TWI869450B - Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery - Google Patents
Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery Download PDFInfo
- Publication number
- TWI869450B TWI869450B TW109132813A TW109132813A TWI869450B TW I869450 B TWI869450 B TW I869450B TW 109132813 A TW109132813 A TW 109132813A TW 109132813 A TW109132813 A TW 109132813A TW I869450 B TWI869450 B TW I869450B
- Authority
- TW
- Taiwan
- Prior art keywords
- particles
- lithium
- positive electrode
- secondary battery
- ion secondary
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 181
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 54
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000011163 secondary particle Substances 0.000 claims abstract description 46
- 239000002131 composite material Substances 0.000 claims abstract description 36
- 229920000447 polyanionic polymer Polymers 0.000 claims abstract description 21
- 229910052742 iron Inorganic materials 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052684 Cerium Inorganic materials 0.000 claims description 11
- 229910052797 bismuth Inorganic materials 0.000 claims description 11
- 229910052746 lanthanum Inorganic materials 0.000 claims description 11
- 229910052745 lead Inorganic materials 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910013716 LiNi Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 2
- 159000000002 lithium salts Chemical class 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 8
- 238000001354 calcination Methods 0.000 description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- -1 oxides Chemical class 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 26
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 22
- 239000007774 positive electrode material Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 239000007864 aqueous solution Substances 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 239000011259 mixed solution Substances 0.000 description 17
- 150000002642 lithium compounds Chemical class 0.000 description 16
- 239000011572 manganese Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 235000011007 phosphoric acid Nutrition 0.000 description 15
- 235000002639 sodium chloride Nutrition 0.000 description 15
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 150000002697 manganese compounds Chemical class 0.000 description 13
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 150000002506 iron compounds Chemical class 0.000 description 10
- 239000002905 metal composite material Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000012670 alkaline solution Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 150000001869 cobalt compounds Chemical class 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000002816 nickel compounds Chemical class 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 229920001973 fluoroelastomer Polymers 0.000 description 5
- 238000001027 hydrothermal synthesis Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- 239000003115 supporting electrolyte Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940052810 complex b Drugs 0.000 description 3
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 3
- 229940099596 manganese sulfate Drugs 0.000 description 3
- 239000011702 manganese sulphate Substances 0.000 description 3
- 235000007079 manganese sulphate Nutrition 0.000 description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910015855 LiMn0.7Fe0.3PO4 Inorganic materials 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 229920001046 Nanocellulose Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- HPGPEWYJWRWDTP-UHFFFAOYSA-N lithium peroxide Chemical compound [Li+].[Li+].[O-][O-] HPGPEWYJWRWDTP-UHFFFAOYSA-N 0.000 description 2
- 229940071125 manganese acetate Drugs 0.000 description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229940053662 nickel sulfate Drugs 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910012748 LiNi0.5Mn0.3Co0.2O2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 229940010048 aluminum sulfate Drugs 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000007984 tetrahydrofuranes Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Abstract
提供高溫保存穩定性為高的鋰離子二次電池用正極。使用特定的鋰複合氧化物粒子(A)與特定的鋰系聚陰離子粒子(B)製造的鋰離子二次電池用正極,其中,將粒子(A)的二次粒子的中值粒徑設定較粒子(B)的二次粒子的中值粒徑為小。A positive electrode for a lithium ion secondary battery having high high temperature storage stability is provided. The positive electrode for a lithium ion secondary battery is produced using specific lithium composite oxide particles (A) and specific lithium-based polyanion particles (B), wherein the median particle size of the secondary particles of the particles (A) is set smaller than the median particle size of the secondary particles of the particles (B).
Description
本發明為關於鋰離子二次電池用正極及具有該正極的鋰離子二次電池。The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery having the positive electrode.
作為鋰離子二次電池用正極活性物質,熱穩定性為優異的聚陰離子(polyanion)系化合物備受矚目。作為聚陰離子系正極活性物質,已檢討著具有橄欖石結構的磷酸鋰鐵、或將磷酸鋰鐵的鐵的一部分或全部以錳取代而成的磷酸錳鐵鋰或磷酸錳鋰。As positive active materials for lithium-ion secondary batteries, polyanion compounds with excellent thermal stability have attracted much attention. As polyanion positive active materials, lithium iron phosphate having an olivine structure, or lithium manganese iron phosphate or lithium manganese phosphate in which part or all of the iron in lithium iron phosphate is replaced by manganese has been examined.
然而,聚陰離子系正極活性物質具有所謂的導電性不足之課題。於是,提案了對於聚陰離子系正極活性物質混合正極活性物質使用之發明,其中該正極活性物質為包含鋰、與鎳、鈷、錳等的過渡金屬的複合氧化物(專利文獻1)。 [先前技術文獻] [專利文獻]However, polyanionic cathode active materials have the problem of insufficient electrical conductivity. Therefore, an invention for using polyanionic cathode active materials mixed with cathode active materials was proposed, wherein the cathode active material is a composite oxide containing lithium and a transition metal such as nickel, cobalt, and manganese (Patent Document 1). [Prior Art Document] [Patent Document]
[專利文獻1]日本特開2018-142420號公報[Patent Document 1] Japanese Patent Application Publication No. 2018-142420
[發明所欲解決之課題][The problem that the invention wants to solve]
專利文獻1中記載著,將「第一電極活性物質」(即,聚陰離子系正極活性物質)的二次粒子的平均粒徑設定為「第二電極活性物質」(即,鋰與其他的過渡金屬的複合氧化物)的二次粒子的平均粒徑的0.01~0.30倍,因而能使第一電極活性物質的二次粒子進入由第二電極活性物質的二次粒子所形成的間隙中,藉此促進了電極密度的提升之同時,藉由第一電極活性物質來填埋第二電極活性物質的二次粒子彼此之間的間隙,相較於第二電極活性物質單質之情形,改善了鋰離子二次電池用電極的熱傳導率。Patent document 1 states that the average particle size of the secondary particles of the "first electrode active material" (i.e., the polyanion-based positive electrode active material) is set to 0.01 to 0.30 times the average particle size of the secondary particles of the "second electrode active material" (i.e., the composite oxide of lithium and other transition metals), so that the secondary particles of the first electrode active material can enter the gaps formed by the secondary particles of the second electrode active material, thereby promoting the improvement of the electrode density. At the same time, the first electrode active material fills the gaps between the secondary particles of the second electrode active material, thereby improving the thermal conductivity of the electrode for the lithium ion secondary battery compared to the case of the second electrode active material alone.
然而,若將具有聚陰離子系正極活性物質的正極使用於鋰離子二次電池並暴露於高溫之情況下時,錳或鐵等的金屬元素會從磷酸錳鐵鋰等的聚陰離子系正極活性物質中溶出,而電池在高溫下的穩定性會有受損之情形。However, when a positive electrode having a polycationic positive electrode active material is used in a lithium-ion secondary battery and exposed to high temperatures, metal elements such as manganese and iron will be dissolved from the polycationic positive electrode active material such as lithium manganese iron phosphate, and the stability of the battery at high temperatures may be impaired.
本發明的目的係提供特別是在高溫下的保存穩定性為高的鋰離子二次電池用正極。 [解決課題之手段]The object of the present invention is to provide a positive electrode for a lithium-ion secondary battery having high storage stability, particularly at high temperatures. [Means for Solving the Problem]
對於上述目的經深入研究之結果本發明人發現:在具有聚陰離子系正極活性物質與鋰複合氧化物系正極活性物質的鋰離子二次電池用正極當中,使聚陰離子系正極活性物質的二次粒子的中值粒徑設定較鋰複合氧化物系正極活性物質的二次粒子的中值粒徑為大時,即使是在高溫下保存之情況,放電容量亦不容易降低。本發明包含下述內容,但不限定於該等。 [1]. 一種鋰二次電池用正極,包含以下述式(I)或(II)所表示的鋰複合氧化物粒子(A)與以下述式(III)所表示的鋰系聚陰離子粒子(B), LiNia Cob Mnc M1 x O2 …(I) 式(I)中,M1 為選自Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素,a、b、c、x為滿足0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、且3a+3b+ 3c+(M1 的價數)×x=3之數, LiNid Coe Alf M2 y O2 …(II) 式(II)中,M2 為選自Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素,d、e、f、y為滿足0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、且3d+3e+3f+(M2 的價數)×y=3之數, LiFem Mnn M3 o PO4 …(III) 式(III)中,M3 為Co、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd,m、n及o為滿足0≦m≦1、0≦n≦1、0≦o≦0.3、及m+n≠0、且滿足2m+2n+(M3 的價數)×o=2之數, 前述粒子(A)的二次粒子的中值粒徑較前述粒子(B)的二次粒子的中值粒徑為小。 [2]. 如[1]記載之鋰離子二次電池用正極,其中,前述粒子(A)的二次粒子的中值粒徑未滿前述粒子(B)的二次粒子的中值粒徑的0.80倍。 [3]. 如[1]或[2]記載之鋰離子二次電池用正極,其中,前述粒子(A)的粉體pH較前述粒子(B)的粉體pH為大。 [4]. 如[1]~[3]中任一項記載之鋰離子二次電池用正極,其中,前述粒子(A)為以前述式(I)所表示的化合物。 [5]. 如[4]記載之鋰離子二次電池用正極,其中,前述式(I)中的x為0。 [6]. 如[1]~[5]中任一項記載之鋰離子二次電池用正極,其中,前述粒子(B)為前述式(III)中滿足0<m≦1、0<n≦1及o=0的化合物。 [7]. 一種鋰離子二次電池,具有如[1]~[6]中任一項記載之鋰離子二次電池用正極。 [8]. 如[7]之鋰離子二次電池,其中,具有含有氟的鋰鹽來作為電解質。 [發明的效果]As a result of in-depth research for the above purpose, the inventors have found that in a positive electrode for a lithium ion secondary battery having a polyanion-based positive electrode active material and a lithium composite oxide-based positive electrode active material, when the median particle size of the secondary particles of the polyanion-based positive electrode active material is set larger than the median particle size of the secondary particles of the lithium composite oxide-based positive electrode active material, the discharge capacity is not easily reduced even when stored at a high temperature. The present invention includes the following contents, but is not limited thereto. [1]. A positive electrode for a lithium secondary battery, comprising lithium composite oxide particles (A) represented by the following formula (I) or (II) and lithium-based polyanion particles (B) represented by the following formula (III), LiNi a Co b Mn c M 1 x O 2 … (I) In formula (I), M 1 is one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge, a, b, c, x are numbers satisfying 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, 0≦x≦0.3, and 3a+3b+ 3c+(valence of M 1 )×x=3, LiNi d Co e Al f M 2 y O 2 …(II) In formula (II), M 2 is one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge, d, e, f, y are numbers satisfying 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦y≦0.3, and 3d+3e+3f+(valence of M 2 )×y=3, LiFe m Mn n M 3 o PO 4 …(III) In formula (III), M M 3 is Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd, m, n and o are numbers satisfying 0≦m≦1, 0≦n≦1, 0≦o≦0.3, and m+n≠0, and satisfying 2m+2n+(the value of M 3 )×o=2, the median particle size of the secondary particles of the aforementioned particles (A) is smaller than the median particle size of the secondary particles of the aforementioned particles (B). [2]. A positive electrode for a lithium ion secondary battery as described in [1], wherein the median particle size of the secondary particles of the aforementioned particles (A) is less than 0.80 times the median particle size of the secondary particles of the aforementioned particles (B). [3]. A positive electrode for a lithium ion secondary battery as described in [1] or [2], wherein the powder pH of the aforementioned particle (A) is greater than the powder pH of the aforementioned particle (B). [4]. A positive electrode for a lithium ion secondary battery as described in any one of [1] to [3], wherein the aforementioned particle (A) is a compound represented by the aforementioned formula (I). [5]. A positive electrode for a lithium ion secondary battery as described in [4], wherein x in the aforementioned formula (I) is 0. [6]. A positive electrode for a lithium ion secondary battery as described in any one of [1] to [5], wherein the aforementioned particle (B) is a compound in the aforementioned formula (III) that satisfies 0<m≦1, 0<n≦1 and o=0. [7]. A lithium ion secondary battery having a positive electrode for a lithium ion secondary battery as described in any one of [1] to [6]. [8]. The lithium ion secondary battery as described in [7], wherein a lithium salt containing fluorine is used as an electrolyte. [Effect of the Invention]
藉由使用本發明的正極,將能夠製造即使是被暴露於高溫時放電容量亦不易降低的鋰離子二次電池。By using the positive electrode of the present invention, it is possible to manufacture a lithium ion secondary battery whose discharge capacity is not easily reduced even when exposed to high temperature.
[實施發明之最佳形態][Best Mode for Carrying Out the Invention]
本發明的鋰離子二次電池用正極為使用以特定式所表示的粒子(A)(即,鋰與其他的過渡金屬的複合氧化物),與以特定式所表示的具有鋰、其他的過渡金屬及磷酸的聚陰離子粒子(B)來製造的。The positive electrode for the lithium ion secondary battery of the present invention is manufactured using particles (A) represented by a specific formula (i.e., a composite oxide of lithium and other transition metals) and polyanion particles (B) represented by a specific formula containing lithium, other transition metals and phosphoric acid.
<粒子(A)> 使用於本發明的正極中的粒子(A)為以下述式(I)或(II)所表示的具有層狀型岩鹽結構的鋰複合氧化物粒子。 LiNia Cob Mnc M1 x O2 …(I) (式(I)中,M1 為選自Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素,a、b、c、x為滿足0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3、且3a+3b+3c+(M1 的價數)×x=3之數)。 LiNid Coe Alf M2 y O2 …(II) (式(II)中,M2 為選自Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素,d、e、f、y為滿足0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦y≦0.3、且3d+3e+3f+(M2 的價數)×y=3之數)。<Particles (A)> The particles (A) used in the positive electrode of the present invention are lithium composite oxide particles having a layered rock salt structure represented by the following formula (I) or (II): LiNi a Co b Mn c M 1 x O 2 …(I) (In the formula (I), M 1 is one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge, and a, b, c and x are numbers satisfying 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, 0≦x≦0.3, and 3a+3b+3c+(valence of M 1 )×x=3). LiNi d Co e Al f M 2 y O 2 …(II) (in formula (II), M 2 is one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge, d, e, f, y are numbers satisfying 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦y≦0.3, and 3d+3e+3f+(valence of M 2 )×y=3).
為了得到以上述式(I)所表示的鋰複合氧化物粒子(A),將含有鋰化合物、鎳化合物、鈷化合物及錳化合物的混合粉體進行煅燒。具體而言,首先,以成為所期望的鋰複合氧化物的組成之方式,將鎳化合物、鈷化合物及錳化合物溶解於水中,而得到水溶液a。作為如此般的鎳化合物、鈷化合物及錳化合物,可舉例如該等金屬元素的硫酸鹽、硝酸鹽、碳酸鹽、醋酸鹽、草酸鹽、氧化物、氫氧化物、鹵化物等。具體而言,可舉例硫酸鎳、硫酸鈷、硫酸錳、醋酸鎳、醋酸鈷、醋酸錳等,但不限定於該等。因應所需,以進一步成為所期望的鋰複合氧化物的組成之方式,可混入選自Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素來作為取代鋰複合氧化物的一部分的金屬(M1 )元素。In order to obtain the lithium composite oxide particles (A) represented by the above formula (I), a mixed powder containing a lithium compound, a nickel compound, a cobalt compound and a manganese compound is calcined. Specifically, first, the nickel compound, the cobalt compound and the manganese compound are dissolved in water so as to obtain an aqueous solution a in a manner to obtain a desired lithium composite oxide composition. Examples of such nickel compounds, cobalt compounds and manganese compounds include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, halides and the like of these metal elements. Specifically, examples include nickel sulfate, cobalt sulfate, manganese sulfate, nickel acetate, cobalt acetate, manganese acetate and the like, but are not limited thereto. If necessary, in order to further obtain the desired composition of the lithium composite oxide, one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge may be mixed as the metal ( M1 ) element substituting for a part of the lithium composite oxide.
接下來,將鹼溶液添加於上述水溶液a中而製成水溶液b,藉由一邊攪拌一邊使溶解的金屬成分進行中和反應而產生共沈澱,來生成金屬複合氫氧化物。在此所使用的鹼溶液,較佳以充分量之方式進行滴下來使水溶液b保持在pH10~14。作為如此般的鹼溶液,可使用例如氫氧化鈉、氫氧化鉀、碳酸鈉、氨等的水溶液,其中,較佳為使用氫氧化鈉、碳酸鈉或該等的混合溶液。Next, an alkaline solution is added to the aqueous solution a to make an aqueous solution b, and the dissolved metal components are subjected to a neutralization reaction while stirring to produce a co-precipitation to generate a metal composite hydroxide. The alkaline solution used here is preferably dripped in a sufficient amount to keep the aqueous solution b at pH 10 to 14. As such an alkaline solution, an aqueous solution of, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia, etc. can be used, wherein, sodium hydroxide, sodium carbonate, or a mixed solution thereof is preferably used.
上述中和反應中的水溶液b的溫度,以30℃以上為佳,較佳為30~60℃。又,水溶液b的攪拌時間,較佳為30~120分鐘,更佳為30~60分鐘。The temperature of the aqueous solution b in the neutralization reaction is preferably 30° C. or higher, more preferably 30 to 60° C. The stirring time of the aqueous solution b is preferably 30 to 120 minutes, more preferably 30 to 60 minutes.
攪拌後,將水溶液b進行過濾,藉此可回收金屬複合氫氧化物。回收後的金屬複合氫氧化物,以水進行洗淨後,較佳為進行乾燥。 接下來,以成為所期望的鋰複合氧化物的組成之方式,將回收後的金屬複合氫氧化物與鋰化合物進行乾式混合,將所得到的混合粉體在氧環境下進行煅燒。作為於此所使用的鋰化合物,可舉例如氫氧化鋰或其水合物、過氧化鋰、硝酸鋰、碳酸鋰等。就提高後述的粒子(A)的粉體pH之觀點而言,以置入較多的氫氧化鋰為佳。金屬複合氫氧化物與鋰化合物的乾式混合時,可使用球磨機或V型混合器等的通常的乾式混合機或混合造粒裝置等,更佳為使用能夠自公轉的行星式球磨機。After stirring, the aqueous solution b is filtered to recover the metal complex hydroxide. The recovered metal complex hydroxide is preferably dried after being washed with water. Next, the recovered metal complex hydroxide is dry-mixed with a lithium compound in such a manner as to form the desired lithium complex oxide composition, and the obtained mixed powder is calcined in an oxygen environment. Examples of the lithium compound used here include lithium hydroxide or its hydrate, lithium peroxide, lithium nitrate, lithium carbonate, and the like. From the viewpoint of increasing the powder pH of the particles (A) described later, it is better to place more lithium hydroxide. When the metal complex hydroxide and the lithium compound are dry-mixed, a conventional dry mixer or mixing granulation device such as a ball mill or a V-type mixer can be used, and a planetary ball mill capable of self-revolution is more preferably used.
上述混合粉體的煅燒,較佳以2階段(預備煅燒(pre-calcining)及正式煅燒(main-calcining))來進行。藉由設定為2階段的煅燒,在預備煅燒中,將來自於混合粉體中的氫氧化物或碳酸鹽的水分子或二氧化碳等以加熱分解成分予以除去後,再進行正式煅燒,將能夠效率良好地得到鋰複合氧化物粒子(A)。作為預備煅燒的條件並未特別限定,昇溫溫度較佳為從室溫起以1~20℃/分鐘。又,煅燒環境較佳為大氣環境或氧環境。煅燒溫度較佳為700~1000℃,更佳為650~750℃。進而,煅燒時間較佳為3~20小時,更佳為4~6小時。The calcination of the mixed powder is preferably carried out in two stages (pre-calcining and main-calcining). By setting the calcination to two stages, in the pre-calcination, water molecules or carbon dioxide from hydroxides or carbonates in the mixed powder are removed by thermal decomposition, and then the main calcination is carried out, so that lithium composite oxide particles (A) can be obtained efficiently. The conditions for the pre-calcination are not particularly limited, and the heating temperature is preferably 1~20℃/min from room temperature. In addition, the calcination environment is preferably an atmospheric environment or an oxygen environment. The calcination temperature is preferably 700~1000℃, and more preferably 650~750℃. Furthermore, the calcination time is preferably 3 to 20 hours, more preferably 4 to 6 hours.
將所得到的預備煅燒物以研缽等予以分解破碎後,混合適量的黏結劑(binder)並進行造粒,再進行正式煅燒即可。經正式煅燒後所得到的煅燒物則為鋰複合氧化物粒子(A)的二次粒子。The obtained preliminary calcined product is decomposed and crushed with a mortar or the like, and then mixed with an appropriate amount of a binder and granulated, and then the main calcination is performed. The calcined product obtained after the main calcination is the secondary particle of the lithium composite oxide particle (A).
作為正式煅燒的條件並未特別限定,昇溫溫度只要再次從室溫開始並設定為1~20℃/分鐘即可。又,煅燒環境較佳為大氣環境或氧環境。就將一次粒子(其係構成於正式煅燒後所得到的鋰複合氧化物粒子(A)的二次粒子)的平均粒徑控制在所期望的數值之觀點而言,煅燒溫度較佳為700~1200℃,更佳為700~1000℃,又更佳為750~900℃。煅燒時間較佳為3~20小時,更佳為8~10小時。The conditions for the formal calcination are not particularly limited, and the temperature can be raised to 1-20°C/minute starting from room temperature again. In addition, the calcination environment is preferably an atmospheric environment or an oxygen environment. From the perspective of controlling the average particle size of the primary particles (which are secondary particles constituting the lithium composite oxide particles (A) obtained after the formal calcination) to a desired value, the calcination temperature is preferably 700-1200°C, more preferably 700-1000°C, and even more preferably 750-900°C. The calcination time is preferably 3-20 hours, and more preferably 8-10 hours.
對於如此般的2階段的煅燒,較佳為使用將氣體環境中的氧濃度調整為20質量%以上的電爐、迴轉窯、管式爐、推式爐。 為了得到以上述式(II)所表示的鋰複合氧化物粒子(A),將含有鋰化合物、鎳化合物、鈷化合物及鋁化合物的混合粉體進行煅燒。具體而言,首先,以成為所期望的鋰複合氧化物的組成之方式,將鎳化合物、鈷化合物及鋁化合物溶解於水中,而得到水溶液a’。作為如此般的鎳化合物、鈷化合物及鋁化合物,可舉例如該等金屬元素的硫酸鹽、硝酸鹽、碳酸鹽、醋酸鹽、草酸鹽、氧化物、氫氧化物、鹵化物等。具體而言,可舉例硫酸鎳、硫酸鈷、硫酸鋁、醋酸鎳、醋酸鈷、醋酸鋁等,但不限定於該等。因應所需,以進一步成為所期望的鋰複合氧化物的組成之方式,可混入選自Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及Ge中的1種或2種以上的元素來作為取代鋰複合氧化物的一部分的金屬(M2 )元素。For such two-stage calcination, it is preferred to use an electric furnace, a rotary kiln, a tubular furnace, or a pusher furnace in which the oxygen concentration in the gas atmosphere is adjusted to 20 mass % or more. In order to obtain the lithium composite oxide particles (A) represented by the above formula (II), a mixed powder containing a lithium compound, a nickel compound, a cobalt compound, and an aluminum compound is calcined. Specifically, first, the nickel compound, the cobalt compound, and the aluminum compound are dissolved in water in a manner to obtain the desired lithium composite oxide composition, thereby obtaining an aqueous solution a'. Examples of such nickel compounds, cobalt compounds, and aluminum compounds include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, and halides of these metal elements. Specifically, examples include nickel sulfate, cobalt sulfate, aluminum sulfate, nickel acetate, cobalt acetate, and aluminum acetate, but are not limited thereto. If necessary, one or more elements selected from Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Ge may be mixed as metal (M 2 ) elements that replace a portion of the lithium complex oxide in order to further obtain the desired lithium complex oxide composition.
接下來,將鹼溶液添加於上述水溶液a’中而製成水溶液b’,藉由一邊攪拌一邊使溶解的金屬成分進行中和反應而產生共沈澱,來生成金屬複合氫氧化物。在此所使用的鹼溶液,較佳以充分量之方式進行滴下來使水溶液b’保持在pH10~14。作為如此般的鹼溶液,可使用例如氫氧化鈉、氫氧化鉀、碳酸鈉、氨等的水溶液,其中,較佳為使用氫氧化鈉、碳酸鈉或該等的混合溶液。Next, an alkaline solution is added to the aqueous solution a' to make an aqueous solution b', and the dissolved metal components are subjected to a neutralization reaction while stirring to produce a co-precipitation to generate a metal composite hydroxide. The alkaline solution used here is preferably dripped in a sufficient amount to keep the aqueous solution b' at pH 10 to 14. As such an alkaline solution, an aqueous solution of, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia, etc. can be used, wherein, sodium hydroxide, sodium carbonate, or a mixed solution thereof is preferably used.
上述中和反應中的水溶液b’的溫度,以40℃以上為佳,較佳為40~60℃。又,水溶液b的攪拌時間,較佳為30~120分鐘,更佳為30~60分鐘。就設定為高體密度的屬複合氫氧化物以得到有用的正極活性物質之觀點而言,可對於中和反應後的水溶液b’進一步添加次氯酸鈉或過氧化氫水等的氧化劑。The temperature of the aqueous solution b' in the neutralization reaction is preferably above 40°C, more preferably 40-60°C. In addition, the stirring time of the aqueous solution b is preferably 30-120 minutes, more preferably 30-60 minutes. From the perspective of obtaining a useful positive electrode active material by setting a high bulk density composite hydroxide, an oxidizing agent such as sodium hypochlorite or hydrogen peroxide can be further added to the aqueous solution b' after the neutralization reaction.
攪拌後,將水溶液b’進行過濾,藉此可回收金屬複合氫氧化物。回收後的金屬複合氫氧化物,就使所得到的鋰複合氧化物的等級的穩定化之觀點及能與鋰均勻且充分地進行反應之觀點而言,較佳為進行煅燒以製成金屬複合氧化物。After stirring, the aqueous solution b' is filtered to recover the metal composite hydroxide. The recovered metal composite hydroxide is preferably calcined to obtain the metal composite oxide from the viewpoint of stabilizing the grade of the obtained lithium composite oxide and reacting uniformly and fully with lithium.
用於從金屬複合氫氧化物來得到金屬複合氧化物的煅燒條件並未特別限定,例如,以大氣環境下、較佳為500~1100℃、更佳為60~900℃來進行煅燒即可。The calcination conditions for obtaining the metal composite oxide from the metal composite hydroxide are not particularly limited. For example, the metal composite oxide may be calcined in an atmospheric environment at preferably 500 to 1100° C., more preferably 60 to 900° C.
接下來,以成為所期望的鋰複合氧化物的組成之方式,將藉由上述煅燒所得到的金屬複合氧化物與鋰化合物進行乾式混合,將所得到的混合粉體在氧環境下進行煅燒。作為於此所使用的鋰化合物,可舉例如氫氧化鋰或其水合物、過氧化鋰、硝酸鋰、碳酸鋰等。就提高後述的粒子(A)的粉體pH之觀點而言,以置入較多的氫氧化鋰為佳。金屬複合氧化物與鋰化合物的乾式混合時,可使用球磨機或V型混合器等的通常的乾式混合機或混合造粒裝置等。於煅燒時,可使用將氣體環境中的氧濃度調整為20質量%以上的電爐、迴轉窯、管式爐、推式爐。Next, the metal composite oxide obtained by the above calcination is dry-mixed with a lithium compound in such a manner as to obtain the desired lithium composite oxide composition, and the obtained mixed powder is calcined in an oxygen environment. Examples of the lithium compound used herein include lithium hydroxide or its hydrate, lithium peroxide, lithium nitrate, lithium carbonate, and the like. From the viewpoint of increasing the powder pH of the particles (A) described later, it is preferred to place more lithium hydroxide. When dry-mixing the metal composite oxide and the lithium compound, a conventional dry mixer or mixing granulation device such as a ball mill or a V-type mixer can be used. During calcination, an electric furnace, a rotary kiln, a tubular furnace, or a pusher furnace may be used, with the oxygen concentration in the gas atmosphere adjusted to 20 mass% or more.
上述混合粉體的煅燒條件,就避免所得到的鋰複合氧化物的結晶未成長而導致結構性變得不穩定之觀點,及就避免鋰複合氧化物的層狀結構崩塌而導致鋰離子的插入・脫離變得困難之觀點而言,煅燒溫度較佳為650~850℃,更佳為700~800℃。又,煅燒時間較佳為5~20小時,更佳為6~10小時。The calcination conditions of the mixed powder are preferably 650-850° C., more preferably 700-800° C., from the viewpoint of avoiding the failure of crystal growth of the obtained lithium composite oxide to cause structural instability, and from the viewpoint of avoiding the collapse of the layered structure of the lithium composite oxide to cause difficulty in the insertion and removal of lithium ions. In addition, the calcination time is preferably 5-20 hours, more preferably 6-10 hours.
上述混合粉體的煅燒,較佳以2階段(預備煅燒及正式煅燒)來進行。藉由設定為2階段的煅燒,在預備煅燒中,將來自於混合粉體中的氫氧化物或碳酸鹽的水分子或二氧化碳等以加熱分解成分予以除去後,再進行正式煅燒,將能夠效率良好地得到鋰複合氧化物粒子(A)。作為預備煅燒的條件,較佳為以煅燒溫度400~600℃煅燒1小時以上。將以預備煅燒所得到的煅燒物利用研缽等予以分解破碎後,混合適量的黏結劑並進行造粒,再供給於正式煅燒。作為正式煅燒的條件,較佳為以煅燒溫度650~850℃煅燒5小時以上。The calcination of the mixed powder is preferably carried out in two stages (preliminary calcination and main calcination). By setting the calcination to two stages, in the preliminary calcination, water molecules or carbon dioxide from hydroxides or carbonates in the mixed powder are removed by heating and decomposition, and then the main calcination is carried out, so that lithium composite oxide particles (A) can be obtained efficiently. As a condition for the preliminary calcination, it is preferred to calcine at a calcination temperature of 400~600℃ for more than 1 hour. The calcined product obtained by the preliminary calcination is decomposed and crushed using a mortar, etc., and then mixed with an appropriate amount of binder and granulated, and then supplied to the main calcination. As the conditions for the main calcination, it is preferred to calcine at a calcination temperature of 650-850°C for more than 5 hours.
將以正式煅燒所得到的煅燒物水洗後,進行過濾、乾燥而得到鋰複合氧化物粒子(A)的二次粒子。將以正式煅燒所得到的煅燒物進行水洗之際的漿料(slurry)濃度,就抑止鋰從所得到的鋰複合氧化物粒子(A)中產生脫離之觀點而言,較佳為200~4000g/L,更佳為500~ 2000g/L。The calcined product obtained by the main calcination is washed with water, filtered and dried to obtain secondary particles of the lithium composite oxide particles (A). The concentration of the slurry when the calcined product obtained by the main calcination is washed with water is preferably 200 to 4000 g/L, more preferably 500 to 2000 g/L from the viewpoint of suppressing the separation of lithium from the obtained lithium composite oxide particles (A).
進行水洗之際所使用的水的導電率,就避免因為水中所含有的較多的二氧化碳而導致於鋰複合氧化物粒子(A)中析出碳酸鋰之觀點而言,較佳為未滿10μS/cm,更佳為1μS/cm以下。The electrical conductivity of the water used for water washing is preferably less than 10 μS/cm, more preferably less than 1 μS/cm, from the viewpoint of preventing precipitation of lithium carbonate in the lithium composite oxide particles (A) due to a large amount of carbon dioxide contained in the water.
乾燥較佳為以2階段來進行。第1階段的乾燥,以90℃來進行,使得鋰複合氧化物二次粒子中的水分(以氣化溫度300℃測量的水分率)成為1質量%以下為止。之後,第2階段的乾燥較佳為以120℃以上來進行。Drying is preferably performed in two stages. The first stage of drying is performed at 90°C until the water content (water content measured at a vaporization temperature of 300°C) in the lithium composite oxide secondary particles is 1 mass % or less. Thereafter, the second stage of drying is preferably performed at 120°C or higher.
以上述式(I)及式(II)所表示的鋰複合氧化物的一次粒子的平均粒徑較佳為500nm以下,更佳為300nm以下。一次粒子的平均粒徑的下限值並未特別限定,就操作性之觀點而言,較佳為50nm以上。The average particle size of the primary particles of the lithium composite oxide represented by the above formula (I) and formula (II) is preferably 500 nm or less, more preferably 300 nm or less. The lower limit of the average particle size of the primary particles is not particularly limited, but is preferably 50 nm or more from the viewpoint of operability.
以上述式(I)及式(II)所表示的鋰複合氧化物粒子(A)的二次粒子的中值粒徑較佳為25μm以下,更佳為20μm以下。二次粒子的中值粒徑的下限值並未特別限定,就操作性之觀點而言,較佳為1μm以上,更佳為5μm以上。The median particle size of the secondary particles of the lithium composite oxide particles (A) represented by the above formula (I) and formula (II) is preferably 25 μm or less, more preferably 20 μm or less. The lower limit of the median particle size of the secondary particles is not particularly limited, but from the viewpoint of operability, it is preferably 1 μm or more, more preferably 5 μm or more.
在本發明的正極用的材料中,以式(I)及式(II)所表示的粒子(A)的二次粒子的中值粒徑,較後述的粒子(B)的二次粒子的中值粒徑為小。較佳為:「粒子(A)的二次粒子的中值粒徑未滿粒子(B)的二次粒子的中值粒徑的0.80倍」。藉由將粒子(A)的二次粒子的中值粒徑設定較粒子(B)的二次粒子的中值粒徑為小,可使粒子(A)效率良好地填埋粒子(B)的間隙,並可有效地防止高溫時錳或鐵等的金屬元素從粒子(B)中溶出,而可提升電池的高溫保存特性。In the material used for the positive electrode of the present invention, the median particle size of the secondary particles of the particles (A) represented by formula (I) and formula (II) is smaller than the median particle size of the secondary particles of the particles (B) described later. Preferably, "the median particle size of the secondary particles of the particles (A) is less than 0.80 times the median particle size of the secondary particles of the particles (B)." By setting the median particle size of the secondary particles of the particles (A) to be smaller than the median particle size of the secondary particles of the particles (B), the particles (A) can efficiently fill the gaps between the particles (B), and can effectively prevent metal elements such as manganese or iron from dissolving from the particles (B) at high temperatures, thereby improving the high-temperature storage characteristics of the battery.
尚,本說明書中,一次粒子的平均粒徑,係意味著在藉由SEM或TEM的電子顯微鏡的觀察當中,所測量的數十個粒子的粒徑(長軸的長度)之平均值。二次粒子的中值粒徑,係意味著使用雷射繞射粒度分布計所測量的體積基準的中值粒徑(D50),可藉由下述之方法來進行測量: 使用乙醇作為分散介質,使用超音波來使粒子分散於乙醇中而製成測量用試樣,藉由雷射繞射・散射式粒度分布測量裝置(MicrotracBEL股份有限公司製MT3300EXII)測量粒度分布,並算出體積基準的中值粒徑(D50)。In this specification, the average particle size of primary particles means the average value of the particle size (length of the major axis) of dozens of particles measured by electron microscope observation such as SEM or TEM. The median particle size of secondary particles means the median particle size (D50) based on volume measured by a laser diffraction particle size distribution analyzer, which can be measured by the following method: Use ethanol as a dispersion medium, use ultrasound to disperse the particles in ethanol to prepare a measurement sample, measure the particle size distribution by a laser diffraction/scattering particle size distribution measuring device (MT3300EXII manufactured by MicrotracBEL Co., Ltd.), and calculate the median particle size (D50) based on volume.
粒子(A)及(B)的二次粒子的中值粒徑,即便是在正極內亦有維持於幾乎相同程度之傾向,因此,正極內的粒子(A)及(B)的二次粒子的中值粒徑亦可藉由例如下述之方法來進行測量: 使用掃瞄式電子顯微鏡JCM-6000(JEOL日本電子股份有限公司製)、倍率×1000或3000來觀察正極,利用觀察軟體(JCM-6000)的[測量長度]機能來進行計測。能夠使用附設的EDX裝置,以元素分析來進行正極粒子的判別。The median particle size of the secondary particles of particles (A) and (B) tends to be almost the same even in the positive electrode. Therefore, the median particle size of the secondary particles of particles (A) and (B) in the positive electrode can also be measured by, for example, the following method: Use a scanning electron microscope JCM-6000 (manufactured by JEOL Ltd.) at a magnification of ×1000 or 3000 to observe the positive electrode, and use the [Measure Length] function of the observation software (JCM-6000) to measure. The attached EDX device can be used to identify the positive electrode particles by elemental analysis.
以上述式(I)及式(II)所表示的粒子(A)的粉體pH較佳為10~14的範圍,更佳為10~13。粒子(A)的粉體pH,相較於後述的粒子(B)的粉體pH,較佳為高。藉由提高粒子(A)的粉體pH,可有效地防止高溫時錳或鐵等的金屬元素從粒子(B)中溶出,而可進一步提升電池的高溫保存特性。關於該機制尚不明確,但本發明人之推測如下:當鋰離子二次電池暴露於60℃以上的高溫時,由於混入至電池內的微量水分會使得電解液中一般所使用的LiPF6 等的支援電解質(supporting electrolyte)產生水解,而有生成游離HF之情形。當游離HF攻撃粒子(B)時,會導致粒子(B)中的錳或鐵的溶出,而有損及電池的高溫保存特性之情形。使中值粒徑較粒子(B)為小,並使粉體pH較高的粒子(A)存在於粒子(B)的間隙中,藉此可減弱游離HF(酸)的攻撃,因而認為可防止金屬元素從粒子(B)中的溶出。The powder pH of the particles (A) represented by the above formula (I) and formula (II) is preferably in the range of 10 to 14, and more preferably 10 to 13. The powder pH of the particles (A) is preferably higher than the powder pH of the particles (B) described later. By increasing the powder pH of the particles (A), it is possible to effectively prevent metal elements such as manganese or iron from dissolving from the particles (B) at high temperatures, thereby further improving the high-temperature storage characteristics of the battery. The mechanism is still unclear, but the inventors speculate as follows: When a lithium-ion secondary battery is exposed to a high temperature of more than 60°C, the trace amount of water mixed into the battery will cause the supporting electrolyte (supporting electrolyte) such as LiPF 6 generally used in the electrolyte to hydrolyze, and there is a situation where free HF is generated. When free HF attacks the particle (B), it may cause the manganese or iron in the particle (B) to dissolve, which may impair the high temperature storage characteristics of the battery. By making the median particle size smaller than the particle (B) and allowing the particle (A) with a higher powder pH to exist in the gaps between the particles (B), the attack of free HF (acid) can be weakened, and it is believed that the dissolution of metal elements from the particle (B) can be prevented.
於製造粒子(A)之際以置入較多的鹼性成分之方式,來使鹼殘留於粒子(A)中,藉此可提高粒子(A)的粉體pH。 尚,本說明書中,可藉由以下的程序來測量粉體pH: 將各粒子(粉體)1g添加於50mL的純水中,在室溫下以攪拌器攪拌5分鐘,將靜置1分鐘之際的懸濁液,使用pH測量器來測量該懸濁液的pH。By placing more alkaline components in the particle (A) during the manufacturing process, the alkaline residue is retained in the particle (A), thereby increasing the powder pH of the particle (A). In this specification, the powder pH can be measured by the following procedure: Add 1 g of each particle (powder) to 50 mL of pure water, stir with a stirrer at room temperature for 5 minutes, and measure the pH of the suspension after standing for 1 minute using a pH meter.
<粒子(B)> 使用於本發明的正極中的粒子(B)為以下述式(III)所表示的具有橄欖石型結構的聚陰離子粒子,其包含鋰、鐵及錳中的至少1種、與磷酸。 LiFem Mnn M3 o PO4 …(III) (式(III)中,M3 為Co、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd,m、n及o為滿足0≦m≦1、0≦n≦1、0≦o≦0.3、及m+n≠0、且滿足2m+2n+(M3 的價數)×o=2之數)。可於粒子表面載持碳。<Particles (B)> The particles (B) used in the positive electrode of the present invention are polyanion particles having an olivine structure represented by the following formula (III), which contain at least one of lithium, iron and manganese, and phosphoric acid. LiFe m Mn n M 3 o PO 4 …(III) (In formula (III), M 3 is Co, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd, and m, n and o are numbers satisfying 0≦m≦1, 0≦n≦1, 0≦o≦0.3, and m+n≠0, and satisfying 2m+2n+(valence of M 3 )×o=2). Carbon may be supported on the surface of the particles.
以上述式(III)所表示的鋰系聚陰離子粒子(B),能夠以下之程序來得到: (i)將鋰化合物與磷酸化合物混合,接下來,混合至少包含鐵化合物及/或錳化合物的金屬鹽,而得到混合液A; (ii)將所得到的混合液A進行水熱反應,而得到複合體B。The lithium-based polyanion particles (B) represented by the above formula (III) can be obtained by the following procedure: (i) mixing a lithium compound and a phosphoric acid compound, and then mixing a metal salt containing at least an iron compound and/or a manganese compound to obtain a mixed solution A; (ii) subjecting the obtained mixed solution A to a hydrothermal reaction to obtain a composite B.
若於鋰系聚陰離子粒子(B)載持碳時,可進一步進行以下之步驟: (iii)將所得到的複合體B、碳源及水混合,而得到混合液C; (iv)將所得到的混合液C進行乾燥,而得到造粒體D; (v)將所得到的造粒體D在還原環境或惰性環境中進行煅燒。When the lithium-based polyanion particles (B) carry carbon, the following steps may be further performed: (iii) the obtained composite B, carbon source and water are mixed to obtain a mixed solution C; (iv) the obtained mixed solution C is dried to obtain a granulated body D; (v) the obtained granulated body D is calcined in a reducing environment or an inert environment.
作為可在步驟(i)中使用的鋰化合物,可舉出氫氧化鋰(例如,LiOH、LiOH・H2 O)、碳酸鋰、硫酸鋰、醋酸鋰,其中,較佳為氫氧化鋰。鋰化合物較佳為相對於水100質量份為5~50質量份(更佳為7~45質量份)之濃度的水溶液形態。在將磷酸化合物混合於鋰化合物之前,較佳為將鋰化合物的水溶液攪拌1~15分鐘,更佳為攪拌3~10分鐘。又,水溶液的溫度較佳為20~90℃,更佳為20~70℃。As the lithium compound that can be used in step (i), there can be mentioned lithium hydroxide (e.g., LiOH, LiOH·H 2 O), lithium carbonate, lithium sulfate, and lithium acetate, among which lithium hydroxide is preferred. The lithium compound is preferably in the form of an aqueous solution having a concentration of 5 to 50 parts by mass (more preferably 7 to 45 parts by mass) relative to 100 parts by mass of water. Before mixing the phosphoric acid compound with the lithium compound, the aqueous solution of the lithium compound is preferably stirred for 1 to 15 minutes, more preferably for 3 to 10 minutes. In addition, the temperature of the aqueous solution is preferably 20 to 90° C., more preferably 20 to 70° C.
作為混合於鋰化合物的磷酸化合物,可舉出正磷酸(H3 PO4 、磷酸)、偏磷酸、焦磷酸、三磷酸、四磷酸、磷酸銨、磷酸氫銨等。其中,較佳為使用磷酸,以70~90質量%濃度的水溶液來使用為較佳。鋰化合物與磷酸化合物的混合物,相對於磷酸1莫耳,較佳為含有鋰2.7~3.3莫耳,更佳為含有鋰2.8~3.1莫耳。Examples of the phosphoric acid compound to be mixed with the lithium compound include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. Among them, phosphoric acid is preferably used, and it is preferably used in the form of an aqueous solution with a concentration of 70 to 90 mass %. The mixture of the lithium compound and the phosphoric acid compound preferably contains 2.7 to 3.3 mol of lithium, and more preferably 2.8 to 3.1 mol of lithium, relative to 1 mol of phosphoric acid.
亦可在混合磷酸化合物後,藉由以氮進行沖淡,使在混合物中的反應結束而生成鋰系聚陰離子粒子的前驅體(磷酸三鋰、Li3 PO4 )。進行氮沖淡之際的壓力較佳為0.1~0.2MPa,更佳為0.1~0.15MPa。又,混合磷酸化合物後的混合物的溫度,較佳為20~80℃,更佳為20~60℃。反應時間較佳為5~60分鐘,更佳為15~45分鐘。進行氮沖淡之際,就使反應良好地進行之觀點而言,較佳為以攪拌速度200~700rpm來進行攪拌,更佳為以250~600rpm來進行攪拌。After mixing the phosphoric acid compound, the mixture may be diluted with nitrogen to terminate the reaction in the mixture and generate a precursor of lithium-based polyanion particles (tricalium phosphate, Li 3 PO 4 ). The pressure during nitrogen dilution is preferably 0.1-0.2 MPa, more preferably 0.1-0.15 MPa. In addition, the temperature of the mixture after mixing the phosphoric acid compound is preferably 20-80°C, more preferably 20-60°C. The reaction time is preferably 5-60 minutes, more preferably 15-45 minutes. During nitrogen dilution, from the viewpoint of making the reaction proceed well, it is preferably stirred at a stirring speed of 200-700 rpm, more preferably 250-600 rpm.
混合鋰化合物與磷酸化合物後,添加至少包含鐵化合物及/或錳化合物的金屬鹽,而得到混合液A。該等金屬鹽的合計添加量,相對於磷酸離子1.000莫耳,較佳為0.990~1.010莫耳,更佳為0.995~1.005莫耳。若添加鐵化合物及錳化合物以外的金屬(M3 )鹽時,相對於所得到的混合液A中的磷酸1.000莫耳,鐵化合物、錳化合物及金屬(M3 )鹽的合計添加量較佳為0.990~1.010莫耳,更佳為0.995~1.005莫耳。鐵化合物、錳化合物及金屬(M3 )鹽的添加順序並未特別限制。又,因應所需,在添加該等的金屬鹽之同時,亦可添加抗氧化劑。作為抗氧化劑,可使用亞硫酸鈉(Na2 SO3 )、低亞硫酸鈉(Na2 S2 O4 )、氨水等。抗氧化劑的添加量,若添加過剩量時會抑制活性物質的生成,故相對於金屬鹽的合計1.00莫耳,較佳為0.01~1.00莫耳,更佳為0.03~0.50莫耳。After mixing the lithium compound and the phosphoric acid compound, a metal salt containing at least an iron compound and/or a manganese compound is added to obtain a mixed solution A. The total amount of the metal salts added is preferably 0.990 to 1.010 mol, more preferably 0.995 to 1.005 mol, relative to 1.000 mol of phosphoric acid ions. If a metal (M 3 ) salt other than an iron compound and a manganese compound is added, the total amount of the iron compound, the manganese compound and the metal (M 3 ) salt added is preferably 0.990 to 1.010 mol, more preferably 0.995 to 1.005 mol, relative to 1.000 mol of phosphoric acid in the obtained mixed solution A. The order of adding the iron compound, the manganese compound and the metal (M 3 ) salt is not particularly limited. Furthermore, when necessary, an antioxidant may be added together with the metal salts. As the antioxidant, sodium sulfite (Na 2 SO 3 ), sodium hyposulfite (Na 2 S 2 O 4 ), ammonia water, etc. may be used. The amount of the antioxidant added, if excessive, will inhibit the formation of active substances, so it is preferably 0.01 to 1.00 mol, more preferably 0.03 to 0.50 mol, relative to 1.00 mol of the total metal salt.
作為可使用的鐵化合物,可舉出醋酸鐵、硝酸鐵、硫酸鐵等。該等可使用單獨1種,亦可組合2種以上來使用。其中,就提高鋰系聚陰離子粒子(B)的電池特性之觀點而言,較佳為硫酸鐵。Examples of the iron compound that can be used include iron acetate, iron nitrate, iron sulfate, etc. These compounds may be used alone or in combination of two or more. Among them, iron sulfate is preferred from the viewpoint of improving the battery characteristics of the lithium-based polyanion particles (B).
作為可使用的錳化合物,可舉出醋酸錳、硝酸錳、硫酸錳等。該等可使用單獨1種,亦可組合2種以上來使用。其中,就提高鋰系聚陰離子粒子(B)的電池特性之觀點而言,較佳為硫酸錳。As the manganese compound that can be used, manganese acetate, manganese nitrate, manganese sulfate, etc. can be cited. These can be used alone or in combination of two or more. Among them, manganese sulfate is preferred from the viewpoint of improving the battery characteristics of the lithium-based polyanion particles (B).
粒子(B)中較佳為包含鐵與錳之雙方。即,上述式(iii)中,較佳為0<m≦1且0<n≦1。包含鐵與錳之雙方的磷酸錳鐵鋰(LMFP),相較於包含鐵但不包含錳的磷酸鋰鐵(LFP),顯示出同等級的安全性之同時,由於相較於LFP的動作電位(action potential)高0.4~0.5V,故認為有助於電池的安全性提升及高能量密度化。因此,於製造粒子(B)之際,較佳使用鐵化合物與錳化合物之雙方來作為金屬化合物。若使用鐵化合物與錳化合物之雙方時,錳化合物及鐵化合物之使用莫耳比(錳化合物:鐵化合物)較佳為99:1~1:99,更佳為90:10~10:90。The particles (B) preferably contain both iron and manganese. That is, in the above formula (iii), it is preferably 0<m≦1 and 0<n≦1. Lithium iron manganese phosphate (LMFP) containing both iron and manganese shows the same level of safety as lithium iron phosphate (LFP) containing iron but not manganese. Since the action potential is 0.4~0.5V higher than that of LFP, it is believed that it helps to improve the safety of the battery and increase the energy density. Therefore, when manufacturing the particles (B), it is preferred to use both iron compounds and manganese compounds as metal compounds. When both the iron compound and the manganese compound are used, the molar ratio of the manganese compound to the iron compound (manganese compound: iron compound) is preferably 99:1 to 1:99, more preferably 90:10 to 10:90.
作為金屬(M3 )鹽,可使用鐵及錳以外的金屬的硫酸鹽、鹵化合物、有機酸鹽、及該等的水合物等。該等可使用單獨1種,亦可組合2種以上來使用。其中,就提高電池特性之觀點而言,較佳為硫酸鹽。As the metal (M 3 ) salt, sulfates, halides, organic acid salts, and hydrates of metals other than iron and manganese can be used. These can be used alone or in combination of two or more. Among them, sulfates are preferred from the viewpoint of improving battery characteristics.
接下來,將以步驟(i)所得到的混合液(A)進行水熱反應,而得到複合體B(步驟(ii))。進行水熱反應之際所使用的水的使用量,就金屬鹽的溶解性、攪拌的容易性及合成的效率等的觀點而言,相對於混合液A中所含有的磷酸離子1莫耳,較佳為10~50莫耳,更佳為10~45莫耳,更佳為10~30莫耳,更佳為12.5~25莫耳。Next, the mixed solution (A) obtained in step (i) is subjected to a hydrothermal reaction to obtain a composite B (step (ii)). The amount of water used in the hydrothermal reaction is preferably 10 to 50 mol, more preferably 10 to 45 mol, more preferably 10 to 30 mol, and more preferably 12.5 to 25 mol, relative to 1 mol of phosphate ions contained in the mixed solution A, from the viewpoints of the solubility of the metal salt, the ease of stirring, and the efficiency of synthesis.
水熱反應之際的溫度,只要是100℃以上即可,較佳為130~180℃。水熱反應較佳為在耐壓容器中來進行,若以130~180℃來進行反應時,壓力較佳為0.3~0.9MPa,若以140~160℃來進行反應時,壓力較佳為0.3~0.6MPa。反應時間較佳為0.1~48小時,更佳為0.2~24小時。The temperature during the hydrothermal reaction can be above 100°C, preferably 130-180°C. The hydrothermal reaction is preferably carried out in a pressure-resistant container. If the reaction is carried out at 130-180°C, the pressure is preferably 0.3-0.9 MPa, and if the reaction is carried out at 140-160°C, the pressure is preferably 0.3-0.6 MPa. The reaction time is preferably 0.1-48 hours, more preferably 0.2-24 hours.
所得到的複合體B為以式(III)所表示的鋰系聚陰離子粒子(B)。藉由將複合體B進行過濾、以水洗淨、並進行乾燥,而可分離聚陰離子粒子(B)。作為乾燥手段,可舉出凍結乾燥、真空乾燥等。The obtained composite B is a lithium-based polyanion particle (B) represented by formula (III). The polyanion particle (B) can be separated by filtering the composite B, washing with water, and drying. As the drying method, freeze drying, vacuum drying, etc. can be cited.
若使鋰系聚陰離子粒子載持碳時,將碳源混合於包含複合體B與水的混合物中,來製成混合液C(步驟(iii))。作為碳源,可舉出奈米纖維素或水溶性碳材料。奈米纖維素(以下亦稱為「CNF」)為藉由將植物纖維進行解纖等來使纖維徑成為至1~100nm左右的奈米尺寸,而可得到的微細纖維素纖維。所謂的水溶性碳材料,係意味著在25℃的100g水中溶解0.4g(以碳原子換算量計算)以上的碳材料,較佳為1.0g以上。作為水溶性碳材料,可舉例如選自糖類、多元醇、聚醚及有機酸中的1種或2種以上。具體而言,可舉例如:葡萄糖、果糖、半乳糖、甘露糖等的單糖類;麥芽糖、蔗糖、纖維二糖等的二糖類;澱粉、糊精等的多糖類;乙二醇、丙二醇、二乙二醇、聚乙二醇、丁二醇、丙二醇、聚乙烯醇、甘油等的多元醇或聚醚;檸檬酸、酒石酸、抗壞血酸等的有機酸。其中,就對於溶劑之溶解性為高之觀點而言,較佳為葡萄糖、果糖、蔗糖及糊精,更佳為葡萄糖。When lithium-based polyanion particles are used to carry carbon, a carbon source is mixed into a mixture containing complex B and water to prepare a mixed solution C (step (iii)). As the carbon source, nanocellulose or a water-soluble carbon material can be cited. Nanocellulose (hereinafter also referred to as "CNF") is a fine cellulose fiber obtained by defibrating plant fibers to reduce the fiber diameter to a nanometer size of about 1 to 100 nm. The so-called water-soluble carbon material means a carbon material that dissolves 0.4 g (calculated as carbon atom conversion amount) or more in 100 g of water at 25°C, preferably 1.0 g or more. As the water-soluble carbon material, for example, one or more selected from sugars, polyols, polyethers and organic acids can be cited. Specifically, examples include monosaccharides such as glucose, fructose, galactose, and mannose; disaccharides such as maltose, sucrose, and cellobiose; polysaccharides such as starch and dextrin; polyols or polyethers such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, butylene glycol, propylene glycol, polyvinyl alcohol, and glycerol; and organic acids such as citric acid, tartaric acid, and ascorbic acid. Among them, from the viewpoint of high solubility in solvents, glucose, fructose, sucrose, and dextrin are preferred, and glucose is more preferred.
混合液C中的複合體B的含有量,相對於水100質量份,較佳為10~400質量份,更佳為30~210質量份。混合液C中的碳源的含有量,相對於水100質量份,較佳為0.03~320質量份,更佳為0.2~140質量份,又更佳為0.2~64質量份,又更佳為0.2~28質量份。The content of the complex B in the mixed solution C is preferably 10-400 mass parts, more preferably 30-210 mass parts, relative to 100 mass parts of water. The content of the carbon source in the mixed solution C is preferably 0.03-320 mass parts, more preferably 0.2-140 mass parts, further preferably 0.2-64 mass parts, further preferably 0.2-28 mass parts, relative to 100 mass parts of water.
就使複合體B與碳源均勻地分散之觀點而言,較佳為使用分散機來將混合液C進行處理。作為如此般的分散機,可舉出:離解機、打漿機、低壓均質機、高壓均質機、研磨機、絞碎機、球磨機、噴射磨機、短軸擠出機、雙軸擠出機、超聲波攪拌器、家用榨汁機混合機等。其中,就分散效率之觀點而言,較佳為超音波攪拌機。混合液C的分散均勻性的程度,例如可使用UV・可見光分光裝置的光線透過率、或黏度等來進行定量性的評估,又,亦可藉由目視確認白濁度是否為均勻來進行簡易性的評估。使用分散機進行處理的時間較佳為0.5~6分鐘,更佳為2~5分鐘。From the viewpoint of uniformly dispersing the complex B and the carbon source, it is preferable to use a disperser to process the mixed solution C. Examples of such dispersers include a disintegrator, a pulper, a low-pressure homogenizer, a high-pressure homogenizer, a grinder, a mill, a ball mill, a jet mill, a short-shaft extruder, a double-shaft extruder, an ultrasonic mixer, and a household juicer mixer. Among them, from the viewpoint of dispersion efficiency, an ultrasonic mixer is preferred. The degree of dispersion uniformity of the mixed solution C can be quantitatively evaluated using, for example, the light transmittance of a UV/visible spectrometer or the viscosity, and can also be simply evaluated by visually confirming whether the turbidity is uniform. The treatment time using the disperser is preferably 0.5 to 6 minutes, more preferably 2 to 5 minutes.
若使用CNF來作為碳源時,就有效地去除呈凝聚狀態的CNF之觀點而言,較佳為將混合液C進行濕式分級。於濕式分級時,可使用篩或市售的濕式分級機。篩的篩孔距,可因應所使用的CNF的纖維長度而予以變動,但就作業效率之觀點而言,較佳為140~160μm。When CNF is used as a carbon source, it is preferable to wet-classify the mixed solution C from the viewpoint of effectively removing CNF in an agglomerated state. In wet classification, a sieve or a commercially available wet classifier can be used. The mesh spacing of the sieve can be changed according to the fiber length of the CNF used, but from the viewpoint of operating efficiency, it is preferably 140-160 μm.
將以步驟(iii)所得到的混合液C進行乾燥,而得到造粒體D(步驟(iv))。進行乾燥時,可使用噴霧乾燥、媒體流動乾燥等的方法。藉由調整乾燥時的條件,可調整造粒體D的中值粒徑。The mixed solution C obtained in step (iii) is dried to obtain granules D (step (iv)). The drying may be performed by spray drying, media flow drying, or the like. The median particle size of the granules D may be adjusted by adjusting the drying conditions.
接下來,將以步驟(iv)所得到的造粒體D在還原環境或惰性環境中進行煅燒(步驟(v))。藉此,可使存在於造粒體D中的碳源予以碳化,而可得到表面載持有碳的鋰系聚陰離子粒子(B)。煅燒條件只要是在還原環境或惰性環境中,較佳為400℃以上,更佳為400~800℃,較佳為10分鐘~3小時,更佳為0.5~1小時。Next, the granules D obtained in step (iv) are calcined in a reducing environment or an inert environment (step (v)). In this way, the carbon source in the granules D can be carbonized, and lithium-based polyanion particles (B) with carbon on the surface can be obtained. The calcination conditions are preferably 400°C or above, more preferably 400-800°C, preferably 10 minutes to 3 hours, and more preferably 0.5-1 hour, as long as they are in a reducing environment or an inert environment.
粒子(B)的二次粒子的中值粒徑較粒子(A)的二次粒子的中值粒徑為大。較佳為:「將粒子(A)的二次粒子的中值粒徑設定為未滿粒子(B)的二次粒子的中值粒徑的0.80倍」。藉由將粒子(B)的二次粒子的中值粒徑設定較粒子(A)的二次粒子的中值粒徑為大,可使粒子(A)效率良好地填埋粒子(B)的間隙,並可有效地防止高溫時錳或鐵等的金屬元素從粒子(B)中溶出,而可提升電池的高溫保存特性。The median particle size of the secondary particles of particle (B) is larger than the median particle size of the secondary particles of particle (A). Preferably, "the median particle size of the secondary particles of particle (A) is set to be less than 0.80 times the median particle size of the secondary particles of particle (B)". By setting the median particle size of the secondary particles of particle (B) to be larger than the median particle size of the secondary particles of particle (A), particle (A) can efficiently fill the gaps between particles (B) and can effectively prevent metal elements such as manganese and iron from dissolving from particles (B) at high temperatures, thereby improving the high-temperature storage characteristics of the battery.
尚,所謂的粒子(B)的二次粒子的中值粒徑,若未載持碳之情形時,係指未載持碳的粒子(B)的二次粒子的中值粒徑,若載持碳之情形時,係指包含所載持的碳的粒子(B)的二次粒子的中值粒徑。Here, the median particle size of the secondary particles of the particle (B) refers to the median particle size of the secondary particles of the particle (B) not carrying carbon when the particle (B) is not carrying carbon, and refers to the median particle size of the secondary particles of the particle (B) including the carried carbon when the particle (B) is carrying carbon.
粒子(B)的二次粒子的中值粒徑並不限定於此,例如,可藉由調整於造粒之際的噴霧乾燥等的乾燥時所傳送至噴嘴的空氣量,又或將溫度最佳化等,藉此可調整(加大)粒子(B)的二次粒子的中值粒徑。The median particle size of the secondary particles of particle (B) is not limited thereto, and for example, the median particle size of the secondary particles of particle (B) can be adjusted (increased) by adjusting the amount of air delivered to the nozzle during drying such as spray drying during granulation, or by optimizing the temperature.
粒子(B)的粉體pH,相較於粒子(A)的粉體pH,較佳為低。藉由提高粒子(A)的粉體pH,可有效地防止高溫時錳或鐵等的金屬元素從粒子(B)中溶出,而可進一步提升電池的高溫保存特性。The powder pH of the particles (B) is preferably lower than the powder pH of the particles (A). By increasing the powder pH of the particles (A), it is possible to effectively prevent metal elements such as manganese and iron from being eluted from the particles (B) at high temperatures, thereby further improving the high-temperature storage characteristics of the battery.
<正極材料> 將所得到的粒子(A)與粒子(B)以指定的比率進行混合,來得到鋰離子二次電池的正極用材料。混合方法並未特別限定,只要使用可將粒子(A)與粒子(B)均勻地混合之裝置即可。可舉例如球磨機、砂磨機、行星式混合機、高速剪切機、葉片型混錬機、高速混合機等。粒子(A)與粒子(B)的混合比率(質量比),以粒子(A):粒子(B)計,較佳為96:4~60:40,更佳為96:4~70:30,又更佳為96:4~80:20。<Positive electrode material> The obtained particles (A) and particles (B) are mixed in a specified ratio to obtain a positive electrode material for a lithium-ion secondary battery. The mixing method is not particularly limited, as long as a device that can uniformly mix particles (A) and particles (B) is used. Examples include ball mills, sand mills, planetary mixers, high-speed shearing machines, blade mixers, high-speed mixers, etc. The mixing ratio (mass ratio) of particles (A) and particles (B) is preferably 96:4~60:40, more preferably 96:4~70:30, and even more preferably 96:4~80:20 in terms of particles (A): particles (B).
<正極> 可使用所得到的正極材料來製造鋰離子二次電池用正極。可如下述般來得到正極:「對於上述的正極材料、碳黑或碳奈米管等的導電助劑、及聚偏二氟乙烯等的結著材(黏結劑)添加N-甲基-2-吡咯啶酮等的溶劑,充分地混錬而得到正極漿料後,塗布至鋁箔等的集電體上,藉由以輥壓(roller press)等進行壓縮,並進行乾燥後,可得到正極」。<Positive electrode> The obtained positive electrode material can be used to manufacture a positive electrode for a lithium-ion secondary battery. The positive electrode can be obtained as follows: "Add a solvent such as N-methyl-2-pyrrolidone to the above-mentioned positive electrode material, a conductive aid such as carbon black or carbon nanotubes, and a binder (binder) such as polyvinylidene fluoride, mix them thoroughly to obtain a positive electrode slurry, apply it to a collector such as aluminum foil, compress it with a roller press, and dry it to obtain a positive electrode."
構成集電體的材料並未特別限定,但較佳為金屬,可舉例如鋁、鎳、鐵、不鏽鋼、鈦、銅、其他合金等。除此之外,可較佳使用鎳與鋁的包覆材、銅與鋁的包覆材、或該等的金屬的組合的鍍覆材等。又,亦可為金屬表面被覆有鋁而成的箔。就導電性或動作電位之觀點而言,較佳為鋁、不鏽鋼、銅。The material constituting the current collector is not particularly limited, but preferably a metal, such as aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys. In addition, a coating material of nickel and aluminum, a coating material of copper and aluminum, or a coating material of a combination of these metals can be preferably used. In addition, a foil in which aluminum is coated on the surface of a metal. From the viewpoint of conductivity or operating potential, aluminum, stainless steel, and copper are preferred.
集電體的尺寸並未特別限定,因應於使用用途來決定即可。集電體的厚度亦未特別限制,通常而言為1~100μm左右。The size of the current collector is not particularly limited and may be determined according to the intended use. The thickness of the current collector is also not particularly limited and is generally about 1 to 100 μm.
黏結劑並未特別限定。例如,聚偏二氟乙烯(PVDF)以外,可舉出:聚乙烯、聚丙烯、聚對苯二甲酸乙二酯(PET)、聚醚腈、聚丙烯腈、聚醯亞胺、聚醯胺、纖維素、羧甲基纖維素(CMC)及其鹽、乙烯-乙酸乙烯酯共聚物、聚氯乙烯、苯乙烯/丁二烯橡膠(SBR)、異戊二烯橡膠、丁二烯橡膠、乙烯/丙烯橡膠、乙烯/丙烯/二烯共聚物、苯乙烯/丁二烯/苯乙烯嵌段共聚物及其氫化物、苯乙烯/異戊二烯/苯乙烯嵌段共聚物及其氫化物等的熱可塑性高分子、聚四氟乙烯(PTFE)、四氟乙烯/六氟丙烯共聚物(FEP)、四氟乙烯/全氟烷基乙烯基醚共聚物(PFA)、乙烯/四氟乙烯共聚物(ETFE)、聚氯三氟乙烯(PCTFE)、乙烯/氯三氟乙烯共聚物(ECTFE)、聚氟乙烯(PVF)等的氟樹脂、偏二氟乙烯/六氟丙烯系氟橡膠(VDF-HFP系氟橡膠)、偏二氟乙烯/六氟丙烯/四氟乙烯系氟橡膠(VDF-HFP-TFE系氟橡膠)、偏二氟乙烯/五氟丙烯系氟橡膠(VDF-PFP系氟橡膠)、偏二氟乙烯/五氟丙烯/四氟乙烯系氟橡膠(VDF-PFP-TFE系氟橡膠)、偏二氟乙烯/全氟甲基乙烯基醚/四氟乙烯系氟橡膠(VDF-PFMVE-TFE系氟橡膠)、偏二氟乙烯/氯三氟乙烯系氟橡膠(VDF-CTFE系氟橡膠)等的偏二氟乙烯系氟橡膠、環氧樹脂等。該等之中最佳為聚偏二氟乙烯。該等的黏結劑可使用1種,亦可合併2種以上來使用。The binder is not particularly limited. For example, in addition to polyvinylidene fluoride (PVDF), there can be cited: polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salt, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene/butadiene rubber (SBR), isoprene rubber, butadiene rubber, ethylene/propylene rubber, ethylene/propylene/diene copolymer, styrene/butadiene/styrene block copolymer and its hydrogenated product, styrene/isoprene/styrene block copolymer and its hydrogenated product, etc. thermoplastic polymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), ethylene/tetrafluoroethylene copolymer (ETFE) , polychlorotrifluoroethylene (PCTFE), ethylene/chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) and other fluororesins, vinylidene fluoride/hexafluoropropylene fluororubber (VDF-HFP fluororubber), vinylidene fluoride/hexafluoropropylene/tetrafluoroethylene fluororubber (VDF-HFP-TFE fluororubber), vinylidene fluoride/pentafluoropropylene fluororubber (VDF-P The adhesive may be a vinylidene fluoride rubber (VDF-PFP-TFE), a vinylidene fluoride/pentafluoropropylene/tetrafluoroethylene fluoride rubber (VDF-PFMVE-TFE), a vinylidene fluoride/perfluoromethyl vinyl ether/tetrafluoroethylene fluoride rubber (VDF-PFMVE-TFE), a vinylidene fluoride/chlorotrifluoroethylene fluoride rubber (VDF-CTFE), or other vinylidene fluoride rubbers, epoxy resins, etc. Among these, polyvinylidene fluoride is the most preferred. One of these adhesives may be used alone, or two or more may be used in combination.
製成正極漿料時所使用的溶劑並未特別限定,可舉出N-甲基-2-吡咯啶酮(NMP)、二甲基甲醯胺、二甲基乙醯胺、甲基甲醯胺、環己烷、己烷等。The solvent used in preparing the cathode slurry is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, and the like.
正極漿料的組成並未特別限定,例如,相對於漿料的固形分(溶劑以外的成分)總量,黏結劑為0.1~15質量%,較佳為1~10質量%,更佳為2~8質量%,特佳為3~8質量%的範圍,若考量得到充分的電池容量之觀點時,正極材料為70~99.5質量%,較佳為75~99質量%,更佳為80~98質量%,特佳為90~97.5質量%的範圍。只要是上述範圍內,認為即可展現出充分的結著強度。導電助劑的含有量較佳為0~10質量%,更佳為3~7質量%的範圍。The composition of the positive electrode slurry is not particularly limited. For example, relative to the total solid content (components other than the solvent) of the slurry, the binder is in the range of 0.1-15 mass%, preferably 1-10 mass%, more preferably 2-8 mass%, and particularly preferably 3-8 mass%. If the viewpoint of obtaining sufficient battery capacity is considered, the positive electrode material is in the range of 70-99.5 mass%, preferably 75-99 mass%, more preferably 80-98 mass%, and particularly preferably 90-97.5 mass%. As long as it is within the above range, it is believed that sufficient bonding strength can be exhibited. The content of the conductive aid is preferably in the range of 0-10 mass%, and more preferably in the range of 3-7 mass%.
<鋰離子二次電池> 本發明的鋰離子二次電池至少包含:上述的正極、負極、電解液、及分隔膜(separator)。負極,只要是於充電時能吸附收藏鋰離子,並於放電時能釋出鋰離子即可,該材料構成並未特別限定。可舉例如鋰金屬、石墨或非晶碳等的碳材料等。較佳為使用作為能將鋰離子電化學性地吸附收藏・釋出的插層材料(intercalated material)的碳材料。<Lithium ion secondary battery> The lithium ion secondary battery of the present invention comprises at least: the above-mentioned positive electrode, negative electrode, electrolyte, and separator. The negative electrode can be any material that can absorb and store lithium ions during charging and release lithium ions during discharge, and the material composition is not particularly limited. Examples include carbon materials such as lithium metal, graphite, or amorphous carbon. It is preferred to use a carbon material as an intercalated material that can electrochemically absorb, store, and release lithium ions.
使支援電解質溶解於有機溶劑中而得到電解液。只要是通常的鋰離子二次電池的電解液中所使用的有機溶劑即可,有機溶劑並未特別限定。可使用例如碳酸酯類、鹵化烴、醚類、酮類、腈類、內酯類、氧戊環(oxolane)化合物等。The supporting electrolyte is dissolved in an organic solvent to obtain an electrolyte solution. The organic solvent is not particularly limited as long as it is an organic solvent used in the electrolyte solution of a common lithium ion secondary battery. For example, carbonates, hydrocarbon halides, ethers, ketones, nitriles, lactones, oxolane compounds, etc. can be used.
支援電解質的種類並未特別限定,較佳為:選自LiPF6 、LiBF4 、LiClO4 、及LiAsF6 中的無機鹽、該無機鹽的衍生物、選自LiSO3 CF3 、LiC(SO3 CF3 )2 及LiN(SO3 CF3 )2 、LiN(SO2 C2 F5 )2 及LiN(SO2 CF3 )(SO2 C4 F9 )中的有機鹽、以及該有機鹽之至少1種。其中,由於能顯著地展現出本發明的正極所帶來的增強高溫穩定性之效果,故較佳為含有氟元素之鹽,特佳為LiPF6 。The type of supporting electrolyte is not particularly limited, and preferably includes: an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , and LiAsF 6 , a derivative of the inorganic salt, an organic salt selected from LiSO 3 CF 3 , LiC(SO 3 CF 3 ) 2 , LiN(SO 3 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , and LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), and at least one of the organic salts. Among them, a salt containing fluorine is preferred, and LiPF 6 is particularly preferred, because it can significantly exhibit the effect of enhancing the high temperature stability brought by the positive electrode of the present invention.
分隔膜係擔任使正極及負極予以電絕緣,並保持電解液之角色。例如多孔性合成樹脂膜,特別是可舉出聚烯烴系高分子(聚乙烯、聚丙烯)的多孔膜。The separator is used to electrically insulate the positive electrode and the negative electrode and to retain the electrolyte. For example, a porous synthetic resin membrane, especially a porous membrane made of polyolefin polymers (polyethylene, polypropylene).
作為具有上述構成的鋰離子二次電池之形狀並未特別限定,可為硬幣型、圓柱形、方形等的各種形狀,或封入層壓外裝體(laminate outer package)中的不定形狀。 [實施例]The shape of the lithium-ion secondary battery having the above structure is not particularly limited, and may be various shapes such as coin-shaped, cylindrical, square, etc., or an indefinite shape enclosed in a laminate outer package. [Example]
以下為依據實施例來具體地對於本發明進行說明,但本發明並不限定於該等實施例。 <鋰複合氧化物粒子(A)> 作為粒子(A),使用市售的粒子(LiNi0.5 Mn0.3 Co0.2 O2 ,二次粒子的中值粒徑(D50):10.5μm,粉體pH:pH10.9)。The present invention is specifically described below based on examples, but the present invention is not limited to these examples. <Lithium composite oxide particles (A)> As particles (A), commercially available particles (LiNi 0.5 Mn 0.3 Co 0.2 O 2 , secondary particle median diameter (D50): 10.5 μm, powder pH: pH 10.9) were used.
<鋰系聚陰離子粒子(B1)> 作為粒子(B1),使用市售的粒子(含有1.5質量%的碳的LiMn0.7 Fe0.3 PO4 ,二次粒子的中值粒徑(D50):14.8μm,粉體pH:pH10.4)。<Lithium-based polyanion particles (B1)> As particles (B1), commercially available particles (LiMn 0.7 Fe 0.3 PO 4 containing 1.5 mass % of carbon, median particle size (D50) of secondary particles: 14.8 μm, powder pH: pH 10.4) were used.
<鋰系聚陰離子粒子(B2)> 作為粒子(B2),使用市售的粒子(含有1.5質量%的碳的LiMn0.7 Fe0.3 PO4 ,二次粒子的中值粒徑(D50):8.0μm,粉體pH:pH10.4)。<Lithium-based polyanion particles (B2)> As particles (B2), commercially available particles (LiMn 0.7 Fe 0.3 PO 4 containing 1.5 mass % of carbon, median particle size (D50) of secondary particles: 8.0 μm, powder pH: pH 10.4) were used.
<實施例1> 將上述粒子(A)與粒子(B1)以80:20的質量比進行混合,來製成實施例1的正極材料。<Example 1> The above particles (A) and particles (B1) are mixed at a mass ratio of 80:20 to prepare the positive electrode material of Example 1.
<比較例1> 將上述粒子(A)與粒子(B2)以80:20的質量比進行混合,來製成比較例1的正極材料。<Comparative Example 1> The above particles (A) and particles (B2) were mixed at a mass ratio of 80:20 to prepare the positive electrode material of Comparative Example 1.
<比較例2> 僅使用上述粒子(B2),來製成比較例2的正極材料。 <鋰離子二次電池的製造> 將包含實施例1與比較例1及2的各正極材料97.5質量%、碳奈米管0.5質量%、及聚偏二氟乙烯2質量%之層,以實施例1及比較例1的單面塗佈量為18mg/cm2 、比較例2的單面塗佈量為21mg/cm2 之方式,於16μm厚的鋁箔上進行雙面塗佈,進行壓緊(pressing)後進行真空乾燥,得到尺寸30mm×40mm的雙面塗佈正極各為1片。<Comparative Example 2> Only the above-mentioned particles (B2) were used to prepare the positive electrode material of Comparative Example 2. <Manufacture of lithium-ion secondary battery> A layer comprising 97.5 mass% of each positive electrode material of Example 1 and Comparative Examples 1 and 2, 0.5 mass% of carbon nanotubes, and 2 mass% of polyvinylidene fluoride was coated on both sides of a 16μm thick aluminum foil in a single-sided coating amount of 18mg/cm2 for Example 1 and Comparative Example 1 and 21mg/cm2 for Comparative Example 2 , and then pressed and vacuum dried to obtain a double-sided coated positive electrode of size 30mm×40mm, one sheet each.
將包含石墨95質量%、苯乙烯丁二烯橡膠2.5質量%、及羧甲基纖維素2.5質量%之層,以單面塗佈量為9.8mg/cm2 之方式,於8μm厚的銅箔上進行雙面塗佈,進行壓緊後進行真空乾燥,得到尺寸32mm×42mm的雙面塗佈負極2片。A layer containing 95 mass % of graphite, 2.5 mass % of styrene butadiene rubber, and 2.5 mass % of carboxymethyl cellulose was coated on both sides of an 8 μm thick copper foil at a single-sided coating weight of 9.8 mg/cm 2 , and then pressed and vacuum dried to obtain two double-sided coated negative electrodes with a size of 32 mm × 42 mm.
將所得到的各正極1片、負極2片、與28μm厚的尺寸35mm×45mm的聚丙烯分隔膜2片,以負極-分隔膜-正極-分隔膜-負極之順序進行層壓,插入至層壓外裝體中,注入含1M的LiPF6 的碳酸伸乙酯+碳酸二乙酯溶液(3:7)0.6mL,進行密封來製成鋰離子二次電池。The obtained positive electrode, negative electrode, and two polypropylene separators with a thickness of 28 μm and a size of 35 mm × 45 mm were laminated in the order of negative electrode-separator-positive electrode-separator-negative electrode, inserted into a laminated outer casing, injected with 0.6 mL of ethyl carbonate + diethyl carbonate solution (3:7) containing 1 M LiPF6, and sealed to produce a lithium ion secondary battery.
<60℃保存試驗> (1)根據以下的條件,來確認以25℃、13mA之情形時的所得到的各鋰離子二次電池的容量。將此時的放電容量設定為(1): 充電 13mA-4.2V/CCCV(6.5h) 充電中止 10分鐘 放電 13mA-2.5V/CC 放電中止 10分鐘 (2)接下來,在以60℃、7日、SOC100%的狀態下保存。條件為如同下述: 25℃充電 13mA-4.2V/CCCV(6.5h) 25℃充電中止 10分鐘 60℃、7日保存 25℃放電 13mA-2.5V/CC 25℃放電中止 10分鐘 (3)接下來,與(1)相同地,根據以下的條件,來確認以25℃、13mA之情形時的容量。將此時的放電容量設定為(3): 充電 13mA-4.2V/CCCV(6.5h) 充電中止 10分鐘 放電 13mA-2.5V/CC 放電中止 10分鐘 (4)藉由下述式,來計算出高溫(60℃)保持後的放電容量維持率: 放電容量維持率(%)=((3)的放電容量/(1)的放電容量)×100。<60℃ Storage Test> (1) The capacity of each lithium-ion secondary battery obtained at 25℃ and 13mA was confirmed under the following conditions. The discharge capacity at this time was set to (1): Charge 13mA-4.2V/CCCV (6.5h) Charge stop 10 minutes Discharge 13mA-2.5V/CC Discharge stop 10 minutes (2) Next, store at 60℃, 7 days, SOC 100%. The conditions are as follows: 25℃ charge 13mA-4.2V/CCCV (6.5h) 25℃ charge stop 10 minutes 60℃, 7-day storage 25℃ discharge 13mA-2.5V/CC 25℃ discharge stop 10 minutes (3) Next, similar to (1), confirm the capacity at 25℃, 13mA under the following conditions. The discharge capacity at this time is set to (3): Charge 13mA-4.2V/CCCV(6.5h) Charge stop 10 minutes Discharge 13mA-2.5V/CC Discharge stop 10 minutes (4) The discharge capacity maintenance rate after high temperature (60°C) maintenance is calculated by the following formula: Discharge capacity maintenance rate (%) = (discharge capacity of (3)/discharge capacity of (1)) × 100.
各鋰離子二次電池的放電容量維持率之結果如同下述: 使用實施例1的正極材料的電池:95% 使用比較例1的正極材料的電池:85% 使用比較例2的正極材料的電池:80% 可得知如下:使用本發明的正極而成的鋰離子二次電池,相較於比較例的鋰離子二次電池,即使是以高溫保持一定期間後,放電容量亦不易降低。藉由本發明的正極,可形成在高溫下穩定性更高的鋰離子二次電池。The results of the discharge capacity maintenance rate of each lithium ion secondary battery are as follows: Battery using the positive electrode material of Example 1: 95% Battery using the positive electrode material of Comparative Example 1: 85% Battery using the positive electrode material of Comparative Example 2: 80% It can be seen that the lithium ion secondary battery using the positive electrode of the present invention is less likely to have a lower discharge capacity than the lithium ion secondary battery of the comparative example even after being kept at a high temperature for a certain period of time. By using the positive electrode of the present invention, a lithium ion secondary battery with higher stability at high temperatures can be formed.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-172687 | 2019-09-24 | ||
JP2019172687A JP7429001B2 (en) | 2019-09-24 | 2019-09-24 | Positive electrode for lithium ion secondary batteries and lithium ion secondary batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202121718A TW202121718A (en) | 2021-06-01 |
TWI869450B true TWI869450B (en) | 2025-01-11 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018221263A1 (en) | 2017-05-29 | 2018-12-06 | 太平洋セメント株式会社 | Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018221263A1 (en) | 2017-05-29 | 2018-12-06 | 太平洋セメント株式会社 | Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI633698B (en) | Positive electrode active material for secondary battery and method of producing the same | |
TWI627783B (en) | Electrode material for lithium ion secondary battery, manufacturing method of the electrode material, and lithium ion secondary battery | |
JP5656012B2 (en) | Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP7366662B2 (en) | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same | |
JP7409922B2 (en) | Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same | |
JP6041867B2 (en) | Method for producing secondary battery negative electrode active material, secondary battery negative electrode active material, secondary battery negative electrode production method, secondary battery negative electrode, and secondary battery | |
JP2019033016A (en) | Cathode active material for lithium ion secondary battery or cathode active material for sodium ion secondary battery, and manufacturing method thereof | |
JP2020102322A (en) | Positive electrode active material for secondary battery, and method for producing the same | |
JP6273327B1 (en) | Polyanionic positive electrode active material granule and method for producing the same | |
JP7108504B2 (en) | Olivine-type lithium-based oxide primary particles for mixed positive electrode active material and method for producing the same | |
CN113825725A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery | |
US20230085645A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same | |
JP7421372B2 (en) | Method for manufacturing positive electrode active material composite for lithium ion secondary battery | |
TWI869450B (en) | Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery | |
JP7473828B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery and method for producing same | |
JP7429001B2 (en) | Positive electrode for lithium ion secondary batteries and lithium ion secondary batteries | |
JP7409923B2 (en) | Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same | |
JP6322729B1 (en) | Positive electrode active material for lithium ion secondary battery and method for producing the same | |
JP6322730B1 (en) | Positive electrode active material for lithium ion secondary battery and method for producing the same | |
US20230045181A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, and method of producing same | |
JP2023047468A (en) | Positive electrode active material composite particle for lithium ion secondary battery | |
JP2023047467A (en) | Positive electrode active material composite particle for lithium ion secondary battery | |
JP2022156472A (en) | Positive electrode active material particles for lithium ion secondary battery and method for manufacturing the same | |
JP2022138052A (en) | Positive electrode active material particles for lithium ion secondary battery and method for producing the same | |
JP2023103787A (en) | Positive electrode active material particle mixture for lithium-ion secondary battery |