TWI869957B - Solid-state laser device and solid-state laser processing device - Google Patents
Solid-state laser device and solid-state laser processing device Download PDFInfo
- Publication number
- TWI869957B TWI869957B TW112128990A TW112128990A TWI869957B TW I869957 B TWI869957 B TW I869957B TW 112128990 A TW112128990 A TW 112128990A TW 112128990 A TW112128990 A TW 112128990A TW I869957 B TWI869957 B TW I869957B
- Authority
- TW
- Taiwan
- Prior art keywords
- solid
- generating element
- wavelength
- light
- pulse
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Laser Beam Processing (AREA)
Abstract
固體雷射裝置(1)包括種光源(10)、固體放大器(20)、受激拉曼散射發生元件(30)、以及波長濾波器(40)。種光源(10)輸出第一波長的脈衝光(LS)。固體放大器(20)具有固體活性介質(21),輸出放大脈衝光(LS)的第一波長的脈衝放大光(L0)。受激拉曼散射發生元件(30)配置在固體放大器(20)的後段,藉由受激拉曼散射將脈衝放大光(L0)以1%以上的波長轉換效率而波長轉換為第二波長,而輸出第一波長的第一脈衝光(L1)與第二波長的第二脈衝光(L2)。波長濾波器(40)利用波長的不同而從受激拉曼散射發生元件(30)輸出的第一脈衝光(L1)的光路分離第二脈衝光(L2)。A solid-state laser device (1) comprises a light source (10), a solid-state amplifier (20), a stimulated Raman scattering generating element (30), and a wavelength filter (40). The light source (10) outputs a pulse light (LS) of a first wavelength. The solid-state amplifier (20) has a solid active medium (21) and outputs a pulse amplified light (L0) of a first wavelength that amplifies the pulse light (LS). The stimulated Raman scattering generating element (30) is arranged at the rear section of the solid-state amplifier (20) and converts the pulse amplified light (L0) into a second wavelength at a wavelength conversion efficiency of more than 1% by stimulated Raman scattering, thereby outputting a first pulse light (L1) of the first wavelength and a second pulse light (L2) of the second wavelength. The wavelength filter (40) separates the second pulse light (L2) from the optical path of the first pulse light (L1) output from the stimulated Raman scattering generating element (30) by utilizing the difference in wavelength.
Description
本揭露係關於出射在雷射加工中使用的雷射光的固體雷射裝置以及固體雷射加工裝置。The present disclosure relates to a solid-state laser device for emitting laser light used in laser processing and a solid-state laser processing device.
近年來,作為微細加工的雷射光源,廣泛利用輸出短脈衝光的固體雷射裝置。在這樣的固體雷射裝置中,大多採用主控振盪器功率放大器(Master Oscillator Power Amplifier, MOPA)方式,從種光源輸出的微弱短脈衝光藉由包含固體活性介質的固體放大器而放大並輸出。作為MOPA方式的優點,可以舉出易於控制重複頻率的點、以及經由增加固體放大器的級數而易於得到高輸出的點等。In recent years, solid-state laser devices that output short-pulse light have been widely used as laser light sources for micromachining. In such solid-state laser devices, the Master Oscillator Power Amplifier (MOPA) method is mostly used, where the weak short-pulse light output from the light source is amplified and output by a solid-state amplifier containing a solid active medium. The advantages of the MOPA method include the ease of controlling the repetition frequency and the ease of obtaining high output by increasing the number of solid-state amplifiers.
在以MOPA方式的固體雷射裝置進行加工時,有時想暫時停止脈衝光的輸出,或者有時想在加工中改變脈衝光的重複頻率。在這種情況下,在固體放大器的固體活性介質藉由激發光源而激發的狀態下,當輸入到固體活性介質的脈衝光的脈衝間隔時間變長時,藉由激發光源而使得在固體活性介質儲存的能量過多。其結果,接著輸入到固體活性介質的脈衝光被過度放大,而輸出極大的峰值輸出的脈衝光。以下,也將這樣輸出的脈衝光稱為「巨脈衝」。由此巨脈衝會引起配置在後段的光學元件的損壞以及加工品質的降低。When processing with a MOPA-type solid-state laser device, sometimes you want to temporarily stop the output of pulse light, or sometimes you want to change the repetition frequency of pulse light during processing. In this case, when the pulse interval of the pulse light input to the solid active medium of the solid amplifier is lengthened by the excitation light source, the energy stored in the solid active medium by the excitation light source is excessive. As a result, the pulse light input to the solid active medium is over-amplified, and a pulse light with an extremely large peak output is output. Hereinafter, the pulse light output in this way is also referred to as a "giant pulse". Such a huge pulse may cause damage to the optical components arranged in the subsequent stage and reduce the processing quality.
專利文獻1揭露了在暫時停止從裝置輸出脈衝光的情況下,可以避免由於固體放大器的過度激發而造成的損壞,並且可以避免輸出重新開始後光束傳播特性的劣化的雷射光源裝置。在專利文獻1記載的雷射光源裝置包括光纖放大器以及固體放大器、非線性光學元件、光開關元件、以及控制部。光纖放大器以及固體放大器使用增益切換法放大從種光源輸出的脈衝光。非線性光學元件將從固體放大器輸出的脈衝光進行波長轉換。光開關元件允許或阻止脈衝光從光纖放大器傳播往固體放大器的傳播。控制部控制種光源以及光開關元件。Patent document 1 discloses a laser light source device that can avoid damage caused by overexcitation of a solid-state amplifier when the output of pulse light from the device is temporarily stopped, and can avoid degradation of the beam propagation characteristics after the output is restarted. The laser light source device described in patent document 1 includes an optical fiber amplifier and a solid-state amplifier, a nonlinear optical element, an optical switch element, and a control unit. The optical fiber amplifier and the solid-state amplifier use a gain switching method to amplify the pulse light output from the seed light source. The nonlinear optical element converts the wavelength of the pulse light output from the solid-state amplifier. The optical switch element allows or prevents the pulse light from propagating from the optical fiber amplifier to the solid-state amplifier. The control unit controls the seed light source and the optical switch element.
在專利文獻1記載的雷射光源裝置中,在來自種光源的脈衝光的輸出期間,以阻止從光纖放大器往固體放大器的脈衝光的傳播的方式,藉由控制部控制光開關元件。由此,可以實現即使不停止種光源,也可以停止來自非線性光學元件的脈衝光的輸出的輸出停止狀態。又,在輸出停止狀態,因為以在與來自種光源的脈衝光的輸出期間不同的期間允許光的傳播的方式,藉由控制部控制光開關元件,所以在前段的光纖放大器產生的自發輻射光雜訊傳播到後段的固體放大器,使得藉由激發光源而處於激發狀態的固體放大器的活性區域的能量放出。 [先前技術文獻] [專利文獻] In the laser light source device described in Patent Document 1, during the output period of the pulse light from the seed light source, the optical switch element is controlled by the control unit in such a manner as to prevent the propagation of the pulse light from the optical fiber amplifier to the solid-state amplifier. Thus, an output stop state can be achieved in which the output of the pulse light from the nonlinear optical element can be stopped even without stopping the seed light source. Furthermore, in the output stop state, since the optical switch element is controlled by the control unit in such a manner as to allow the propagation of light during a period different from the output period of the pulse light from the seed light source, the spontaneous radiation light noise generated by the optical fiber amplifier at the front stage is propagated to the solid-state amplifier at the rear stage, so that the energy of the active region of the solid-state amplifier in the excited state by the excitation light source is released. [Prior Art Document] [Patent Document]
[專利文獻1] 國際公開第2015/122375號[Patent Document 1] International Publication No. 2015/122375
[發明所欲解決之問題][The problem the invention is trying to solve]
然而,在專利文獻1記載的技術中,利用從配置在種光源與固體放大器之間的光纖放大器輸出的自發輻射光,而放出處於激發狀態的固體放大器的活性區域的能量。因此,在專利文獻1記載的技術無法應用於在種光源與固體放大器之間不使用光纖放大器的一般的固體雷射裝置。也就是說,在不具有光纖放大器的一般的固體雷射裝置中,難以預防巨脈衝的發生。又,在專利文獻1中,雖然揭露了預防巨脈衝的發生的技術,但在巨脈衝發生的情況下,難以抑制配置在光纖放大器以及固體放大器的後段的光學元件的損壞或加工品質的降低。因此,根據在專利文獻1記載的技術,在固體雷射裝置中存在無法避免由於非意圖的巨脈衝發生而造成光學元件等的損壞的問題。However, in the technology described in Patent Document 1, the energy of the active region of the solid-state amplifier in an excited state is released by using the spontaneous radiation light output from the optical fiber amplifier disposed between the seed light source and the solid-state amplifier. Therefore, the technology described in Patent Document 1 cannot be applied to a general solid-state laser device that does not use an optical fiber amplifier between the seed light source and the solid-state amplifier. In other words, it is difficult to prevent the occurrence of giant pulses in a general solid-state laser device that does not have an optical fiber amplifier. Furthermore, in Patent Document 1, although a technology for preventing the occurrence of giant pulses is disclosed, it is difficult to suppress the damage of optical components disposed in the rear section of the optical fiber amplifier and the solid-state amplifier or the reduction in processing quality when a giant pulse occurs. Therefore, according to the technology described in Patent Document 1, there is a problem in that the solid-state laser device cannot avoid damage to optical elements and the like due to the unintentional generation of large pulses.
本揭露是鑑於上述情況而完成的,其目的在於得到可以抑制由於巨脈衝發生而造成配置在固體活性介質的後段的光學元件的損壞的固體雷射裝置。 [解決問題之手段] This disclosure is made in view of the above situation, and its purpose is to obtain a solid-state laser device that can suppress the damage of optical elements arranged in the rear section of the solid active medium due to the occurrence of giant pulses. [Means for solving the problem]
為了解決上述問題並達成目的,根據本揭露的固體雷射裝置包括種光源、固體放大器、受激拉曼散射發生元件、以及波長濾波器。種光源輸出第一波長的脈衝光。固體放大器具有輸出放大脈衝光的第一波長的脈衝放大光的固體活性介質。受激拉曼散射發生元件配置在固體放大器的後段,藉由受激拉曼散射將脈衝放大光以1%以上的波長轉換效率而波長轉換為第二波長,而輸出第一波長的第一脈衝光與第二波長的第二脈衝光。波長濾波器利用波長的不同而從受激拉曼散射發生元件輸出的第一脈衝光的光路分離第二脈衝光。 [發明的效果] In order to solve the above problems and achieve the purpose, the solid-state laser device disclosed in the present invention includes a light source, a solid-state amplifier, a stimulated Raman scattering generating element, and a wavelength filter. The light source outputs a pulse light of a first wavelength. The solid-state amplifier has a solid active medium that outputs a pulse amplified light of a first wavelength. The stimulated Raman scattering generating element is arranged at the back end of the solid-state amplifier, and converts the pulse amplified light into a second wavelength with a wavelength conversion efficiency of more than 1% by stimulated Raman scattering, and outputs a first pulse light of the first wavelength and a second pulse light of the second wavelength. The wavelength filter separates the second pulse light from the optical path of the first pulse light output by the stimulated Raman scattering generating element by using the difference in wavelength. [Effect of the invention]
根據本揭露的固體雷射裝置具有可以抑制由於巨脈衝發生而造成配置在固體活性介質的後段的光學元件的損壞的效果。The solid-state laser device disclosed herein has the effect of suppressing damage to optical elements disposed at the rear of a solid active medium due to the occurrence of giant pulses.
以下,基於附圖詳細說明根據本揭露的實施方式的固體雷射裝置以及固體雷射加工裝置。The following is a detailed description of a solid-state laser device and a solid-state laser processing device according to an implementation method of the present disclosure based on the accompanying drawings.
實施方式1 第1圖是示意性地示出包括實施方式1的固體雷射裝置的固體雷射加工裝置的構成的示例的圖。固體雷射加工裝置100包括固體雷射裝置1、偏向器80、以及聚光透鏡90。固體雷射裝置1是,使用後述的固體活性介質21作為產生受激輻射的介質,而將在固體雷射加工裝置100的雷射光出射的裝置。固體雷射加工裝置100是,使用從使用固體活性介質21的固體雷射裝置1出射的雷射光,而進行加工對象物51的加工的裝置。也就是說,在固體雷射加工裝置100中,從固體雷射裝置1出射的雷射光經由偏向器80以及聚光透鏡90而照射到加工對象物51,並且使用於加工對象物51的加工。 Implementation method 1 FIG. 1 is a diagram schematically showing an example of the configuration of a solid laser processing device including a solid laser device of implementation method 1. The solid laser processing device 100 includes a solid laser device 1, a deflector 80, and a focusing lens 90. The solid laser device 1 is a device that uses a solid active medium 21 described later as a medium for generating stimulated radiation and emits laser light in the solid laser processing device 100. The solid laser processing device 100 is a device that processes a processing object 51 using laser light emitted from the solid laser device 1 using a solid active medium 21. That is, in the solid laser processing device 100, the laser light emitted from the solid laser device 1 is irradiated to the processing object 51 through the deflector 80 and the focusing lens 90, and is used to process the processing object 51.
實施方式1的固體雷射裝置1包括種光源10、控制部11、固體放大器20、激發光源22、分光鏡23、受激拉曼散射(Stimulated Raman Scattering, SRS)發生元件30、溫度控制機構31、波長濾波器40、阻尼器41、以及光學系統50。The solid-state laser device 1 of embodiment 1 includes a seed light source 10, a control unit 11, a solid-state amplifier 20, an excitation light source 22, a spectroscope 23, a stimulated Raman scattering (SRS) generating element 30, a temperature control mechanism 31, a wavelength filter 40, a damper 41, and an optical system 50.
種光源10產生並輸出第一波長的脈衝光LS。第一波長的脈衝光LS是以固體活性介質21放大的雷射光。種光源10例如由半導體雷射器、光纖雷射器等構成。或者,種光源10可以是由種光源10與放大器(未示出)構成的MOPA光源。The seed light source 10 generates and outputs a pulse light LS of a first wavelength. The pulse light LS of the first wavelength is laser light amplified by a solid active medium 21. The seed light source 10 is, for example, composed of a semiconductor laser, an optical fiber laser, etc. Alternatively, the seed light source 10 may be a MOPA light source composed of the seed light source 10 and an amplifier (not shown).
控制部11控制從種光源10輸出的脈衝光LS的波長、脈衝寬度、重複頻率、輸出等各種條件。The control unit 11 controls various conditions such as the wavelength, pulse width, repetition frequency, and output of the pulse light LS output from the seed light source 10.
固體放大器20具有固體活性介質21,其放大從種光源10輸出的脈衝光LS並輸出作為放大的第一波長的脈衝光的脈衝放大光L0。固體活性介質21的種類對應第一波長(即從種光源10輸出的脈衝光LS的波長)的而選擇。在一示例中,在第一波長為1064nm的情況下,固體活性介質21使用Nd:YVO 4、摻釹釔鋁石榴石(Nd:Yttrium Aluminum Garnet, Nd:YAG)較佳。在本發明中,將在YAG或YVO 4等固體的基材中摻雜Nd、Yb或Tm等雷射活性離子並藉由以預定波長激發而放大雷射光的性質(即,具有增益)的物體,稱為固體活性介質21。固體放大器20將放大後的第一波長的脈衝放大光L0輸出到SRS發生元件30。 The solid-state amplifier 20 has a solid active medium 21, which amplifies the pulse light LS output from the seed light source 10 and outputs the pulse amplified light L0 as the amplified pulse light of the first wavelength. The type of the solid active medium 21 is selected corresponding to the first wavelength (i.e., the wavelength of the pulse light LS output from the seed light source 10). In one example, when the first wavelength is 1064nm, Nd: YVO4 or neodymium-doped yttrium aluminum garnet (Nd:YAG) is preferably used as the solid active medium 21. In the present invention, an object in which laser active ions such as Nd, Yb or Tm are doped in a solid matrix such as YAG or YVO 4 and has the property of amplifying laser light by excitation at a predetermined wavelength (i.e., having gain) is called a solid active medium 21. The solid amplifier 20 outputs the amplified pulse amplified light L0 of the first wavelength to the SRS generating element 30.
激發光源22是輸出激發固體活性介質21的雷射光LE的光源。在一示例中,激發光源22是以半導體雷射器構成。在固體活性介質21為Nd:YVO 4的情況下,從激發光源22輸出的雷射光LE的波長為波長808nm或波長878.6nm、888nm的連續光較佳。以下,將從激發光源22輸出的波長808nm或波長878.6nm、888nm的連續光也簡稱為激發光LE。 The excitation light source 22 is a light source that outputs laser light LE for exciting the solid active medium 21. In one example, the excitation light source 22 is composed of a semiconductor laser. When the solid active medium 21 is Nd:YVO 4 , the wavelength of the laser light LE output from the excitation light source 22 is preferably a continuous light with a wavelength of 808 nm or a wavelength of 878.6 nm or 888 nm. Hereinafter, the continuous light with a wavelength of 808 nm or a wavelength of 878.6 nm or 888 nm output from the excitation light source 22 is also referred to as the excitation light LE.
分光鏡23是為了使來自種光源10的脈衝光LS與來自激發光源22的激發光LE相對於固體活性介質21在同軸上入射而設置的。這裡,分光鏡23以反射來自種光源10的脈衝光LS並且透射來自激發光源22的激發光LE的方式構成。The spectroscope 23 is provided to make the pulse light LS from the seed light source 10 and the excitation light LE from the excitation light source 22 incident on the solid active medium 21 on the same axis. Here, the spectroscope 23 is configured to reflect the pulse light LS from the seed light source 10 and transmit the excitation light LE from the excitation light source 22.
SRS發生元件30配置在固體放大器20的後段,以固體活性介質21放大的第一波長的脈衝放大光L0的一部分藉由SRS轉換為第二波長的第二脈衝光L2,並且輸出第一波長的第一脈衝光L1與第二波長的第二脈衝光L2。第二波長比第一波長更長。在實施方式1中,SRS發生元件30以1%以上的波長轉換效率藉由SRS將脈衝放大光L0波長轉換為第二波長。SRS發生元件30例如使用YVO 4、GdVO 4、Ba(NO 3) 2、金剛石等材料。又,SRS發生元件30可以以上述材料作為基材並添加雷射活性離子而製成。在第一波長為1064nm並且SRS發生元件30為添加作為雷射活性離子的Nd在YVO 4的Nd:YVO 4的情況下,藉由SRS發生元件30而轉換的第二脈衝光L2的第二波長為1176nm。 The SRS generating element 30 is arranged at the rear section of the solid-state amplifier 20, and converts a part of the pulsed amplified light L0 of the first wavelength amplified by the solid active medium 21 into the second pulsed light L2 of the second wavelength by SRS, and outputs the first pulsed light L1 of the first wavelength and the second pulsed light L2 of the second wavelength. The second wavelength is longer than the first wavelength. In the first embodiment, the SRS generating element 30 converts the wavelength of the pulsed amplified light L0 into the second wavelength by SRS with a wavelength conversion efficiency of more than 1%. The SRS generating element 30 uses materials such as YVO 4 , GdVO 4 , Ba(NO 3 ) 2 , and diamond. In addition, the SRS generating element 30 can be made by using the above materials as a base material and adding laser active ions. When the first wavelength is 1064 nm and the SRS generating element 30 is Nd:YVO 4 in which Nd as laser active ions is added to YVO 4 , the second wavelength of the second pulse light L2 converted by the SRS generating element 30 is 1176 nm.
SRS發生元件30可以具有設置在脈衝放大光L0的入射的面(即入射面)的相對於第一波長的光抑制反射的抗反射塗膜、以及設置在第一脈衝光L1以及第二脈衝光L2出射的面(即出射面)的相對於第一波長以及第二波長的光抑制反射的抗反射塗膜。藉由設置在入射面的抗反射塗膜,可以抑制脈衝放大光L0返回種光源10、激發光源22、以及固體活性介質21。又,藉由設置在出射面的抗反射塗膜,可以抑制第一脈衝光L1以及第二脈衝光L2返回種光源10、激發光源22、以及固體活性介質21。The SRS generating element 30 may include an anti-reflection coating for suppressing reflection of light of the first wavelength disposed on the surface (i.e., incident surface) where the pulse amplified light L0 is incident, and an anti-reflection coating for suppressing reflection of light of the first wavelength and the second wavelength disposed on the surface (i.e., exit surface) where the first pulse light L1 and the second pulse light L2 are emitted. By means of the anti-reflection coating disposed on the incident surface, the pulse amplified light L0 can be suppressed from returning to the seed light source 10, the excitation light source 22, and the solid active medium 21. Furthermore, by means of the anti-reflection coating disposed on the exit surface, the first pulse light L1 and the second pulse light L2 can be suppressed from returning to the seed light source 10, the excitation light source 22, and the solid active medium 21.
第2圖是示意性地示出SRS發生元件的構成的其他示例的圖。如第2圖所示,SRS發生元件30可以不設置抗反射塗膜在脈衝放大光L0的入射面301以及第一脈衝光L1與第二脈衝光L2的出射面302。又,SRS發生元件30以脈衝放大光L0相對於SRS發生元件30的入射面301以布魯斯特角θBi入射、並且第一脈衝光L1以及第二脈衝光L2相對於SRS發生元件30的出射面302以布魯斯特角θBo出射的方式配置。FIG. 2 schematically shows another example of the configuration of the SRS generating element. As shown in FIG. 2, the SRS generating element 30 may not be provided with an anti-reflection coating on the incident surface 301 of the pulsed amplified light L0 and the exit surface 302 of the first pulsed light L1 and the second pulsed light L2. In addition, the SRS generating element 30 is configured such that the pulsed amplified light L0 is incident at a Brewster angle θBi with respect to the incident surface 301 of the SRS generating element 30, and the first pulsed light L1 and the second pulsed light L2 are emitted at a Brewster angle θBo with respect to the exit surface 302 of the SRS generating element 30.
通常,在透射型光學元件的入出射面設置抗反射塗膜。抗反射塗膜的損壞閾值大多低於光學元件的本體(bulk)或界面。另一方面,如第2圖所示,當脈衝光以布魯斯特角θBi、θBo入出射於光學元件時,即使沒有抗反射塗膜,也可以降低在入出射面的反射率。因此,可以避免抗反射塗膜的損壞,並且難以發生光學元件的損壞。又,在脈衝光以布魯斯特角θBi、θBo入出射於光學元件的情況下,由於可以不設置抗反射塗膜在SRS發生元件30的入射面301以及出射面302,所以具有可以避免抗反射塗膜的損壞的優點。Typically, an anti-reflection coating is provided on the incident and output surfaces of a transmission type optical element. The damage threshold of the anti-reflection coating is usually lower than that of the bulk or interface of the optical element. On the other hand, as shown in FIG. 2, when pulsed light enters and exits the optical element at Brewster angles θBi and θBo, the reflectivity at the incident and output surfaces can be reduced even without an anti-reflection coating. Therefore, damage to the anti-reflection coating can be avoided, and damage to the optical element is unlikely to occur. Furthermore, when pulsed light enters and exits the optical element at Brewster angles θBi and θBo, since an anti-reflection coating need not be provided on the incident surface 301 and the output surface 302 of the SRS generating element 30, there is an advantage in that damage to the anti-reflection coating can be avoided.
返回第1圖,溫度控制機構31控制SRS發生元件30的溫度。在一示例中,溫度控制機構31具有將SRS發生元件30加熱到預定溫度的加熱部、以及控制加熱部的加熱的加熱控制部。如後所述,溫度控制機構31控制SRS發生元件30的溫度,使得在SRS發生元件30的波長轉換效率為1%以上。Returning to FIG. 1, the temperature control mechanism 31 controls the temperature of the SRS generating element 30. In one example, the temperature control mechanism 31 includes a heating unit that heats the SRS generating element 30 to a predetermined temperature and a heating control unit that controls the heating of the heating unit. As described later, the temperature control mechanism 31 controls the temperature of the SRS generating element 30 so that the wavelength conversion efficiency of the SRS generating element 30 is 1% or more.
波長濾波器40利用波長的不同而從來自SRS發生元件30輸出的第一脈衝光L1以及第二脈衝光L2分離第二脈衝光L2。也就是說,波長濾波器40從來自SRS發生元件30輸出的第一脈衝光L1的光路分離第二脈衝光L2。在第1圖的示例中,波長濾波器40使從SRS發生元件30出射的第一脈衝光L1以及第二脈衝光L2中的一方透射、另一方反射。由此,作為兩個波長的光的第一脈衝光L1以及第二脈衝光L2在空間上分離。在第1圖的示例中,波長濾波器40使第一脈衝光L1透射、第二脈衝光L2反射。The wavelength filter 40 separates the second pulse light L2 from the first pulse light L1 and the second pulse light L2 output from the SRS generating element 30 by using the difference in wavelength. That is, the wavelength filter 40 separates the second pulse light L2 from the optical path of the first pulse light L1 output from the SRS generating element 30. In the example of FIG. 1 , the wavelength filter 40 transmits one of the first pulse light L1 and the second pulse light L2 output from the SRS generating element 30 and reflects the other. Thus, the first pulse light L1 and the second pulse light L2, which are lights of two wavelengths, are spatially separated. In the example of FIG. 1 , the wavelength filter 40 transmits the first pulse light L1 and reflects the second pulse light L2.
阻尼器41配置在以波長濾波器40反射的第二脈衝光L2的光路上。阻尼器41衰減第二脈衝光L2。此外,阻尼器41可以是功率計等的測量儀器。The damper 41 is disposed on the optical path of the second pulse light L2 reflected by the wavelength filter 40. The damper 41 attenuates the second pulse light L2. In addition, the damper 41 may be a measuring instrument such as a power meter.
光學系統50配置在第一脈衝光L1透射波長濾波器40的光路上。以波長濾波器40分離的第一脈衝光L1通過光學系統50。雖然光學系統50由用於傳送第一脈衝光L1的透鏡或反射鏡構成,但是可以對應於本揭露的固體雷射裝置1的用途適當構成。在一示例中,在欲進一步放大第一脈衝光L1的輸出的情況下,可以在光學系統50設置固體放大器。或者,在欲藉由諧波產生(harmonic generation)將第一脈衝光L1波長轉換成二次、三次或四次諧波的情況下,則可以在光學系統50設置諧波產生用的非線性光學元件。第三脈衝光L3是以光學系統50施行適當處理後的脈衝光,從固體雷射裝置1輸出。The optical system 50 is arranged on the optical path of the first pulse light L1 through the wavelength filter 40. The first pulse light L1 separated by the wavelength filter 40 passes through the optical system 50. Although the optical system 50 is composed of a lens or a reflector for transmitting the first pulse light L1, it can be appropriately configured corresponding to the purpose of the solid-state laser device 1 disclosed in the present invention. In one example, in the case of further amplifying the output of the first pulse light L1, a solid-state amplifier can be provided in the optical system 50. Alternatively, in the case of converting the wavelength of the first pulse light L1 into a second, third or fourth harmonic by harmonic generation, a nonlinear optical element for harmonic generation can be provided in the optical system 50. The third pulse light L3 is a pulse light that is appropriately processed by the optical system 50 and is output from the solid-state laser device 1.
偏向器80使從固體雷射裝置1輸出的第三脈衝光L3偏向。具體而言,偏向器80使第三脈衝光L3的在加工對象物51的照射位置任意變位。設置兩個偏向器80,使得第三脈衝光L3的照射位置可以在加工對象物51上在相互正交的兩個方向上變位較佳。偏向器80的一示例是檢流計掃描器。此外,在固體雷射裝置1不具有光學系統50的情況下,則偏向器80使從波長濾波器40輸出的脈衝光偏向。The deflector 80 deflects the third pulse light L3 output from the solid-state laser device 1. Specifically, the deflector 80 arbitrarily displaces the irradiation position of the third pulse light L3 on the processing object 51. It is preferable to provide two deflectors 80 so that the irradiation position of the third pulse light L3 can be displaced in two mutually orthogonal directions on the processing object 51. An example of the deflector 80 is a galvanometer scanner. In addition, when the solid-state laser device 1 does not have the optical system 50, the deflector 80 deflects the pulse light output from the wavelength filter 40.
聚光透鏡90將以偏向器80偏向的脈衝光(在第1圖的情況下為第三脈衝光L3)聚集到加工對象物51的任意位置而照射。由此,第三脈衝光L3照射到加工對象物51,並進行雷射加工。The focusing lens 90 focuses the pulse light (the third pulse light L3 in the case of FIG. 1 ) deflected by the deflector 80 at an arbitrary position of the object 51 for irradiation. Thus, the third pulse light L3 is irradiated to the object 51, and laser processing is performed.
此外,在第1圖中,雖然示出波長濾波器40使第一脈衝光L1透射、第二脈衝光L2反射的情況,但是相反地使第一脈衝光L1反射、第二脈衝光L2透射也可以。在這種情況下,阻尼器41配置在波長濾波器40的透射側,並且光學系統50配置在波長濾波器40的反射側較佳。In addition, although FIG. 1 shows a case where the wavelength filter 40 transmits the first pulse light L1 and reflects the second pulse light L2, it is also possible to reflect the first pulse light L1 and transmit the second pulse light L2. In this case, it is preferable that the damper 41 is arranged on the transmission side of the wavelength filter 40 and the optical system 50 is arranged on the reflection side of the wavelength filter 40.
在實施方式1中,將SRS利用於脈衝光的波長轉換。利用這種SRS的脈衝光的波長轉換與作為一般波長轉換的手法的諧波產生相比存在優點。在諧波產生中,入射於非線性光學元件的脈衝光的波長被波長轉換為1/2倍或1/2倍以下。通常,隨著入射的脈衝光的波長變短,光學元件的本體或塗膜的損害閾值變低。因此,在以諧波產生將巨脈衝波長轉換的情況下,存在非線性光學元件與波長濾波器40等光學元件容易被短波長化的巨脈衝損壞的問題。另一方面,在SRS中,雖然第一波長的脈衝光的一部分被波長轉換為第二波長的脈衝光,但第二波長比第一波長更長。因此,與第一波長相比,波長轉換為第二波長的巨脈衝難以損壞SRS發生元件30與波長濾波器40等的光學元件。In implementation method 1, SRS is used for wavelength conversion of pulse light. The wavelength conversion of pulse light using such SRS has advantages over harmonic generation, which is a general wavelength conversion method. In harmonic generation, the wavelength of pulse light incident on a nonlinear optical element is wavelength-converted to 1/2 times or less. Generally, as the wavelength of the incident pulse light becomes shorter, the damage threshold of the optical element body or coating becomes lower. Therefore, when the wavelength of a giant pulse is converted by harmonic generation, there is a problem that optical elements such as nonlinear optical elements and wavelength filter 40 are easily damaged by the giant pulse with a shorter wavelength. On the other hand, in SRS, although part of the pulse light of the first wavelength is wavelength-converted into the pulse light of the second wavelength, the second wavelength is longer than the first wavelength. Therefore, compared with the first wavelength, the large pulse of the second wavelength is less likely to damage the optical elements such as the SRS generating element 30 and the wavelength filter 40.
又,由於用於諧波產生的三硼酸鋰(LiB 3O 5, LBO)、硼酸銫鋰(CsLiB 6O 10, CLBO)等的非線性光學元件具有吸濕性,所以需要進行濕度管理。另一方面,由於在SRS發生元件30中,可以使用用於固體雷射介質的Nd:YVO 4等,所以不需要如LBO、CLBO等那樣的特殊的環境以及處理,並且可以容易地導入到習知的固體雷射裝置的內部。 Furthermore, since nonlinear optical elements such as lithium triborate (LiB 3 O 5 , LBO) and cesium lithium borate (CsLiB 6 O 10 , CLBO) used for harmonic generation are hygroscopic, humidity management is required. On the other hand, since Nd:YVO 4 , etc. used for solid laser media, can be used in the SRS generating element 30, special environments and processing such as LBO and CLBO are not required, and it can be easily introduced into the interior of a known solid laser device.
在實施方式1中,在SRS發生元件30的波長轉換效率設定為1%以上較佳。從SRS發生元件30輸出的SRS光的強度I SRS由下式(1)給出。 In the first embodiment, the wavelength conversion efficiency of the SRS generating element 30 is preferably set to 1% or more. The intensity ISRS of the SRS light output from the SRS generating element 30 is given by the following formula (1).
I SRS=I Raman0・exp(g Raman・I Pump・L)…(1) I SRS =I Raman0・exp(g Raman・I Pump・L)…(1)
這裡,I Raman0是第二波長的脈衝光在SRS發生元件30的入射面301的強度,g Raman是SRS發生元件30的拉曼增益係數,I Pump是入射於SRS發生元件30的第一波長的脈衝放大光L0的峰值強度,L是SRS發生元件30的長度。SRS發生元件30的長度L是在SRS發生元件30的脈衝光的行進方向的長度。又,SRS的波長轉換效率η可以用下式(2)表示。 Here, I Raman0 is the intensity of the second wavelength pulse light at the incident surface 301 of the SRS generating element 30, g Raman is the Raman gain coefficient of the SRS generating element 30, I Pump is the peak intensity of the first wavelength pulse amplified light L0 incident on the SRS generating element 30, and L is the length of the SRS generating element 30. The length L of the SRS generating element 30 is the length in the traveling direction of the pulse light of the SRS generating element 30. In addition, the wavelength conversion efficiency η of the SRS can be expressed by the following formula (2).
η = I SRS/I Pump…(2) η = ISRS / IPump …(2)
由式(1)以及式(2)可知,由於SRS的波長轉換效率η相對於第一脈衝光L1的峰值強度非線形地增加,在入射脈衝光的峰值強度比決定的額定峰值強度增加更多的情況下,波長轉換效率η增加。即,相對於額定峰值強度以上的第一脈衝光L1,SRS發生元件30作為衰減器而發揮作用。經由藉由波長濾波器40將從SRS發生元件30出射的第二脈衝光L2從第一脈衝光L1的光路排除,在巨脈衝發生的情況下,可以避免因巨脈衝而造成光學系統50的損壞以及加工對象物51的加工品質的降低。也就是說,即使巨脈衝發生,由於波長轉換效率η增加,在SRS發生元件30大量生成被阻尼器41吸收的第二脈衝光L2。由此,可以抑制從SRS發生元件30輸出的第一脈衝光L1的峰值強度變大到超過需要。As can be seen from equations (1) and (2), since the wavelength conversion efficiency η of the SRS increases nonlinearly with respect to the peak intensity of the first pulse light L1, when the peak intensity of the incident pulse light increases more than the determined rated peak intensity, the wavelength conversion efficiency η increases. That is, with respect to the first pulse light L1 having a peak intensity exceeding the rated peak intensity, the SRS generating element 30 functions as an attenuator. By excluding the second pulse light L2 emitted from the SRS generating element 30 from the optical path of the first pulse light L1 through the wavelength filter 40, when a giant pulse occurs, damage to the optical system 50 and reduction in processing quality of the processing object 51 caused by the giant pulse can be avoided. That is, even if a giant pulse occurs, the wavelength conversion efficiency η increases, and a large amount of second pulse light L2 is generated in the SRS generating element 30 and absorbed by the damper 41. This can prevent the peak intensity of the first pulse light L1 output from the SRS generating element 30 from becoming excessively high.
為了使波長轉換效率η為1%以上,在式(1)的指數函數中,即,將g Raman・I Pump・L的值設定為「15」以上「30」以下較佳。在一示例中,在將Nd:YVO 4用於SRS發生元件30的情況下,由於在Nd:YVO 4的拉曼模式中拉曼增益係數最大的893cm -1處的拉曼增益係數為4.5cm/GW,因此設定I Pump以及L使得I Pump・L的值為「3GW/cm」以上且「7 GW/cm」以下較佳。 In order to make the wavelength conversion efficiency η greater than 1%, in the exponential function of formula (1), the value of g Raman・I Pump・L is preferably set to "15" or more and "30" or less. In one example, when Nd:YVO 4 is used for the SRS generating element 30, since the Raman gain coefficient at 893cm -1 where the Raman gain coefficient is the largest in the Raman mode of Nd:YVO 4 is 4.5cm/GW, I Pump and L are set so that the value of I Pump・L is preferably "3GW/cm" or more and "7 GW/cm" or less.
另一方面,g Raman具有溫度越高則變得越小,並且溫度越低則變得越大的性質。也就是說,經由藉由溫度控制機構31調整SRS發生元件30的溫度,可以得到與改變I Pump或L的情況相同的效果。因此,如上所述,在實施方式1的固體雷射裝置1中,包括控制SRS發生元件30的溫度的溫度控制機構31較佳。藉由以溫度控制機構31調整SRS發生元件30的溫度,對於任意的I Pump・L可以得到1%以上的波長轉換效率。因此,經由利用SRS的強度取決於SRS發生元件30的溫度而控制SRS發生元件30的溫度,可以控制SRS的波長轉換效率,並且可以得到避免因巨脈衝而造成配置在固體活性介質21的後段的SRS發生元件30以及波長濾波器40的損壞這樣的效果。 On the other hand, g Raman has the property that it becomes smaller as the temperature increases and becomes larger as the temperature decreases. That is, by adjusting the temperature of the SRS generating element 30 by the temperature control mechanism 31, the same effect as changing I Pump or L can be obtained. Therefore, as described above, in the solid-state laser device 1 of the first embodiment, it is preferable to include the temperature control mechanism 31 for controlling the temperature of the SRS generating element 30. By adjusting the temperature of the SRS generating element 30 by the temperature control mechanism 31, a wavelength conversion efficiency of 1% or more can be obtained for any I Pump・L. Therefore, by controlling the temperature of the SRS generating element 30 using the fact that the intensity of the SRS depends on the temperature of the SRS generating element 30, the wavelength conversion efficiency of the SRS can be controlled, and the damage of the SRS generating element 30 and the wavelength filter 40 arranged in the rear section of the solid active medium 21 due to giant pulses can be avoided.
如上所述,在g Raman可以保持恆定的情況下,可以將I Pump以及L設置為使得波長轉換效率η為1%以上,固體雷射裝置可以不具有溫度控制機構31。另一方面,在設定任意的I Pump以及L的情況下,為了使g Raman變化以使波長轉換效率η為1%以上,固體雷射裝置1包括溫度控制機構31較佳。 As described above, when g Raman can be kept constant, I Pump and L can be set so that the wavelength conversion efficiency η is 1% or more, and the solid-state laser device may not have the temperature control mechanism 31. On the other hand, when I Pump and L are set arbitrarily, in order to change g Raman so that the wavelength conversion efficiency η is 1% or more, it is preferable that the solid-state laser device 1 includes the temperature control mechanism 31.
第3圖是示出在Nd:YVO 4用於SRS發生元件並且將1064nm的脈衝光入射於SRS發生元件的情況下的對於SRS的波長變換特性的一示例的圖。橫軸示出1064nm入射平均輸出,即1064nm的脈衝光的入射平均輸出,左縱軸示出1064nm出射平均輸出,即1064nm的脈衝光的出射平均輸出,右縱軸示出1176nm出射平均輸出,即作為SRS波長的1176nm的脈衝光的出射平均輸出。在本實驗中,由於入射脈衝光的光束直徑、脈衝寬度以及重複頻率是恆定的,所以1064nm的峰值輸出以及峰值強度與平均輸出成正比。SRS發生在1064nm入射平均輸出在某特定值以上,可以確認1064nm出射平均輸出的降低以及1176nm出射平均輸出的增加。 FIG. 3 is a diagram showing an example of wavelength conversion characteristics for SRS when Nd:YVO 4 is used for an SRS generating element and a pulsed light of 1064 nm is incident on the SRS generating element. The horizontal axis shows the 1064 nm incident average output, that is, the incident average output of the pulsed light of 1064 nm, the left vertical axis shows the 1064 nm exit average output, that is, the exit average output of the pulsed light of 1064 nm, and the right vertical axis shows the 1176 nm exit average output, that is, the exit average output of the pulsed light of 1176 nm as the SRS wavelength. In this experiment, since the beam diameter, pulse width and repetition frequency of the incident pulse light are constant, the peak output and peak intensity of 1064nm are proportional to the average output. SRS occurs when the incident average output of 1064nm is above a certain value, and it can be confirmed that the average output of 1064nm is reduced and the average output of 1176nm is increased.
在實施方式1的構成中,在SRS發生元件30的材質以及在光軸方向的長度、以及入射於SRS發生元件30的脈衝放大光L0的光束直徑為恆定的情況下,脈衝放大光L0的峰值輸出以使得從SRS發生元件30出射的第一脈衝光L1的峰值輸出為最大的方式設定較佳。根據第3圖,在1064nm出射平均輸出為最大的1064nm入射平均輸出中,在1064nm入射平均輸出為±10%變化的情況下,1064nm出射平均輸出的變化為±1%以下。具體而言,在橫軸的1064nm入射平均輸出在40W以上50W以下的範圍中,左側縱軸的1064nm出射平均輸出為約36W的恆定的值。也就是說,相對於1064nm的入射平均輸出的變動的1064nm出射平均輸出的變動降低,並且具有提高出射平均輸出的安定性的效果。如上所述,由於在第3圖的實驗的平均輸出的變化意味峰值輸出的變化,所以經由設定1064nm入射峰值輸出,使得1064nm出射峰值輸出為最大,可以得到同樣的效果。然而,使1064nm的出射峰值輸出(即,傳輸透射功率)最大,與SRS的發生相關的輸出之外的條件,即,SRS發生元件30的材質以及在光軸方向的長度、以及入射於SRS發生元件30的脈衝放大光L0的光束直徑為被決定的狀態是需要的。In the configuration of the first embodiment, when the material of the SRS generating element 30, the length in the optical axis direction, and the beam diameter of the pulsed amplified light L0 incident on the SRS generating element 30 are constant, the peak output of the pulsed amplified light L0 is preferably set in such a way that the peak output of the first pulsed light L1 emitted from the SRS generating element 30 is maximized. According to FIG. 3 , in the 1064nm incident average output where the 1064nm emission average output is the maximum, when the 1064nm incident average output varies by ±10%, the variation of the 1064nm emission average output is less than ±1%. Specifically, in the range of 1064nm incident average output on the horizontal axis from 40W to 50W, the 1064nm output average output on the left vertical axis is a constant value of about 36W. In other words, the variation of the 1064nm output average output relative to the variation of the 1064nm incident average output is reduced, and the stability of the output average output is improved. As described above, since the variation of the average output in the experiment of Figure 3 means the variation of the peak output, the same effect can be obtained by setting the 1064nm incident peak output so that the 1064nm output peak output is maximized. However, in order to maximize the 1064nm emission peak output (i.e., transmission transmission power), it is necessary to determine conditions other than the output related to the generation of SRS, i.e., the material of the SRS generating element 30 and its length in the optical axis direction, and the beam diameter of the pulse amplified light L0 incident on the SRS generating element 30.
在實施方式1中,通過SRS發生元件30以及波長濾波器40的脈衝光的光束直徑大較佳。在以實施方式1的構成而巨脈衝發生的情況下,由於第一波長的巨脈衝而SRS發生元件30有損壞的可能性。又,由於波長轉換為第二波長的巨脈衝而SRS發生元件30以及波長濾波器40有損壞的可能性。一般來說,因脈衝光的光學元件的損害閾值取決於脈衝光的峰值強度。即,入射於光學元件的脈衝光的光束直徑越大,越難以損壞。另一方面,SRS的閾值取決於脈衝光的峰值強度以及介質長度。也就是說,在經由將通過SRS發生元件30的脈衝光的光束直徑擴大而脈衝光的峰值強度降低的情況下,藉由增長SRS發生元件30的介質長度而使期望的SRS光發生是可能的。此結果,在巨脈衝發生的情況下,可以安定地得到避免因巨脈衝而造成配置在固體活性介質21的後段的SRS發生元件30以及波長濾波器40的損壞這樣的效果。In the first embodiment, the larger the beam diameter of the pulse light passing through the SRS generating element 30 and the wavelength filter 40, the better. In the case where a giant pulse is generated by the configuration of the first embodiment, the SRS generating element 30 may be damaged by the giant pulse of the first wavelength. In addition, the SRS generating element 30 and the wavelength filter 40 may be damaged by the wavelength conversion into the giant pulse of the second wavelength. Generally speaking, the damage threshold of an optical element due to pulse light depends on the peak intensity of the pulse light. That is, the larger the beam diameter of the pulse light incident on the optical element, the less likely it is to be damaged. On the other hand, the threshold of SRS depends on the peak intensity of the pulse light and the medium length. That is, when the peak intensity of the pulse light is reduced by expanding the beam diameter of the pulse light passing through the SRS generating element 30, it is possible to generate the desired SRS light by increasing the medium length of the SRS generating element 30. As a result, when a giant pulse occurs, it is possible to stably avoid damage to the SRS generating element 30 and the wavelength filter 40 arranged at the rear stage of the solid active medium 21 due to the giant pulse.
作為增大通過SRS發生元件30的光束直徑的手段,增大從固體活性介質21出射的脈衝放大光L0的發散角較佳。或者,可以以使脈衝放大光L0以會聚的狀態從固體活性介質21出射、並且在集光點的後方脈衝放大光L0再次變化為發散的狀態後脈衝放大光L0入射於SRS發生元件30的方式配置SRS發生元件30。As a means of increasing the diameter of the light beam passing through the SRS generating element 30, it is preferable to increase the divergence angle of the pulse amplified light L0 emitted from the solid active medium 21. Alternatively, the SRS generating element 30 may be configured in such a manner that the pulse amplified light L0 is emitted from the solid active medium 21 in a convergent state, and after the pulse amplified light L0 changes again to a divergent state behind the light collection point, the pulse amplified light L0 is incident on the SRS generating element 30.
根據實施方式1,在脈衝放大光L0的峰值輸出大於決定的額定峰值輸出的情況下,脈衝放大光L0藉由SRS發生元件30而被波長轉換,並且藉由波長濾波器40而從光路被分離。此結果,具有可以抑制因巨脈衝發生而造成配置在固體活性介質21的後段的光學元件的損壞以及加工對象物51的加工品質的降低這樣的效果。According to the first embodiment, when the peak output of the pulse amplified light L0 is greater than the determined rated peak output, the pulse amplified light L0 is wavelength-converted by the SRS generating element 30 and separated from the optical path by the wavelength filter 40. As a result, it is possible to suppress the damage of the optical element arranged at the rear stage of the solid active medium 21 and the reduction of the processing quality of the processing object 51 due to the generation of giant pulses.
實施方式2 在實施方式2中,SRS發生元件30可以與固體活性介質21為相同的材料,SRS發生元件30也可以與固體活性介質21為相同的基材的非摻雜材料或低摻雜材料。即,SRS發生元件30可以是,相對於與固體活性介質21的基材相同的基材,而將與摻雜到固體活性介質21的雷射活性離子相同的雷射活性離子,以固體活性介質21的雷射活性離子的濃度以下的濃度摻雜的低摻雜材料。或者,SRS發生元件30也可以是,不含有雷射活性離子的與固體活性介質21的基材相同的基材的非摻雜材料。非摻雜材料或低摻雜材料配置在固體活性介質21的後段較佳。另外,非摻雜材料或低摻雜材料可以與固體活性介質21分離而配置在固體活性介質21的後段,或者可以接合於固體活性介質21的脈衝放大光L0出射的面。 Implementation method 2 In implementation method 2, the SRS generating element 30 can be the same material as the solid active medium 21, or the SRS generating element 30 can be a non-doped material or a low-doped material with the same substrate as the solid active medium 21. That is, the SRS generating element 30 can be a low-doped material doped with the same laser active ions as the laser active ions doped into the solid active medium 21 at a concentration lower than the concentration of the laser active ions of the solid active medium 21 relative to the substrate of the solid active medium 21. Alternatively, the SRS generating element 30 can also be a non-doped material with the same substrate as the substrate of the solid active medium 21 that does not contain laser active ions. It is better to configure the non-doped material or low-doped material in the rear section of the solid active medium 21. In addition, the non-doped material or low-doped material can be separated from the solid active medium 21 and configured in the rear section of the solid active medium 21, or can be connected to the surface of the solid active medium 21 from which the pulse amplified light L0 is emitted.
第4圖至第6圖是示出實施方式2的固體雷射裝置的固體活性介質以及SRS發生元件的構成例的圖。在一示例子中,將作為0.2at.% 的雷射活性離子的Nd摻雜於作為基材的YVO 4的Nd:YVO 4使用於固體活性介質21的情況下的SRS發生元件30中,可以使用第4圖至第6圖示出的材料。在第4圖中,示出了SRS發生元件30為與固體活性介質21相同的材料的摻雜濃度為0.2at.%Nd:YVO 4的情況。在第5圖中,示出了SRS發生元件30為與固體活性介質21的基材相同的基材,並且為未摻雜雷射活性離子的摻雜材料(即非摻雜的YVO 4)的情況。在第6圖中,示出了SRS發生元件30是,相對於與固體活性介質21的基材相同的基材的YVO 4,而將與摻雜到固體活性介質21的雷射活性離子相同的Nd,以固體活性介質21的雷射活性離子的濃度以下的濃度摻雜的低摻雜材料的情況。在第6圖中,摻雜濃度為0.1at.%的Nd:YVO 4用作SRS發生元件30。 4 to 6 are diagrams showing examples of the configuration of the solid active medium and the SRS generating element of the solid laser device of Embodiment 2. In one example, in the SRS generating element 30 in which Nd as a laser active ion is doped in YVO 4 as a substrate at 0.2 at.%, Nd:YVO 4 is used as the solid active medium 21, and the materials shown in FIGS. 4 to 6 can be used. In FIG. 4, the SRS generating element 30 is shown to be a material of the same material as the solid active medium 21, and the doping concentration is 0.2 at.%. FIG. 5 shows a case where the SRS generating element 30 is a doped material (i.e., non-doped YVO 4 ) that is the same substrate as the substrate of the solid active medium 21 and is not doped with laser active ions. FIG. 6 shows a case where the SRS generating element 30 is a low-doped material doped with Nd, which is the same as the laser active ions doped into the solid active medium 21, at a concentration lower than the concentration of the laser active ions of the solid active medium 21, relative to YVO 4 of the same substrate as the substrate of the solid active medium 21. In FIG. 6, Nd:YVO 4 with a doping concentration of 0.1 at.% is used as the SRS generating element 30.
因此,經由在SRS發生元件30使用與固體活性介質21相同的材料、與固體活性介質21相同的基材的非摻雜材料、或者雷射活性離子的濃度低於固體活性介質21的低摻雜材料,可以減少固體雷射裝置1的構件數量或構件種類。又,經由將SRS發生元件30接合於固體活性介質21的脈衝放大光L0出射的面,可以使包括固體活性介質21以及SRS發生元件30的固體雷射裝置1小型化。Therefore, by using the same material as the solid active medium 21, a non-doped material with the same base material as the solid active medium 21, or a low-doped material with a laser active ion concentration lower than that of the solid active medium 21 in the SRS generating element 30, the number of components or types of components of the solid laser device 1 can be reduced. In addition, by bonding the SRS generating element 30 to the surface of the solid active medium 21 from which the pulse amplified light L0 is emitted, the solid laser device 1 including the solid active medium 21 and the SRS generating element 30 can be miniaturized.
實施方式3 第7圖是示意性地示出實施方式3的固體雷射裝置的構成的示例的圖。此外,在實施方式3中,因為固體活性介質21與波長濾波器40之間的光路的構成與實施方式1不同,所以在第7圖中,示出固體活性介質21與波長濾波器40之間的光路的構成。 Implementation method 3 FIG. 7 is a diagram schematically showing an example of the configuration of a solid laser device of implementation method 3. In implementation method 3, since the configuration of the optical path between the solid active medium 21 and the wavelength filter 40 is different from that of implementation method 1, FIG. 7 shows the configuration of the optical path between the solid active medium 21 and the wavelength filter 40.
在實施方式3中,如第7圖所示,固體雷射裝置1在固體活性介質21與波長濾波器40之間在SRS發生元件30的後段,更包括折疊鏡60a、60b、阻尼器61、移動機構62、平行平面基板63、以及旋轉機構64。In the third embodiment, as shown in FIG. 7 , the solid laser device 1 further includes folding mirrors 60a, 60b, a damper 61, a moving mechanism 62, a parallel plane substrate 63, and a rotating mechanism 64 between the solid active medium 21 and the wavelength filter 40 at the rear end of the SRS generating element 30.
在光的行進的光路上的配置中,折疊鏡60a、60b配置在SRS發生元件30與波長濾波器40之間。換言之,光依次通過SRS發生元件30、折疊鏡60a、60b、波長濾波器40。又,在光路上的配置中,也可以在SRS發生元件30的入射面301與波長濾波器40之間設置至少一個折疊鏡60a、60b,在第7圖的示例中,為示出設置兩個折疊鏡60a、60b的情況。以下,折疊鏡60a、60b在不各自區分的情況下被稱為折疊鏡60。折疊鏡60反射從SRS發生元件30出射的第一波長的第一脈衝光L1,並且透射第二波長的第二脈衝光L2。折疊鏡60以使得第一波長的第一脈衝光L1至少兩次以上透射SRS發生元件30的方式配置。但是,在第7圖的示例中,藉由後述的移動機構62調整SRS發生元件30的位置,使得第一脈衝光L1兩次透射SRS發生元件30。In the arrangement on the optical path of the light, the folding mirrors 60a and 60b are arranged between the SRS generating element 30 and the wavelength filter 40. In other words, the light passes through the SRS generating element 30, the folding mirrors 60a and 60b, and the wavelength filter 40 in sequence. In the arrangement on the optical path, at least one folding mirror 60a and 60b may be arranged between the incident surface 301 of the SRS generating element 30 and the wavelength filter 40. In the example of FIG. 7, two folding mirrors 60a and 60b are arranged to illustrate the case. Hereinafter, the folding mirrors 60a and 60b are referred to as the folding mirror 60 when they are not distinguished from each other. The folding mirror 60 reflects the first pulse light L1 of the first wavelength emitted from the SRS generating element 30, and transmits the second pulse light L2 of the second wavelength. The folding mirror 60 is arranged so that the first pulse light L1 of the first wavelength transmits the SRS generating element 30 at least twice. However, in the example of FIG. 7 , the position of the SRS generating element 30 is adjusted by the moving mechanism 62 described later, so that the first pulse light L1 transmits the SRS generating element 30 twice.
第8圖是示意性地示出實施方式3的固體雷射裝置的構成的其他示例的圖。第8圖示出調整SRS發生元件30的位置,使得由折疊鏡60反射的光(即第一脈衝光L1)全部透射SRS發生元件30的狀態。使SRS發生元件30從第8圖的狀態往紙面內的上方移動時,如第7圖所示,以折疊鏡60b反射的第一脈衝光L1為不透射SRS發生元件30的狀態。如第8圖所示,被所有折疊鏡60反射的第一脈衝光L1透射SRS發生元件30的位置稱為基準位置。此外,經由適當設定折疊鏡60對第二脈衝光L2的透射率,可能構成為使得被部分反射的第二脈衝光L2入射於SRS發生元件30,並且在SRS發生元件30的波長轉換效率為1%以上。FIG. 8 is a diagram schematically showing another example of the configuration of the solid-state laser device of Embodiment 3. FIG. 8 shows a state in which the position of the SRS generating element 30 is adjusted so that all the light reflected by the folding mirror 60 (i.e., the first pulse light L1) is transmitted through the SRS generating element 30. When the SRS generating element 30 is moved upward in the paper from the state of FIG. 8, as shown in FIG. 7, the first pulse light L1 reflected by the folding mirror 60b is not transmitted through the SRS generating element 30. As shown in FIG. 8, the position in which the first pulse light L1 reflected by all the folding mirrors 60 is transmitted through the SRS generating element 30 is called the reference position. In addition, by appropriately setting the transmittance of the folding mirror 60 to the second pulse light L2, it is possible to configure the partially reflected second pulse light L2 to be incident on the SRS generating element 30, and the wavelength conversion efficiency in the SRS generating element 30 is greater than 1%.
阻尼器61衰減以折疊鏡60透射的第二脈衝光L2。因此,在第7圖的示例中,阻尼器61配置在折疊鏡60的透射側。此外,阻尼器61可以是功率計等的測量儀器。The damper 61 attenuates the second pulse light L2 transmitted through the folding mirror 60. Therefore, in the example of Fig. 7 , the damper 61 is arranged on the transmission side of the folding mirror 60. In addition, the damper 61 may be a measuring instrument such as a power meter.
移動機構62使SRS發生元件30移動。如第8圖所示,在SRS發生元件30藉由移動機構62而位在基準位置的情況下,SRS發生元件30具有的大小可以透射從固體活性介質21出射的第一脈衝光L1以及由折疊鏡60a、60b反射的第一脈衝光L1的全部。也就是說,在基準位置,SRS發生元件30構成為第一脈衝光L1透射次數為折疊鏡60的數量+1次。移動機構62使SRS發生元件30移動,使得透射SRS發生元件30的第一脈衝光L1的次數可以在從1次到折疊鏡60的數量+1次的範圍內改變。The moving mechanism 62 moves the SRS generating element 30. As shown in FIG. 8 , when the SRS generating element 30 is located at the reference position by the moving mechanism 62, the SRS generating element 30 has a size that can transmit all of the first pulse light L1 emitted from the solid active medium 21 and the first pulse light L1 reflected by the folding mirrors 60a and 60b. That is, at the reference position, the SRS generating element 30 is configured so that the number of times the first pulse light L1 is transmitted is the number of times the folding mirror 60 is + 1. The moving mechanism 62 moves the SRS generating element 30 so that the number of times the first pulse light L1 is transmitted through the SRS generating element 30 can be changed within a range from 1 time to the number of times the folding mirror 60 is + 1 time.
根據式(1),SRS強度取決於SRS發生元件30的長度與入射於SRS發生元件30的第一波長的脈衝光的峰值強度。在實施方式3中,經由第一波長的脈衝光(即脈衝放大光L0以及第一脈衝光L1)複數次往復SRS發生元件30,而可以增加有效元件長度。又,由於使作為第二波長的SRS分量的第二脈衝光L2透射折疊鏡60而被排除在第一波長的光路之外,所以式(1)中的I Raman通過折疊鏡60的次數實質上變為0。此結果,與介質長度長的SRS發生元件30一次通過的情況相比,在實施方式3中具有提高相對於巨脈衝的衰減率的效果。因此,經由以移動機構62使SRS發生元件30移動,可以使第一脈衝光L1通過SRS發生元件30的次數與第一脈衝光L1通過SRS發生元件30的通過距離改變。 According to formula (1), the SRS intensity depends on the length of the SRS generating element 30 and the peak intensity of the first wavelength pulse light incident on the SRS generating element 30. In the third embodiment, the effective element length can be increased by making the first wavelength pulse light (i.e., the pulse amplified light L0 and the first pulse light L1) reciprocate through the SRS generating element 30 multiple times. In addition, since the second pulse light L2, which is the SRS component of the second wavelength, is transmitted through the folding mirror 60 and excluded from the optical path of the first wavelength, the number of times that I Raman passes through the folding mirror 60 in formula (1) becomes substantially 0. As a result, compared with the case where the medium length of the SRS generating element 30 is long and passes through once, the attenuation rate relative to the giant pulse is improved in the third embodiment. Therefore, by moving the SRS generating element 30 with the moving mechanism 62 , the number of times the first pulse light L1 passes through the SRS generating element 30 and the passing distance of the first pulse light L1 through the SRS generating element 30 can be changed.
另外,經由使SRS發生元件30向從固體放大器20出射的脈衝放大光L0的行進方向移動,可以使被折疊鏡60反射的第一脈衝光L1入射於SRS發生元件30的光束直徑改變。在一示例中,如在實施方式1中說明的那樣,移動機構62可以使SRS發生元件30移動,使得入射於SRS發生元件30的第一脈衝光L1的光束直徑變大。此外,變更從固體活性介質21出射的脈衝放大光L0的發散角,也可以使入射於SRS發生元件30的光束直徑改變。但是,實際上,經由變更入射於固體活性介質21的脈衝光LS的發散角,使得入射於SRS發生元件30的光束直徑改變。In addition, by moving the SRS generating element 30 in the direction of travel of the pulsed amplified light L0 emitted from the solid-state amplifier 20, the beam diameter of the first pulsed light L1 reflected by the folding mirror 60 incident on the SRS generating element 30 can be changed. In one example, as described in Embodiment 1, the moving mechanism 62 can move the SRS generating element 30 so that the beam diameter of the first pulsed light L1 incident on the SRS generating element 30 becomes larger. In addition, by changing the divergence angle of the pulsed amplified light L0 emitted from the solid active medium 21, the beam diameter incident on the SRS generating element 30 can also be changed. However, in reality, by changing the divergence angle of the pulse light LS incident on the solid active medium 21, the diameter of the light beam incident on the SRS generating element 30 is changed.
因此,在實施方式3中,移動機構62使被折疊鏡60反射的第一脈衝光L1入射於SRS發生元件30的光束直徑、第一脈衝光L1通過SRS發生元件30的次數、以及第一脈衝光L1通過SRS發生元件30的通過距離中的至少一個改變。Therefore, in the third embodiment, the moving mechanism 62 changes at least one of the beam diameter of the first pulse light L1 reflected by the folding mirror 60 incident on the SRS generating element 30, the number of times the first pulse light L1 passes through the SRS generating element 30, and the passing distance of the first pulse light L1 through the SRS generating element 30.
平行平面基板63配置在配置於波長濾波器40的前段的折疊鏡60b與波長濾波器40之間。平行平面基板63具有作為第一脈衝光L1入射的面的入射面、與作為第一脈衝光L1出射的面的射出面相互為平行的形狀。The parallel plane substrate 63 is disposed between the folding mirror 60b disposed in front of the wavelength filter 40 and the wavelength filter 40. The parallel plane substrate 63 has an incident surface where the first pulse light L1 is incident and an emission surface where the first pulse light L1 is emitted that are parallel to each other.
旋轉機構64藉由使平行平面基板63旋轉,而使平行平面基板63的入射面與第一脈衝光L1的光軸之間的角度改變。在一示例中,旋轉機構64使平行平面基板63繞平行於平行平面基板63的入射面並相互正交的兩個軸旋轉。旋轉機構64經由使平行平面基板63旋轉而校正由第一脈衝光L1通過SRS發生元件30而產生的光軸偏移。The rotating mechanism 64 changes the angle between the incident surface of the parallel plane substrate 63 and the optical axis of the first pulse light L1 by rotating the parallel plane substrate 63. In one example, the rotating mechanism 64 rotates the parallel plane substrate 63 around two axes that are parallel to the incident surface of the parallel plane substrate 63 and orthogonal to each other. The rotating mechanism 64 corrects the optical axis deviation generated by the first pulse light L1 passing through the SRS generating element 30 by rotating the parallel plane substrate 63.
在實施方式3中,包括使被折疊鏡60反射的第一脈衝光L1入射於SRS發生元件30的光束直徑、第一脈衝光L1通過SRS發生元件30的次數、以及第一脈衝光L1通過SRS發生元件30的通過距離中的至少一個改變的移動機構62。藉由以移動機構62使SRS發生元件30移動,第一波長的脈衝光通過SRS發生元件30的次數可以從1次至折疊鏡60的數量+1次之間改變。又,經由改變通過的次數,可以增長實質的SRS發生元件30的介質長度。另外,經由增大入射於SRS發生元件30的光束直徑,可以抑制光學元件的損壞的可能性。因此,經由使第一脈衝光L1複數次往復SRS發生元件30,並且在各折疊鏡60的反射時除去第二脈衝光L2,具有可以提高在巨脈衝發生的情況下的巨脈衝的衰減率這樣的效果。In the third embodiment, a moving mechanism 62 is included to change at least one of the beam diameter of the first pulse light L1 reflected by the folding mirror 60 incident on the SRS generating element 30, the number of times the first pulse light L1 passes through the SRS generating element 30, and the passing distance of the first pulse light L1 through the SRS generating element 30. By moving the SRS generating element 30 by the moving mechanism 62, the number of times the pulse light of the first wavelength passes through the SRS generating element 30 can be changed from 1 time to the number of folding mirrors 60+1 time. In addition, by changing the number of times the pulse light passes, the actual medium length of the SRS generating element 30 can be increased. In addition, the possibility of damage to the optical element can be suppressed by increasing the diameter of the light beam incident on the SRS generating element 30. Therefore, by making the first pulse light L1 reciprocate the SRS generating element 30 multiple times and removing the second pulse light L2 when reflected by each folding mirror 60, it is possible to increase the attenuation rate of the giant pulse when the giant pulse occurs.
又,在實施方式3中,包括作為在SRS發生元件30的後段的平行平板的平行平面基板63、以及使平行平面基板63旋轉的旋轉機構64。經由使用旋轉機構64,適當地設定平行平面基板63的入射面與第一脈衝光L1的光軸之間的角度,可以校正因第一脈衝光L1複數次通過SRS發生元件30而產生的光軸偏移。In the third embodiment, a parallel plane substrate 63 as a parallel flat plate at the rear stage of the SRS generating element 30 and a rotating mechanism 64 for rotating the parallel plane substrate 63 are included. By using the rotating mechanism 64, the angle between the incident surface of the parallel plane substrate 63 and the optical axis of the first pulse light L1 is appropriately set, and the optical axis deviation caused by the first pulse light L1 passing through the SRS generating element 30 multiple times can be corrected.
實施方式4 第9圖是示意性地示出實施方式4的固體雷射裝置的構成的示例的圖。此外,在實施方式4中,因為固體活性介質21與波長濾波器40之間的光路的構成與實施方式1不同,所以在第9圖中,示出固體活性介質21與波長濾波器40之間的光路的構成。 Implementation method 4 FIG. 9 is a diagram schematically showing an example of the configuration of a solid laser device of implementation method 4. In implementation method 4, since the configuration of the optical path between the solid active medium 21 and the wavelength filter 40 is different from that of implementation method 1, FIG. 9 shows the configuration of the optical path between the solid active medium 21 and the wavelength filter 40.
在實施方式4中,如第9圖所示,固體雷射裝置1更包括光圈70。光圈70配置在SRS發生元件30的後段。光圈70是形成開口的板狀構件。光圈70為圓形的開口較佳。光圈70具有去除通過光圈70的脈衝光(即第一脈衝光L1以及第二脈衝光L2)中發散角大於預定值的分量,並且透射發散角小於預定值的分量的功能。In the fourth embodiment, as shown in FIG. 9 , the solid laser device 1 further includes an aperture 70. The aperture 70 is disposed at the rear section of the SRS generating element 30. The aperture 70 is a plate-shaped component forming an opening. The aperture 70 is preferably a circular opening. The aperture 70 has the function of removing the component having a divergence angle greater than a predetermined value in the pulse light (i.e., the first pulse light L1 and the second pulse light L2) passing through the aperture 70, and transmitting the component having a divergence angle less than a predetermined value.
通常,在非波導型的本體元件發生的第二波長的SRS光具有比第一波長的脈衝光大的發散角的分量。因此,如實施方式4,經由將光圈70配置在SRS發生元件30的後段,具有可以選擇性地去除發散角大的第二波長的脈衝分量這樣的效果。Generally, the second wavelength SRS light generated in the non-waveguide type main body element has a component with a larger divergence angle than the first wavelength pulse light. Therefore, as in Embodiment 4, by configuring the aperture 70 at the rear section of the SRS generating element 30, it is possible to selectively remove the second wavelength pulse component with a larger divergence angle.
以上的實施方式所示的構成僅為示例,可以與其他已知技術組合,或者可以將實施方式彼此組合,在不脫離本發明的範圍的情況下,也可以省略或變更構成的一部分。The configurations shown in the above embodiments are merely examples and may be combined with other known technologies, or the embodiments may be combined with each other. Part of the configuration may also be omitted or changed without departing from the scope of the present invention.
1:固體雷射裝置 10:種光源 11:控制部 20:固體放大器 21:固體活性介質 22:激發光源 23:分光鏡 30:SRS發生元件 31:溫度控制機構 40:波長濾波器 41,61:阻尼器 50:光學系統 51:加工對象物 60,60a,60b:折疊鏡 62:移動機構 63:平行平面基板 64:旋轉機構 70:光圈 80:偏向器 90:聚光透鏡 100:固體雷射加工裝置 301:入射面 302:出射面 L0:脈衝放大光 L1:第一脈衝光 L2:第二脈衝光 L3:第三脈衝光 LE:激發光 LS:脈衝光 θBi,θBo:布魯斯特角 1: Solid laser device 10: Light source 11: Control unit 20: Solid amplifier 21: Solid active medium 22: Excitation light source 23: Spectroscope 30: SRS generator 31: Temperature control mechanism 40: Wavelength filter 41,61: Damper 50: Optical system 51: Processing object 60,60a,60b: Folding mirror 62: Moving mechanism 63: Parallel plane substrate 64: Rotating mechanism 70: Aperture 80: Deflector 90: Focusing lens 100: Solid laser processing device 301: Incident surface 302: Exit surface L0: Pulse amplified light L1: first pulse light L2: second pulse light L3: third pulse light LE: excitation light LS: pulse light θBi, θBo: Brewster angle
第1圖是示意性地示出包括實施方式1的固體雷射裝置的固體雷射加工裝置的構成的示例的圖。 第2圖是示意性地示出SRS發生元件的構成的其他示例的圖。 第3圖是示出在Nd:YVO 4用於SRS發生元件並且將1064nm的脈衝光入射於SRS發生元件的情況下的對於SRS的波長轉換特性的示例的圖。 第4圖是示出實施方式2的固體雷射裝置的固體活性介質以及SRS發生元件的構成例的圖。 第5圖是示出實施方式2的固體雷射裝置的固體活性介質以及SRS發生元件的構成例的圖。 第6圖是示出實施方式2的固體雷射裝置的固體活性介質以及SRS發生元件的構成例的圖。 第7圖是示意性地示出實施方式3的固體雷射裝置的構成的示例的圖 第8圖是示意性地示出實施方式3的固體雷射裝置的構成的其他示例的圖 第9圖是示意性地示出實施方式4的固體雷射裝置的構成的示例的圖 FIG. 1 is a diagram schematically showing an example of the configuration of a solid-state laser processing device including a solid-state laser device of embodiment 1. FIG. 2 is a diagram schematically showing other examples of the configuration of an SRS generating element. FIG. 3 is a diagram showing an example of the wavelength conversion characteristics for SRS when Nd:YVO 4 is used for the SRS generating element and a pulse light of 1064 nm is incident on the SRS generating element. FIG. 4 is a diagram showing an example of the configuration of a solid active medium and an SRS generating element of a solid-state laser device of embodiment 2. FIG. 5 is a diagram showing an example of the configuration of a solid active medium and an SRS generating element of a solid-state laser device of embodiment 2. FIG. 6 is a diagram showing an example of the configuration of a solid active medium and an SRS generating element of a solid-state laser device of embodiment 2. FIG. 7 is a diagram schematically showing an example of the configuration of the solid-state laser device of the third embodiment. FIG. 8 is a diagram schematically showing another example of the configuration of the solid-state laser device of the third embodiment. FIG. 9 is a diagram schematically showing an example of the configuration of the solid-state laser device of the fourth embodiment.
1:固體雷射裝置 1: Solid-state laser device
10:種光源 10: Light sources
11:控制部 11: Control Department
20:固體放大器 20: Solid-state amplifier
21:固體活性介質 21: Solid active medium
22:激發光源 22: Excitation light source
23:分光鏡 23: Spectroscope
30:SRS發生元件 30:SRS generating element
31:溫度控制機構 31: Temperature control mechanism
40:波長濾波器 40: Wavelength filter
41:阻尼器 41: Damper
50:光學系統 50:Optical system
51:加工對象物 51: Object to be processed
80:偏向器 80: Deflector
90:聚光透鏡 90: Focusing lens
100:固體雷射加工裝置 100: Solid laser processing equipment
L0:脈衝放大光 L0: Pulse amplified light
L1:第一脈衝光 L1: First pulse of light
L2:第二脈衝光 L2: Second pulse light
L3:第三脈衝光 L3: The third pulse of light
LE:激發光 LE: Excitation light
LS:脈衝光 LS: Pulse Light
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/034084 WO2024057367A1 (en) | 2022-09-12 | 2022-09-12 | Solid-state laser device and solid-state laser processing device |
WOPCT/JP2022/034084 | 2022-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202412416A TW202412416A (en) | 2024-03-16 |
TWI869957B true TWI869957B (en) | 2025-01-11 |
Family
ID=85795581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112128990A TWI869957B (en) | 2022-09-12 | 2023-08-02 | Solid-state laser device and solid-state laser processing device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7254260B1 (en) |
TW (1) | TWI869957B (en) |
WO (1) | WO2024057367A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7459410B1 (en) | 2023-10-24 | 2024-04-01 | 三菱電機株式会社 | Laser device and laser processing device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080013163A1 (en) * | 2006-07-11 | 2008-01-17 | Mobius Photonics, Inc. | Light source with precisely controlled wavelength-converted average power |
US20080261382A1 (en) * | 2007-04-19 | 2008-10-23 | Andrei Starodoumov | Wafer dicing using a fiber mopa |
TW201622278A (en) * | 2014-08-29 | 2016-06-16 | 三菱電機股份有限公司 | Laser device and laser processing machine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002031823A (en) * | 2000-07-14 | 2002-01-31 | Japan Atom Energy Res Inst | High power short pulse laser light generation system |
JP2003017787A (en) * | 2001-07-04 | 2003-01-17 | Toshiba Corp | Solid laser apparatus and drive circuit of q switch driver |
JP2006019603A (en) * | 2004-07-05 | 2006-01-19 | Matsushita Electric Ind Co Ltd | Coherent light source and optical device |
US7508853B2 (en) * | 2004-12-07 | 2009-03-24 | Imra, America, Inc. | Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems |
JP5086822B2 (en) * | 2007-01-31 | 2012-11-28 | パナソニック株式会社 | Wavelength conversion device and two-dimensional image display device |
-
2022
- 2022-09-12 JP JP2022574324A patent/JP7254260B1/en active Active
- 2022-09-12 WO PCT/JP2022/034084 patent/WO2024057367A1/en unknown
-
2023
- 2023-08-02 TW TW112128990A patent/TWI869957B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080013163A1 (en) * | 2006-07-11 | 2008-01-17 | Mobius Photonics, Inc. | Light source with precisely controlled wavelength-converted average power |
US20080261382A1 (en) * | 2007-04-19 | 2008-10-23 | Andrei Starodoumov | Wafer dicing using a fiber mopa |
TW201622278A (en) * | 2014-08-29 | 2016-06-16 | 三菱電機股份有限公司 | Laser device and laser processing machine |
Also Published As
Publication number | Publication date |
---|---|
TW202412416A (en) | 2024-03-16 |
JP7254260B1 (en) | 2023-04-07 |
WO2024057367A1 (en) | 2024-03-21 |
JPWO2024057367A1 (en) | 2024-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2879249B1 (en) | A laser system | |
US8964799B2 (en) | Q-switching-induced gain-switched erbium pulse laser system | |
US9941654B2 (en) | Fiber-laser pumped crystal-laser | |
US20120069860A1 (en) | Gain-Switched Fiber Laser | |
JP6456250B2 (en) | Laser apparatus and laser processing machine | |
JP6229006B2 (en) | Light source with passive pulse shaping | |
US20160344153A1 (en) | Multi-pump-pass fiber based lasers and amplifiers | |
TWI869957B (en) | Solid-state laser device and solid-state laser processing device | |
CN110036542B (en) | High-power rare earth doped crystal amplifier based on ultra-low quantum defect pumping scheme by utilizing single-mode or low-order mode fiber laser | |
US10256599B2 (en) | Laser light-source apparatus and laser pulse light generating method | |
JP7459410B1 (en) | Laser device and laser processing device | |
TW201228161A (en) | Mode locked fiber laser system | |
JP7500069B2 (en) | Optical Oscillator | |
TWI842476B (en) | Laser device and laser processing machine | |
US8457171B2 (en) | Miniaturized laser amplifier arrangement having a pump source | |
US10288981B2 (en) | Laser light-source apparatus and laser pulse light generating method | |
WO2021054401A1 (en) | Laser device and pulse width-changing method | |
Büker et al. | High-pulse-energy Q-switched Ho3+: YAG laser | |
CN112103763B (en) | A pulsed laser | |
Goth et al. | Investigation of the Optical Gain in a Compact Ho3+: YAG MOPA System | |
JP2025521256A (en) | Passively high energy Q-switched laser system with optically synchronized multi-stage/multi-pass amplification | |
TW202517385A (en) | Laser device and laser processing device | |
CN119009639A (en) | Optical fiber seed source device | |
Zimer et al. | High-power Nd: YAG-MISER | |
Forget et al. | New 3D multipass amplifier based on Nd: YAG or Nd: YVO4 crystals |