及280nm中的吸光度(1.4(OD280)=免疫球蛋白1mg/ml)算出的方法而進行。
再者,再次實施(2)之(a)至(h)的步驟而另外獨立取得單株抗體的情形,亦可能取得具有與(g)之步驟所獲得的抗HER2抗體同等的細胞毒殺活性的抗體。就此類抗體之一例而言,可列舉與(g)之步驟所獲得的抗HER2抗體相同之抗原決定位結合的抗體。新製作的單株抗體若與結合前述抗HER2抗體的部分胜肽或部分立體構造結合,則可判定該單株抗體與相同抗原決定位結合。又,藉由確認對於前述抗HER2抗體之對HER2的結合,該單株抗體為競合(即,該單株抗體妨礙前述抗HER2抗體與HER2之結合),即使未決定具體的抗原決定位之序列或構造,亦可判定該單株抗體結合於與抗HER2抗體相同之抗原決定位。確認抗原決定位相同的情形,強烈地期待該單株抗體具有與前述抗HER2抗體同等之抗原結合能力或生物活性。
(3)其他抗體
本發明之抗體,除了上述抗HER2的單株抗體之外,亦包含以使對人類的異種抗原性降低等為目的而人為地改變的基因重組型抗體,例如,嵌合(Chimeric)抗體、人化(Humanized)抗體、人類抗體等。此等之抗體可使用已知方法來製造。
就嵌合抗體而言,可列舉抗體之可變區與恆定區彼此為異種的抗體,例如,將來自小鼠或大鼠的抗體之可變區與來自人類的恆定區接合的嵌合抗體(參照Proc.Natl.Acad.Sci.U.S.A.,81,6851-6855,(1984))。就本發明之嵌合抗體而言,並未特別限制,但可列舉含人類IgG1或IgG2之重鏈恆定區的嵌合抗體4D5。
就人化抗體而言,可列舉僅將互補性決定區(CDR;complementarity determining region)組入來自人類的抗體的抗體(參照Nature(1986)321,p.522-525)、藉由CDR移植法而除了CDR之序列外將一部分之框架區胺基酸殘基亦移植於人類抗體的抗體(國際公開第90/07861號)、使用基因變換突變誘發(gene conversion mutagenesis)策略而人化的抗體(美國專利第5821337號)。
又,本說明書中的「數個」係意指1至10個、1至9個、1至8個、1至7個、1至6個、1至5個、1至4個、1至3個、或1或2個。
又,就本說明書中的胺基酸之取代而言,保存性胺基酸取代為較佳。保存性胺基酸取代係指與胺基酸側鏈有關連的胺基酸基團內產生的取代。較佳的胺基酸基團係如以下:酸性基團=天冬胺酸、麩胺酸;鹼性基團=離胺酸、精胺酸、組胺酸;非極性基團=丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸;及非帶電極性家族=甘胺酸、天冬醯胺酸、麩醯胺酸、半胱胺酸、絲胺酸、蘇胺酸、酪胺酸。其他適合的胺基酸基團係如下:脂肪族羥基團=絲胺酸及蘇胺酸;含醯胺基的基團=天冬醯胺酸及麩醯胺酸;脂肪族基團=丙胺酸、纈胺酸、白胺酸及異白胺酸;以及芳香族基團=苯丙胺酸、色胺酸及酪胺酸。該胺基酸取代係於不使具有原本胺基酸序列的物質之特性降低的範圍內進行者為較佳。
藉由組合與上述之重鏈胺基酸序列及輕鏈胺基酸序列呈現高相同性的序列,而可選擇具有與上述各抗體同等生物活性的抗體。如此之相同性,一般而言為80%以上之相同性,較佳為90%以上之相同性,更佳為95%以上之相同性,最佳為99%以上之相同性。又,藉由組合於重鏈或輕鏈之胺基酸序列中有1至數個之胺基酸殘基被取代、刪除或添加的胺基酸序列,而亦可選擇具有與上述各抗體同等生物活性的抗體。又,本說明書中的「相同性」係以與「同一性」相同的意義使用。
二種類之胺基酸序列間之相同性係可藉由使用Blast algorithm第2.2.2版(Altschul,Stephen F.,Thomas L.Madden,Alejandro A.Schaeffer,Jinghui Zhang,Zheng Zhang,Webb Miller,and David J.Lipman(1997),「Gapped BLAST and PSI-BLAST:a new generation of protein database search programs」,Nucleic Acids Res.25:3389-3402)之系統內定參數(default parameter)而決定。Blast algorithm亦可藉由於網際網路存取www.ncbi.nlm.nih.gov/blast而使用。
就本發明之抗體而言,進一步可列舉與HER2結合的人類抗體。抗HER2人類抗體係意指僅具有來自人類染色體之抗體之基因序列的人類抗體。抗HER2人類抗體可藉由使用具有含人類抗體之重鏈及輕鏈之基因的人類染色體片段的人類抗體產生小鼠的方法(參照Tomizuka,K.et al.,Nature Genetics(1997)16,p.133-143;Kuroiwa,Y.et.al.,Nucl.Acids Res.(1998)26,p.3447-3448;Yoshida,H.et.al.,Animal Cell Technology:Basic and Applied Aspects vol.10,p.69-73(Kitagawa,Y.,Matsuda,T.and Iijima,S.eds.),Kluwer Academic Publishers,1999;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,p.722-727等)而取得。
此類人類抗體產生小鼠,具體而言,作為將內在性免疫球蛋白重鏈及輕鏈之基因座破壞、取而代之以通過酵母人工染色體(Yeast artificial chromosome,YAC)載體等而導入人類免疫球蛋白重鏈及輕鏈之基因座的重組動物,可藉由基因剔除動物及基因轉殖動物之製作及使此等動物彼此交配而作出。
又,利用基因重組技術,藉由各自編碼此類人類抗體之重鏈及輕鏈的cDNA,較佳為藉由含該cDNA的載體,而將真核細胞轉形、培養產生基因重組人類單株抗體的轉形細胞,藉此亦可自培養上清液中獲得此抗體。
其中,作為宿主,例如可使用真核細胞,較佳為CHO細胞、淋巴球或骨髓瘤等之哺乳動物細胞。
又,亦已知取得自人類抗體庫選出的來自噬菌體顯示的人類抗體的方法(參照Wormstone,I.M.et.al,Investigative Ophthalmology & Visual Science.(2002)43(7),p.2301-2308;Carmen,S.et.al.,Briefings in Functional Genomics and Proteomics(2002),1(2),p.189-203;Siriwardena,D.et.al.,Ophthalmology(2002)109(3),p.427-431等)。
例如,可使用使人類抗體之可變區作為單鏈抗體(scFv)而於噬菌體表面表現,而選擇與抗原結合的噬菌體的噬菌體顯示法(Nature Biotechnology(2005),23,(9),p.1105-1116)。
藉由解析以與抗原結合而選擇的噬菌體之基因,可決定編碼與抗原結合的人類抗體之可變區的DNA序列。
若與抗原結合的scFv之DNA序列變得清楚,則可藉由製作具有該序列的表現載體,導入於適當宿主而使其表現,來取得人類抗體(國際公開第92/01047號、國際公開第92/20791號、國際公開第93/06213號、國際公開第93/11236號、國際公開第93/19172號、國際公開第95/01438號、國際公開第95/15388號;Annu.Rev.Immunol(1994)12,p.433-455;Nature Biotechnology(2005)23(9),p.1105-1116)。
就比較抗體性質之際之其他指標之一例而言,可列舉抗體之安定性。示差掃描熱析儀(DSC)係可快速又正確地測量成為蛋白質之相對的構造安定性良好指標的熱變性中點(Tm)的裝置。藉由使用DSC測量Tm値,比較其値,可比較熱安定性之差異。已知抗體之保存安定性呈現與抗體之熱安定性有某程度之相關(Lori Burton,et.al.,Pharmaceutical Development and Technology(2007)12,p.265-273),可將熱安定性作為指標而選擇適合的抗體。就用以選擇抗體的其他指標而言,可列舉於適當宿主細胞中的產量高、及水溶液中之凝集性低。例如,產量最高的抗體不一定呈現最高的熱安定性,因此基於以上所述指標而綜合地判斷,有必要選出最適合對人類投予之抗體。
本發明之抗體亦包含抗體之修飾體。該修飾體係意指對本發明之抗體施予化學或生物學的修飾者。化學的修飾體係包含對胺基酸骨架之化學部分之鍵結、N-鍵結或O-鍵結碳水化物鏈之化學修飾體等。生物學的修飾體包含施予轉譯後修飾(例如,對N-鍵結或O-鍵結之糖鏈附加、N末端或C末端之加工、脱醯胺化、天冬胺酸之異構化、甲硫胺酸之氧化)者、藉由使用原核生物宿主細胞表現,而於N末端附加甲硫胺酸殘基者等。又,為了可進行本發明之抗體或抗原之檢測或單離而被標識者,例如,酵素標識體、螢光標識體、親和性標識體亦包含於該修飾物之意義。此類本發明之抗體之修飾物係有用於抗體的安定性及血中滯留性之改善、抗原性之減輕、抗體或抗原之檢出或單離等。
又,藉由調節與本發明之抗體結合的糖鏈修飾(糖苷化(glycosylation)、脱岩藻糖(fucose)化等),可增強抗體依存性細胞毒殺活性。就抗體之糖鏈修飾之調節技術而言,已知有國際公開第99/54342號、國際公開第00/61739號、國際公開第02/31140號等,但未限定於此等。本發明之抗體亦包含該糖鏈修飾被調節的抗體。
一旦單離抗體基因後,導入適當宿主而製作抗體的情形,可使用適當的宿主與表現載體之組合。就抗體基因之具體例而言,可列舉將編碼本說明書記載的抗體之重鏈序列的基因、及編碼輕鏈序列的基因加以組合者。將宿主細胞轉形之際,重鏈序列基因與輕鏈序列基因可被插入相同表現載體,又亦可被插入各別表現載體。
將真核細胞作為宿主使用的情形,可使用動物細胞、植物細胞、或真核微生物。尤其就動物細胞而言,可列舉哺乳類細胞,例如,為猴細胞的COS細胞(Gluzman,Y. Cell(1981)23,p.175-182、ATCC CRL-1650)、小鼠纖維母細胞NIH3T3(ATCC No.CRL-1658)或中國倉鼠卵巢細胞(CHO細胞、ATCC CCL-61)之二氫葉酸還原酵素缺損株(Urlaub,G. and Chasin,L.A. Proc. Natl. Acad. Sci. U.S.A.(1980)77,p.4126-4220)。
使用原核細胞的情形,例如,可列舉大腸菌、枯草菌。
藉由轉形而於此等之細胞中導入作為目的之抗體基因,並藉由將經轉形的細胞於活體外培養,可獲得抗體。於該培養,依抗體之序列而有產量不同的情形,自具有同等結合活性的抗體之中,以產量作為指標而可選出容易作為醫藥生產者。據此,本發明之抗體亦包含藉由下列抗體之製造方法所獲得的抗體,該方法之特徵為包含:培養上述經轉形的宿主細胞的步驟、及自該步驟所獲得的培養物採收目的之抗體或該抗體的機能性片段的步驟。
又,已知哺乳類培養細胞所生產的抗體之重鏈之羧基末端的離胺酸殘基缺失(Journal of Chromatography A,705:129-134(1995)),又,已知相同重鏈羧基末端之甘胺酸、離胺酸之2個胺基酸殘基缺失,且新位於羧基末端的脯胺酸殘基經醯胺化(Analytical Biochemistry,360:75-83(2007))。然而,此等重鏈序列之缺失及修飾對於抗體之抗原結合能力及效應子機能(補體之活性化或抗體依存性細胞毒殺作用等)並無影響。據此,本發明之抗體亦包含受該修飾的抗體及該抗體之機能性片段,亦包含於重鏈羧基末端有1或2個之胺基酸缺失的缺失體、及經醯胺化的該缺失體(例如,羧基末端部位之脯胺酸殘基經醯胺化的重鏈)等。惟,只要保有抗原結合能力及效應子機能,本發明之抗體之重鏈之羧基末端的缺失體並未限於上述種類。構成本發明之抗體的2股重鏈可為選自包含完全長度及上述之缺失體之群組的重鏈之任一種,亦可組合任二種。各缺失體之量比係受產生本發明之抗體的哺乳類培養細胞之種類及培養條件的影響,但就本發明之抗體之主成分而言,可列舉於2股重鏈之雙方,羧基末端之一個胺基酸殘基缺失的情形。
就本發明之抗體之同型而言,例如,可列舉IgG(IgG1、IgG2、IgG3、IgG4)等,但較佳可列舉IgG1或IgG2。
就抗體之生物活性而言,一般可列舉抗原結合活性、藉由與抗原結合而於表現該抗原的細胞內在化的活性、中和抗原之活性的活性、增強抗原之活性的活性、抗體依存性細胞毒殺(ADCC)活性、補體依存性細胞毒殺(CDC)活性及抗體依存性細胞媒介吞噬作用(ADCP),但本發明之抗體所具有的生物活性係對HER2的結合活性,較佳為藉由與HER2結合而於HER2表現細胞內在化的活性。再者,本發明之抗體除了細胞內在化活性之外,亦可兼具ADCC活性、CDC活性及/或ADCP活性。
獲得的抗體可純化至均一。抗體之分離、純化只要使用通常之蛋白質所使用的分離、純化方法即可。例如,只要適宜選擇管柱層析、過濾器過濾、超過濾、鹽析、透析、調製用聚丙烯醯胺膠體電泳、等電點電泳等加以組合,即可將抗體分離、純化(Strategies for Protein Purification and Characterization:A Laboratory Course Manual,Daniel R.Marshak et al.eds.,Cold Spring Harbor Laboratory Press(1996);Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory(1988)),但未限定於此等。
就層析而言,可列舉親和性層析、離子交換層析、疏水性層析、膠體過濾層析、逆相層析、吸附層析等。
此等之層析可使用HPLC或FPLC等之液相層析來進行。
就用於親和性層析所使用的管柱而言,可列舉蛋白質A管柱、蛋白質G管柱。例如,就使用蛋白質A管柱的管柱而言,可列舉Hyper D,POROS,Sepharose F.F.(Pharmacia股份有限公司)等。
又亦可使用將抗原固定化的載體(carrier),利用對抗原之結合性而純化抗體。
[抗腫瘤性化合物]
茲描述於本發明之抗HER2抗體-藥物結合物所結合的抗腫瘤性化合物。就本發明所使用的抗腫瘤性化合物而言,只要為具有抗腫瘤效果的化合物,且具有可與連接物構造結合的取代基、部分構造者即可,並未特別限制。抗腫瘤性化合物係連接物之一部份或全部於腫瘤細胞內被切斷,抗腫瘤性化合物部分游離,而表現抗腫瘤效果。若連接物與藥物結合部分被切斷,則抗腫瘤性化合物以未修飾的構造游離,而發揮其本來之抗腫瘤效果。
就本發明所使用的抗腫瘤性化合物而言,較佳可使用為喜樹鹼衍生物的依喜替康((1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲□并[1,2-b]喹啉-10,13(9H,15H)-二酮;下式:)
此依喜替康雖具有優異的抗腫瘤活性,但尚未作為抗腫瘤藥被市售。該化合物可以周知方法容易地取得,且可適合使用1位之胺基作為對連接物構造之結合部位。又,依喜替康亦有連接物之一部份為結合狀態下於腫瘤細胞內游離的情形,但其係即使為如此的構造,亦發揮優異抗腫瘤效果的優異化合物。
已知依喜替康因具有喜樹鹼構造,於酸性水性介質中(例如,pH3左右)平衡偏向有內酯環形成的構造(閉環體),另一方面,於鹼性水性介質中(例如,pH10左右)平衡偏向內酯環為開環的構造(開環體)。即使為導入對應如此的閉環構造及開環構造的依喜替康殘基的藥物結合物,亦被期待同等之抗腫瘤效果,不用說,任一者之狀態亦被包含於本發明之範圍。
就其他之抗腫瘤性化合物而言,例如,可列舉阿黴素(Doxorubicin)、柔紅黴素(Daunorubicin)、絲裂黴素C(Mitomycin C)、博來黴素(Bleomycin)、環胞苷(Cyclocytidine)、長春新鹼(Vincristine)、長春鹼(Vinblastine)、甲氨蝶呤(Methotrexate)、白金系抗腫瘤劑(順鉑(Cisplatin)或其衍生物)、塔克素(Taxol)或其衍生物、其他之喜樹鹼或其衍生物(日本特開平6-87746號公報記載的抗腫瘤劑)等。
於抗體-藥物結合物,對抗體1分子之藥物之結合數係影響其有效性、安全性的重要因子。抗體-藥物結合物之製造係以藥物之結合數成為一定數目的方式,規定反應的原料・試藥之使用量等之反應條件而實施,但與低分子化合物之化學反應不同,通常係作為結合相異數目的藥物之混合物而獲得。對抗體1分子之藥物結合數係標記平均値,即,被特定為平均藥物結合數。本發明原則上,除非另有指定,即,除了表示於具有相異藥物結合數的抗體-藥物結合物混合物中所含之具有特定藥物結合數的抗體-藥物結合物的情形,藥物之結合數係意指平均値。
依喜替康對抗體分子之結合數係可控制,就每1抗體之藥物平均結合數而言,可使1至10個左右的依喜替康結合,但較佳為2至8個,更佳為3至8個。又,若為本技術領域者,由本案實施例之記載,可設計使必要數目的藥物結合於抗體的反應,可取得控制依喜替康之結合數的抗體-藥物結合物。
[連接物構造]
茲描述於本發明之抗HER2抗體-藥物結合物中使抗腫瘤性化合物與抗HER2抗體結合的連接物構造。該連接物係具有下式:
-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-
之構造,抗體係於L
1之末端(與L
2結合的為相反側之末端)結合,抗腫瘤性化合物係於-L
a-(CH
2)n
2-C(=O)-部分之羰基結合。
n
1表示0至6之整數,但較佳為1至5之整數,更佳為1至3。
1.L
1L
1係以-(琥珀醯亞胺-3-基-N)-(CH
2)n
3-C(=O)-之構造所示。
其中,n
3係2至8之整數,『-(琥珀醯亞胺-3-基-N)-』係具有下式所示的構造。
其部分構造中的3位係結合抗HER2抗體之部位。於此3位之與該抗體之結合,其特徵為形成硫醚而鍵結。此構造部分之1位之氮原子係與含此構造的連接物內存在的亞甲基之碳原子結合。即,-(琥珀醯亞胺-3-基-N)-(CH
2)n
3-C(=O)-L
2-係下式所示的構造(其中,「抗體-S-」係來自抗體)。
式中,n
3係2至8之整數,但較佳為2至5。
就L
1之具體例而言,可列舉
-(琥珀醯亞胺-3-基-N)-CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N)-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N)-CH
2CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N)-CH
2CH
2CH
2CH
2CH
2-C(=O)-等。
2.L
2L
2係-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-所示的構造,但L
2可不存在,於此情形,L
2成為單鍵。又,n
4係1至6之整數,較佳為2至4。L
2係以末端之胺基與L
1結合,以相反側末端之羰基與L
P結合。
就L
2之具體例而言,可列舉:
-NH-CH
2CH
2-O-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-等。
3.L
PL
P係以2至7個之胺基酸所構成的胜肽殘基。即,藉由2至7個之胺基酸作胜肽鍵結的寡胜肽之殘基而構成。L
P係於N末端與L
2結合,於C末端與連接物之-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-部分之胺基結合。其中,『胜肽殘基』或『寡胜肽之殘基』係指包含2個以上之胺基酸殘基的胜肽所衍生的基,表示以其N末端與C末端作為結合部位的2價基。
構成L
P的胺基酸並未特別限定,但例如,L-或D-胺基酸,較佳為L-胺基酸。又,α-胺基酸之外,亦可為β-丙胺酸、ε-胺基己酸、γ-胺基丁酸等之構造之胺基酸,又例如,亦可為經N-甲基化的胺基酸等之非天然型之胺基酸。
L
P之胺基酸序列並未特別限定,但就構成的胺基酸而言,可列舉苯丙胺酸(Phe;F)、酪胺酸(Tyr;Y)、白胺酸(Leu;L)、甘胺酸(Gly;G)、丙胺酸(Ala;A)、纈胺酸(Val;V)、離胺酸(Lys;K)、瓜胺酸(Cit)、絲胺酸(Ser;S)、麩胺酸(Glu;E)、天冬胺酸(Asp;D)等。此等中較佳可列舉苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸。只要構築L
P,使其具有自此等之胺基酸所可重複、任意選擇的胺基酸之序列即可。依據胺基酸之種類,可控制藥物游離的樣式。胺基酸之數目可為2至7個。
就L
P之具體例而言,可列舉:
-GGF-、
-DGGF-、
-(D-)D-GGF-、
-EGGF-、
-GGFG-、
-SGGF-、
-KGGF-、
-DGGFG-、
-GGFGG-、
-DDGGFG-、
-KDGGFG-、
-GGFGGGF-。
上述之『(D-)D』係意指D-天冬胺酸。就本發明之抗體-藥物結合物之特佳L
P而言,可列舉-GGFG-之四胜肽殘基。
4.L
a-(CH
2)n
2-C(=O)-
L
a-(CH
2)n
2-C(=O)-中的L
a係-O-之構造、或為單鍵。n
2係0至5之整數,但較佳為0至3,更佳為0或1。
就L
a-(CH
2)n
2-C(=O)-而言,可列舉以下之構造。
-O-CH
2-C(=O)-、
-O-CH
2CH
2-C(=O)-、
-O-CH
2CH
2CH
2-C(=O)-、
-O-CH
2CH
2CH
2CH
2-C(=O)-、
-O-CH
2CH
2CH
2CH
2CH
2-C(=O)-、
-CH
2-C(=O)-、
-CH
2CH
2-C(=O)-、
-CH
2CH
2CH
2-C(=O)-、
-CH
2CH
2CH
2CH
2-C(=O)-、
-CH
2CH
2CH
2CH
2CH
2-C(=O)-、
-O-C(=O)-。
此等中,為
-O-CH
2-C(=O)-、
-O-CH
2CH
2-C(=O)-、
-O-C(=O)-
的情形,L
a係單鍵且n
2為0的情形較佳。
就連接物之-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-所示的構造之具體例而言,可列舉:
-NH-CH
2-C(=O)-、
-NH-CH
2CH
2-C(=O)-、
-NH-CH
2-O-CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2-C(=O)-、
-NH-CH
2CH
2CH
2-C(=O)-、
-NH-CH
2CH
2CH
2CH
2-C(=O)-、
-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-、
-NH-CH
2-O-C(=O)-、
-NH-CH
2CH
2-O-C(=O)-、
-NH-CH
2CH
2CH
2-O-C(=O)-、
-NH-CH
2CH
2CH
2CH
2-O-C(=O)-等。
此等中更佳為:
-NH-CH
2CH
2CH
2-C(=O)-、
-NH-CH
2-O-CH
2-C(=O)-、
-NH-CH
2CH
2-O-CH
2-C(=O)-。
連接物之-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-,就鏈長而言為4至7原子之鏈長者較佳,但更佳為具有5或6個原子之鏈長者。
本發明之抗HER2抗體-藥物結合物係被認為於移動至腫瘤細胞內後,連接物部分被切斷,NH
2-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-(NH-DX)所示的構造之藥物衍生物游離而表現抗腫瘤作用。就自本發明之抗體-藥物結合物游離而表現抗腫瘤效果的抗腫瘤性衍生物而言,可列舉具有先前所例示的連接物之-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-所示的構造之末端成為胺基的構造部分的抗腫瘤性衍生物,但特佳者為下列所示者。
NH
2-CH
2CH
2-C(=O)-(NH-DX)、
NH
2-CH
2CH
2CH
2-C(=O)-(NH-DX)、
NH
2-CH
2-O-CH
2-C(=O)-(NH-DX)、
NH
2-CHCH
2-O-CH
2-C(=O)-(NH-DX)。
又,NH
2-CH
2-O-CH
2-C(=O)-(NH-DX) 之情形,因位於相同分子內的胺縮醛(aminal)構造不安定,被確認有進一步自體分解而HO-CH
2-C(=O)-(NH-DX)游離。此等之化合物亦可適合使用作為本發明之抗體-藥物結合物之製造中間體。
於將藥物作成依喜替康的本發明之抗體-藥物結合物,使下述之構造之藥物-連接物構造部分[-L
1-L
2-L
P-NH-(CH
2)n
1-L
a-(CH
2)n
2-C(=O)-(NH-DX)]與抗體結合者為較佳。此等之藥物-連接物構造部分係就每1抗體之平均結合數而言,使1至10個結合即可,但較佳為2至8個,更佳為3至8個。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O)-GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O)-GGFG-NH-CH
2CH
2-O-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N)-CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
此等中更佳為下列各者。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-O-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
又較佳為下列各者。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2-C (=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
於本發明之抗體-藥物結合物,將抗HER2抗體與藥物結合的連接物構造可藉由結合迄今所述連接物各部分所示的較佳構造者而構築較佳連接物。就此類連接物-構造而言,可較佳使用以下之構造。又構造之左端係與抗體結合之部位,右端係與藥物結合之部位。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -GGFG-NH- CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2-C (=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH- CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH- CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-。
此等中更佳為下列各者。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) –GGFG -NH-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C (=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-。
再者,較佳可列舉下列各者。
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-、
-(琥珀醯亞胺-3-基-N) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-。
[製造方法]
其次,説明本發明之抗體-藥物結合物或其製造中間體之代表性製造方法。又,於以下,為了表示化合物,使用各反應式中所示的化合物之編號。即,稱為『式(1)之化合物』、『化合物(1)』等。又除此以外之編號之化合物亦同樣地記載。
1.製造方法1
式(1)所示之藉由硫醚而將抗體與藥物-連接物構造結合的抗體-藥物結合物,例如可藉由下述之方法而製造。
[式中,AB表示具有氫硫基的抗體,L
1’表示於L
1所示的連接物構造中連接物末端成為順丁烯二醯亞胺基(maleimidyl)(下式)的構造
(其中,氮原子為結合部位)之連接物,但具體而言,表示於L
1中之-(琥珀醯亞胺-3-基-N)-(CH
2)n
3-C(=O)-中-(琥珀醯亞胺-3-基-N)-部分成為順丁烯二醯亞胺基的基。又,-(NH-DX)係下式所示的構造:
表示依喜替康之1位胺基之氫原子1個被去除而生成的基]。
又,於上述之反應式,式(1)之化合物係可被解釋為自藥物至連接物末端之構造部分1個對1個抗體結合的構造,但此係用於方便説明的記載,實際上大多為該構造部分對抗體分子1個結合複數個的情形。此狀況於以下之製造方法之説明亦為相同。
藉由使利用後述方法可取得的化合物(2)與具有氫硫基的抗體(3a)反應,可製造抗體-藥物結合物(1)。
具有氫硫基的抗體(3a)可以本技術領域者所周知之方法而獲得(Hermanson, G.T, Bioconjugate Techniques, pp.56-136, pp.456-493, Academic Press(1996))。例如,可列舉使陶特氏試藥(Traut’s reagent)對抗體之胺基作用;使N-琥珀醯亞胺基S-乙醯基硫烷酸酯類對抗體之胺基作用後,使羥基胺作用;使N-琥珀醯亞胺基 3-(吡啶二硫基)丙酸酯作用後,使還原劑作用;使二硫蘇糖醇、2-巰基乙醇、參(2-羧基乙基)膦鹽酸鹽(TCEP)等之還原劑對抗體作用而將抗體內鉸鏈部之雙硫鍵還原而使氫硫基生成等之方法,但未限定於此等。
具體而言,將TCEP作為還原劑,對抗體內鉸鏈部雙硫鍵每1個使用0.3至3莫耳當量,於含螯合劑的緩衝液中,使其與抗體反應,藉此而可獲得抗體內鉸鏈部雙硫鍵被部分或完全還原的抗體。就螯合劑而言,例如,可列舉乙二胺四乙酸(EDTA)或二伸乙三胺5乙酸(DTPA)等。將此等以1mM至20mM之濃度使用為宜。就緩衝液而言,可使用磷酸鈉或硼酸鈉、乙酸鈉溶液等。具體而言,藉由將抗體於4℃至37℃與TCEP反應1至4小時,而可獲得具有部分或完全被還原的氫硫基的抗體(3a)。
其中藉由實施使氫硫基附加於藥物-連接物部分的反應,可利用硫醚鍵而使藥物-連接物部分結合。
具有氫硫基的抗體(3a)每1個,使用2至20莫耳當量之化合物(2),而可製造抗體每1個有2個至8個之藥物結合的抗體-藥物結合物(1)。具體而言,於含有具氫硫基的抗體(3a)的緩衝液中,添加使化合物(2)溶解的溶液而使其反應為宜。其中,就緩衝液而言,只要使用乙酸鈉溶液、磷酸鈉或硼酸鈉等即可。反應時之pH係5至9,更佳為於pH7左右使其反應即可。就使化合物(2)溶解的溶媒而言,可使用二甲基亞碸(DMSO)、二甲基甲醯胺(DMF)、二甲基乙醯胺(DMA)、N-甲基-2-吡啶酮(NMP)等之有機溶媒。
只要將使化合物(2)溶解的有機溶媒溶液,於含有具氫硫基的抗體(3a)的緩衝液中添加1至20%v/v而使其反應即可。反應溫度係0至37℃,較佳為10至25℃,反應時間係0.5至2小時。將未反應之化合物(2)之反應性藉由含有硫醇的試藥而使其失活,藉此可結束反應。含有硫醇之試藥係例如,半胱胺酸或N-乙醯基-L-半胱胺酸(NAC)。更具體而言,相對於使用的化合物(2),添加1至2莫耳量之NAC,並藉由於室溫保溫(incubate)10至30分鐘,藉此可結束反應。
製造的抗體-藥物結合物(1)係藉由以下之共通操作而進行濃縮、緩衝液交換、純化、抗體濃度及抗體每一分子之藥物平均結合數之測定,可進行抗體-藥物結合物(1)之鑑定。
共通操作A:抗體或抗體-藥物結合物水溶液之濃縮
於Amicon Ultra(50,000 MWCO,Millipore Co.)之容器內置入抗體或抗體-藥物結合物溶液,以使用離心機(Allegra X-15R,Beckman Coulter,Inc.)的離心操作(以2000G至3800G離心5至20分鐘),而將抗體或抗體-藥物結合物溶液濃縮。
共通操作B:抗體之濃度測定
使用UV測定器(Nanodrop 1000,Thermo Fisher Scientific Inc.),依據製造商規定之方法,進行抗體濃度之測定。此時,各抗體使用相異的280nm吸光係數(1.3mLmg
-1cm
-1至1.8mLmg
-1cm
-1)。
共通操作C-1:抗體之緩衝液交換
將使用Sephadex G-25載體(carrier)的NAP-25管柱(Cat.No.17-0852-02,GE Healthcare Japan Corporation),依據製造商規定之方法,以含氯化鈉(137mM)及乙二胺四乙酸(EDTA,5mM)的磷酸緩衝液(10mM,pH6.0;本說明書中稱為PBS6.0/EDTA)使其平衡化。對每一根此NAP-25管柱,放置抗體水溶液2.5mL後,分取以PBS6.0/EDTA 3.5mL所溶出的劃分(3.5mL)。將此劃分藉由共通操作A而濃縮,使用共通操作B而進行抗體濃度之測定後,使用PBS6.0/EDTA而調整抗體濃度為10mg/mL。
共通操作C-2:抗體之緩衝液交換
將使用Sephadex G-25載體(carrier)的NAP-25管柱(Cat.No.17-0852-02,GE Healthcare Japan Corporation),依據製造商之規定,以含氯化鈉(50mM)及EDTA(2mM)的磷酸緩衝液(50mM,pH6.5;本說明書中稱為PBS6.5/EDTA)使其平衡化。對每一根此NAP-25管柱,放置抗體水溶液2.5mL後,分取以PBS6.5/EDTA 3.5mL所溶出的劃分(3.5mL)。將此劃分藉由共通操作A而濃縮,使用共通操作B而進行抗體濃度之測定後,使用PBS6.5/EDTA將抗體濃度調整為20mg/mL。
共通操作D:抗體-藥物結合物之純化
以市售之磷酸緩衝液(PBS7.4,Cat.No.10010-023,Invitrogen)、含氯化鈉(137mM)的磷酸鈉緩衝液(10mM,pH6.0;本說明書中稱為PBS6.0)或含山梨糖醇(5%)的乙酸緩衝液(10mM,pH5.5;本說明書中稱為ABS)之任一種緩衝液使NAP-25管柱平衡化。於此NAP-25管柱中置入抗體-藥物結合物反應水溶液(約1.5mL),以製造商規定之量的緩衝液使其溶出,藉此分取抗體劃分。重複將此分取劃分再次置入NAP-25管柱並以緩衝液使其溶出之膠體過濾純化操作共計2至3次,藉此獲得去除未結合之藥物連接物或低分子化合物(參(2-羧基乙基)膦鹽酸鹽(TCEP)、N-乙醯基-L-半胱胺酸(NAC)、二甲基亞碸)的抗體-藥物結合物。
共通操作E:抗體-藥物結合物中的抗體濃度及抗體每一分子之藥物平均結合數之測定(1)
抗體-藥物結合物中的結合藥物濃度係可藉由測定抗體-藥物結合物水溶液之280nm及370nm之二波長中的UV吸光度後,進行下述之計算而算出。
因某波長中的全吸光度係等於系統內存在的全部吸收化學物種之吸光度之和(吸光度之加成性),故於抗體與藥物之結合前後,假設抗體及藥物之莫耳吸光係數未變化時,抗體-藥物結合物中的抗體濃度及藥物濃度係如下述之關係式所示。
A
280=A
D , 280+A
A , 280=ε
D , 280C
D+ε
A , 280C
A式(I)
A
370=A
D , 370+A
A , 370=ε
D , 370C
D+ε
A , 370C
A式(II)
其中,A
280表示280nm中的抗體-藥物結合物水溶液之吸光度,A
370表示370nm中的抗體-藥物結合物水溶液之吸光度,A
A , 280表示280nm中的抗體之吸光度,A
A , 370表示370nm中的抗體之吸光度,A
D , 280表示280nm中的結合物先驅體之吸光度,A
D , 370表示370nm中的結合物先驅體之吸光度,ε
A , 280表示280nm中的抗體之莫耳吸光係數,ε
A , 370表示370nm中的抗體之莫耳吸光係數,ε
D , 280表示280nm中的結合物先驅體之莫耳吸光係數,ε
D , 370表示370nm中的結合物先驅體之莫耳吸光係數,C
A表示抗體-藥物結合物中的抗體濃度,C
D表示抗體-藥物結合物中的藥物濃度。
其中,ε
A , 280、ε
A , 370、ε
D , 280、ε
D , 370係使用事先準備的値(計算推定値或由化合物之UV測定所獲得的實測値)。例如,ε
A , 280係自抗體之胺基酸序列,藉由已知之計算方法(Protein Science, 1995, vol.4, 2411-2423)可加以推定。ε
A , 370係通常為零。於實施例,曲妥珠單抗之莫耳吸光係數係使用ε
A , 280=215400(計算推定値)及ε
A , 370=0。ε
D , 280及ε
D , 370係可藉由測定將所使用的結合物先驅體溶解為某莫耳濃度的溶液之吸光度,依據朗伯-比爾定律(Lambert-Beer's law)(吸光度=莫耳濃度×莫耳吸光係數×槽光徑長)而獲得。實施例中的藥物連接物之莫耳吸光係數只要未特別限定,使用ε
D , 280=5000(實測平均値)、ε
D , 370=19000(實測平均値)。藉由測定抗體-藥物結合物水溶液之A
280及A
370,將此等之値代入式(I)及(II)而解開連立方程式,而可求得C
A及C
D。再藉由以C
A除C
D,可求得每1抗體之藥物平均結合數。
共通操作F:抗體-藥物結合物中的抗體每一分子之藥物平均結合數之測定(2)
抗體-藥物結合物中的抗體每一分子之藥物平均結合數係除了前述之共通操作E之外,亦可藉由使用以下之方法的高速液體層析(HPLC)分析而求得。
[F-1.HPLC分析用樣品之調製(抗體-藥物結合物之還原)]
將抗體-藥物結合物溶液(約1mg/mL、60μL)與二硫蘇糖醇(DTT)水溶液(100mM、15μL)混合。藉由將混合物於37℃保溫30分鐘,而將切斷抗體-藥物結合物之L鏈及H鏈間的雙硫鍵的樣品用於HPLC分析。
[F-2.HPLC分析]
將HPLC分析以下述之測定條件進行。
HPLC系統:Agilent 1290 HPLC系統(Agilent Technologies)
檢測器:紫外吸光度計(測定波長:280nm)
管柱:PLRP-S(2.1×50mm、8μm、1000Å;Agilent Technologies、P/N PL1912-1802)
管柱溫度:80℃
移動相A:0.04%三氟乙酸(TFA)水溶液
移動相B:含0.04%TFA的乙腈溶液
梯度程式:29%-36%(0分-12.5分)、36%-42%(12.5-15分)、42%-29%(15分-15.1分)、29%-29%(15.1分-25分)
樣品注入量:15μL
[F-3.資料解析]
〔F-3-1〕相對於未結合藥物之抗體之L鏈(L
0)及H鏈(H
0),藥物結合的L鏈(結合一個藥物的L鏈:L
1)及H鏈(結合一個藥物的H鏈:H
1、結合二個藥物的H鏈:H
2、結合三個藥物的H鏈:H
3)係與結合的藥物數目成比例地增加疏水性而滯留時間變大,故以L
0、L
1、H
0、H
1、H
2、H
3之順序被溶出。藉由比較L
0及H
0之滯留時間,可將檢出波峰分配於L
0、L
1、H
0、H
1、H
2、H
3之任一者。
〔F-3-2〕因於藥物連接物有UV吸收,因應藥物連接物之結合數,使用L鏈、H鏈及藥物連接物之莫耳吸光係數而依據下式進行波峰面積値之補正。
其中,各抗體中的L鏈及H鏈之莫耳吸光係數(280nm)係可藉由已知之計算方法(Protein Science, 1995, vol.4, 2411-2423),使用自各抗體之L鏈及H鏈之胺基酸序列所推定的値。曲妥珠單抗的情形,依據其胺基酸序列,將L鏈之莫耳吸光係數以26150、H鏈之莫耳吸光係數以81290作為推定値而使用。又,藥物連接物之莫耳吸光係數(280nm)係使用使各藥物連接物以巰基乙醇或N-乙醯基半胱胺酸反應而將順丁烯二醯亞胺基變換為琥珀醯亞胺硫醚的化合物之實測之莫耳吸光係數(280nm)。
〔F-3-3〕依據下式計算相對於波峰面積補正値合計之各鏈波峰面積比(%)。
〔F-3-4〕依據下式計算抗體-藥物結合物中的抗體每一分子之藥物平均結合數。
藥物平均結合數=(L
0波峰面積比×0+L
0波峰面積比×1+H
0波峰面積比×0+H
1波峰面積比×1+H
2波峰面積比×2+H
3波峰面積比×3)/100×2
以下描述於製造方法1所使用的製造中間體化合物。製造方法1中的式(2)所示的化合物係下式所示的化合物:
(順丁烯二醯亞胺-N-基) -(CH
2)n
3- C(=O) -L
2-L
P- NH- (CH
2) n
1-L
a- (CH
2)n
2-C (=O)-(NH-DX)。
式中,
n
3表示整數之2至8,
L
2表示-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-或單鍵,
其中,n
4表示1至6之整數,
L
P表示由選自苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸的2至7個之胺基酸所構成的胜肽殘基,
n
1表示0至6之整數,
n
2表示0至5之整數,
L
a表示-O-或單鍵,
(順丁烯二醯亞胺-N-基)-係以下式
所示的於順丁烯二醯亞胺基(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)中,氮原子成為結合部位的基,
-(NH-DX)係下式
所示的1位之胺基之氮原子成為結合部位的基。
作為製造中間體較佳為L
2係單鍵,或為-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-的情形,n
4為整數之2至4。
就L
P之胜肽殘基而言,將包含選自苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸的胺基酸的胜肽殘基的化合物作為製造中間體較佳。此類胜肽殘基中,將L
P為以4個胺基酸所構成的胜肽殘基的化合物作為製造中間體較佳。更具體而言,將L
P為-GGFG-之四胜肽殘基的化合物作為製造中間體較佳。
又,就-NH-(CH
2)n
1-L
a-(CH
2)n
2-而言,將-NH-CH
2CH
2-、-NH-CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2-的化合物作為製造中間體較佳,更佳為-NH-CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2的化合物。
再者,式(2)所示的化合物係將n
3為整數之2至5,L
2為單鍵,-NH-(CH
2)n
1-L
a-(CH
2)n
2-為-NH-CH
2CH
2-、-NH-CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2-的化合物作為製造中間體較佳。更佳為-NH-(CH
2)n
1-L
a-(CH
2)n
2-係-NH-CH
2CH
2-、-NH-CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2-的化合物。再者,n
3為整數之2或5的化合物較佳。
又,式(2)所示的化合物係將n
3為整數之2至5,L
2為-NH-(CH
2CH
2-O)n
4-CH
2CH
2-C(=O)-,n
4為整數之2至4,-NH-(CH
2)n
1-L
a-(CH
2)n
2-為-NH-CH
2CH
2-、-NH-CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2-、-NH-CH
2CH
2CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2-的化合物作為製造中間體較佳。更佳為n
4係整數之2或4之化合物。再者,-NH-(CH
2)n
1-L
a-(CH
2)n
2-係-NH-CH
2CH
2CH
2-、-NH-CH
2-O-CH
2-、或-NH-CH
2CH
2-O-CH
2-的化合物較佳。
就作為此類本發明化合物之製造上有用的中間體之較佳者而言可呈示以下者。
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
藉由使選自上述之製造中間體化合物之群組的藥物-連接物化合物,與抗HER2抗體或其反應性衍生物反應,於抗HER2抗體之鉸鏈部存在的雙硫鍵部分使其形成硫醚鍵,而可製造本發明之抗HER2抗體-藥物結合物。此情形,使用抗HER2抗體之反應性衍生物較佳,尤其將抗HER2抗體作還原處理而獲得的反應性衍生物較佳。
以下者為作為製造中間體之更佳化合物。
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -GGFG- NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基)-CH
2CH
2CH
2CH
2CH
2-C(=O) -GGFG-NH-CH
2CH
2CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH- CH
2-CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2- C(=O) -NH-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)。
又,上述之中間體化合物群組中係下式所示的化合物為更佳化合物:
(順丁烯二醯亞胺-N-基)-CH
2CH
2-C(=O)-NH- CH
2CH
2-O-CH
2CH
2-O-CH
2CH
2-C(=O)-GGFG-NH-CH
2CH
2CH
2-C(=O)-(NH-DX)、
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2-O-CH
2-C(=O)-(NH-DX)、或
(順丁烯二醯亞胺-N-基) -CH
2CH
2CH
2CH
2CH
2- C(=O) -GGFG-NH-CH
2CH
2-O-CH
2-C(=O)-(NH-DX)。
又,為了確保結合物之量,將以同樣條件所製作獲得的平均藥物數為相同程度之複數個結合物(例如,±1左右)混合而可作成新的批次。此情形,平均藥物數係落在混合前之平均藥物數之間。
2.製造方法2
於先前之製造方法所使用的中間體的式(2)所示的化合物及彼等之藥理上可容許的鹽,可藉由例如下述之方法而製造。
[式中,L
1’表示末端順丁烯二醯亞胺基,P
1、P
2及P
3表示保護基]。
藉由將羧酸(5)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使其與NH
2-DX(4)或其藥理上可容許的鹽反應,可製造化合物(6)。NH
2-DX(4)係表示依喜替康(化學名:(1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲□并[1,2-b]喹啉-10,13(9H,15H)-二酮)。
此反應只要適用胜肽合成通常使用的反應試藥或條件即可。活性酯係有各種者,但例如,將p-硝基酚等之酚類、N-羥基苯并三唑或N-羥基琥珀醯亞胺等與羧酸(5),使用N,N’-二環己基碳二亞胺(dicyclohexyl carbodiimide)或1-乙基-3-(3-二甲基胺基丙基)碳二亞胺・鹽酸鹽等之縮合劑而使其反應即可製造。又,活性酯亦可藉由下列製造:羧酸(5)與五氟苯基三氟乙酸酯等之反應;羧酸(5)與1-苯并三唑基氧基三吡咯啶鏻六氟亞磷酸酯(1-benzotriazolyloxytripyrrolidinophosphonium hexafluorophosphite)之反應;羧酸(5)與氰基膦酸二乙酯之反應(鹽溶法);羧酸(5)與三苯基膦及2,2’-二吡啶基二硫醚之反應(向山法(Mukaiyama's method));羧酸(5)と氯化4-(4,6-二甲氧基-1,3,5-三□-2-基)-4-甲基□啉鎓(DMTMM)等之三□衍生物之反應等。又,亦可利用藉由將羧酸(5)於鹼存在下,以亞硫醯氯、草醯氯等之酸鹵化物處理而製造之酸鹵化物法等來進行反應。
藉由將如上述獲得的羧酸(5)之活性酯、混合酸酐、或酸鹵化物,於化合物(4)與適當鹼存在下,使其於惰性溶媒中於-78℃~150℃之反應溫度下反應,可製造化合物(6)。又,「惰性溶媒」係意指於採用該溶媒被的反應中不阻礙作為實施目的的反應的溶媒。
就上述之各步驟所使用的具體的鹼而言,例如,可列舉碳酸鈉、碳酸鉀、乙醇鈉、丁醇鉀、氫氧化鈉、氫氧化鉀、氫化鈉、氫化鉀等之鹼金屬或鹼土類金屬之碳酸鹽、烷氧化物、氫氧化物、或氫化物;n-丁基鋰等之烷基鋰、或二異丙基醯胺鋰(lithium diisopropylamide)之類的二烷基胺基鋰所代表的有機金屬鹼;鋰雙(三甲基矽烷基)醯胺等之雙矽烷基胺之有機金屬鹼;又可列舉吡啶、2,6-二甲基吡啶、柯林鹼(collidine)、4-二甲基胺基吡啶、三乙基胺、N-甲基□啉、二異丙基乙基胺、二吖雙環[5.4.0]十一-7-烯(DBU)等之三級胺或含氮雜環化合物等之有機鹼等。
就本反應所使用的惰性溶媒而言,可列舉二氯甲烷、氯仿、四氯化碳等之鹵化烴系溶媒;四氫呋喃、1,2-二甲氧基乙烷、二□烷等之醚系溶媒;苯、甲苯等之芳香族烴系溶媒;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶-2-酮等之醯胺系溶媒,除了此等之外,依情形亦可使用二甲基亞碸、環丁碸等之亞碸系溶媒;丙酮、甲基乙基酮等之酮系溶媒;甲醇、乙醇等之醇系之溶媒等。再者,亦可混合彼等而使用。
就化合物(6)之末端胺基之保護基P
1而言,可使用第三丁氧基羰基、或9-茀基甲氧基羰基、苄氧基羰基等之胜肽合成通常使用的胺基之保護基。就其他胺基之保護基而言,可列舉乙醯基等之烷醯基;甲氧基羰基、乙氧基羰基等之烷氧基羰基;對甲氧基苄氧基羰基、對(或鄰)硝基苄氧基羰基等之芳基甲氧基羰基;苄基、三苯基甲基等之芳基甲基;苄醯基等之芳醯基;2,4-二硝基苯磺醯基、鄰硝基苯磺醯基等之芳基磺醯基。保護基P
1只要因應保護胺基的化合物之性質等而選擇即可。
藉由使獲得的化合物(6)之末端胺基之保護基P
1脱保護,可製造化合物(7)。此脱保護只要選擇因應其保護基之試藥或條件即可。
藉由將以P
2保護N末端的胜肽羧酸(8)誘導為活性酯、混合酸酐等,使其與獲得的化合物(7)反應,可製造化合物(9)。形成胜肽羧酸(8)與化合物(7)之胜肽鍵的反應條件或試藥、及鹼、惰性溶媒只要自於化合物(6)之合成所述者中適當地選擇來使用即可。保護基P
2只要自化合物(6)之保護基中所述者適當選擇而使用即可,只要因應保護胺基的化合物之性質等加以選擇即可。又,如胜肽合成所通常使用者,重複將構成胜肽羧酸(8)的胺基酸或胜肽依序反應及脱保護,而使其延長而可製造化合物(9)。
藉由使獲得的化合物(9)之胺基之保護基P
2脱保護,可製造化合物(10)。此脱保護只要選擇因應其保護基之試藥或條件即可。
藉由將羧酸(11)誘導為活性酯、混合酸酐、或酸鹵化物等,使其與獲得的化合物(10)反應,可製造化合物(2)。形成羧酸(11)與化合物(10)之胜肽鍵的反應條件或試藥、及鹼、惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇而使用即可。
化合物(9)亦可以例如下述之方法而加以製造。
藉由將以P
2保護N末端的胜肽羧酸(8)誘導為活性酯、混合酸酐等,於鹼存在下,使其與以P
3保護羧基的胺化合物(12)反應,可製造化合物(13)。形成胜肽羧酸(8)及化合物(12)之胜肽鍵的反應條件、試藥、鹼、及惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇而使用即可。
就化合物(13)之胺基之保護基P
2而言,只要為通常使用的保護基即可,並未特別限制。
具體而言,作為羥基之保護基,可列舉甲氧基甲基等之烷氧基甲基;苄基、4-甲氧基苄基、三苯基甲基等之芳基甲基;乙醯基等之烷醯基;苄醯基等之芳醯基;第三丁基二苯基矽烷基等之矽烷基等。羧基可與甲基、乙基、第三丁基等之烷基、烯丙基、或苄基等之芳基甲基作為酯等而加以保護。胺基可列舉第三丁氧基羰基、甲氧基羰基、乙氧基羰基等之烷氧基羰基;烯丙氧基羰基、或9-茀基甲氧基羰基、苄氧基羰基、對甲氧基苄氧基羰基、對(或鄰)硝基苄氧基羰基等之芳基甲氧基羰基;除此之外,可列舉乙醯基等之烷醯基;苄基、三苯基甲基等之芳基甲基;苄醯基等之芳醯基;或2,4-二硝基苯磺醯基、鄰硝基苯磺醯基等之芳基磺醯基等。
就羧基之保護基P
3而言,只要使用於有機合成化學中,特別是於胜肽合成中通常使用作為羧基保護基的保護基即可,具體而言,為甲基、乙基、第三丁基等之烷酯、烯丙酯、苄酯等,只要自上述之保護基加以適宜選擇而使用即可。
於此情形,將胺基之保護基與羧基之保護基以相異方法或條件可去除較佳。例如,可列舉P
2為第三丁氧基羰基、P
3為苄基的組合等作為代表例。彼等之保護基只要因應保護胺基及羧基的化合物之性質等而自上述者加以選擇即可,即使在將彼等之保護基切斷之際,亦只要選擇因應其保護基的試藥或條件即可。
藉由使獲得的化合物(13)之羧基之保護基P
3脱保護,可製造化合物(14)。此脱保護只要選擇因應其保護基的試藥或條件即可。
藉由將獲得的化合物(14)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使其與化合物(4)反應,可製造化合物(9)。此反應只要適用胜肽合成所通常使用的反應試藥或條件即可,反應條件或試藥、及鹼或惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇而使用即可。
化合物(2)亦可以例如下述之方法而製造。
藉由使化合物(13)之胺基之保護基P
2脱保護,可製造化合物(15)。此脱保護只要選擇因應其保護基的試藥或條件即可。
藉由將羧酸衍生物(11)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使其與獲得的化合物(15)反應,可製造化合物(16)。形成胜肽羧酸(11)與化合物(15)之醯胺鍵的反應條件或試藥、鹼、及惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇來使用即可。
藉由使獲得的化合物(16)之羧基之保護基脱保護,可製造化合物(17)。此脱保護可與化合物(14)之製造中的羧基之脱保護同樣地進行。
藉由將化合物(17)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使其與化合物(4)反應,可製造化合物(2)。此反應只要適用胜肽合成所通常使用的反應試藥或條件即可,反應條件或試藥、鹼、及惰性溶媒只要自於化合物(6)之合成所述者中加以適宜選擇而使用即可。
3.製造方法3
中間體之式(2)所示的化合物係亦可依據下述之方法而製造。
[式中,L
1’係末端被變換為順丁烯二醯亞胺基的構造之L
1,P
4表示保護基]
藉由將化合物(11)誘導為活性酯、混合酸酐等,於鹼存在下,使其與以P
4保護C末端的胜肽羧酸(18)反應,可製造化合物(19)。形成胜肽羧酸(18)與化合物(11)之胜肽鍵的反應條件或試藥、鹼、及惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇而使用即可。化合物(18)之羧基之保護基P
4只要由先前所述保護基加以適宜選擇而使用即可。
藉由使獲得的化合物(19)之羧基之保護基脱保護,可製造化合物(20)。此脱保護可與化合物(14)之製造中的羧基之脱保護同樣地進行。
藉由將獲得的化合物(20)誘導為活性酯、或混合酸酐等,使其與化合物(7)反應,可製造化合物(2)。此反應只要適用胜肽合成所通常使用的反應試藥或條件即可,反應條件或試藥、鹼、及惰性溶媒只要由於化合物(6)之合成所述者中加以適宜選擇而使用即可。
4.製造方法4
以下,詳述製造方法2所記載之製造中間體(10)中,n
1=1、L
a=O之化合物(10b)之製造方法。式(10b)所示的化合物、其鹽或彼等之溶媒合物係可以例如下述之方法而加以製造。
[式中,L
P表示與前述相同者,L為醯基、乙醯基等之烷醯基或苄醯基等之芳醯基,或表示氫原子,X及Y表示包含1至3個之胺基酸的寡胜肽,P
5及P
7表示胺基之保護基,P
6表示羧基之保護基]
式(21)所示的化合物,藉由日本特開2002-60351號公報所記載的手法或文獻(J. Org. Chem., 51卷,3196頁,1986年)記載之方法、或藉由應用其方法,因應必要進行保護基之去除或官能基變換,而可加以製造。此外,藉由將末端胺基經保護的胺基酸或胺基經保護的寡胜肽之酸醯胺以醛或酮處理,可加以獲得。
藉由使化合物(21),於惰性溶媒中、酸或鹼存在下,於冷卻下至室溫之溫度條件下,與具有羥基的化合物(22)反應,可製造化合物(23)。
就其中可使用的酸而言,例如,可列舉氫氟酸、鹽酸、硫酸、硝酸、磷酸、硼酸等之無機酸;乙酸、檸檬酸、對甲苯磺酸、甲烷磺酸等之有機酸;四氟硼酸鹽、氯化鋅、氯化錫、氯化鋁、氯化鐵等之路易士酸等。此等中,磺酸類,尤其對甲苯磺酸為較佳。又就鹼而言,只要自已述鹼中加以適宜選擇而使用即可,尤其較佳為第三丁醇鉀等之鹼金屬烷氧化物;氫氧化鈉、氫氧化鉀等之鹼金屬氫氧化物;氫化鈉、氫化鉀等之鹼金屬氫化物或鹼土金屬氫化物;二異丙基醯胺鋰(lithium diisopropylamide)等之二烷基胺基鋰所代表的有機金屬鹼;雙(三甲基矽烷基)醯胺鋰等之雙矽烷基胺之有機金屬鹼等。
就反應所使用的溶媒而言,可使用四氫呋喃、1,4-二□烷等之醚系溶媒;苯、甲苯等之芳香族烴系溶媒等。上述之溶媒可為與水之混合物。
又,就P
5所例示的胺基之保護基而言,通常,只要胺基之保護所使用的基即可,並未特別限制。作為代表性者,可列舉製造方法2所記載的胺基之保護基,但於本反應中,P
5所例示的胺基之保護基有被切斷的情形。於此情形,因應必要只要與適當的胺基之保護試藥適宜反應而再度導入保護基即可。
化合物(24)可藉由去除化合物(23)之保護基P
6而加以製造。其中,就P
6所例示的羧基之保護基而言,已於製造方法2中記載代表性者,可自其中加以適宜選擇。於化合物(23),期望胺基之保護基P
5與羧基之保護基P
6係以不同方法或條件可去除的保護基。例如,可列舉P
5為9-茀基甲氧基羰基、P
6為苄基的組合等作為代表性者。彼等之保護基只要因應保護胺基及羧基的化合物之性質等而加以選擇即可,即使在彼等之保護基之去除時,亦只要選擇因應其保護基的試藥或條件即可。
藉由將羧酸(24)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使其與化合物(4)或其藥理上可容許的鹽反應而製造化合物(25),去除獲得的化合物(25)之保護基P
5,藉此可製造化合物(26)。化合物(4)與羧酸(24)之反應及去除保護基P
6的反應只要使用與製造方法2所述試藥或反應條件相同者即可。
藉由使化合物(26)與末端胺基經保護的胺基酸或胺基經保護的寡胜肽(27)反應而製造化合物(9b),去除獲得的化合物(9b)之保護基P
7,藉此可製造化合物(10b)。就P
7所示的胺基之保護基而言,只要為通常胺基之保護所使用的基即可,並未特別限制,作為代表性者可列舉製造方法2所記載的胺基之保護基,即使在其之去除時,亦只要選擇因應保護基之試藥或條件即可。化合物(26)與化合物(27)之反應,只要適用胜肽合成所通常使用的反應試藥或條件即可。上述之方法所製造的化合物(10b),可依據上述之製造方法而導向本發明化合物(1)。
5.製造方法5
以下,詳述製造方法2所記載之製造中間體(2)中n
1=1、n
2=1、L
a=O之化合物(2)之製造方法。式(2)所示的化合物、其鹽或彼等之溶媒合物可以例如下述之方法而加以製造。
[式中,L
1’、L
2、L
P係表示與前述相同者,Z表示包含1至3個胺基酸的寡胜肽,P
8表示胺基之保護基,P
9表示羧基之保護基]。
藉由去除末端胺基及羧基經保護的胺基酸或寡胜肽(28)之保護基P
8,可獲得化合物(29)。藉由使獲得的胺體(29)與化合物(11)反應,可製造化合物(30)。就P
8所示的胺基之保護基而言,只要為通常用於胺基之保護的基即可,並未特別限制,就代表性者,可列舉製造方法2所記載的胺基之保護基。又,即使在保護基P
8之去除時,亦只要選擇因應其保護基之試藥或條件即可。化合物(29)與羧酸(11)之反應,只要使用與製造方法2所述試藥或反應條件相同者即可。
藉由去除化合物(30)之保護基P
9,而製造化合物(31),使獲得的羧酸(31)與化合物(26)反應,藉此可製造製造中間體(2b)。就P
8所示羧基之保護基而言,除了將代表性者記載於製造方法2之外,其脱保護反應只要使用與製造方法2所述試藥或反應條件相同者即可。又,化合物(26)與羧酸(31)之反應只要適用胜肽合成所通常使用的反應試藥或條件即可。以上述方法所製造的化合物(2b)可依據上述之製造方法而導向本發明化合物(1)。
6.製造方法6
以下,詳述製造方法2所記載之製造中間體(17)中n
1=1、n
2=1、L
a=O之化合物(17b)之製造方法。式(17b)所示的化合物、其鹽或彼等之溶媒合物亦可藉由例如下述之方法而加以製造。
[式中,L
1’、L
2、L
P、X、Y、P
5、P
6、及P
7係表示與前述相同者]。
藉由將末端胺基及末端羧基經保護的化合物(23)之胺基之保護基P
5加以脱保護而製造化合物(32),使獲得的胺體(32)與末端胺基或胺基經保護的寡胜肽(27)反應,藉此可製造化合物(33)。就P
5所示的胺基之保護基而言,只要為通常用於胺基之保護的基即可,並未特別限制,代表性者可列舉製造方法2所記載的胺基之保護基。又,即使在保護基P
5之去除時,亦只要選擇因應其保護基之試藥或條件即可。其中,就P
6所示的羧基之保護基及P
7所示的胺基之保護基而言,作為代表性者可列舉製造方法2所記載的羧基及胺基之保護基。於化合物(33),期望羧基之保護基P
6與胺基之保護基P
7係可以相同方法或條件去除的保護基。例如可列舉P
6為苄酯基、P
7為苄氧基羰基的組合作為代表性者。
化合物(34)係可藉由去除化合物(33)之羧基之保護基P
6與胺基之保護基P
7而加以製造。除了可藉由各自逐次去除羧基之保護基P
6與胺基之保護基P
7而製造化合物(37)之外,只要P
6與P
7為可以相同方法或條件去除的保護基,則可將兩者以一步驟去除而簡便地製造化合物(34)。
藉由使獲得的化合物(34)與化合物(11)反應,可製造化合物(17b)。化合物(34)與化合物(11)之反應只要使用與製造方法2所述試藥或反應條件相同者即可。
本發明之抗HER2抗體-藥物結合物係藉由放置於大氣中、或進行再結晶或純化操作,而有吸收水分、附著吸附水等而成為水合物的情形,此類含水的化合物及鹽亦包含於本發明。
又,本發明中亦包含以各種放射性或非放射性同位素標誌的化合物。構成本發明之抗體-藥物結合物的原子之1個以上可以非天然比率含有原子同位素。就原子同位素而言,例如,可列舉氘(
2H)、氚(
3H)、碘-125(
125I)或碳-14(
14C)等。又,本發明化合物係例如,可以氚(
3H)、碘-125(
125I)或碳-14(
14C)等之放射性同位素作放射性標識。經放射性標識的化合物係有用於作為治療或預防劑、研究試藥,例如,檢驗試藥、及診斷劑,例如,活體影像診斷劑。本發明之抗體-藥物結合物之全部之同位素變異種不論是否有放射性,皆包含於本發明之範圍。
[醫藥]
本發明之抗HER2抗體-藥物結合物因顯示對癌細胞的細胞毒殺活性,故可作為醫藥使用,尤其可作為抗癌的治療劑及/或預防劑使用。
即,本發明之抗HER2抗體-藥物結合物係可選擇作為癌治療之主要治療法的化學療法用之藥劑而使用,就其結果而言,可使癌細胞之成長遲緩、抑制增殖、進而破壞癌細胞。藉由此等,於癌患者,可達成由癌所致的症狀的解放、生活品質(QOL)之改善,保持癌患者之生命而達成治療效果。即使為未達到癌細胞之破壞的情形,可藉由癌細胞之增殖之抑制或控制,而於癌患者達成高QOL的同時,亦達成更長期之生存。
除了於此類藥物療法中的藥物單獨使用之外,亦可於輔助療法中作為與其他療法組合的藥劑來使用,可與外科手術、或放射線療法、荷爾蒙療法等組合。再者,亦可作為新輔助療法(neoadjuvant therapy)中的藥物療法之藥劑使用。
如以上的治療用途之外,亦可期待抑制微細轉移癌細胞之增殖,進而破壞的效果。尤其於原發性之癌細胞中HER2的表現被確認時,藉由投予本發明之抗HER2抗體-藥物結合物,可期待癌轉移之抑制或預防效果。例如,可期待抑制、破壞在轉移過程位於體液中的癌細胞的效果、或對於剛在任一組織著床的微細癌細胞的抑制、破壞等之效果。據此,尤其可期待於外科的癌去除後之癌轉移的抑制、預防效果。
本發明之抗HER2抗體-藥物結合物,對患者除了作為全身療法而投予之外,於癌組織局部投予亦可期待治療效果。
就本發明之抗HER2抗體-藥物結合物所應用的癌之種類而言,可列舉肺癌、尿道上皮癌、大腸癌、前列腺癌、卵巢癌、胰癌、乳癌、膀胱癌、胃癌、胃腸道基質腫瘤、子宮頸癌、食道癌、鱗狀上皮癌、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮內膜癌、子宮癌、唾液腺癌、腎臓癌、外陰癌、甲狀腺癌、或陰莖癌等。本發明之抗HER2抗體-藥物結合物係於成為治療對象的癌細胞,以表現抗體-藥物結合物中之抗體可辨識的HER2蛋白的癌細胞成為治療對象。於本說明書,「表現HER2蛋白的癌」係包含於其細胞表面具有HER2蛋白的細胞的癌。HER2蛋白係於各式各樣的人類腫瘤中過度表現,可使用評價HER2蛋白之過度表現的免疫組織化學染色法(IHC)或評價HER2基因之增幅的螢光原位雜交法(fluorescence in situ hybridization)(FISH)等之本領域通常實施的方法而加以評價。
又,本發明之抗HER2抗體-藥物結合物係藉由其抗HER2抗體辨識於癌細胞表面表現的HER2蛋白,進一步內在化而表現抗腫瘤效果,故本發明之抗HER2抗體-藥物結合物之治療對象係未限定於「表現HER2蛋白的癌」,例如白血病、惡性淋巴瘤、漿細胞瘤、骨髓瘤、或肉瘤亦可成為治療對象。
本發明之抗HER2抗體-藥物結合物係可適合對哺乳動物投予,但更佳為人類。
就含本發明之抗HER2抗體-藥物結合物的醫藥組成物中使用的物質而言,於投予量或投予濃度,可自此領域所通常使用的其他製劑添加物加以適宜選擇而應用。
本發明之抗HER2抗體-藥物結合物係可作為含有1種以上之藥學上適合性之成分的藥學組成物而投予。例如,上述藥學組成物,就代表而言,含有1種以上之藥學載劑(例如,滅菌液體)。其中,液體包含例如,水及油(石油、動物來源、植物來源、或合成來源之油)。油可為例如,花生油、大豆油、礦物油、芝麻油等。水於上述藥學組成物為經靜脈內投予的情形,更為代表性的載劑。食鹽水溶液、以及右旋糖水溶液及甘油水溶液亦可作為液體載劑,尤其可用於注射用溶液。適當的藥學賦形劑可自此領域周知者適宜選擇。上述組成物,只要需要,亦可含有微量之濕潤劑或乳化劑、或pH緩衝化劑。適當之藥學載劑之例係記載於E.W.Martin之「Remington’s Pharmaceutical Sciences」。其處方係對應投予之態樣。
各種輸送系統為周知的,可用於投予本發明之抗HER2抗體-藥物結合物。就導入方法而言,可列舉皮內、肌肉內、腹腔內、靜脈內、及皮下之路徑,但並未限定於此等。投予可為例如經由注入或團式注射(bolus injection)者。於特定之較佳實施形態,上述配位體藥物結合體之投予係經由注入。非經口的投予係較佳投予路徑。
於代表的實施形態,上述藥學組成物係作為適合對人類靜脈內投予的藥學組成物,依據常用順序而被調配。代表性地,靜脈內投予用之組成物係滅菌之等張性之水性緩衝液中的溶液。必要的情形,上述醫藥亦可含有助溶劑及用以緩和注射部位之疼痛的局部麻醉劑(例如,利卡多因(lignocaine))。一般而言,上述成分係以下列任一者而供給,例如,密封於顯示活性劑的量的安瓿或小袋(sachet)等而經封口的容器中之呈乾燥冷凍乾燥粉末或無水之濃縮物,各別、或於單位劑型中一起混合。藉由注入上述醫藥而被投予的形態的情形,其可例如以含有滅菌之製藥等級的水或食鹽水的注入瓶而投藥。上述醫藥係藉由注射而被投予的情形,注射用滅菌水或食鹽水之安瓿例如可以將上述成分於投予前混合的方式而提供。
本發明之醫藥組成物可為僅含有本案之抗HER2抗體-藥物結合物的醫藥組成物,亦可為含有抗HER2抗體-藥物結合物及至少一個其他之癌治療劑的醫藥組成物。本發明之抗HER2抗體-藥物結合物亦可與其他癌治療劑一起投予,據此,可使抗癌效果增強。以如此之目的而使用的其他抗癌劑,可與抗體-藥物結合物同時、各別、或連續地投予至個體,亦可變換各自之投予間隔而投予。就此類癌治療劑而言,可列舉5-FU、帕妥珠單抗(pertuzumab)、紫杉醇(paclitaxel)、卡鉑定(carboplatin)、順鉑(cisplatin)、吉西他濱(gemcitabine)、截瘤達錠(capecitabine)、愛萊諾迪肯(irinotecan)(CPT-11)、紫杉醇(paclitaxel)、多西他賽(docetaxel)、培美曲塞(pemetrexed)、索拉非尼(sorafenib)、長春鹼(vinblastine)、溫諾平(vinorelbine)、依维莫司(everolims)、坦螺旋黴素(tanespimycin)、貝伐單抗(bevacizumab)、奥沙利鉑(oxaliplatin)、拉帕替尼(lapatinib)、阿多曲妥珠單抗依坦辛(ado-trastuzumab emtansine(T-DM1))或國際公開第2003/038043號所記載之藥劑,又可列舉LH-RH類似物(亮丙瑞林(leuprorelin)、戈舍瑞林(goserelin)等)、雌二醇氮芥磷酸酯(estramustine phosphate)、雌激素(estrogen)拮抗藥(他莫昔芬(tamoxifen)、雷洛昔芬(raloxifene)等)、芳香酶(aromatase)抑制劑(阿那曲唑(anastrozole)、利妥唑(letrozole)、依西美坦(exemestane)等)等,但只要具有抗腫瘤活性的藥劑即可,並未限定於此等。
此類醫藥組成物,作為具有所選擇的組成及必要純度的製劑,只要製劑化為冷凍乾燥製劑或液狀製劑即可。製劑化為冷凍乾燥製劑之際,可為含有此領域所使用的適當製劑添加物的製劑。又於液劑亦同樣地可製劑化為含有此領域所使用的各種製劑添加物的液狀製劑。
醫藥組成物之組成及濃度係依投予方法而變化,但本發明之醫藥組成物所含的抗HER2抗體-藥物結合物,於抗體-藥物結合物之對抗原的親和性,即對抗原的解離常數(Kd値)之點,係親和性越高(Kd値低),越能以即使為少量之投予量來發揮藥效。據此,於抗體-藥物結合物之投予量之決定時,亦可基於抗體-藥物結合物與抗原之親和性的狀況而設定投予量。將本發明之抗體-藥物結合物對人類投予之際,例如,只要將約0.001~100mg/kg以1次或以1~180日1次之間隔作複數次投予即可。
[實施例]
藉由以下所示實施例而具體說明本發明,但本發明並未限定於此等例。又,此等於任何的意義皆非作限定解釋。又,於本說明書,未特別記載之試藥、溶媒及起始材料係可自市售之供給源容易地取得。
參考例1 曲妥珠單抗之調製
將Herceptin(Genentech,Inc.)440mg/小瓶(vial)之14瓶分溶解於陽離子交換層析緩衝液A(25mM檸檬酸鹽緩衝液,30mM NaCl,pH5.0)之2L,以0.2μm過濾器(Millipore Co.:Stericup 0.22μm,GVPVDF Membrane)進行過濾。將試料供給於陽離子交換層析管柱(SP Sepharose HP 240ml,XK50管柱),以陽離子交換層析緩衝液B(25mM 檸檬酸鹽緩衝液,500mM NaCl,pH5.0),藉由NaCl濃度30mM~500mM之線性梯度(linear gradient)而溶出,劃分出IgG單體。藉由尺寸排除層析分析,合併單體高純度98%以上之樣品,進行利用UF30K(Millipore Co.:PELLICON XL Filter,BIOMAX 30K,PXB030A50)之濃縮及置換為CBS緩衝液(10mM檸檬酸鹽/140mM NaCl,pH6.0)。置換為CBS緩衝液的樣品以0.2μm過濾器(Sartorius:Minisart-Plus0.2μm,17823K)進行過濾。
參考例2 曲妥珠單抗依坦辛之製造 T-DM1
抗體之SMCC化:將以參考例1作成的曲妥珠單抗使用製造方法1記載的共通操作C-2(使用PBS6.5/EDTA作為緩衝液)、共通操作A及共通操作B(使用1.37mLmg
-1cm
-1作為280nm吸光係數),緩衝液交換為PBS6.5/EDTA,將於PBS6.5/EDTA(7.60mL)溶解曲妥珠單抗(160.0mg)的溶液準備於15mL聚丙烯製管。其次,於室溫添加SMCC(1.84mg)之DMSO溶液(0.40mL;相對於抗體一分子相當於約5.1當量),將反應溶液之抗體濃度調整為20mg/mL,使用試管混勻器(Tube Rotator)(MTR-103、AS ONE股份有限公司),於室溫使其反應2小時。將此反應液依據共通操作D-2(使用PBS6.5/EDTA作為緩衝液)進行純化,獲得含SMCC誘導化的抗體154.9mg的溶液12mL。
抗體與藥物連接物之結合:對置入50mL聚丙烯製管中的上述溶液,於室溫添加PBS6.5/EDTA(2.56mL)及N
2-脫乙醯-N
2-(3-巰基-1-側氧基丙基)-美登素(maytansine)(4.67mg;DM1、Journal of Medicinal Chemistry、2006年、49卷、14號、4392項)之DMA(二甲基乙醯胺)溶液(0.93mL;相對於SMCC誘導化的抗體一分子相當於約5.8當量),將反應溶液之抗體濃度調整為10mg/mL,使用試管混勻器而於室溫使其反應16.5小時。
純化操作:將上述溶液,藉由使用含氯化鈉(137mM)的磷酸鈉緩衝液(10mM,pH6.5)的共通操作D-1而進行純化,獲得含目的之參考例化合物的溶液35mL。
特性評價:使用利用252nm及280nm之二波長中的UV吸光度的共通操作E,獲得下述之特性値。
抗體濃度:4.14mg/mL、抗體產量:144.9mg(91%),抗體每一分子之藥物平均結合數(n):3.0。
實施例1 中間體(1)
步驟1:(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)胺甲酸第三丁酯
將4-(第三丁氧基羰基胺基)丁酸(0.237g,1.13mmoL)溶解於二氯甲烷(10mL),添加N-羥基琥珀醯亞胺(0.130g,1.13mmoL)、及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.216g,1.13mmoL)而攪拌1小時。將其反應溶液滴加至添加依喜替康之甲烷磺酸鹽(0.500g,0.94mmoL)、及三乙基胺(0.157mL,1.13mmoL)的N,N-二甲基甲醯胺溶液(10mL),於室溫攪拌1日。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得標題化合物(0.595g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.31(9H,s),1.58(1H,t,J=7.2Hz),1.66(2H,t,J=7.2Hz),1.82-1.89(2H,m),2.12-2.21(3H,m),2.39(3H,s),2.92(2H,t,J=6.5Hz),3.17(2H,s),5.16(1H,d,J=18.8Hz),5.24(1H,d,J=18.8Hz),5.42(2H,s),5.59-5.55(1H,m),6.53(1H,s),6.78(1H,t,J=6.3Hz),7.30(1H,s),7.79(1H,d,J=11.0Hz),8.40(1H,d,J=8.6Hz).
MS(APCI)m/z:621(M+H)
+
步驟2:4-胺基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]丁醯胺
將上述步驟1所獲得的化合物(0.388g,0.61mmoL)溶解於二氯甲烷(9mL)。添加三氟乙酸(9mL)而攪拌4小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得標題化合物之三氟乙酸鹽(0.343g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.79-1.92(4H,m),2.10-2.17(2H,m),2.27(2H,t,J=7.0Hz),2.40(3H,s),2.80-2.86(2H,m),3.15-3.20(2H,m),5.15(1H,d,J=18.8Hz),5.26(1H,d,J=18.8Hz),5.42(2H,s),5.54-5.61(1H,m),6.55(1H,s),7.32(1H,s),7.72(3H,brs),7.82(1H,d,J=11.0Hz),8.54(1H,d,J=8.6Hz).
MS(APCI)m/z:521(M+H)
+
實施例2 抗體-藥物結合物(2)
步驟1:N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
將N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺酸(0.081g,0.19mmoL)溶解於二氯甲烷(3mL),添加N-羥基琥珀醯亞胺(0.021g,0.19mmoL)、及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.036g,0.19mmoL),並攪拌3.5小時。將此反應溶液滴加於添加實施例1步驟2所獲得的化合物(0.080g,0.15mmoL)的N,N-二甲基甲醯胺溶液(1.5mL),於室溫攪拌4小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得標題化合物(0.106g,73%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.36(9H,s),1.71(2H,m),1.86(2H,t,J=7.8Hz),2.15-2.19(4H,m),2.40(3H,s),2.77(1H,dd,J=12.7,8.8Hz),3.02(1H,dd,J=14.1,4.7Hz),3.08-3.11(2H,m),3.16-3.19(2H,m),3.54(2H,d,J=5.9Hz),3.57-3.77(4H,m),4.46-4.48(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),6.53(1H,s),7.00(1H,t,J=6.3Hz),7.17-7.26(5H,m),7.31(1H,s),7.71(1H,t,J=5.7Hz),7.80(1H,d,J=11.0Hz),7.92(1H,t,J=5.7Hz),8.15(1H,d,J=8.2Hz),8.27(1H,t,J=5.5Hz),8.46(1H,d,J=8.2Hz).
MS(APCI)m/z:939(M+H)
+
步驟2:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
將上述步驟1所獲得的化合物(1.97g,2.10mmoL)溶解於二氯甲烷(7mL),添加三氟乙酸(7mL)而攪拌1小時。減壓餾除溶媒,於殘留物中添加甲苯而進行共沸,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得標題化合物之三氟乙酸鹽(1.97g,99%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.71-1.73(2H,m),1.82-1.90(2H,m),2.12-2.20(4H,m),2.40(3H,s),2.75(1H,dd,J=13.7,9.4Hz),3.03-3.09(3H,m),3.18-3.19(2H,m),3.58-3.60(2H,m),3.64(1H,d,J=5.9Hz),3.69(1H,d,J=5.9Hz),3.72(1H,d,J=5.5Hz),3.87(1H,dd,J=16.8,5.9Hz),4.50-4.56(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),7.17-7.27(5H,m),7.32(1H,s),7.78-7.81(2H,m),7.95-7.97(3H,m),8.33-8.35(2H,m),8.48-8.51(2H,m).
MS(APCI)m/z:839(M+H)
+
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
於上述步驟2所獲得的化合物(337mg,0.353mmoL)之N,N-二甲基甲醯胺(1.2mL)溶液中,添加三乙基胺(44.3mL,0.318mmoL)、6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯(119.7mg,0.388mmoL),並於室溫攪拌1小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=5:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(278.0mg,76%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.3Hz),1.12-1.22(2H,m),1.40-1.51(4H,m),1.66-1.76(2H,m),1.80-1.91(2H,m),2.05-2.21(6H,m),2.39(3H,s),2.79(1H,dd,J=14.0,9.8Hz),2.98-3.21(5H,m),3.55-3.77(8H,m),4.41-4.48(1H,m),5.15(1H,d,J=18.9Hz),5.24(1H,d,J=18.9Hz),5.40(1H,d,J=17.1Hz),5.44(1H,d,J=17.1Hz),5.54-5.60(1H,m),6.53(1H,s),6.99(2H,s),7.20-7.27(5H,m),7.30(1H,s),7.70(1H,t,J=5.5Hz),7.80(1H,d,J=11.0Hz),8.03(1H,t,J=5.8Hz),8.08(1H,t,J=5.5Hz),8.14(1H,d,J=7.9Hz),8.25(1H,t,J=6.1Hz),8.46(1H,d,J=8.5Hz).
MS(APCI)m/z:1032(M+H)
+
步驟4:抗體-藥物結合物(2)
抗體之還原:將參考例1製作的曲妥珠單抗,使用製造方法1記載的共通操作C-1及共通操作B(使用1.37mLmg
-1cm
-1作為280nm吸光係數),以PBS6.0/EDTA調製為10mg/mL。將本溶液(3.0mL)置入15mL聚丙烯製管中,於其中添加10mM參(2-羧基乙基)膦鹽酸鹽(TCEP,東京化成工業股份有限公司)水溶液(0.0934mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.150mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加於含上述步驟3所獲得的化合物10mM的DMSO溶液(0.187mL;相對於抗體一分子為9.2當量),於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加N-乙醯基半胱胺酸(NAC,Sigma-Aldrich Co.LLC)水溶液(0.0374mL;相對於抗體一分子為18.4當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用製造方法1記載的共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液6mL後,使用共通操作A,而將溶液濃縮。
特性評價:使用製造方法1記載的共通操作E,獲得下述之特性値。
抗體濃度:3.21mg/mL,抗體產量:22.5mg(75%),抗體每一分子之藥物平均結合數(n):2.6。
實施例3 抗體-藥物結合物(3)
步驟1:抗體-藥物結合物(3)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.487mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1.25mL)置入1.5mL聚丙烯製管,於其中添加10mM TCEP水溶液(0.039mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.0625mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.072mL)及含實施例2步驟3之化合物10mM的DMSO溶液(0.078mL;相對於抗體一分子為9.2當量),使用試管混勻器於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0155mL;相對於抗體一分子為18.4當量),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液6mL。再使用共通操作A,將溶液濃縮後,使用共通操作E,獲得下述之特性値。
抗體濃度:9.85mg/mL,抗體產量:6.9mg(55%),抗體每一分子之藥物平均結合數(n):7.3。
實施例4 抗體-藥物結合物(4)
步驟1:N-[3-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丙醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
將實施例1之化合物(80mg,0.084mmoL),使用3-順丁烯二醯亞胺丙酸N-琥珀醯亞胺酯(24.6mg,0.0924mmoL)替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈淡黃色固體之標題化合物(60.0mg,73%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.89(3H,t,J=7.3Hz),1.70-1.78(2H,m),1.81-1.94(2H,m),2.12-2.23(4H,m),2.42(3H,s),2.81(1H,dd,J=13.7,9.8Hz),3.01-3.15(3H,m),3.16-3.23(2H,m),3.30-3.35(1H,m),3.58-3.71(6H,m),3.71-3.79(1H,m),4.44-4.51(1H,m),5.19(1H,d,J=19.0Hz),5.27(1H,d,J=19.0Hz),5.43(1H,d,J=17.6Hz),5.47(1H,d,J=17.6Hz),5.57-5.63(1H,m),6.56(1H,s),7.02(2H,s),7.17-7.22(1H,m),7.22-7.30(5H,m),7.34(1H,s),7.73(1H,t,J=5.6Hz),7.83(1H,d,J=10.7Hz),8.08(1H,t,J=5.6Hz),8.15(1H,d,J=7.8Hz),8.30(2H,dt,J=18.7,5.7Hz),8.49(1H,d,J=8.8Hz).
MS(APCI)m/z:990(M+H)
+
步驟2:抗體-藥物結合物(4)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1mL)置入1.5mL聚丙烯製管,於其中添加10mM TCEP水溶液(0.0155mL;相對於抗體一分子為2.3當量)及1M磷酸氫二鉀水溶液(0.050mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.072mL)及含實施例2步驟3之化合物10mM的DMSO溶液(0.031mL;相對於抗體一分子為4.6當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0078mL;相對於抗體一分子為9.2當量),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液6mL。使用共通操作E,獲得下述之特性値。
抗體濃度:1.32mg/mL,抗體產量:7.9mg(79%),抗體每一分子之藥物平均結合數(n):3.1。
實施例5 抗體-藥物結合物(5)
步驟1:抗體-藥物結合物(5)
以使抗體還原時之TCEP相對於抗體的莫耳比成為4.6的方式來調節10mM TCEP水溶液之添加量,以使藥物連接物結合時之實施例4步驟1之化合物相對於抗體的莫耳比成為9.2的方式來調節10mM藥物連接物溶液之添加量,又以使反應停止時之NAC相對於抗體的莫耳比成為18.4的方式來調節100mM NAC水溶液之添加量,藉由與實施例4步驟2相同之操作,獲得含有標題抗體-藥物結合物的溶液6mL,並獲得下述之特性値。
抗體濃度:1.23mg/mL,抗體產量:7.4mg(74%),抗體每一分子之藥物平均結合數(n):6.1。
實施例6 抗體-藥物結合物(6)
步驟1:N-{3-[2-(2-{[3-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丙醯基]胺基}乙氧基)乙氧基]丙醯基}甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
將實施例2步驟2所獲得的化合物(100mg,0.119mmoL),使用二異丙基乙基胺(20.8μL,0.119mmoL)替代三乙基胺、使用3-(2-(2-(3-順丁烯二亞醯胺丙醯胺)乙氧基)乙氧基)丙酸N-琥珀醯亞胺酯(50.7mg,0.119mmoL)替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈淡黃色固體之標題化合物(66.5mg,48%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.85(3H,t,J=7.4Hz),1.65-1.74(2H,m),1.77-1.90(2H,m),2.07-2.19(4H,m),2.30(2H,t,J=7.2Hz),2.33-2.36(2H,m),2.38(3H,s),2.76(1H,dd,J=13.7,9.8Hz),2.96-3.18(9H,m),3.42-3.44(4H,m),3.53-3.76(10H,m),4.43(1H,td,J=8.6,4.7Hz),5.14(1H,d,J=18.8Hz),5.23(1H,d,J=18.8Hz),5.38(1H,d,J=17.2Hz),5.42(1H,d,J=17.2Hz),5.52-5.58(1H,m),6.52(1H,s),6.98(2H,s),7.12-7.17(1H,m),7.18-7.25(4H,m),7.29(1H,s),7.69(1H,t,J=5.5Hz),7.78(1H,d,J=11.3Hz),7.98-8.03(2H,m),8.11(1H,d,J=7.8Hz),8.16(1H,t,J=5.7Hz),8.23(1H,t,J=5.9Hz),8.44(1H,d,J=9.0Hz).
MS(APCI)m/z:1149(M+H)
+
步驟2:抗體-藥物結合物(6)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1.25mL)置入1.5mL聚丙烯製管,於其中添加10mM TCEP水溶液(0.019mL;相對於抗體一分子為2.3當量)及1M磷酸氫二鉀水溶液(0.0625mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(Sigma-Aldrich Co.LLC;0.109mL)及含上述步驟1之化合物10mM的DMSO溶液(0.039mL;相對於抗體一分子為4.6當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.008mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.76mg/mL,抗體產量:10.6mg(85%),抗體每一分子之藥物平均結合數(n):3.6。
實施例7 抗體-藥物結合物(7)
步驟1:抗體-藥物結合物(7)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1.25mL)置入1.5mL聚丙烯製管,於其中添加10mM TCEP水溶液(0.039mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.0625mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.072mL)及含實施例6步驟1之化合物10mM的DMSO溶液(0.078mL;相對於抗體一分子為9.2當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0155mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.93mg/mL,抗體產量:11.6mg(93%),抗體每一分子之藥物平均結合數(n):6.9。
實施例8 抗體-藥物結合物(8)
步驟1:抗體-藥物結合物(8)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1.25mL)置入1.5mL聚丙烯製管,於其中添加10mM TCEP水溶液(0.039mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.0625mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.072mL)及含實施例6步驟1之化合物10mM的DMSO溶液(0.078mL;相對於抗體一分子為9.2當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0155mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D-1(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液5.7mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.50mg/mL,抗體產量:8.55mg(86%),抗體每一分子之藥物平均結合數(n):6.2。
實施例9 抗體-藥物結合物(9)
步驟1:N-[19-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-17-側氧基-4,7,10,13-四側氧基-16-氮雜十九烷-1-醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺醯胺
將實施例2步驟2所獲得的化合物(90mg,0.107mmoL),使用二異丙基乙基胺(18.7μL,0.107mmoL)替代三乙基胺,使用1-順丁烯二亞醯胺-3-側氧基-7,10,13,16-四氧雜(tetraoxa)-4-氮雜十九烷-19-酸N-琥珀醯亞胺酯(55.1mg,0.107mmoL)替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈淡黃色固體之標題化合物(50mg,37%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.85(3H,t,J=7.2Hz),1.64-1.74(2H,m),1.77-1.90(2H,m),2.06-2.19(4H,m),2.27-2.32(2H,m),2.33-2.37(2H,m),2.38(3H,s),2.72-2.80(3H,m),2.96-3.19(6H,m),3.39-3.48(10H,m),3.52-3.75(10H,m),4.39-4.48(1H,m),5.14(1H,d,J=18.8Hz),5.23(1H,d,J=18.8Hz),5.38(1H,d,J=17.0Hz),5.42(1H,d,J=17.0Hz),5.52-5.58(1H,m),6.52(1H,s),6.98(1H,s),7.13-7.24(5H,m),7.29(1H,s),7.69(1H,t,J=5.5Hz),7.78(1H,d,J=10.9Hz),7.98-8.03(2H,m),8.10(1H,d,J=7.8Hz),8.16(1H,t,J=5.7Hz),8.23(1H,t,J=5.7Hz),8.44(1H,d,J=8.6Hz).
MS(APCI)m/z:1237(M+H)
+
步驟2:抗體-藥物結合物(9)
使用參考例1製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.75mg/mL,抗體產量:10.5mg(84%),抗體每一分子之藥物平均結合數(n):3.4。
實施例10 抗體-藥物結合物(10)
步驟1:抗體-藥物結合物(10)
使用參考例1製作的曲妥珠單抗及實施例9步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.79mg/mL,抗體產量:10.7mg(86%),抗體每一分子之藥物平均結合數(n):6.0。
實施例11 中間體(11)
步驟1:[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]胺甲酸第三丁酯
將依喜替康之甲烷磺酸鹽(3.10g,5.47moL),使用{2-[(第三丁氧基羰基)胺基]乙氧基}乙酸(J.Med.Chem.,1992年,35卷,2928頁;1.55g,6.01mmol)替代4-(第三丁氧基羰基胺基)丁酸,與實施例1步驟1同樣地進行反應,獲得呈淡黃色固體之標題化合物(2.56g,73%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.3Hz),1.26(9H,s),1.81-1.91(2H,m),2.13-2.22(2H,m),2.40(3H,s),3.08-3.26(4H,m),3.43-3.53(2H,m),4.00(1H,d,J=15.1Hz),4.05(1H,d,J=15.1Hz),5.14(1H,d,J=18.7Hz),5.22(1H,d,J=18.7Hz),5.40(1H,d,J=16.6Hz),5.44(1H,d,J=16.6Hz),5.59-5.66(1H,m),6.53(1H,s),6.86(1H,t,J=5.4Hz),7.31(1H,s),7.79(1H,d,J=10.9Hz),8.49(1H,d,J=9.1Hz).
MS(APCI)m/z:637(M+H)
+
步驟2:2-(2-胺基乙氧基)-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]乙醯胺
將上述步驟1所獲得的化合物(1.50g,2.36mol),與實施例1步驟2同樣地進行反應,獲得呈淡黃色固體之標題化合物之三氟乙酸鹽(1.50g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.5Hz),1.81-1.92(2H,m),2.15-2.23(2H,m),2.41(3H,s),3.05(2H,t,J=5.1Hz),3.15-3.23(2H,m),3.71(2H,t,J=5.1Hz),4.10(2H,s),5.19(1H,d,J=18.7Hz),5.24(1H,d,J=18.7Hz),5.43(2H,s),5.58-5.66(1H,m),6.55(1H,s),7.33(1H,s),7.73-7.84(4H,m),8.55(1H,d,J=9.1Hz).
MS(APCI)m/z:537(M+H)
+
實施例12 抗體-藥物結合物(12)
步驟1:N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺醯胺
將實施例11步驟2之化合物(554mg,0.85mmol),與實施例2步驟1同樣地進行反應,獲得標題化合物(775mg,95%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.85(3H,t,J=7.3Hz),1.36(9H,s),1.78-1.89(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,9.8Hz),2.95(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.23-3.32(2H,m),3.40-3.62(8H,m),3.73(1H,dd,J=16.5,5.5Hz),4.03(2H,s),4.39-4.47(1H,m),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.8Hz),5.45(1H,d,J=16.8Hz),5.57-5.64(1H,m),6.54(1H,s),6.99(1H,t,J=5.8Hz),7.13-7.26(5H,m),7.31(1H,s),7.76-7.82(2H,m),7.90(1H,t,J=5.2Hz),8.13(1H,d,J=7.9Hz),8.27(1H,t,J=5.8Hz),8.49(1H,d,J=8.5Hz).
MS(APCI)m/z:955(M+H)
+
步驟2:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺醯胺
將上述步驟1所獲得的化合物(630mg,0.659mmol),與實施例2步驟2同樣地進行反應,獲得標題化合物之三氟乙酸鹽(588mg,92%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.3Hz),1.79-1.90(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,10.1Hz),2.99(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.24-3.32(3H,m),3.41-3.71(7H,m),3.86(1H,dd,J=16.8,5.8Hz),4.04(2H,s),4.52(1H,td,J=9.0,4.1Hz),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.5Hz),5.45(1H,d,J=16.5Hz),5.56-5.65(1H,m),6.55(1H,s),7.13-7.26(5H,m),7.32(1H,s),7.80(1H,d,J=11.0Hz),7.87-8.01(4H,m),8.29-8.36(2H,m),8.46-8.55(2H,m).
MS(APCI)m/z:855(M+H)
+
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺醯胺
將上述步驟2所獲得的化合物(240mg,0.247mmol),與實施例2步驟3同樣地進行反應,獲得標題化合物(162mg,62%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.6Hz),1.13-1.22(2H,m),1.40-1.51(4H,m),1.78-1.90(2H,m),2.09(2H,t,J=7.6Hz),2.14-2.21(2H,m),2.39(3H,s),2.74(1H,dd,J=13.6,9.7Hz),2.96(1H,dd,J=13.6,4.5Hz),3.08-3.24(1H,m),3.24-3.30(1H,m),3.33-3.40(4H,m),3.47-3.68(7H,m),3.72(1H,dd,J=16.6,5.7Hz),4.03(2H,s),4.42(1H,td,J=8.6,4.2Hz),5.17(1H,d,J=18.7Hz),5.25(1H,d,J=18.7Hz),5.40(1H,d,J=17.2Hz),5.44(1H,d,J=17.2Hz),5.57-5.64(1H,m),6.52(1H,s),6.99(2H,s),7.13-7.25(5H,m),7.31(1H,s),7.74-7.81(2H,m),7.99(1H,t,J=5.7Hz),8.03-8.11(2H,m),8.22(1H,t,J=5.7Hz),8.47(1H,d,J=9.1Hz).
MS(APCI)m/z:1048(M+H)
+
步驟4:抗體-藥物結合物(12)
使用參考例1製作的曲妥珠單抗及上述步驟3所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。再使用共通操作A,將溶液濃縮後,使用共通操作E,獲得下述之特性値。
抗體濃度:10.77mg/mL,抗體產量:7.5mg(60%),抗體每一分子之藥物平均結合數(n):3.7。
實施例13 抗體-藥物結合物(13)
步驟1:抗體-藥物結合物(13)
使用參考例1製作的曲妥珠單抗及實施例12步驟3所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。再使用共通操作A,將溶液濃縮後,使用共通操作E,獲得下述之特性値。
抗體濃度:10.69mg/mL,抗體產量:7.5mg(60%),抗體每一分子之藥物平均結合數(n):6.9。
實施例14 中間體(14)
步驟1:(3-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-3-側氧基丙基)胺甲酸第三丁酯
將依喜替康之甲烷磺酸鹽(500mg,0.941mmoL),使用N-(第三丁氧基羰基)-β-丙胺酸替代4-(第三丁氧基羰基胺基)丁酸,與實施例1步驟1同樣地進行反應,獲得呈黃茶色固體之標題化合物(616mg,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.29(9H,s),1.86(2H,dt,J=15.1,7.3Hz),2.04-2.22(2H,m),2.31(2H,t,J=6.8Hz),2.40(3H,s),3.10-3.26(4H,m),5.15(1H,d,J=18.8Hz),5.26(1H,d,J=19.2Hz),5.42(2H,dd,J=18.8,16.4Hz),5.57(1H,dt,J=8.5,4.2Hz),6.53(1H,s),6.78(1H,t,J=5.5Hz),7.30(1H,s),7.80(1H,d,J=11.0Hz),8.46(1H,d,J=8.6Hz).
MS(ESI)m/z:607(M+H)
+
步驟2:N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將上述步驟1所獲得的化合物,與實施例1步驟2同樣地進行反應,獲得呈黃色固體之標題化合物之三氟乙酸鹽(499mg,86%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.86(2H,dquin,J=14.6,7.2,7.2,7.2,7.2Hz),2.06-2.27(1H,m),2.41(3H,s),2.46-2.57(2H,m),3.08(2H,t,J=6.8Hz),3.14-3.24(2H,m),5.22(1H,d,J=18.8Hz),5.29(1H,d,J=18.8Hz),5.43(2H,s),5.58(1H,dt,J=8.5,4.5Hz),6.55(1H,s),7.32(1H,s),7.74(3H,brs),7.82(1H,d,J=11.0Hz),8.67(1H,d,J=8.6Hz).
MS(ESI)m/z:507(M+H)
+
實施例15 抗體-藥物結合物(15)
步驟1:N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將實施例14步驟2所獲得的化合物(484mg,0.780mmoL),與實施例2步驟1同樣地進行反應,獲得呈淡黃色固體之標題化合物(626mg,87%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.27-1.42(9H,m),1.77-1.93(2H,m),2.06-2.22(2H,m),2.36(2H,t,J=7.2Hz),2.40(3H,d,J=1.6Hz),2.44-2.54(2H,m),2.76(1H,dd,J=14.5,10.2Hz),3.02(1H,dd,J=13.9,4.5Hz),3.12-3.22(2H,m),3.52(6H,d,J=6.3Hz),4.42-4.54(1H,m),5.19(1H,d,J=19.2Hz),5.26(1H,d,J=18.4Hz),5.42(1H,dd,J=18.4,16.4Hz),5.57(1H,dt,J=8.7,4.4Hz),6.53(1H,s),6.98(1H,t,J=5.9Hz),7.14-7.28(5H,m),7.31(1H,s),7.77-7.84(1H,m),7.91(1H,t,J=5.5Hz),8.16(1H,d,J=7.8Hz),8.27(1H,t,J=5.1Hz),8.52(1H,d,J=9.0Hz).
步驟2:甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺三氟乙酸鹽
將上述步驟1所獲得的化合物(624mg,0.675mmoL),與實施例2步驟2同樣地進行反應,獲得呈黃色固體之標題化合物(626mg,92%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.86(2H,tt,J=14.5,7.2Hz),2.07-2.22(2H,m),2.36(2H,t,J=7.2Hz),2.40(3H,s),2.44-2.54(2H,m),2.75(1H,dd,J=13.7,9.8Hz),3.04(1H,dd,J=13.7,4.3Hz),3.12-3.22(2H,m),3.58(2H,d,J=4.7Hz),3.69(3H,td,J=11.2,5.7Hz),3.87(1H,dd,J=17.0,5.7Hz),4.54(1H,m,J=17.8,4.5Hz),5.19(1H,d,J=19.2Hz),5.26(1H,d,J=18.8Hz),5.43(2H,s),5.51-5.60(1H,m),6.55(1H,s),7.14-7.29(5H,m),7.32(1H,s),7.81(1H,d,J=10.9Hz),7.88(1H,t,J=5.7Hz),7.97(3H,brs),8.29-8.38(2H,m),8.50(1H,t,J=5.7Hz),8.55(1H,d,J=8.6Hz).
MS(ESI)m/z:825(M+H)
+
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將上述步驟2所獲得的化合物(60.0mg,0.0646mmoL),與實施例2步驟3同樣地進行反應,獲得呈固體之標題化合物(14.0mg,21%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.2Hz),1.12-1.22(2H,m),1.39-1.51(4H,m),1.79-1.91(2H,m),2.02-2.20(2H,m),2.07(2H,t,J=7.4Hz),2.30-2.42(4H,m),2.40(3H,s),2.78(1H,dd,J=14.1,9.4Hz),3.02(1H,dd,J=14.7,4.9Hz),3.12-3.21(2H,m),3.26-3.42(2H,m),3.50-3.80(6H,m),4.40-4.51(1H,m),5.19(1H,d,J=19.6Hz),5.26(1H,d,J=19.2Hz),5.42(2H,brs),5.51-5.62(1H,m),6.53(1H,s),6.99(2H,s),7.13-7.28(5H,m),7.31(1H,s),7.74-7.84(2H,m),8.01(1H,t,J=5.3Hz),8.06(1H,t,J=5.7Hz),8.14(1H,d,J=8.2Hz),8.25(1H,t,J=5.7Hz),8.53(1H,d,J=8.6Hz).
MS(ESI)m/z:1018(M+H)
+
步驟4:抗體-藥物結合物(15)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(1.0mL)採取於2mL管中,添加10mM TCEP水溶液(0.0155mL;相對於抗體一分子為2.3當量)及1M磷酸氫二鉀水溶液(0.050mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含上述步驟3所獲得的化合物10mM的DMSO溶液(0.0311mL;相對於抗體一分子為4.6當量),於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.00622mL;相對於抗體一分子為9.2當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.18mg/mL,抗體產量:7.08mg(71%),抗體每一分子之藥物平均結合數(n):2.0。
實施例16 抗體-藥物結合物(16)
步驟1:抗體-藥物結合物(16)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(1.0mL)採取於2mL管中,添加10mM TCEP水溶液(0.0311mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.050mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含實施例15步驟3所獲得的化合物10mM的DMSO溶液(0.0622mL;相對於抗體一分子為9.2當量),並於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0124mL;相對於抗體一分子為18.4當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.03mg/mL,抗體產量:6.18mg(62%),抗體每一分子之藥物平均結合數(n):3.8。
實施例17 抗體-藥物結合物(17)
步驟1:N-[3-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丙醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將實施例15步驟2所獲得的化合物(60.0mg,0.0646mmoL),使用3-順丁烯二醯亞胺丙酸N-琥珀醯亞胺酯替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈淡黃色固體之標題化合物(36.0mg,57%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.4Hz),1.85(2H,dt,J=14.4,7.5Hz),2.05-2.22(2H,m),2.40(3H,s),2.30-2.44(5H,m),2.73-2.84(1H,m),3.02(1H,dd,J=13.9,4.5Hz),3.17(3H,d,J=5.1Hz),3.26-3.40(2H,m),3.41-3.81(6H,m),4.40-4.51(1H,m),5.19(1H,d,J=19.2Hz),5.26(1H,d,J=18.8Hz),5.42(2H,brs),5.52-5.61(1H,m),6.53(1H,s),6.99(2H,s),7.13-7.28(5H,m),7.31(1H,s),7.80(2H,d,J=10.2Hz),8.03(1H,t,J=5.5Hz),8.12(1H,d,J=8.2Hz),8.20-8.31(2H,m),8.52(1H,d,J=8.6Hz).
MS(ESI)m/z:976(M+H)
+
步驟2:抗體-藥物結合物(17)
使用參考例1製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.74mg/mL,抗體產量:10.4mg(83%),抗體每一分子之藥物平均結合數(n):3.7。
實施例18 抗體-藥物結合物(18)
步驟1:抗體-藥物結合物(18)
使用參考例1製作的曲妥珠單抗及實施例17步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.98mg/mL,抗體產量:11.9mg(95%),抗體每一分子之藥物平均結合數(n):6.6。
實施例19 抗體-藥物結合物(19)
步驟1:N-{3-[2-(2-{[3-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丙醯基]胺基})乙氧基]丙醯基}甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將實施例15步驟2所獲得的化合物(60.0mg,0.0646mmoL),使用3-(2-(2-(3-順丁烯二亞醯胺丙醯胺)乙氧基)乙氧基)丙酸N-琥珀醯亞胺酯替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈固體之標題化合物(23.0mg,31%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.4Hz),1.77-1.92(2H,m),2.07-2.21(2H,m),2.27-2.42(6H,m),2.40(3H,s),2.74-2.84(1H,m),2.97-3.06(1H,m),3.09-3.21(4H,m),3.25-3.39(6H,m),3.45(4H,s),3.50-3.80(8H,m),4.41-4.51(1H,m),5.19(1H,d,J=18.4Hz),5.26(1H,m,J=18.4Hz),5.42(2H,brs),5.51-5.61(1H,m),6.54(1H,s),7.00(2H,s),7.13-7.28(5H,m),7.31(1H,s),7.74-7.87(2H,m),7.93-8.07(2H,m),8.09-8.21(2H,m),8.26(1H,brs),8.54(1H,d,J=8.6Hz).
MS(ESI)m/z:1135(M+H)
+
步驟2:抗體-藥物結合物(19)
使用參考例1製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.60mg/mL,抗體產量:9.6mg(77%),抗體每一分子之藥物平均結合數(n):1.9。
實施例20 抗體-藥物結合物(20)
步驟1:抗體-藥物結合物(20)
使用參考例1製作的曲妥珠單抗及實施例19步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.69mg/mL,抗體產量:10.1mg(81%),抗體每一分子之藥物平均結合數(n):3.0。
實施例21 抗體-藥物結合物(21)
步驟1:N-[19-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-17-側氧基-4,7,10,13-四氧雜-16-氮雜十九烷-1-醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將實施例15步驟2所獲得的化合物(60.0mg,0.0646mmoL),使用1-順丁烯二亞醯胺-3-側氧基-7,10,13,16-四氧雜-4-氮雜十九烷酸N-琥珀醯亞胺酯替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈固體之標題化合物(23.0mg,29%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.0Hz),1.85(2H,tt,J=14.6,7.1Hz),2.06-2.22(2H,m),2.40(3H,s),2.28-2.43(6H,m),2.78(1H,dd,J=13.7,9.4Hz),3.02(1H,dd,J=14.1,3.9Hz),3.09-3.22(4H,m),3.27-3.41(4H,m),3.47(12H,d,J=8.6Hz),3.53-3.81(10H,m),4.41-4.51(1H,m),5.19(1H,d,J=19.2Hz),5.26(1H,d,J=18.8Hz),5.42(2H,brs),5.53-5.61(1H,m),6.54(1H,s),7.00(2H,s),7.12-7.29(5H,m),7.31(1H,s),7.74-7.85(2H,m),8.03(2H,d,J=6.6Hz),8.11-8.21(2H,m),8.27(1H,t,J=5.9Hz),8.54(1H,d,J=8.6Hz).
MS(ESI)m/z:1224(M+H)
+
步驟2:抗體-藥物結合物(21)
使用參考例1製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.77mg/mL,抗體產量:10.6mg(85%),抗體每一分子之藥物平均結合數(n):3.2。
實施例22 抗體-藥物結合物(22)
步驟1:抗體-藥物結合物(22)
使用參考例1製作的曲妥珠單抗及實施例21步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.89mg/mL,抗體產量:11.3mg(90%),抗體每一分子之藥物平均結合數(n):6.2。
實施例23 中間體(23)
步驟1:(6-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-6-側氧基己基)胺甲酸第三丁酯
將依喜替康之甲烷磺酸鹽(0.500g,0.882mmoL),使用6-(第三丁氧基羰基胺基)己酸替代4-(第三丁氧基羰基胺基)丁酸,與實施例1步驟1同樣地進行反應,獲得標題化合物(0.620g,定量的)。
1H-NMR(DMSO-d
6)δ:0.83(3H,t,J=7.8Hz),1.14-1.28(2H,m),1.31(9H,s),1.47-1.61(2H,m),1.75-1.89(2H,m),2.04-2.17(4H,m),2.35(3H,s),2.81-2.88(2H,m),3.09-3.16(2H,m),5.10(1H,d,J=19.4Hz),5.16(1H,d,J=19.4Hz),5.39(2H,s),5.48-5.55(1H,m),6.50(1H,s),6.73-6.78(1H,m),7.26(1H,s),7.74(1H,d,J=10.9Hz),8.39(1H,d,J=9.0Hz).
步驟2:6-胺基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]己醯胺
將上述步驟1所獲得的化合物(0.397g,0.611mmoL),與實施例1步驟2同樣地進行反應,獲得標題化合物之三氟乙酸鹽(0.342g,84%)。
1H-NMR(DMSO-d
6)δ:0.88(3H,t,J=7.2Hz),1.31-1.41(2H,m),1.52-1.70(4H,m),1.80-1.94(2H,m),2.05-2.18(2H,m),2.21(2H,t,J=7.4Hz),2.40(3H,s),2.81(2H,t,J=7.4Hz),3.10-3.25(2H,m),3.33(2H,brs),5.18(1H,d,J=19.8Hz),5.22(1H,d,J=19.8Hz),5.41(2H,d,J=16.6Hz),5.45(2H,d,J=16.6Hz),5.53-5.60(1H,m),6.55(1H,s),7.32(1H,s),7.80(1H,d,J=10.9Hz),8.49(1H,d,J=9.2Hz).
實施例24 抗體-藥物結合物(24)
步驟1:N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(6-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-6-側氧基己基)甘胺醯胺
將實施例23步驟2所獲得的化合物(0.170g,0.516mmoL),與實施例2步驟1同樣地進行反應,獲得標題化合物(0.225g,91%)。
1H-NMR(DMSO-d
6)δ:0.88(3H,t,J=7.4Hz),1.43-1.70(6H,m),1.87(2H,td,J=15.0,7.4Hz),2.10-2.22(3H,m),2.28-2.37(1H,m),2.42(3H,s),2.78-2.85(1H,m),3.01-3.10(3H,m),3.15-3.22(2H,m),3.54-3.61(5H,m),3.62-3.69(1H,m),4.44-4.53(1H,m),5.17(1H,d,J=19.2Hz),5.25(1H,d,J=19.2Hz),5.45(2H,s),5.54-5.61(1H,m),6.55(1H,s),7.02(1H,t,J=6.1Hz),7.11-7.28(5H,m),7.33(1H,s),7.63-7.69(1H,m),7.82(1H,d,J=11.0Hz),7.90-7.96(1H,m),8.17(1H,d,J=7.8Hz),8.28(1H,t,J=5.5Hz),8.46(1H,d,J=9.0Hz).
步驟2:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(6-{[(1S,9S)-9-乙基-5-氟-9-羥基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-6-側氧基己基)甘胺醯胺
將上述步驟1所獲得的化合物(0.105g,0.108mmoL),與實施例2步驟2同樣地進行反應,獲得標題化合物(0.068mg,65%)。
1H-NMR(DMSO-d
6)δ:0.89(3H,t,J=7.4Hz),1.15-1.67(6H,m),1.79-1.97(2H,m),2.08-2.24(4H,m),2.42(3H,s),2.76-2.82(1H,m),3.00-3.10(5H,m),3.19(1H,s),3.50-3.63(2H,m),3.64-3.76(3H,m),3.84-3.92(1H,m),4.51-4.59(1H,m),5.17(1H,d,J=19.4Hz),5.24(1H,d,J=19.4Hz),5.44(2H,s),5.53-5.61(1H,m),6.55(1H,brs),7.15-7.29(5H,m),7.33(1H,s),7.72-7.78(1H,m),7.82(1H,d,J=11.0Hz),7.96-8.08(2H,m),8.30-8.38(2H,m),8.46-8.56(2H,m).
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(6-{[(1S,9S)-9-乙基-5-氟-9-羥基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-6-側氧基己基)甘胺醯胺
將上述步驟2所獲得的化合物(58mg,0.060mmoL),與實施例2步驟3同樣地進行反應,獲得標題化合物(39mg,62%)。
1H-NMR(CD
3OD)δ:0.99(3H,t,J=7.4Hz),1.27(2H,td,J=11.6,6.1Hz),1.38-1.44(2H,m),1.50-1.63(6H,m),1.65-1.80(2H,m),1.89-1.98(2H,m),2.17-2.25(3H,m),2.26-2.36(3H,m),2.40(3H,s),2.95(1H,dd,J=14.3,9.2Hz),3.12(1H,dd,J=13.7,5.7Hz),3.15-3.25(4H,m),3.44(2H,t,J=7.2Hz),3.65(1H,d,J=17.2Hz),3.76(1H,d,J=17.2Hz),3.79-3.86(4H,m),4.43(1H,dd,J=8.9,6.0Hz),5.10(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.35(1H,d,J=16.6Hz),5.56(1H,d,J=16.0Hz),5.60-5.64(1H,m),6.76(2H,s),7.12-7.24(6H,m),7.58(1H,s),7.60(1H,d,J=10.9Hz),7.68(1H,t,J=5.7Hz).
MS(ESI)m/z:1060(M+H)
+
步驟4:抗體-藥物結合物(24)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(9.0mL)採取於50mL管中,添加10mM TCEP水溶液(0.140mL;相對於抗體一分子為2.3當量)及1M磷酸氫鉀二水溶液(0.450mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含上述步驟3之化合物10mM的DMSO溶液(0.280mL;相對於抗體一分子為4.6當量),於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0559mL;相對於抗體一分子為9.2當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D-1(使用PBS7.4作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:3.30mg/mL,抗體產量:53.5mg(59%),抗體每一分子之藥物平均結合數(n):1.7。
實施例25 抗體-藥物結合物(25)
步驟1:抗體-藥物結合物(25)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(9.0mL)採取於50mL管中,添加10mM TCEP水溶液(0.280mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.450mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含實施例24步驟3之化合物10mM的DMSO溶液(0.559mL;相對於抗體一分子為9.2當量),並於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.112mL;相對於抗體一分子為18.4當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:10.65mg/mL,抗體產量:55.1mg(61%),抗體每一分子之藥物平均結合數(n):2.5。
實施例26 抗體-藥物結合物(26)
步驟1:({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲基乙酸酯
於包含N-9-茀基甲氧基羰基甘胺醯基甘胺酸(4.33g,12.2mmol)、四氫呋喃(THF;120ml)、及甲苯(40.0ml)的混合物中,添加吡啶(1.16ml,14.7mmol)及四乙酸鉛(6.84g,14.7mmol),並加熱回流5小時。將反應液冷卻至室溫後,藉由矽藻土過濾將不溶物去除,減壓下濃縮。將獲得的殘留物溶解於乙酸乙酯,以水及飽和食鹽水洗淨後,將有機層以無水硫酸鎂乾燥。減壓下餾除溶媒後,將獲得的殘留物以矽膠管柱層析[己烷:乙酸乙酯=9:1(v/v)~乙酸乙酯]純化,獲得呈無色固體之標題化合物(3.00g,67%)。
1H-NMR(400MHz,CDCl
3)δ:2.07(3H,s),3.90(2H,d,J=5.1Hz),4.23(1H,t,J=7.0Hz),4.46(2H,d,J=6.6Hz),5.26(2H,d,J=7.0Hz),5.32(1H,brs),6.96(1H,brs),7.32(2H,t,J=7.3Hz),7.41(2H,t,J=7.3Hz),7.59(2H,d,J=7.3Hz),7.77(2H,d,J=7.3Hz).
步驟2:[({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲氧基]乙酸苄酯
於上述步驟1所獲得的化合物(3.68g,10.0mmoL)及乙醇酸苄酯(4.99g,30.0mmoL)之THF(40.0mL)溶液中,於0℃添加第三丁醇鉀(2.24g,20.0mmoL),於室溫攪拌15分鐘。於反應溶液中於0℃添加乙酸乙酯、水,以乙酸乙酯、氯仿提取,將獲得的有機層以硫酸鈉乾燥、過濾。減壓餾除溶媒,將獲得的殘留物溶解於二□烷(40.0mL)、水(10.0mL),添加碳酸氫鈉(1.01g,12.0mmoL)、氯甲酸9-茀基甲酯(2.59g,10.0mmoL),並於室溫攪拌2小時。於反應溶液中添加水,並以乙酸乙酯提取,將獲得的有機層以硫酸鈉乾燥,並過濾。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[己烷:乙酸乙酯=100:0(v/v)~0:100]純化,獲得無色油狀之標題化合物(1.88g,40%)。
1H-NMR(400MHz,CDCl
3)δ:3.84(2H,d,J=5.5Hz),4.24(3H,t,J=6.5Hz),4.49(2H,d,J=6.7Hz),4.88(2H,d,J=6.7Hz),5.15-5.27(1H,m),5.19(2H,s),6.74(1H,brs),7.31-7.39(7H,m),7.43(2H,t,J=7.4Hz),7.61(2H,d,J=7.4Hz),7.79(2H,d,J=7.4Hz).
步驟3:[({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲氧基]乙酸
將上述步驟2所獲得的化合物(1.88g,3.96mmoL)溶解於乙醇(40.0mL)、乙酸乙酯(20.0ml)。添加鈀碳觸媒(376mg),並於氫氣環境下,於室溫攪拌2小時。藉由矽藻土過濾將不溶物去除,減壓餾除溶媒,獲得呈無色固體之標題化合物(1.52g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:3.62(2H,d,J=6.3Hz),3.97(2H,s),4.18-4.32(3H,m),4.60(2H,d,J=6.7Hz),7.29-7.46(4H,m),7.58(1H,t,J=5.9Hz),7.72(2H,d,J=7.4Hz),7.90(2H,d,J=7.4Hz),8.71(1H,t,J=6.5Hz).
步驟4:9H-茀-9-基甲基(2-{[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]胺基}-2-側氧基乙基)胺甲酸酯
於冰冷下,於依喜替康之甲烷磺酸鹽(0.283g,0.533mmoL)、N-羥基琥珀醯亞胺(61.4mg,0.533mmoL)、及上述步驟3所獲得的化合物(0.205g,0.533mmoL)之N,N-二甲基甲醯胺(10.0mL)溶液中,添加N,N-二異丙基乙基胺(92.9μL,0.533mmoL)及N,N’-二環己基碳二亞胺(0.143g,0.693mmoL),並於室溫攪拌3日。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡茶色固體之標題化合物(0.352g,82%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.81(3H,t,J=7.4Hz),1.73-1.87(2H,m),2.06-2.20(2H,m),2.34(3H,s),3.01-3.23(2H,m),3.58(2H,d,J=6.7Hz),3.98(2H,s),4.13-4.25(3H,m),4.60(2H,d,J=6.7Hz),5.09-5.22(2H,m),5.32-5.42(2H,m),5.50-5.59(1H,m),6.49(1H,s),7.24-7.30(3H,m),7.36(2H,t,J=7.4Hz),7.53(1H,t,J=6.3Hz),7.66(2H,d,J=7.4Hz),7.75(1H,d,J=11.0Hz),7.84(2H,d,J=7.4Hz),8.47(1H,d,J=8.6Hz),8.77(1H,t,J=6.7Hz).
MS(ESI)m/z:802(M+H)
+
步驟5:N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於上述步驟4所獲得的化合物(0.881g,1.10mmoL)之N,N-二甲基甲醯胺(11.0mL)溶液中,添加哌啶(1.1mL),並於室溫攪拌2小時。減壓餾除溶媒,獲得含標題化合物的混合物。本混合物並未進一步純化而使用於下一反應。
步驟6:N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於冰冷下,於上述步驟5所獲得的混合物(0.439mmoL)、N-羥基琥珀醯亞胺(0.101g,0.878mmoL)、及N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸(日本特開2002-60351號;0.440g,0.878mmoL)之N,N-二甲基甲醯胺(50.0mL)溶液中,添加N,N’-二環己基碳二亞胺(0.181g,0.878mmoL),於室溫攪拌4日。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈淡橙色固體之標題化合物(0.269g,58%)。
MS(ESI)m/z:1063(M+H)
+
步驟7:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於上述步驟6所獲得的化合物(0.269g,0.253mmoL)之N,N-二甲基甲醯胺(4.00mL)溶液中,添加哌啶(0.251mL,2.53mmoL),並於室溫攪拌2小時。減壓餾除溶媒,獲得含標題化合物的混合物。本混合物並未進一步純化而使用於下一反應。
步驟8:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於上述步驟7所獲得的化合物(0.253mmoL)之N,N-二甲基甲醯胺(10.0mL)溶液中,添加6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯(0.156g,0.506mmoL),並於室溫攪拌3日。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.100g,38%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.83(3H,t,J=7.2Hz),1.09-1.21(2H,m),1.33-1.47(4H,m),1.75-1.90(2H,m),2.00-2.23(4H,m),2.36(3H,s),2.69-2.81(1H,m),2.94-3.03(1H,m),3.06-3.22(2H,m),3.23-3.74(6H,m),3.98(2H,s),4.39-4.50(1H,m),4.60(2H,d,J=6.7Hz),5.17(2H,s),5.39(2H,s),5.53-5.61(1H,m),6.50(1H,s),6.96(2H,s),7.11-7.24(5H,m),7.28(1H,s),7.75(1H,d,J=11.0Hz),7.97(1H,t,J=5.7Hz),8.03(1H,t,J=5.9Hz),8.09(1H,d,J=7.8Hz),8.27(1H,t,J=6.5Hz),8.48(1H,d,J=9.0Hz),8.60(1H,t,J=6.5Hz).
MS(ESI)m/z:1034(M+H)
+
步驟9:抗體-藥物結合物(26)
使用參考例1製作的曲妥珠單抗及上述步驟8所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.61mg/mL,抗體產量:9.7mg(77%),抗體每一分子之藥物平均結合數(n):2.9。
實施例27 抗體-藥物結合物(27)
步驟1:抗體-藥物結合物(27)
使用參考例1製作的曲妥珠單抗及實施例26步驟8所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.58mg/mL,抗體產量:9.5mg(76%),抗體每一分子之藥物平均結合數(n):5.6。
實施例28 抗體-藥物結合物(28)
步驟1:抗體-藥物結合物(28)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(1.25mL)置入1.5mL聚丙烯製管2根,於其中添加10mM TCEP水溶液(0.039mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.0625mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.072mL)及含實施例26步驟8之化合物10mM的DMSO溶液(0.078mL;相對於抗體一分子為9.2當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0155mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D-1(使用ABS作為緩衝液)的純化,合併含有目的化合物的溶液而獲得11.7mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.60mg/mL,抗體產量:18.7mg(94%),抗體每一分子之藥物平均結合數(n):5.2。
實施例29 抗體-藥物結合物(29)
步驟1:抗體-藥物結合物(29)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(6mL)置入聚丙烯製管,於其中添加10mM TCEP水溶液(0.108mL;相對於抗體一分子為2.5當量)及1M磷酸氫二鉀水溶液(0.091mL)。確認本溶液之pH為7.0±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.146mL)及含實施例26步驟8之化合物10mM的DMSO溶液(0.193mL;相對於抗體一分子為4.5當量),於15℃保溫1小時,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.029mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液24mL。
特性評價:使用共通操作E及F(使用ε
D , 280=5178(實測値)、ε
D , 370=20217(實測値)),獲得下述之特性値。
抗體濃度:1.77mg/mL,抗體產量:42mg(85%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):3.0;以共通操作F測定的抗體每一分子之藥物平均結合數(n):3.4。
實施例30 抗體-藥物結合物(30)
步驟1:抗體-藥物結合物(30)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(6mL)置入聚丙烯製管,於其中添加10mM TCEP水溶液(0.215mL;相對於抗體一分子為5當量)及1M磷酸氫二鉀水溶液(0.094mL)。確認本溶液之pH為7.0±0.1內後,藉由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加含實施例26步驟8之化合物10mM的DMSO溶液(0.370mL;相對於抗體一分子為8.6當量),並於15℃保溫1小時,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.056mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液24mL。
特性評價:使用共通操作E及F(使用ε
D , 280=5178(實測値)、ε
D , 370=20217(實測値)),獲得下述之特性値。
抗體濃度:1.92mg/mL,抗體產量:46mg(92%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.2;以共通操作F測定的抗體每一分子之藥物平均結合數(n):7.1。
實施例31 抗體-藥物結合物(31)
步驟1:抗體-藥物結合物(31)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(50.00mL)置入聚丙烯製容器,於攪拌下,於室溫添加1M磷酸氫二鉀水溶液(0.745mL)後,添加10mM TCEP水溶液(1.868mL;相對於抗體一分子為5.4當量)。確認本溶液之pH為7.0±0.1內後,停止攪拌,經由於37℃保溫1小時,將抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液冷卻至15℃後,於攪拌下,一邊將含實施例26步驟8之化合物10mM的DMSO溶液(2.958mL;相對於抗體一分子為8.6當量)緩緩滴下一邊添加。直接於15℃,最初攪拌30分鐘,接著1小時停止攪拌而保溫,使藥物連接物與抗體結合。其次,於攪拌下,添加100mM NAC水溶液(0.444mL),再於室溫攪拌20分鐘,使藥物連接物之反應停止。
純化:於攪拌下,於上述溶液中緩緩添加20%乙酸水(約0.25mL)及ABS(50mL),將本溶液之pH作成5.5±0.1。將此溶液作精密過濾(Millipore Co. Millex-HV過濾器、0.45μm、PVDF膜)而去除白濁物。對此溶液,使用由超過濾膜(Merck股份有限公司、Pellicon XL Cassette、Biomax 50KDa)、管泵(tube pump)(美國Cole-Parmer公司MasterFlex Pump model 77521-40、泵壓頭model 7518-00)及管子(美國Cole-Parmer公司MasterFlex Tube L/S16)所構成的超過濾裝置,進行超過濾純化。即,藉由一邊於反應液中滴加作為純化緩衝液之ABS(計800mL),一邊進行超過濾純化,而去除未結合之藥物連接物及其他低分子量試藥,並將緩衝液取代為ABS,進一步進行至濃縮。對獲得的純化溶液,進行精密過濾(0.22μm(Millipore Co. Millex-GV過濾器、PVDF膜)及0.10μm(Millipore Co. Millex-VV過濾器、PVDF膜)),獲得含有標題抗體-藥物結合物的溶液。
特性評價:使用共通操作E及F(使用ε
D , 280=5178(實測値)、ε
D , 370=20217(實測値)),獲得下述之特性値。
抗體濃度:11.28mg/mL,抗體產量:451mg(90%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.6;以共通操作F測定的抗體每一分子之藥物平均結合數(n):7.7。
實施例32(實施例26步驟8之化合物之另一合成法)
步驟1:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺酸第三丁酯
於冰冷下,於N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸第三丁酯(J.Pept.Res.,1999年,53卷,393項;0.400g,0.717mmol)之THF(12.0ml)溶液中,添加1,8-二吖雙環[5.4.0]-7-十一烯(0.400ml)而於室溫攪拌4日後,再添加6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯(0.221g,0.717mmoL),並攪拌3小時。將反應液以乙酸乙酯稀釋,以10%檸檬酸水溶液、飽和碳酸氫鈉水溶液、及飽和食鹽水洗淨後,將有機層以無水硫酸鎂乾燥。於減壓下餾除溶媒後,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.295g,78%)。
1H-NMR(400MHz,CDCl
3)δ:1.28-1.36(2H,m),1.41(9H,s),1.57-1.71(4H,m),2.23(2H,t,J=7.6Hz),3.09(2H,d,J=6.0Hz),3.51(2H,t,J=7.6Hz),3.85-4.02(4H,m),4.69-4.78(1H,m),6.15(1H,t,J=4.6Hz),6.33(1H,d,J=7.3Hz),6.60(1H,t,J=5.0Hz),6.68(2H,s),7.10-7.16(2H,m),7.22-7.31(3H,m).
MS(ESI)m/z:529(M+H)
+
步驟2:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺酸
於上述步驟1所獲得的化合物(0.295g,0.558mmoL)之二氯甲烷(8.00ml)溶液中,添加三氟乙酸(4.00mL),並於室溫攪拌18小時。減壓餾除溶媒,獲得呈淡黃色固體之標題化合物(0.240g,91%)。
1H-NMR(400MHz,DMSO-d
6)δ:1.15-1.23(2H,m),1.40-1.53(4H,m),2.10(2H,t,J=7.6Hz),2.88(1H,dd,J=13.7,8.9Hz),3.04(1H,dd,J=13.7,5.0Hz),3.35-3.43(2H,m),3.58-3.77(4H,m),4.41(1H,td,J=7.8,5.0Hz),7.00(2H,s),7.16-7.31(5H,m),8.00(1H,t,J=5.7Hz),8.06(1H,t,J=5.7Hz),8.13(1H,d,J=7.8Hz).
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
將上述步驟2所獲得的化合物(0.572g,1.21mmoL)溶解於二氯甲烷(12.0mL),添加N-羥基琥珀醯亞胺(0.152g,1.32mmoL)、及1-(3-二甲基胺基丙基)-3-乙基碳二亞胺鹽酸鹽(0.253g,1.32mmoL)而攪拌1小時。將反應溶液加到實施例26步驟5所獲得的混合物(1.10mmoL)之N,N-二甲基甲醯胺(22.0mL)溶液中,並於室溫攪拌3小時。於反應溶液中添加10%檸檬酸水溶液,以氯仿提取,將獲得的有機層以硫酸鈉乾燥、過濾。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.351g,31%)。機器資料係與實施例26步驟8之化合物相同。
實施例33(實施例26步驟8之化合物之另一合成法)
步驟1:[({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲氧基]乙酸苄酯
於0℃,於實施例26步驟1所獲得的化合物(7.37g,20.0mmoL)之THF(200ml)溶液中,添加乙醇酸苄酯(6.65g,40.0mmoL)、及p-甲苯磺酸一水合物(0.381g,2.00mmoL),並於室溫攪拌2小時30分鐘。於反應溶液中添加飽和碳酸氫鈉水溶液,以乙酸乙酯提取,將獲得的有機層以硫酸鈉乾燥、過濾。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[己烷:乙酸乙酯=100:0(v/v)~0:100]純化,獲得呈無色固體之標題化合物(6.75g,71%)。機器資料係與實施例26步驟2之化合物相同。
步驟2:N-[(苄氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸-N-{[(2-(苄氧基)-2-側氧基乙氧基]甲基}甘胺醯胺
於0℃,於上述步驟1所獲得的化合物(6.60g,13.9mmoL)之N,N-二甲基甲醯胺(140mL)溶液中,添加1,8-二吖雙環[5.4.0]十一-7-烯(2.22g,14.6mmoL),並於室溫攪拌15分鐘。於反應溶液中添加預先於室溫攪拌1小時後之N-[(苄氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸(6.33g,15.3mmoL)、N-羥基琥珀醯亞胺(1.92g,16.7mmoL)、及1-(3-二甲基胺基丙基)-3-乙基碳二亞胺鹽酸鹽(3.20g,16.7mmoL)之N,N-二甲基甲醯胺(140mL)溶液,並於室溫攪拌4小時。於反應溶液中添加0.1N鹽酸,以氯仿提取,將獲得的有機層以硫酸鈉乾燥、過濾。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得呈無色固體之標題化合物(7.10g,79%)。
1H-NMR(DMSO-d
6)δ:2.78(1H,dd,J=13.9,9.6Hz),3.05(1H,dd,J=13.9,4.5Hz),3.56-3.80(6H,m),4.15(2H,s),4.47-4.55(1H,m),4.63(2H,d,J=6.6Hz),5.03(2H,s),5.15(2H,s),7.16-7.38(15H,m),7.52(1H,t,J=5.9Hz),8.03(1H,t,J=5.5Hz),8.17(1H,d,J=8.2Hz),8.36(1H,t,J=5.7Hz),8.61(1H,t,J=6.6Hz).
步驟3:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(羧基甲氧基)甲基]甘胺醯胺
於上述步驟2所獲得的化合物(7.00g,10.8mmoL)之N,N-二甲基甲醯胺(216mL)溶液中,添加鈀碳觸媒(7.00g),於氫氣環境下,於室溫攪拌24小時。經由矽藻土過濾去除不溶物,並減壓餾除溶媒。將獲得的殘留物溶解於水中、經由矽藻土過濾去除不溶物、並減壓餾除溶媒之操作重複2次,獲得呈無色固體之標題化合物(3.77g,82%)。
1H-NMR(DMSO-d
6)δ:2.84(1H,dd,J=13.7,9.8Hz),3.08(1H,dd,J=13.7,4.7Hz),3.50-3.72(4H,m),3.77-3.86(2H,m),3.87(2H,s),4.52-4.43(1H,m),4.61(2H,d,J=6.6Hz),7.12-7.30(5H,m),8.43(1H,t,J=5.9Hz),8.54(1H,d,J=7.8Hz),8.70(1H,t,J=6.3Hz),8.79(1H,t,J=5.5Hz).
步驟4:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(羧基甲氧基)甲基]甘胺醯胺
於上述步驟3所獲得的化合物(3.59g,8.48mmoL)之N,N-二甲基甲醯胺(85.0mL)溶液中,添加6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯(2.88g,9.33mmoL)、及三乙基胺(0.858g,8.48mmoL),並於室溫攪拌1小時。於反應溶液中添加0.1N鹽酸,以氯仿、氯仿及甲醇之混合溶媒[氯仿:甲醇=4:1(v/v)]提取,將獲得的有機層以硫酸鈉乾燥、過濾。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈無色固體之標題化合物(3.70g,71%)。
1H-NMR(DMSO-d
6)δ:1.13-1.24(2H,m),1.42-1.53(4H,m),2.11(2H,t,J=7.4Hz),2.80(1H,dd,J=13.7,9.8Hz),3.06(1H,dd,J=13.9,4.5Hz),3.37(2H,t,J=7.2Hz),3.56-3.78(6H,m),3.97(2H,s),4.46-4.53(1H,m),4.61(2H,d,J=6.3Hz),7.00(2H,s),7.15-7.29(5H,m),8.03-8.20(3H,m),8.32(1H,t,J=5.9Hz),8.60(1H,t,J=6.7Hz).
步驟5:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於依喜替康之甲烷磺酸鹽(1.14g,2.00mmoL)之N,N-二甲基甲醯胺(40.0mL)溶液中,於0℃添加三乙基胺(0.202g,2.00mmoL)、上述步驟4所獲得的化合物(1.48g,2.40mmoL)、及含水16.4%之4-(4,6-二甲氧基-1,3,5-三□-2-基)-4-甲基□啉鎓氯化物(0.993g,3.00mmoL),於室溫攪拌1小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得呈淡黃色固體之標題化合物(1.69g,82%)。機器資料係與實施例26步驟8之化合物相同。
實施例34 中間體(34)
步驟1:2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙基乙酸酯
於冰冷下,於依喜替康之甲烷磺酸鹽(0.500g,0.941mmoL)之N,N-二甲基甲醯胺(20.0mL)懸浮液中,添加N,N-二異丙基乙基胺(0.492mL,2.82mmoL)及乙醯氧基乙醯氯(0.121ml,1.13mmoL),並於室溫攪拌1小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡黃色固體之標題化合物(0.505g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.81-1.92(2H,m),2.08(3H,s),2.08-2.22(2H,m),2.41(3H,s),3.14-3.21(2H,m),4.51(2H,dd,J=19.4,14.7Hz),5.22(2H,dd,J=40.1,19.0Hz),5.43(2H,s),5.56-5.61(1H,m),6.53(1H,s),7.31(1H,s),7.81(1H,d,J=11.0Hz),8.67(1H,d,J=8.6Hz).
MS(ESI)m/z:536(M+H)
+
步驟2:N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-2-羥基乙醯胺
於上述步驟1所獲得的化合物(0.504g,0.941mmoL)之甲醇(50.0mL)懸浮液中,添加THF(20.0ml)及1N氫氧化鈉水溶液(4.00ml,4.00mmoL),並於室溫攪拌1小時。添加1N鹽酸(5.00ml,5.00mmoL)而停止反應,減壓餾除溶媒。將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡黃色固體之標題化合物(0.412g,89%)。將抗體-藥物結合物(45)、(46)投予小鼠之際,此化合物可於腫瘤中確認。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.3Hz),1.78-1.95(2H,m),2.09-2.28(2H,m),2.39(3H,s),3.07-3.27(2H,m),3.96(2H,d,J=6.0Hz),5.11-5.26(2H,m),5.42(2H,s),5.46-5.54(1H,m),5.55-5.63(1H,m),6.52(1H,s),7.30(1H,s),7.78(1H,d,J=10.9Hz),8.41(1H,d,J=9.1Hz).
MS(ESI)m/z:494(M+H)
+
實施例35(實施例34之化合物之另一合成法)
步驟1:N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-2-羥基乙醯胺
將乙醇酸(0.0201g,0.27mmoL)溶解於N,N-二甲基甲醯胺(1.0mL),添加N-羥基琥珀醯亞胺(0.0302g,0.27mmoL)、及1-(3-二甲基胺基丙基)-3-乙基碳二亞胺鹽酸鹽(0.0508g,0.27mmoL)而攪拌1小時。將反應溶液懸浮於依喜替康之甲烷磺酸鹽(0.1g,0.176mmoL)之N,N-二甲基甲醯胺(1.0mL)懸浮液,添加三乙基胺(0.025mL,0.18mmoL),並於室溫攪拌24小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=10:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.080g,92%)。機器資料係與實施例34步驟2所獲得的化合物相同。
實施例36 抗體-藥物結合物(36)
步驟1:N-[4-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丁醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基甘胺醯基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]-β-丙胺醯胺
將實施例15之步驟2所獲得的化合物(60.0mg,0.0646mmoL),使用4-順丁烯二醯亞胺丁酸N-琥珀醯亞胺酯替代6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯,與實施例2步驟3同樣地進行反應,獲得呈淡白色固體之標題化合物(24.0mg,38%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.2Hz),1.68(2H,quin,J=7.4Hz),1.78-1.92(2H,m),2.06-2.22(2H,m),2.10(2H,t,J=7.8Hz),2.31-2.43(2H,m),2.40(3H,s),2.78(1H,dd,J=13.7,9.4Hz),3.01(1H,dd,J=13.7,4.7Hz),3.17(4H,d,J=5.1Hz),3.29-3.40(2H,m),3.52-3.80(6H,m),4.40-4.51(1H,m),5.19(1H,d,J=18.4Hz),5.26(1H,d,J=18.8Hz),5.42(2H,s),5.52-5.61(1H,m),6.53(1H,s),6.99(2H,s),7.12-7.28(5H,m),7.31(1H,s),7.74-7.84(2H,m),8.02(1H,t,J=5.9Hz),8.08-8.16(2H,m),8.25(1H,t,J=5.9Hz),8.52(1H,d,J=8.2Hz).
MS(ESI)m/z:990(M+H)
+
步驟2:抗體-藥物結合物(33)
使用參考例1所製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.75mg/mL,抗體產量:10.5mg(84%),抗體每一分子之藥物平均結合數(n):4.7。
實施例37 抗體-藥物結合物(37)
步驟1:抗體-藥物結合物(37)
使用參考例1所製作的曲妥珠單抗及實施例36步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.89mg/mL,抗體產量:11.3mg(90%),抗體每一分子之藥物平均結合數(n):8.5。
實施例38 中間體(38)
步驟1:(5-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-5-側氧基戊基)胺甲酸第三丁酯
將依喜替康之甲烷磺酸鹽(500mg,0.941mmoL),使用5-(第三丁氧基羰基胺基)戊酸替代4-(第三丁氧基羰基胺基)丁酸,與實施例1步驟1同樣地進行反應,獲得呈黃茶色固體之標題化合物(571mg,96%)。未進一步純化而用於下一反應。
MS(ESI)m/z:635(M+H)
+
步驟2:5-胺基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]戊醯胺
將上述步驟1所獲得的化合物(558mg,0.879mmoL),與實施例1步驟2同樣地進行反應,獲得呈黃色固體之標題化合物之三氟乙酸鹽(363mg,64%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.88(3H,t,J=7.4Hz),1.52-1.71(4H,m),1.87(2H,tt,J=14.4,6.9Hz),2.07-2.18(2H,m),2.22(2H,t,J=7.0Hz),2.40(3H,s),2.76-2.88(2H,m),3.13-3.22(2H,m),5.18(1H,d,J=18.8Hz),5.24(1H,d,J=18.8Hz),5.43(2H,s),5.53-5.61(1H,m),6.55(1H,s),7.33(1H,s),7.65(3H,br.s.),7.81(1H,d,J=11.3Hz),8.49(1H,d,J=8.6Hz).
MS(ESI)m/z:535(M+H)
+
實施例39 抗體-藥物結合物(39)
步驟1:N-(第三丁氧基羰基)甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(5-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-5-側氧基戊基)甘胺醯胺
將實施例38步驟2所獲得的化合物(348mg,0.537mmoL),與實施例2步驟1同樣地進行反應,獲得呈淡黃色固體之標題化合物(429mg,84%)。未進一步純化而用於下一反應。
步驟2:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(5-{[(1S,9S)-9-乙基-5-氟-9-羥基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-5-側氧基戊基)甘胺醯胺
將上述步驟1所獲得的化合物(427mg,0.448mmoL),與實施例2步驟2同樣地進行反應,獲得呈黃色固體之標題化合物之三氟乙酸鹽(430mg,99%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.38-1.49(2H,m),1.54-1.66(2H,m),1.86(2H,tt,J=14.5,7.0Hz),2.08-2.16(2H,m),2.19(2H,t,J=7.2Hz),2.40(3H,s),2.76(1H,dd,J=13.9,10.0Hz),3.00-3.12(3H,m),3.14-3.21(2H,m),3.57(2H,d,J=4.7Hz),3.60-3.75(3H,m),3.87(1H,dd,J=16.8,5.9Hz),4.55(1H,td,J=9.0,4.7Hz),5.16(1H,d,J=18.8Hz),5.23(1H,d,J=18.4Hz),5.44(2H,s),5.53-5.60(1H,m),6.55(1H,s),7.14-7.29(5H,m),7.32(1H,s),7.74(1H,t,J=5.5Hz),7.81(1H,d,J=10.9Hz),7.96(3H,br.s.),8.30-8.37(1H,m),8.44-8.53(2H,m).
MS(ESI)m/z:853(M+H)
+
步驟3:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-(5-{[(1S,9S)-9-乙基-5-氟-9-羥基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-5-側氧基戊基)甘胺醯胺
將上述步驟2所獲得的化合物(60.0mg,0.0621mmoL),與實施例2步驟3同樣地進行反應,獲得呈固體之標題化合物(16.0mg,25%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.13-1.21(2H,m),1.36-1.52(6H,m),1.53-1.65(2H,m),1.79-1.92(2H,m),2.05-2.15(4H,m),2.19(2H,s),2.40(3H,s),2.79(1H,dd,J=13.7,10.2Hz),2.98-3.10(3H,m),3.12-3.21(2H,m),3.29-3.37(2H,m),3.53-3.79(6H,m),4.41-4.50(1H,m),5.16(1H,d,J=18.8Hz),5.23(1H,d,J=18.8Hz),5.43(2H,s),5.52-5.60(1H,m),6.53(1H,s),6.99(2H,s),7.12-7.28(5H,m),7.31(1H,s),7.63(1H,t,J=5.7Hz),7.80(1H,d,J=10.6Hz),8.02(1H,t,J=5.9Hz),8.08(1H,t,J=5.7Hz),8.12(1H,d,J=7.8Hz),8.24(1H,t,J=5.7Hz),8.45(1H,d,J=8.6Hz).
MS(ESI)m/z:1046(M+H)
+
步驟4:抗體-藥物結合物(39)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(1.0mL)採取於2mL管中,添加10mM TCEP水溶液(0.0155mL;相對於抗體一分子為2.3當量)及1M磷酸氫鉀二水溶液(0.050mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含上述步驟3所獲得的化合物10mM的DMSO溶液(0.0311mL;相對於抗體一分子為4.6當量),並於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.00622mL;相對於抗體一分子為9.2當量),進一步於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:1.12mg/mL,抗體產量:6.72mg(67%),抗體每一分子之藥物平均結合數(n):1.8。
實施例40 抗體-藥物結合物(40)
步驟1:抗體-藥物結合物(40)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及共通操作B(作為280nm吸光係數,使用1.37mLmg
-1cm
-1),以PBS6.0/EDTA調製為10mg/mL。將本溶液(1.0mL)採取於2mL管中,添加10mM TCEP水溶液(0.0311mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(0.050mL)。確認本溶液之pH為7.4±0.1內後,經由於37℃保溫1小時,使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液於22℃保溫10分鐘後,添加含實施例39步驟3所獲得的化合物10mM的DMSO溶液(0.0622mL;相對於抗體一分子為9.2當量),並於22℃保溫40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.0124mL;相對於抗體一分子為18.4當量),再於22℃保溫20分鐘,使藥物連接物之反應停止。
純化:將上述溶液,進行使用共通操作D-1(使用PBS6.0作為緩衝液)的純化,獲得含有標題抗體-藥物結合物的溶液6mL。
特性評價:使用共通操作E,獲得下述之特性値。
抗體濃度:0.98mg/mL,抗體產量:5.88mg(59%),抗體每一分子之藥物平均結合數(n):3.4。
實施例41 抗體-藥物結合物(41)
步驟1:{2-[(2-羥基乙基)胺基]-2-側氧基乙基}胺甲酸第三丁酯
將N-(第三丁氧基羰基)甘胺酸(4.2g,24mmol)溶解於二甲基甲醯胺(40mL),添加胺基乙醇(2.9g,48mmol)、1-羥基苯并三唑(3.7g,24mmol),並添加1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(6.9g,36mmoL)而於室溫攪拌12小時。減壓餾除溶媒,於殘留物中添加甲苯而進行共沸,將獲得的殘留物以矽膠管柱層析[乙酸乙酯~乙酸乙酯:甲醇=10:1(v/v)]純化,獲得無色油狀之標題化合物(3.8g,72%)。
1H-NMR(400MHz,CDCl
3)δ:1.44(9H,s),1.69(1H,brs),3.43(2H,td,J=5.9,5.1Hz),3.71(2H,t,J=5.1Hz),3.79(2H,d,J=5.9Hz),5.22(1H,brs),6.62(1H,brs).
步驟2:2-{[N-(第三丁氧基羰基)甘胺醯基]胺基}乙基4-硝基苯基碳酸酯
於上述步驟1所獲得的化合物(1.0g,4.59mmoL)之THF(23mL)溶液中,添加二異丙基乙基胺(0.80mL,4.59mmol)、碳酸雙(4-硝基苯基)酯(1.32g,6.88mmoL),並於室溫攪拌12小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[己烷~己烷:乙酸乙酯=1:3(v/v)]純化,獲得呈淡黃色固體之標題化合物(1.13g,64%)。
1H-NMR(400MHz,CDCl
3)δ:1.44(1H,s),3.66(2H,td,J=5.1,5.9Hz),3.81(2H,d,J=5.9Hz),4.36(2H,t,J=5.1Hz),5.07(1H,s),6.48-6.53(1H,m),7.38(2H,dt,J=9.9,2.7Hz),8.27(2H,dt,J=9.9,2.7Hz).
步驟3:2-({[(第三丁氧基羰基)胺基]乙醯基}胺基)乙基[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺甲酸酯
於依喜替康之甲烷磺酸鹽(0.70g,1.2mmoL)、上述步驟2所獲得的化合物(0.57g,1.5mmoL)、1-羥基苯并三唑(3.7g,24mmol)中添加二甲基甲醯胺(23mL),並添加二異丙基乙基胺(0.43mL,2.5mmol)而於室溫攪拌12小時。減壓餾除溶媒,於殘留物中添加甲苯而進行共沸,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=10:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.86g,定量的)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.35(9H,s),1.78-1.94(1H,m),2.07-2.17(1H,m),2.17-2.27(1H,m),2.37(3H,s),3.05-3.16(1H,m),3.19-3.26(1H,m),3.34-3.39(2H,m),3.50-3.56(2H,m),4.00-4.07(1H,m),4.13-4.21(1H,m),5.15-5.34(3H,m),5.44(2H,s),6.54(1H,s),6.90-6.96(1H,m),7.32(1H,s),7.78(1H,d,J=11.0Hz),7.93-8.07(2H,m).
步驟4:2-(甘胺醯基胺基)乙基[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺甲酸酯
將上述步驟3所獲得的化合物(0.86g,2.1mmoL)溶解於二氯甲烷(15mL)。添加三氟乙酸(15mL)而攪拌1小時。減壓餾除溶媒,於殘留物中添加甲苯而進行共沸,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡黃色固體之標題化合物(0.86g,99%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.2Hz),1.79-1.95(2H,m),2.06-2.18(1H,m),2.18-2.29(1H,m),2.38(3H,s),3.07-3.17(1H,m),3.20-3.29(1H,m),3.36-3.50(2H,m),3.51-3.62(2H,m),3.99-4.08(1H,m),4.22-4.31(1H,m),5.16-5.35(3H,m),5.42(1H,d,J=18.8Hz),5.46(1H,d,J=18.8Hz),6.56(1H,s),7.34(1H,s),7.65(2H,brs),7.79(1H,d,J=10.6Hz),7.99-8.06(1H,m),8.51(1H,t,J=5.5Hz).
MS(APCI)m/z:939(M+H)
+
步驟5:N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-({[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺甲醯基}氧基)乙基]甘胺醯胺
將N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸(日本特開2002-60351號;0.21g,0.41mmoL)溶解於N,N-二甲基甲醯胺(3mL),添加N-羥基琥珀醯亞胺(0.052g,0.45mmoL)、及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.086g,0.45mmoL)而攪拌1小時。將反應溶液滴加至添加上述步驟4所獲得的化合物(0.24g,0.35mmol)、及三乙基胺(0.078mL、0.45mmoL)的N,N-二甲基甲醯胺溶液(2mL),於室溫攪拌1小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.24g,65%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.3Hz),1.79-1.90(2H,m),2.05-2.27(2H,m),2.36(3H,s),2.73-2.81(1H,m),2.98-3.12(2H,m),3.17-3.26(1H,m),3.35-3.42(2H,m),3.55-3.79(6H,m),4.00-4.10(1H,m),4.12-4.23(2H,m),4.23-4.29(2H,m),4.45-4.55(1H,m),5.13-5.33(3H,m),5.40(1H,d,J=17.2Hz),5.44(1H,d,J=17.2Hz),6.53(1H,s),7.11-7.26(5H,m),7.26-7.33(3H,m),7.38(2H,t,J=7.6Hz),7.57(1H,t,J=5.9Hz),7.68(2H,d,J=7.4Hz),7.77(1H,d,J=11.0Hz),7.85(2H,d,J=9.0Hz),7.91-7.97(1H,m),7.98-8.05(2H,m),8.14(1H,d,J=7.8Hz),8.31-8.26(1H,m).
MS(APCI)m/z:1063(M+H)
+
步驟6:甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-({[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺甲醯基}氧基)乙基]甘胺醯胺
將上述步驟5所獲得的化合物(0.24g,0.35mmol),與實施例26步驟7同樣地進行反應,獲得呈淡黃色固體之標題化合物(0.12g,65%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.4Hz),1.78-1.94(2H,m),2.06-2.27(2H,m),2.37(3H,s),2.72-2.81(1H,m),2.98-3.07(1H,m),3.12-3.17(2H,m),3.57-3.81(6H,m),4.00-4.21(3H,m),4.45-4.54(1H,m),5.15-5.35(3H,m),5.41(1H,d,J=17.2Hz),5.45(1H,d,J=17.2Hz),6.54(1H,s),7.11-7.26(6H,m),7.32(1H,s),7.78(1H,d,J=11.0Hz),7.93-8.00(1H,m),8.03(1H,d,J=9.4Hz),8.06-8.13(1H,m),8.21-8.27(2H,m),8.30-8.36(1H,m).
MS(APCI)m/z:841(M+H)
+
步驟7:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[2-({[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺甲醯基}氧基)乙基]甘胺醯胺
將上述步驟6所獲得的化合物(42.0mg,0.0499mmoL),與實施例2步驟3同樣地進行反應,獲得呈淡黃色固體之標題化合物(38.3mg,74%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.87(3H,t,J=7.4Hz),1.12-1.23(2H,m),1.40-1.51(4H,m),1.80-1.95(2H,m),2.05-2.27(4H,m),2.38(3H,s),3.43-2.40(8H,m),3.53-3.78(6H,m),4.00-4.21(2H,m),4.44-4.55(1H,m),5.17-5.36(3H,m),5.43(2H,s),6.54(1H,s),6.99(2H,s),7.19(5H,d,J=23.9Hz),7.33(1H,s),7.78(1H,d,J=10.6Hz),7.91-8.16(5H,m),8.24-8.31(1H,m).
MS(ESI)m/z:1034(M+H)
+
步驟8:抗體-藥物結合物(41)
使用參考例1所製作的曲妥珠單抗及上述步驟7所獲得的化合物,藉由與實施例6步驟2相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.54mg/mL,抗體產量:9.2mg(74%),抗體每一分子之藥物平均結合數(n):3.7。
實施例42 抗體-藥物結合物(42)
步驟1:抗體-藥物結合物(42)
使用參考例1所製作的曲妥珠單抗及實施例41步驟7所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.47mg/mL,抗體產量:8.8mg(71%),抗體每一分子之藥物平均結合數(n):7.0。
實施例43 抗體-藥物結合物(43)
步驟1:N-{3-[2-(2-{[3-(2,5-二側氧基-2,5-二氫-1H-吡咯1-基)丙醯基]胺基}乙氧基)乙氧基]丙醯基}甘胺醯基甘胺醯基-L-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
將實施例26步驟6所獲得的化合物(53.7mg,50.5μmoL)溶解於N,N-二甲基甲醯胺(1.50mL),添加1,8-二吖雙環(5.4.0)-7-十一烯(7.5μL,50.5μmoL),並於室溫攪拌30分鐘。於反應溶液中添加p-甲苯磺酸吡啶鎓(14.0mg,5.56μmoL)後,添加3-(2-(2-(3-順丁烯二亞醯胺丙醯胺)乙氧基)乙氧基)丙酸N-琥珀醯亞胺酯(32.3mg,75.8μmoL),並於室溫攪拌2.25小時。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡黃色固體之標題化合物(27.1mg,47%)。
1H-NMR(DMSO-d6)δ:0.87(3H,t,J=7.0Hz),1.79-1.91(2H,m),2.18(2H,t,J=15.1Hz),2.29-2.33(4H,m),2.39(3H,s),2.76(1H,dd,J=13.9,9.2Hz),3.02(1H,dd,J=13.7,3.9Hz),3.13-3.15(2H,m),3.44-3.46(6H,m),3.57-3.59(6H,m),3.69-3.75(6H,m),4.01(2H,s),4.46-4.48(1H,m),4.63(2H,d,J=6.3Hz),5.21(2H,s),5.42(2H,s),5.60(1H,dd,J=13.5,5.7Hz),6.54(1H,s),7.00(2H,s),7.17-7.24(6H,m),7.31(1H,s),7.79(1H,d,J=11.0Hz),8.00-8.02(2H,m),8.13(1H,d,J=7.8Hz),8.17(1H,t,J=6.3Hz),8.52(1H,d,J=9.0Hz),8.65(1H,t,J=6.5Hz).
MS(ESI)m/z=1151(M+H)
+
步驟2:抗體-藥物結合物(43)
使用參考例1製作的曲妥珠單抗及上述步驟1所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.96mg/mL,抗體產量:17.6mg(88%),抗體每一分子之藥物平均結合數(n):5.6。
實施例44 抗體-藥物結合物(44)
步驟1:N-[(苄氧基)羰基]甘胺醯基甘胺醯基-D-苯丙胺酸第三丁酯
將N-[(苄氧基)羰基]甘胺醯基甘胺酸(3.00g,11.3mmoL)溶解於N,N-二甲基甲醯胺(20.0mL),添加N-羥基琥珀醯亞胺(1.43g,12.4mmoL)、及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(2.37g,12.4mmoL)而攪拌1小時。將添加D-苯丙胺酸第三丁酯(2.74g,12.38mmoL)及三乙基胺(1.73mL,12.4mmoL)的N,N-二甲基甲醯胺溶液(10mL)滴加至此反應溶液中,於室溫攪拌2小時。於反應液中添加二氯甲烷,以水、1N鹽酸及飽和碳酸氫鈉水洗淨後,將有機層以無水硫酸鈉乾燥。減壓下餾除溶媒後,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈無色固體之標題化合物(4.21g,80%)。
1H-NMR(CDCl
3)δ:1.41(9H,s),3.03-3.14(2H,m),3.86-3.97(4H,m),4.70-4.77(1H,m),5.13(2H,s),5.43(1H,brs),6.42(1H,d,J=10.0Hz),6.64-6.71(1H,m),7.11-7.15(2H,m),7.20-7.31(4H,m),7.31-7.38(4H,m).
MS(APCI)m/z:470(M+H)
+
步驟2:N-[(苄氧基)羰基]甘胺醯基甘胺醯基-D-苯丙胺酸
將步驟1所獲得的化合物(4.21g,8.97mmoL)溶解於乙酸乙酯(20mL),添加4N鹽酸之乙酸乙酯溶液(20.0mL),並於室溫放置一晩。減壓下餾除溶媒後,添加甲苯,並於減壓下餾除溶媒。將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈無色固體之標題化合物(1.66g,45%)。
1H-NMR(CDCl
3)δ:2.92-3.01(1H,m),3.10-3.18(1H,m),3.65-3.81(3H,m),3.88-3.98(1H,m),4.64-4.73(1H,m),5.06(2H,s),5.87(1H,brs),7.10-7.37(13H,m).
MS(APCI)m/z:412(M+H)
-
步驟3:N-[(苄氧基)羰基]甘胺醯基甘胺醯基-D-苯丙胺醯基-N-{[2-(苄氧基)-2-側氧基乙氧基]甲基}甘胺醯胺
於實施例32步驟1所獲得的化合物(1.25g,2.63mmoL)之二□烷(25.0mL)溶液中,添加哌啶(5.00mL)、N,N-二甲基甲醯胺(5.00mL)而於室溫攪拌30分鐘。減壓下餾除溶媒,將獲得的殘留物溶解於N,N-二甲基甲醯胺(20.0mL)。添加上述步驟2之化合物(1.20g,2.90mmoL)、及含水16.4%之4-(4,6-二甲氧基-1,3,5-三□-2-基)-4-甲基□啉鎓氯化物(1.03g,3.16mmoL),並於室溫攪拌2小時。於反應液中添加氯仿,以水洗淨後,將有機層以無水硫酸鈉乾燥。減壓下餾除溶媒後,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈無色固體之標題化合物(270mg,16%)。
1H-NMR(DMSO-d
6)δ:2.78(1H,dd,J=13.6,10.0Hz),3.05(1H,dd,J=13.9,4.2Hz),3.56-3.79(6H,m),4.15(2H,s),4.47-4.54(1H,m),4.63(2H,d,J=6.7Hz),5.03(2H,s),5.15(2H,s),7.14-7.39(15H,m),7.50(1H,t,J=5.7Hz),8.02(1H,t,J=5.4Hz),8.16(1H,d,J=7.9Hz),8.34(1H,t,J=6.0Hz),8.60(1H,t,J=7.0Hz).
MS(APCI)m/z:648(M+H)
+
步驟4:甘胺醯基甘胺醯基-D-苯丙胺醯基-N-[(羧基甲氧基)甲基]甘胺醯胺
將上述步驟3所獲得的化合物(200mg,0.31mmoL)溶解於N,N-二甲基甲醯胺(5.0mL),添加5%鈀碳觸媒(0.12g),於氫氣環境下,於室溫攪拌9小時。將反應液以矽藻土過濾,將殘留物以水及N,N-二甲基甲醯胺之混合溶媒洗淨。合併濾液及洗液而於減壓下餾除,獲得呈無色固體之標題化合物(0.15g,定量的)。
1H-NMR(DMSO-d
6)δ:2.85(1H,dd,J=13.3,9.7Hz),3.08(1H,dd,J=13.9,5.4Hz),3.43-3.52(4H,m),3.62-3.89(7H,m),4.36-4.44(1H,m),4.58-4.67(2H,m),7.12-7.29(5H,m),8.44(1H,t,J=5.7Hz),8.67(1H,d,J=7.3Hz),8.78(1H,t,J=5.4Hz),8.91(1H,brs).
MS(APCI)m/z:424(M+H)
+
步驟5:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-D-苯丙胺醯基-N-[(羧基甲氧基)甲基]甘胺醯胺
將上述步驟4所獲得的化合物(0.15g,0.35mmoL)溶解於N,N-二甲基甲醯胺(10mL),添加6-順丁烯二醯亞胺己酸N-琥珀醯亞胺酯(0.11g,0.35mmoL),並於室溫攪拌1小時。於反應液中添加氯仿,以水洗淨後,將有機層以無水硫酸鈉乾燥。減壓下餾除溶媒後,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈無色固體之標題化合物(41mg,26%)。
1H-NMR(DMSO-d
6)δ:1.13-1.24(2H,m),1.42-1.53(4H,m),2.12(2H,t,J=7.3Hz),2.82(1H,dd,J=13.9,10.0Hz),3.09(1H,dd,J=13.9,4.8Hz),3.17(2H,d,J=4.2Hz),3.47-3.89(8H,m),4.08-4.14(1H,m),4.41-4.49(1H,m),4.58-4.69(2H,m),7.00(2H,s),7.14-7.27(5H,m),8.31(1H,t,J=6.0Hz),8.39(1H,brs),8.55(2H,brs),8.93(1H,brs).
MS(APCI)m/z:615(M-H)
-
步驟6:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-D-苯丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺醯胺
於依喜替康之甲烷磺酸鹽(22mg,0.388mmoL)之N,N-二甲基甲醯胺(10mL)溶液中,於0℃添加三乙基胺(5.42μL、0.388mmoL)、上述步驟5所獲得的化合物(29mg,0.466mmoL)、及含水16.4%之4-(4,6-二甲氧基-1,3,5-三□-2-基)-4-甲基□啉鎓氯化物(19mg,0.686mmoL),並於室溫攪拌1小時。減壓下餾除反應液後,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡黃色固體之標題化合物(26mg,65%)。
1H-NMR(DMSO-d
6)δ:0.87(3H,t,J=7.3Hz),1.12-1.22(2H,m),1.40-1.51(4H,m),1.79-1.92(2H,m),2.09(2H,t,J=7.6Hz),2.13-2.23(2H,m),2.39(3H,s),2.78(1H,dd,J=13.6,9.4Hz),2.98-3.05(1H,m),3.13-3.23(2H,m),3.54-3.78(8H,m),4.02(2H,s),4.41-4.50(1H,m),4.61-4.66(2H,m),5.21(2H,s),5.42(2H,s),5.56-5.64(1H,m),6.53(1H,s),6.99(2H,s),7.14-7.27(5H,m),7.31(1H,s),7.79(1H,d,J=10.9Hz),8.01(1H,t,J=5.4Hz),8.07(1H,t,J=5.7Hz),8.14(1H,d,J=7.9Hz),8.31(1H,t,J=5.7Hz),8.53(1H,d,J=9.1Hz),8.63(1H,t,J=6.3Hz).
MS(APCI)m/z:1034(M+H)
+
步驟7:抗體-藥物結合物(44)
使用參考例1所製作的曲妥珠單抗及上述步驟6所獲得的化合物,藉由與實施例7步驟1相同之方法,獲得標題抗體-藥物結合物。
抗體濃度:1.87mg/mL,抗體產量:16.8mg(84%),抗體每一分子之藥物平均結合數(n):6.1。
實施例45 中間體(45)
步驟1:(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙基)胺甲酸第三丁酯
於N-(第三丁氧基羰基)-甘胺酸(0.395g,2.26mmoL)之二氯甲烷(3.00mL)溶液中,添加N-羥基琥珀醯亞胺(0.260g,2.26mmoL)、1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.433mg,2.26mmoL),並於室溫攪拌1小時。將此溶液加到包含依喜替康之甲烷磺酸鹽(1.00g,1.88mmoL)、三乙基胺(0.315mL,2.26mmoL)、及N,N-二甲基甲醯胺(3.00mL)的溶液中,並於室溫攪拌16.5小時。將反應溶液以氯仿稀釋,以10%檸檬酸溶液洗淨後,將有機層以無水硫酸鈉乾燥。減壓餾除溶媒,將獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈黃色固體之標題化合物(1.16g,99%)。
1H-NMR(400MHz,DMSO-d
6)δ:0.86(3H,t,J=7.2Hz),1.30(9H,s),1.81-1.89(2H,m),2.09-2.21(2H,m),2.38(3H,s),3.15-3.17(2H,m),3.55-3.56(2H,m),5.15(1H,d,J=18.8Hz),5.23(1H,d,J=19.2Hz),5.41(2H,s),5.55-5.56(1H,m),6.53(1H,s),6.95(1H,t,J=5.5Hz),7.28(1H,s),7.77(1H,d,J=11.0Hz),8.39(1H,d,J=8.6Hz).
MS(APCI)m/z:593(M+H)
+
步驟2:N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲□并[1,2-b]喹啉-1-基]甘胺醯胺
將上述步驟1所獲得的化合物(0.513g,1.01mmoL),與實施例1步驟2同樣地進行反應,獲得呈黃色固體之標題化合物(0.463g,93%)。
1H-NMR(400MHz,CD
3OD)δ:0.96(3H,t,J=7.0Hz),1.89-1.91(2H,m),2.14-2.16(1H,m),2.30(3H,s),2.40-2.42(1H,m),3.15-3.21(2H,m),3.79-3.86(2H,m),4.63-4.67(1H,m),5.00-5.05(1H,m),5.23(1H,d,J=16.0Hz),5.48(1H,d,J=16.0Hz),5.62-5.64(1H,m),7.40-7.45(2H,m).
MS(APCI)m/z:493(M+H)
+
實施例46 抗體-藥物結合物(46)
步驟1:抗體-藥物結合物(46)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(50mL)置入聚碳酸酯製之125mL三角燒瓶容器中,於磁攪拌器攪拌下,於室溫添加1M磷酸氫二鉀水溶液(0.750mL)後,添加10mM TCEP水溶液(1.857mL;相對於抗體一分子為5.4當量)。確認本溶液之pH為7.0±0.1內後,停止攪拌,經由於37℃保溫1小時,將抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液冷卻至15℃後,於攪拌下,緩緩滴加含實施例26步驟8之化合物10mM的DMSO溶液(2.958mL;相對於抗體一分子為8.6當量)。於15℃,最初攪拌30分鐘,接著1小時停止攪拌而保溫,使藥物連接物與抗體結合。其次,於攪拌下,添加100mM NAC水溶液(0.444mL;相對於抗體一分子為12.9當量),再於室溫攪拌20分鐘,使未反應之藥物連接物之反應性停止。
純化:於攪拌下,於上述溶液中緩緩添加20%乙酸水(約0.25mL)及ABS(50mL),並將本溶液之pH作成5.5±0.1。將此溶液作精密過濾(Millipore Co. Millex-HV過濾器、0.45μm、PVDF膜)而去除白濁物。對此溶液,使用以超過濾膜(Merck股份有限公司、Pellicon XL Cassette、Biomax 50KDa)、管泵(美國Cole-Parmer公司MasterFlex Pump model 77521-40、泵壓頭model 7518-00)及管子(美國Cole-Parmer公司MasterFlex Tube L/S16)所構成的超過濾裝置,進行超過濾純化。即,藉由一邊於反應液中滴加作為純化緩衝液之ABS(計800mL),一邊進行超過濾純化,而去除未結合之藥物連接物及其他低分子量試藥,並將緩衝液取代為ABS,進一步進行至濃縮。對獲得的純化溶液,進行精密過濾(0.22μm(Millipore Co. Millex-GV過濾器、PVDF膜)及0.10μm(Millipore Co. Millex-VV過濾器、PVDF膜)),獲得含有標題抗體-藥物結合物的溶液42.5mL。
特性評價:使用共通操作E及F(使用ε
D , 280=5178(實測値)、ε
D , 370=20217(實測値)),獲得下述之特性値。
抗體濃度:10.4mg/mL,抗體產量:442mg(88.5%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.0;以共通操作F測定的抗體每一分子之藥物平均結合數(n):7.5。
實施例47 抗體-藥物結合物(47)
步驟1:抗體-藥物結合物(47)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(15mL)置入聚丙烯製管,於其中添加10mM TCEP水溶液(0.567mL;相對於抗體一分子為5.5當量)及1M磷酸氫二鉀水溶液(0.225mL)。確認本溶液之pH為7.0±0.1內後,藉由於37℃保溫2小時,而使抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:於室溫對上述溶液添加DMSO(0.146mL)及含實施例26步驟8之化合物10mM的DMSO溶液(0.928mL;相對於抗體一分子為9.0當量),並於15℃保溫30分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC水溶液(0.133mL;相對於抗體一分子為12.9當量),再於室溫攪拌20分鐘,使未反應之藥物連接物之反應性停止。
純化:將上述溶液進行使用共通操作D(使用ABS作為緩衝液)的純化,獲得含有目的化合物的溶液49mL。
特性評價:使用共通操作E(使用ε
D , 280=5178、ε
D , 370=20217),獲得下述之特性値。
抗體濃度:2.91mg/mL,抗體產量:143mg(95%),抗體每一分子之藥物平均結合數(n):6.2
實施例48 抗體-藥物結合物(48)
步驟1:抗體-藥物結合物(48)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(280mL)置入聚碳酸酯製之1000mL三角燒瓶容器,於磁攪拌器攪拌下,於室溫添加1M磷酸氫二鉀水溶液(4.200mL)後,添加10mM TCEP水溶液(10.594mL;相對於抗體一分子為5.5當量)。確認本溶液之pH為7.0±0.1內後,停止攪拌,經由於37℃保溫2小時,將抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液冷卻至15℃後,於攪拌下,將含實施例26步驟8之化合物10mM的DMSO溶液(17.335mL;相對於抗體一分子為9.0當量)緩緩滴下而添加。於15℃,攪拌30分鐘,使藥物連接物與抗體結合。其次,於攪拌下,添加100mM NAC水溶液(2.485mL;相對於抗體一分子為12.9當量),再於室溫攪拌20分鐘,使未反應之藥物連接物之反應性停止。
純化:於攪拌下,於上述溶液中緩緩添加20%乙酸水(約1.4mL)及ABS(280mL),將本溶液之pH作成5.5±0.1。將此溶液精密過濾(0.45μm、PVDF膜)而去除白濁物,獲得濾液約600mL。對此溶液,使用以超過濾膜(Merck股份有限公司、Pellicon XL Cassette、Biomax 50KDa)、管泵(美國Cole-Parmer公司MasterFlex Pump model 77521-40、泵壓頭model 7518-00)及管子(美國Cole-Parmer公司MasterFlex Tube L/S16)所構成的超過濾裝置,進行超過濾純化。即,藉由一邊於反應液中滴加作為純化緩衝液之ABS(計4800mL),一邊進行超過濾純化,而去除未結合之藥物連接物及其他低分子量試藥,並將緩衝液取代為ABS,進一步進行至濃縮。對獲得的純化溶液,進行精密過濾(0.22μm及0.10μm之2次,PVDF膜),獲得含有標題抗體-藥物結合物的溶液70mL。
特性評價:使用共通操作E(使用ε
D , 280=5178
、ε
D , 370=20217),獲得下述之特性値。
抗體濃度:35.96mg/mL,抗體產量:2517mg(90%),抗體每一分子之藥物平均結合數(n):6.2
實施例49 抗體-藥物結合物(49)
步驟1:抗體-藥物結合物(49)
抗體之還原:將以參考例1製作的曲妥珠單抗,使用共通操作C-1及B(作為280nm吸光係數,使用1.48mLmg
-1cm
-1),將介質置換為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(280mL)置入聚碳酸酯製之1000mL三角燒瓶容器,於磁攪拌器攪拌下,於室溫添加1M磷酸氫二鉀水溶液(4.200mL)後,添加10mM TCEP水溶液(10.594mL;相對於抗體一分子為5.5當量)。確認本溶液之pH為7.0±0.1內後,停止攪拌,經由於37℃保溫2小時,將抗體內鉸鏈部之雙硫鍵還原。
抗體與藥物連接物之結合:將上述溶液冷卻至15℃後,於攪拌下,緩緩滴加含實施例26步驟8之化合物10mM的DMSO溶液(17.335mL;相對於抗體一分子為9.0當量)。於15℃,攪拌30分鐘,使藥物連接物與抗體結合。其次,於攪拌下,添加100mM NAC水溶液(2.485mL;相對於抗體一分子為12.9當量),再於室溫攪拌20分鐘,使未反應之藥物連接物之反應性停止。
純化:於攪拌下,於上述溶液中緩緩添加20%乙酸水(約1.4mL)及ABS(280mL),並將本溶液之pH作成5.5±0.1。將此溶液作精密過濾(0.45μm、PVDF膜)而去除白濁物,獲得濾液約600mL。對此溶液,使用以超過濾膜(Merck股份有限公司、Pellicon XL Cassette、Ultracell 30KDa)、管泵(美國Cole-Parmer公司MasterFlex Pump model 77521-40、泵壓頭model 7518-00)及管子(美國Cole-Parmer公司MasterFlex Tube L/S16)所構成的超過濾裝置,進行超過濾純化。即,藉由一邊於反應液中滴加作為純化緩衝液之ABS(計4800mL),一邊進行超過濾純化,而去除未結合之藥物連接物及其他低分子量試藥,並將緩衝液取代為ABS,進一步進行至濃縮。對獲得的純化溶液,進行精密過濾(0.22μm及0.10μm之2次、PVDF膜),獲得含有標題抗體-藥物結合物的溶液130mL。
特性評價:使用共通操作E(使用ε
D , 280=5178
、ε
D , 370=20217),獲得下述之特性値。
抗體濃度:21.00mg/mL,抗體產量:2730mg(97.5%),抗體每一分子之藥物平均結合數(n):6.3
實施例50 抗體-藥物結合物(50)
步驟1:抗體-藥物結合物(50)
藉由混合實施例47、48及49所製作的抗體-藥物結合物(47)、(48)及(49)(243mL),再添加ABS(39.75mL),而獲得含有標題抗體-藥物結合物的溶液283mL。
特性評價:使用共通操作E及F(使用ε
D , 280=5178
、ε
D , 370=20217),獲得下述之特性値。
抗體濃度:20.0mg/mL,抗體產量:5655mg,以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.3;以共通操作F測定的抗體每一分子之藥物平均結合數(n):7.8。
評價例1 抗體-藥物結合物之抗細胞效果(1)
HER2抗原陽性細胞之人類乳癌株的KPL-4(川崎醫科大學・紅林淳一先生, British Journal of Cancer, (1999)79(5/6). 707-717)、抗原陰性細胞之MCF7(歐洲細胞保存中心(European Collection of Cell Cultures;ECACC))係以含10%胎牛血清(MOREGATE)的RPMI1640(GIBCO;以下,培養基)培養。將KPL-4、MCF7各自以培養基調製為2.5×10
4個細胞/mL,於96孔細胞培養用微量盤中各添加100μL而培養一晩。
翌日,將以培養基稀釋為1000nM、200nM、40nM、8nM、1.6nM、0.32nM、0.064nM的曲妥珠單抗或抗體-藥物結合物各添加10μL於微量盤中。未添加抗體的孔則各添加10μL培養基。於37℃、5%CO
2下,培養5至7日。培養後,將微量盤自培養箱中取出,並於室溫靜置30分鐘。添加與培養液等量之CellTiter-Glo Luminescent Cell Viability Assay(Promega)而攪拌。於室溫靜置10分鐘後,以平盤讀數機(plate reader)(PerkinElmer)測量發光量。IC
50値係以下式算出。
IC
50(nM)=antilog((50-d)×(LOG
10(b)-LOG
10(a))÷(d-c)+LOG
10(b))
a:樣品a之濃度
b:樣品b之濃度
c:樣品a之活細胞率
d:樣品b之活細胞率
各濃度中細胞生存率係以下式算出。
細胞生存率(%)=a÷b×100
a:樣品孔之發光量之平均値(n=2)
b:未添加抗體的孔之發光量之平均値(n=10)
抗體-藥物結合物(2)、(3)、(5)、(7)、(10)、(12)、(13)、(16)、(18)、(40)、(42)係對KPL-4細胞,呈現IC
50<0.1(nM)之抗細胞效果。
抗體-藥物結合物(4)、(6)、(9)、(15)、(17)、(21)、(22)、(25)、(36)、(37)、(39)、(41)、(43)係呈現0.1<IC
50<1(nM)之抗細胞效果。
抗體-藥物結合物(20)、(24)、(27)係呈現1<IC
50<100(nM)之抗細胞效果。抗體-藥物結合物(19)、(26)係未呈現抗細胞效果(>100(nM))。
另一方面,對MCF7細胞,(5)、(13)、(43)係呈現1<IC
50<100(nM)之抗細胞效果,但抗體-藥物結合物(2)、(3)、(4)、(6)、(7)、(9)、(10)、(12)、(15)、(16)、(17)、(18)、(25)、(26)、(27)、(39)、(40)、(41)、(42)、(44)並未呈現抗細胞效果(>100(nM))。
又,曲妥珠單抗係KPL-4細胞、MCF7細胞皆未呈現抗細胞效果(>100(nM))。
評價例2 抗腫瘤試験(1)
小鼠:將5-6週齡之雌裸鼠(日本Charles River股份有限公司)於實驗使用前,於SPF條件下馴化4-7日。對小鼠以經滅菌的固體飼料(FR-2,Funabashi Farms Co.,Ltd)進行給餌,並給予經滅菌的自來水(添加5-15ppm次亞氯酸鈉溶液而調製)。
測定・計算式:於全部之研究,將腫瘤之長徑及短徑以電子式數位測徑器(CD-15C,Mitutoyo Corp.)於1週測定2次,計算腫瘤體積(mm
3)。計算式係如以下所示。
腫瘤體積(mm
3)=1/2×長徑(mm)×[短徑(mm)]
2
抗體-藥物結合物及抗體係全部以生理食鹽水(大塚製藥工場股份有限公司)稀釋,將10mL/kg之液量投予至尾靜脈內。
將KPL-4細胞懸浮於生理食鹽水,將1.5×10
7個細胞皮下移植至雌裸鼠之右體側部(第0日),第15日實施隨機分組。將抗體-藥物結合物(27)或作為對照組之抗HER2抗體曲妥珠單抗(參考例1)於第15、22日全部以10mg/kg之用量作尾靜脈內投予。設定無處置組作為對照組。
將結果示於第3圖。經由曲妥珠單抗之投予,腫瘤之增殖被抑制,但抗體-藥物結合物(27)之投予其腫瘤增殖抑制效果更為顯著。又,圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。又,於投予曲妥珠單抗或抗體-藥物結合物(27)的小鼠,未見到特別顯著之體重減少等,認為抗體-藥物結合物(27)具有高安全性。又,以下關於抗腫瘤試驗的評價例,於未特別記載的情形,以本評價例所使用的手法實施試驗。
評價例3 抗腫瘤試驗(2)
將購自ATCC(美國菌種保存中心(American Type Culture Collection))的人類胃癌株NCI-N87細胞懸浮於生理食鹽水,將1×10
7個細胞皮下移植至雌裸鼠之右體側部(第0日),於第7日實施隨機分組。將抗體-藥物結合物(8)、(28)、或曲妥珠單抗依坦辛(參考例2)於第7日全部以10mg/kg之用量作尾靜脈內投予。設定無處置組作為對照組。
將結果示於第4圖。抗體-藥物結合物(8)、(28)被認為伴隨有與曲妥珠單抗依坦辛同等之腫瘤退縮的強抗腫瘤效果。又,未觀察到由投予抗體-藥物結合物(8)、(28)、或曲妥珠單抗依坦辛所致的小鼠體重減少。
評價例4 抗腫瘤試驗(3)
將購自DSMZ(德國微生物及細胞保存中心(German collection of microorganisms and cell cultures) 股份有限公司)的人類乳癌株JIMT-1細胞懸浮於生理食鹽水,而將3×10
6個細胞皮下移植至雌裸鼠之右體側部(第0日),於第12日實施隨機分組。將抗體-藥物結合物(8)、(29)、(30)、或曲妥珠單抗、曲妥珠單抗依坦辛於第12、19日全部以10mg/kg之用量,作尾靜脈內投予。設定生理食鹽水投予組為對照組。
將結果示於第5圖。對JIMT-1腫瘤,曲妥珠單抗、曲妥珠單抗依坦辛之投予並未抑制腫瘤之增殖。另一方面,經由抗體-藥物結合物(8)、(29)、(30)之投予,腫瘤之增殖被顯著抑制。又,未觀察到由抗體-藥物結合物(8)、(29)、(30)、曲妥珠單抗、或曲妥珠單抗依坦辛投予所致的小鼠體重減少。
評價例5 抗體-藥物結合物之抗細胞效果(2)
人類非小細胞肺癌株Calu-3(ATCC)係以含10%胎牛血清(MOREGATE)的伊格爾氏最低必須培養基(GIBCO;以下,MEM培養基)培養。
人類胃癌株NCI-N87(ATCC)、人類胃癌株MKN-45(日本健康科學研究資源庫(Japan Health Science Research Resources Bank))係以含10%胎牛血清的RPMI1640培養基(GIBCO;以下,RPMI培養基)培養。
人類乳癌株MDA-MB-453(ATCC)、人類乳癌株MDA-MB-468(ATCC)係以含10%胎牛血清的萊博維茨氏L-15培養基(Leibovitz’s L-15 Medium)(GIBCO;以下,萊博維茨氏培養基)培養。
此5種類之細胞株中,Calu-3、NCI-N87、MDA-MB-453為HER2陽性細胞,MKN-45及MDA-MB-468為HER2陰性細胞。
將Calu-3、NCI-N87、MKN-45以MEM培養基或RPMI培養基調製成為4×10
4個細胞/mL,於置入65μL之培養基的96孔細胞培養用微量盤中各添加25μL,於37℃、5% CO
2下培養一晩。又,將MDA-MB-453、MDA-MB-468,以萊博維茨氏培養基調製成為4×10
4個細胞/mL,於置入65μL之培養基的96孔細胞培養用微量盤中各添加25μL,並於37℃、未設定CO
2濃度下培養一晩。
翌日,將以RPMI培養基或萊博維茨氏培養基稀釋為1000nM、200nM、40nM、8nM、1.6nM、0.32nM、0.064nM的檢體於上述微量盤各添加10μL,進一步將RPMI培養基或萊博維茨氏培養基於上述微量盤各添加10μL,並於37℃、5% CO
2或37℃、未設定CO
2濃度下培養6日。
於Calu-3、NCI-N87、MDA-MB-468,添加抗體-藥物結合物(46)作為檢體、於其他細胞添加抗體-藥物結合物(50)作為檢體。培養後,將微量盤自培養箱取出而於室溫靜置30分鐘。添加與培養液等量之CellTiter-Glo Luminescent Cell Viability Assay(Promega),以平盤混合器攪拌而將細胞完全溶解。於室溫靜置10分鐘後,以平盤讀數機測量發光量。
活細胞率係以下式算出。
活細胞率(%)=a÷b×100
a:添加檢體的孔之發光量之平均値
b:添加培養基的孔之發光量之平均値
IC
50値係以下式算出。
IC
50(nM)=antilog((50-d)×(LOG
10(b)-LOG
10(a))÷(d-c)+LOG
10(b))
a:檢體濃度a
b:檢體濃度b
c:檢體濃度a中的活細胞率
d:檢體濃度b中的活細胞率
a、b係包夾活細胞率50%的2點,a>b。
抗體-藥物結合物(46)係對HER2陽性細胞Calu-3、NCI-N87呈現IC
50<1(nM)之抗細胞效果。另一方面,對HER2陰性細胞MDA-MB-468未呈現抗細胞效果(>100(nM))。
抗體-藥物結合物(50)係對HER2陽性細胞MDA-MB-453呈現IC
50<1(nM)之抗細胞效果。另一方面,對HER2陰性細胞MKN-45未呈現抗細胞效果(>100(nM))。
評價例6 抗腫瘤試驗(4)
將HER2低表現的人類胰臓癌株Capan-1細胞(ATCC)懸浮於生理食鹽水,將4×10
7個細胞皮下移植於雌裸鼠之右體側部,而作成Capan-1固體腫瘤。之後,將此固體腫瘤經由雌裸鼠移植而複數次繼代維持,而用於本試驗。將固體腫瘤之腫瘤片皮下移植於雌裸鼠之右體側部(第0日),於第20日實施隨機分組。
將抗體-藥物結合物(31)、曲妥珠單抗、或曲妥珠單抗依坦辛於第20日全部以10mg/kg之用量作尾靜脈內投予。設定生理食鹽水投予組為對照組。
將結果示於第6圖。對Capan-1腫瘤,曲妥珠單抗、曲妥珠單抗依坦辛之投予未抑制腫瘤增殖。相對於此,藉由抗體-藥物結合物(31)之投予,腫瘤之增殖被顯著地抑制,即使為HER2低表現腫瘤,抗體-藥物結合物(31)之有效性亦被確認。對HER2非表現胃癌株GCIY腫瘤,抗體-藥物結合物(31)未呈現腫瘤增殖抑制。
又,關於腫瘤中的HER2之表現,基於HER2檢査指引第三版(日本病理學會,曲妥珠單抗病理部會作成)所記載的藉由免疫組織化學染色之測定結果,各自將分數為3+者分類為高表現,2+為中表現,1+為低表現。又,即使於該測定法之分數為0,例如藉由利用流式細胞儀之測定法等之其他測定法而為陽性的情形,分類為低表現。
評價例7 抗腫瘤試驗(5)
將購自ATCC的人類胃癌株NCI-N87細胞懸浮於生理食鹽水,皮下移植1×10
7個細胞於雌裸鼠之右體側部(第0日),於第6日實施隨機分組。將抗體-藥物結合物(50)於第6日以各組0.3、1、3、10mg/kg之用量各自作尾靜脈內投予。設定乙酸緩衝液投予組作為對照組。
將結果示於第7圖。抗體-藥物結合物(50)係呈現依存於投予量的抗腫瘤效果。又,未觀察到由抗體-藥物結合物(50)投予所致的小鼠之體重減少。
評價例8 抗腫瘤試驗(6)
本試驗係以下列方法實施。
小鼠:將6-12週齡之雌裸鼠(Charles River公司)供給於實驗。
測定、計算式:將腫瘤之長徑及短徑以電子式數位測徑器於1週測定2次,計算腫瘤體積(mm
3)。計算式係如以下所示。
腫瘤體積(mm
3)=0.52×長徑(mm)×[短徑(mm)]
2抗體-藥物結合物、曲妥珠單抗、及曲妥珠單抗依坦辛係以乙酸緩衝液稀釋,將10mL/kg之液量作尾靜脈內投予。
將藉由使自乳癌患者摘出的腫瘤移植於雌裸鼠而複數次繼代維持的腫瘤(ST225;South Texas Accelerated Research Therapeutics(START)公司)用於本試驗。此腫瘤係HER2中表現(藉由免疫組織化學染色之判定為2+)。
將固體腫瘤之腫瘤片皮下移植於雌裸鼠之體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定乙酸緩衝液投予組為對照組。
將結果示於第8圖。對HER2中表現的乳癌ST225腫瘤,曲妥珠單抗之投予係未抑制腫瘤之增殖。相對於此,經由曲妥珠單抗依坦辛或抗體-藥物結合物(50)之投予,腫瘤之增殖係被顯著地抑制。
評價例9 抗腫瘤試驗(7)
將藉由使自乳癌患者摘出的腫瘤移植於雌裸鼠而複數次繼代維持的腫瘤(ST910;START社)用於本試驗。此腫瘤係HER2低表現(藉由免疫組織化學染色之判定為1+)。
將固體腫瘤之腫瘤片皮下移植於雌裸鼠之體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定乙酸緩衝液投予組作為對照組。
將結果示於第9圖。對HER2低表現的乳癌ST910腫瘤,曲妥珠單抗及曲妥珠單抗依坦辛之投予未抑制腫瘤之增殖。相對於此,經由抗體-藥物結合物(50)之投予,腫瘤之增殖被顯著抑制,抗體-藥物結合物(50)之對HER2低表現乳癌腫瘤的有效性係被確認。又,此評價例9係以與評價例8相同之手法實施。
評價例10 抗腫瘤試驗(8)
本試驗係以下列之方法實施。再者,評價例11~13亦藉由本手法而實施。
小鼠:將5-8週齡之雌裸鼠(Harlan Laboratories公司)供給於實驗。
測定、計算式:將腫瘤之長徑及短徑以電子式數位測徑器於1週測定2次,計算腫瘤體積(mm
3)。計算式係如以下所示。
腫瘤體積(mm
3)=0.52×長徑(mm)×[短徑(mm)]
2抗體-藥物結合物、曲妥珠單抗、及曲妥珠單抗依坦辛係以乙酸緩衝液稀釋,將10mL/kg之液量作尾靜脈內投予。
將藉由使自大腸癌患者摘出的腫瘤移植至雌裸鼠而複數次繼代維持的腫瘤(CTG-0401;CHAMPIONS ONCOLOGY公司)用於本試驗。此腫瘤係HER2低中表現(藉由免疫組織化學染色之判定係1+或2+)。
將固體腫瘤之腫瘤片皮下移植至雌裸鼠之左體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定乙酸緩衝液投予組作為對照組。
將結果示於第10圖。對HER2低中表現大腸癌CTG-0401腫瘤,曲妥珠單抗或曲妥珠單抗依坦辛之投予未抑制腫瘤之增殖。相對於此,經由抗體-藥物結合物(50)之投予,腫瘤之增殖被顯著抑制。
評價例11 抗腫瘤試驗(9)
將藉由使自非小細胞肺癌患者摘出的腫瘤移植於雌裸鼠而複數次繼代維持的腫瘤(CTG-0860;CHAMPIONS ONCOLOGY公司)用於本試驗。此腫瘤係HER2中表現(藉由免疫組織化學染色之判定為2+)。
將固體腫瘤之腫瘤片皮下移植於雌裸鼠之左體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定乙酸緩衝液投予組為對照組。
將結果示於第11圖。對HER2中表現非小細胞肺癌CTG-0860腫瘤,曲妥珠單抗或曲妥珠單抗依坦辛之投予未抑制腫瘤之增殖。相對於此,藉由抗體-藥物結合物(50)之投予,腫瘤之增殖被顯著地抑制。
評價例12 抗腫瘤試驗(10)
將藉由使自膽管癌患者摘出的腫瘤移植於雌裸鼠而複數次繼代維持的腫瘤(CTG-0927;CHAMPIONS ONCOLOGY公司)用於本試驗。此腫瘤係HER2高表現(藉由免疫組織化學染色之判定為3+)。
將固體腫瘤之腫瘤片皮下移植於雌裸鼠之左體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日,將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定乙酸緩衝液投予組作為對照組。
將結果示於第12圖。對HER2高表現膽管癌CTG-0927腫瘤,曲妥珠單抗之投予未抑制腫瘤之增殖。相對於此,經由曲妥珠單抗依坦辛之投予,腫瘤之增殖被抑制。再者抗體-藥物結合物(50)之投予係誘導腫瘤之退縮。
評價例13 抗腫瘤試驗(11)
將藉由使自食道癌患者摘出的腫瘤移植於雌裸鼠而複數次繼代維持的腫瘤(CTG-0137;CHAMPIONS ONCOLOGY公司)用於本試驗。此腫瘤係HER2高表現(藉由免疫組織化學染色之判定為3+)。
將固形腫瘤之腫瘤片皮下移植於雌裸鼠之左體側部,於腫瘤體積到達100-300mm
3的時點實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。將乙酸緩衝液投予組設定為對照組。
將結果示於第13圖。對HER2高表現食道癌CTG-0137腫瘤,曲妥珠單抗之投予未抑制腫瘤之增殖。相對於此,經由曲妥珠單抗依坦辛或抗體-藥物結合物(50)之投予,腫瘤之增殖被顯著地抑制。
評價例14 抗腫瘤試驗(12)
將購自ATCC的HER2高表現的人類卵巢癌株SK-OV-3細胞懸浮於生理食鹽水,皮下移植4×10
7個細胞於雌裸鼠之右體側部,作成SK-OV-3固體腫瘤。之後,將此固體腫瘤藉由移植至雌裸鼠而複數次繼代維持,而用於本試驗。
將固體腫瘤之腫瘤片皮下移植於雌裸鼠之右體側部而於腫瘤體積到達100-300mm
3的時點,實施隨機分組。將分組日作為第0日,於第0日將抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛皆以10mg/kg之用量作尾靜脈內投予。設定生理食鹽水投予組為對照組。
將結果示於第14圖。對SK-OV-3腫瘤,曲妥珠單抗之投予未抑制腫瘤之增殖。相對於此,經由曲妥珠單抗依坦辛或抗體-藥物結合物(50)之投予,腫瘤之增殖被顯著地抑制。
[序列表之非關鍵詞文字(Sequence Listing Free Text)]
序列識別號1:人化抗HER2單株抗體重鏈之胺基酸序列
序列識別號2:人化抗HER2單株抗體輕鏈之胺基酸序列
無。
第1圖呈示人化抗HER2單株抗體重鏈之胺基酸序列(序列識別號1)。
第2圖呈示人化抗HER2單株抗體輕鏈之胺基酸序列(序列識別號2)。
第3圖係呈示利用抗體-藥物結合物(27)或曲妥珠單抗之對人類乳癌株KPL-4細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第4圖係呈示利用抗體-藥物結合物(8)、(28)、或曲妥珠單抗依坦辛之對人類胃癌株NCI-N87細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第5圖係呈示利用抗體-藥物結合物(8)、(29)、(30)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類乳癌株JIMT-1細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第6圖係呈示利用抗體-藥物結合物(31)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類胰臓癌株Capan-1細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第7圖係呈示利用抗體-藥物結合物(50)之對人類胃癌株NCI-N87細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第8圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類乳癌株ST225細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第9圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類乳癌株ST910細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第10圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類大腸癌株CTG-0401細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第11圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類非小細胞肺癌株CTG-0860細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第12圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類膽管癌株CTG-0927細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第13圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類食道癌株CTG-0137細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
第14圖係呈示利用抗體-藥物結合物(50)、曲妥珠單抗、或曲妥珠單抗依坦辛之對人類卵巢癌株SK-OV-3細胞皮下移植裸鼠的抗腫瘤效果的圖。圖中,橫軸表示細胞移植後之日數,縱軸表示腫瘤體積。
無。
Claims (5)
- 一種抗體-藥物結合物用於製造治療腫瘤及/或癌之醫藥的用途,其中該抗體-藥物結合物為包含下式表示的連接物(linker)與藥物和抗HER2抗體連接的抗體-藥物結合物,-(琥珀醯亞胺-3-基-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX),其中-(琥珀醯亞胺-3-基-N)-具有下式所示的構造,
- 如請求項1之用途,其中該抗HER2抗體係包含由序列識別號1中胺基酸編號1至449所組成的胺基酸序列所組成的重鏈,及由序列識別號2中胺基酸編號1至214所組成的胺基酸序列所組成的輕鏈。
- 如請求項1之用途,其中該抗HER2抗體係包含由序列識別號1之胺基酸序列所組成的重鏈,及由序列識別號2之胺基酸序列所組成的輕鏈。
- 如請求項1至3中任一項之用途,其中藥物-連接物構造的每1抗體的平均結合數係2至8個之範圍。
- 如請求項1至3中任一項之用途,其中藥物-連接物構造的每1抗體的平均結合數係3至8個之範圍。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-017777 | 2014-01-31 | ||
JP2014-168944 | 2014-08-22 | ||
JP2014-227886 | 2014-11-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202500196A TW202500196A (zh) | 2025-01-01 |
TWI870307B true TWI870307B (zh) | 2025-01-11 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102481364A (zh) | 2009-07-22 | 2012-05-30 | 安龙制药公司 | 用her2受体拮抗剂联合7-乙基-10-羟基喜树碱的多臂聚合缀合物治疗her2阳性癌症的方法 |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102481364A (zh) | 2009-07-22 | 2012-05-30 | 安龙制药公司 | 用her2受体拮抗剂联合7-乙基-10-羟基喜树碱的多臂聚合缀合物治疗her2阳性癌症的方法 |
Non-Patent Citations (1)
Title |
---|
期刊 Burke, Patrick J., et al. "Design, synthesis, and biological evaluation of antibody− drug conjugates comprised of potent camptothecin analogues." Bioconjugate chemistry, 20.6 , American Chemical Society, (2009) p. 1242-1250. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI848560B (zh) | 製造抗體-藥物結合物之方法 | |
TWI745021B (zh) | 抗her3抗體-藥物結合物之製造方法 | |
TWI870307B (zh) | 抗體-藥物結合物之用途 | |
TW202500196A (zh) | 抗體-藥物結合物之用途 | |
TWI871999B (zh) | 抗her3抗體-藥物結合物 | |
TWI871998B (zh) | 抗her3抗體-藥物結合物 |