TWI869146B - Demodulation signal generator for air pulse generator - Google Patents
Demodulation signal generator for air pulse generator Download PDFInfo
- Publication number
- TWI869146B TWI869146B TW112151064A TW112151064A TWI869146B TW I869146 B TWI869146 B TW I869146B TW 112151064 A TW112151064 A TW 112151064A TW 112151064 A TW112151064 A TW 112151064A TW I869146 B TWI869146 B TW I869146B
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- signal generator
- demodulation signal
- coupled
- demodulation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D1/00—Demodulation of amplitude-modulated oscillations
- H03D1/22—Homodyne or synchrodyne circuits
- H03D1/2245—Homodyne or synchrodyne circuits using two quadrature channels
- H03D1/2254—Homodyne or synchrodyne circuits using two quadrature channels and a phase locked loop
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
- G10K15/04—Sound-producing devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D1/00—Demodulation of amplitude-modulated oscillations
- H03D1/22—Homodyne or synchrodyne circuits
- H03D1/2281—Homodyne or synchrodyne circuits using a phase locked loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/02—Loudspeakers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
- H04R7/06—Plane diaphragms comprising a plurality of sections or layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Fluid-Pressure Circuits (AREA)
- Micromachines (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Circuit For Audible Band Transducer (AREA)
- Amplifiers (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Abstract
Description
本申請係指一種驅動電路或一種解調訊號產生器,尤指一種可驅動瓣片對執行差動運動而具有低功耗的驅動電路或解調訊號產生器。The present application relates to a driving circuit or a demodulation signal generator, and more particularly to a driving circuit or a demodulation signal generator capable of driving a pair of petals to perform differential motion and having low power consumption.
揚聲器驅動器及後殼體是揚聲器產業的兩大設計挑戰。現有揚聲器難以涵蓋整個音頻頻帶(例如從20Hz至20KHz)。為了產生具有足夠高聲壓級的高保真聲音,現有揚聲器的輻射/運動表面及後殼體的體積/尺寸須足夠大。Speaker drivers and back enclosures are two of the biggest design challenges in the speaker industry. Existing speakers have difficulty covering the entire audio frequency band (e.g., from 20Hz to 20KHz). In order to produce high-fidelity sound with sufficiently high sound pressure levels, the volume/size of the radiating/moving surface and back enclosure of existing speakers must be large enough.
超聲波氣脈衝產生器已被研究用來產生氣脈衝或聲音,用以克服傳統揚聲器所面臨的設計挑戰。對於包含有電容性致動器的超聲波氣脈衝產生器而言,其操作在超聲波頻率時被預期具有高功耗,因而在可攜式電子裝置或消費性電子裝置中並不受歡迎。Ultrasonic pulse generators have been investigated for generating air pulses or sounds to overcome the design challenges faced by conventional speakers. Ultrasonic pulse generators that include capacitive actuators are expected to have high power consumption at ultrasonic frequencies and are therefore not desirable in portable electronic devices or consumer electronic devices.
因此,如何設計一種具有低功耗的驅動電路以驅動超聲波氣脈衝產生器為本領域之重要目的。Therefore, how to design a low-power driving circuit to drive an ultrasonic pulse generator is an important goal in this field.
因此,本申請之主要目的為提供一種解調訊號產生器,以改善習知技術的缺點。Therefore, the main purpose of this application is to provide a demodulation signal generator to improve the shortcomings of the prior art.
本發明之一實施例揭露一種解調訊號產生器,耦接於一氣脈衝產生器。該解調訊號產生器包含有:耦接於一第一瓣片的一第一節點及耦接於一第二瓣片的一第二節點;以及一諧振電路,耦接於該第一節點及該第二節點,用來產生一第一解調訊號於該第一節點並產生一第二解調訊號於該第二節點。該氣脈衝產生器包含有一膜結構,該膜結構包含有一瓣片對,該瓣片對包含有該第一瓣片及該第二瓣片。該諧振電路及該瓣片對共同執行一諧振操作,使得該第一解調訊號及該第二解調訊號透過共同執行的該諧振操作所產生。該第一解調訊號及該第二解調訊號具有相反的極性。該第一瓣片接收該第一解調訊號,且該第二瓣片接收該第二解調訊號,使得該瓣片對執行一差動運動。該差動運動用來形成一開口,以對該膜結構所產生的一調變氣壓變化執行一解調操作。One embodiment of the present invention discloses a demodulation signal generator coupled to a gas pulse generator. The demodulation signal generator includes: a first node coupled to a first lobe and a second node coupled to a second lobe; and a resonance circuit coupled to the first node and the second node, used to generate a first demodulation signal at the first node and a second demodulation signal at the second node. The gas pulse generator includes a membrane structure, the membrane structure includes a lobe pair, and the lobe pair includes the first lobe and the second lobe. The resonance circuit and the lobe pair jointly perform a resonance operation, so that the first demodulation signal and the second demodulation signal are generated by the jointly performed resonance operation. The first demodulation signal and the second demodulation signal have opposite polarities. The first flap receives the first demodulation signal, and the second flap receives the second demodulation signal, so that the flap pair performs a differential motion. The differential motion is used to form an opening to perform a demodulation operation on a modulated air pressure change generated by the membrane structure.
在本發明中,「耦接」一詞可以是直接或間接連接。「元件A耦接到元件B」可以表示元件A直接連接到元件B,或是元件A經由元件C連接到元件B。In the present invention, the term "coupled" may refer to direct or indirect connection. "Component A is coupled to component B" may mean that component A is directly connected to component B, or that component A is connected to component B via component C.
美國專利申請案18/321,757的內容包含在此作為參考。The contents of U.S. Patent Application No. 18/321,757 are incorporated herein by reference.
第1圖繪示本申請實施例一氣脈衝產生器(Air-Pulse Generator,APG)1。氣脈衝產生器1可用於產生聲音或制冷應用,其包含有一膜結構10。膜結構10可根據一聲音訊號來執行一調變操作以產生一超聲波音頻/空氣波(Ultrasonic Acoustic/Air Wave,UAW),並根據超聲波音頻/空氣波來執行一解調操作以產生一超聲波脈衝陣列(Ultrasonic Pulse Array,UPA)。此調變操作係透過膜結構10的一共模運動執行,而解調操作係透過膜結構10的一差模運動執行。在自然/實體環境及人體聽力系統中固有的低通濾波效果之後,可產生對應於該聲音訊號的一聲音。FIG. 1 shows an air-pulse generator (APG) 1 according to an embodiment of the present application. The air-pulse generator 1 can be used for generating sound or cooling applications, and includes a membrane structure 10. The membrane structure 10 can perform a modulation operation according to an acoustic signal to generate an ultrasonic frequency/air wave (UAW), and perform a demodulation operation according to the ultrasonic frequency/air wave to generate an ultrasonic pulse array (UPA). The modulation operation is performed through a common mode motion of the membrane structure 10, and the demodulation operation is performed through a differential mode motion of the membrane structure 10. After the low-pass filtering effect inherent in the natural/physical environment and the human hearing system, a sound corresponding to the sound signal may be produced.
如美國專利申請案18/321,757的教導,膜結構10包含有一瓣片對102。瓣片對102被致動來執行共模運動以執行調變操作,其係用來產生超聲波音頻/空氣波。同時,瓣片對102亦被致動來執行差模運動(或差動運動)以執行解調操作,其係根據超聲波音頻/空氣波來產生具有一脈衝率(如192KHz)的超聲波脈衝陣列。As taught in U.S. Patent Application 18/321,757, the membrane structure 10 includes a pair of flaps 102. The flap pair 102 is actuated to perform common mode motion to perform a modulation operation, which is used to generate an ultrasonic frequency/air wave. At the same time, the flap pair 102 is also actuated to perform differential mode motion (or differential motion) to perform a demodulation operation, which is to generate an ultrasonic pulse array with a pulse rate (e.g., 192KHz) based on the ultrasonic frequency/air wave.
瓣片對102包含有第一瓣片101及第二瓣片103。瓣片101及103均耦接至一調變訊號產生器16以接收一調變訊號SM,以被致動來執行共模運動和調變操作。另一方面,瓣片101及103耦接至一解調訊號產生器14以分別接收一第一解調訊號+SV及一第二解調訊號-SV。解調訊號+SV及-SV一般具有對應一特定準位而言相反的極性,使得瓣片101及103可執行差模運動和解調操作。更明確來說,差模運動用來形成一開口112(如第2圖所示),以對膜結構10或瓣片對102所產生的調變空氣波或氣壓變化執行解調操作。The flap pair 102 includes a first flap 101 and a second flap 103. Both flaps 101 and 103 are coupled to a modulation signal generator 16 to receive a modulation signal SM so as to be actuated to perform common mode motion and modulation operations. On the other hand, flaps 101 and 103 are coupled to a demodulation signal generator 14 to receive a first demodulation signal +SV and a second demodulation signal -SV, respectively. The demodulation signals +SV and -SV generally have opposite polarities corresponding to a specific level, so that flaps 101 and 103 can perform differential mode motion and demodulation operations. More specifically, the differential mode motion is used to form an opening 112 (as shown in FIG. 2 ) to perform a demodulation operation on the modulated air wave or pressure change generated by the membrane structure 10 or the flap pair 102.
調變訊號SM具有一調變頻率,此調變頻率為脈衝率(如192KHz)。解調訊號+SV/-SV具有一解調頻率。由於瓣片對的差模運動,解調頻率可以是脈衝率的一半或調變頻率的一半(如96KHz)。The modulation signal SM has a modulation frequency, which is the pulse rate (such as 192KHz). The demodulation signal +SV/-SV has a demodulation frequency. Due to the differential mode motion of the lobe pair, the demodulation frequency can be half of the pulse rate or half of the modulation frequency (such as 96KHz).
氣脈衝產生器與(解)調變訊號產生器之間的詳細接線方案繪示於第2圖,其示出了方案131~133。氣脈衝產生器1包含有設置於瓣片101上的一第一致動器101A及設置於第二瓣片103上的一第二致動器103。致動器101A/103A包含有一上電極及一下電極。在一實施例中,致動器101A/103A亦包含一壓電層,其可由PZT(例如鋯鈦酸鉛(lead zirconate titanate),其為電容性)所構成,並設置於上下電極之間。在一實施例中,解調訊號產生器耦接於致動器101A/103A之一電極,調變訊號產生器耦接於致動器101A/103A之另一電極。舉例來說,解調訊號產生器可耦接於致動器101A/103A之上電極而調變訊號產生器可耦接於致動器101A/103A之下電極。在一實施例中,調變及解調訊號產生器可耦接於致動器101A/103A的至少一電極。A detailed wiring scheme between the gas pulse generator and the (de)modulated signal generator is shown in FIG. 2, which shows schemes 131 to 133. The gas pulse generator 1 includes a first actuator 101A disposed on the flap 101 and a second actuator 103 disposed on the second flap 103. The actuator 101A/103A includes an upper electrode and a lower electrode. In one embodiment, the actuator 101A/103A also includes a piezoelectric layer, which can be composed of PZT (e.g., lead zirconate titanate, which is capacitive) and is disposed between the upper and lower electrodes. In one embodiment, the demodulation signal generator is coupled to one electrode of the actuator 101A/103A and the modulation signal generator is coupled to another electrode of the actuator 101A/103A. For example, the demodulation signal generator may be coupled to the top electrode of the actuator 101A/103A and the modulation signal generator may be coupled to the bottom electrode of the actuator 101A/103A. In one embodiment, the modulation and demodulation signal generators may be coupled to at least one electrode of the actuator 101A/103A.
第3圖繪示本申請實施例解調訊號產生器14之示意圖。解調訊號產生器可視為一驅動電路,用來驅動瓣片對執行差模運動和解調操作。解調訊號產生器14除了具有節點N101及N103分別用來耦接瓣片101及103以外,一般還包含有一諧振電路140。解調訊號產生器14產生解調訊號+SV其透過節點N101傳送至瓣片101,並產生解調訊號-SV其透過節點N103傳送至瓣片103。諧振電路140及瓣片對102(瓣片101及103)共同執行一諧振操作,以產生具有相反極性的解調訊號+SV及-SV。FIG. 3 is a schematic diagram of a demodulation signal generator 14 of an embodiment of the present application. The demodulation signal generator can be regarded as a driving circuit for driving the petal pair to perform differential mode motion and demodulation operations. In addition to having nodes N101 and N103 for coupling petals 101 and 103, respectively, the demodulation signal generator 14 generally also includes a resonant circuit 140. The demodulation signal generator 14 generates a demodulation signal +SV which is transmitted to the petal 101 through the node N101, and generates a demodulation signal -SV which is transmitted to the petal 103 through the node N103. The resonant circuit 140 and the petal pair 102 (petals 101 and 103) jointly perform a resonant operation to generate demodulation signals +SV and -SV with opposite polarities.
舉例來說,第4圖繪示本申請實施例一解調訊號產生器24之示意圖。解調訊號產生器24包含有一諧振電路240、節點N101、N103,及開關器SW 1H、SW 1L、SW 2H、SW 2L。諧振電路240可以是或包含有一交換模組242。交換模組242包含有一電感L及一切換單元SW ER。在第4圖之實施例中,切換單元包含有一開關器SW ER1。交換模組242耦接於節點N101及N103之間。 For example, FIG. 4 shows a schematic diagram of a demodulation signal generator 24 of an embodiment of the present application. The demodulation signal generator 24 includes a resonant circuit 240, nodes N101, N103, and switches SW1H , SW1L , SW2H , SW2L . The resonant circuit 240 may be or include a switching module 242. The switching module 242 includes an inductor L and a switching unit SWER . In the embodiment of FIG. 4, the switching unit includes a switch SWER1 . The switching module 242 is coupled between the nodes N101 and N103.
第5圖繪示解調訊號產生器24之時序圖。交換模組242係在一導通期間內導通,如第5圖中的T12或T21。解調訊號+SV在導通期間T12後從一高電壓準位V H交換至一低電壓準位V L,而解調訊號-SV在導通期間T12後從低電壓準位V L交換至高電壓準位V H。同樣地,解調訊號+SV在導通期間T21後從低電壓準位V L交換至高電壓準位V H,而解調訊號-SV在導通期間T21後從高電壓準位V H交換至低電壓準位V L。因此,在導通期間T12/T21之後,第一解調訊號+SV的電壓準位和第二解調訊號-SV的電壓準位交換。同時,解調訊號+SV和解調訊號-SV可視為具有相反的極性。 FIG. 5 shows a timing diagram of the demodulation signal generator 24. The switching module 242 is turned on during a conduction period, such as T12 or T21 in FIG. 5. The demodulation signal +SV switches from a high voltage level VH to a low voltage level VL after the conduction period T12, and the demodulation signal -SV switches from the low voltage level VL to the high voltage level VH after the conduction period T12. Similarly, the demodulation signal +SV switches from the low voltage level VL to the high voltage level VH after the conduction period T21, and the demodulation signal -SV switches from the high voltage level VH to the low voltage level VL after the conduction period T21. Therefore, after the conduction period T12/T21, the voltage level of the first demodulation signal +SV and the voltage level of the second demodulation signal -SV are exchanged. At the same time, the demodulation signal +SV and the demodulation signal -SV can be regarded as having opposite polarities.
請參考第4圖及第5圖,開關器SW 1H及SW 1L耦接於節點N101,開關器SW 2H及SW 2L耦接於節點N103。開關器SW 1H及SW 2H接收高電壓V H,開關器SW 1L及SW 2L接收低電壓V L。 4 and 5 , switches SW 1H and SW 1L are coupled to node N101, and switches SW 2H and SW 2L are coupled to node N103. Switches SW 1H and SW 2H receive a high voltage V H , and switches SW 1L and SW 2L receive a low voltage V L .
在期間T1內(導通期間T12之前),開關器SW 1H及SW 2L導通/開啟,且開關器SW 1L及SW 2H斷開/關閉,使得解調訊號+SV位於高電壓V H而解調訊號-SV位於低電壓V L。在期間T1內,無任何電流通過交換模組242,且切換單元SW ER關閉。 During the period T1 (before the conduction period T12), the switches SW1H and SW2L are turned on/on, and the switches SW1L and SW2H are turned off/off, so that the demodulated signal +SV is at the high voltage VH and the demodulated signal -SV is at the low voltage VL . During the period T1, no current flows through the switching module 242, and the switching unit SWER is turned off.
在期間T2內(導通期間T12之後),開關器SW 1H及SW 2L關閉,且開關器SW 1L及SW 2H開啟,使得解調訊號+SV位於低電壓V L而解調訊號-SV位於高電壓V H。在期間T2內,無任何電流通過交換模組242,且切換單元SW ER關閉。 During period T2 (after conduction period T12), switches SW1H and SW2L are closed, and switches SW1L and SW2H are opened, so that the demodulated signal +SV is at low voltage VL and the demodulated signal -SV is at high voltage VH . During period T2, no current flows through the switching module 242, and the switching unit SWER is closed.
在導通期間T12內,開關器SW 1H、SW 1L、SW 2H、SW 2L關閉,且切換單元SW ER開啟。從節點N101至節點N103形成一電流,造成解調訊號+SV下降而解調訊號-SV上升。因此,對應於致動器101A的電容所儲存的電能被轉移至對應於致動器103A的電容。 During the conduction period T12, the switches SW 1H , SW 1L , SW 2H , and SW 2L are closed, and the switching unit SW ER is turned on. A current is formed from the node N101 to the node N103, causing the demodulated signal +SV to decrease and the demodulated signal -SV to increase. Therefore, the electric energy stored in the capacitor corresponding to the actuator 101A is transferred to the capacitor corresponding to the actuator 103A.
在導通期間T21內,同樣地,開關器SW 1H、SW 1L、SW 2H、SW 2L關閉,且切換單元SW ER開啟。從節點N103至節點N101形成一電流,造成解調訊號+SV上升而解調訊號-SV下降。因此,對應於致動器103A的電容所儲存的電能被轉移至對應於致動器101A的電容。 During the conduction period T21, similarly, the switches SW1H , SW1L , SW2H , SW2L are closed, and the switching unit SWER is turned on. A current is formed from the node N103 to the node N101, causing the demodulated signal +SV to rise and the demodulated signal -SV to fall. Therefore, the electric energy stored in the capacitor corresponding to the actuator 103A is transferred to the capacitor corresponding to the actuator 101A.
藉由開關器(即第4圖中的SW 1H、SW 1L、SW 2H、SW 2L及SW ER1)的開關操作,解調訊號產生器24可產生解調訊號+SV及-SV,其具有如第5圖上方所示的波形。需注意的是,即使用於電容性致動器101A及103A的解調訊號+SV及-SV在氣脈衝產生器操作的期間T12/T21內包含有大量的轉態,由於能量係在諧振電路240的幫助之下來回充放於N101及N103之間,因此瓣片對102及解調訊號產生器24所消耗的電量極低。 By switching the switches (i.e., SW 1H , SW 1L , SW 2H , SW 2L and SW ER1 in FIG. 4 ), the demodulation signal generator 24 can generate demodulation signals +SV and -SV having waveforms as shown in the upper part of FIG. 5 . It should be noted that even though the demodulation signals +SV and -SV for the capacitive actuators 101A and 103A include a large number of transitions during the period T12/T21 of the pulse generator operation, since the energy is charged and discharged back and forth between N101 and N103 with the help of the resonant circuit 240, the power consumed by the petal pair 102 and the demodulation signal generator 24 is extremely low.
施加解調訊號+SV及-SV至瓣片101及103,瓣片對102可執行差動運動。By applying the demodulated signals +SV and -SV to the petals 101 and 103 , the petal pair 102 can perform differential motion.
在本申請中,瓣片對執行差動運動表示:1)、在一暫態/期間,一瓣片向一第一方向移動而另一瓣片向與第一方向相反的一第二方向移動;或2)、在一穩態/期間,一瓣片被致動而向上彎曲而另一瓣片被致動而向下彎曲。In the present application, the flap pair performing differential motion means: 1) in a transient state/period, one flap moves in a first direction and the other flap moves in a second direction opposite to the first direction; or 2) in a stable state/period, one flap is actuated to bend upward and the other flap is actuated to bend downward.
利用解調訊號產生器24的差動運動滿足上述1)、2)兩者。更明確來說,在第5圖所示的穩態期間T1內,瓣片101接收解調訊號+SV,其為高電壓V H,並且被致動而向上彎曲;瓣片103接收解調訊號-SV,其為低電壓V L,並且被致動而向下彎曲。在穩態期間T2內,瓣片101接收解調訊號+SV,其為低電壓V L,並且被致動而向下彎曲;瓣片103接收解調訊號-SV,其為高電壓V H,並且被致動而向上彎曲。在T1及T2之間的暫態期間T12內,瓣片101向-Z方向移動,而瓣片103向+Z方向移動,+Z方向相反於-Z方向。 The differential motion of the demodulation signal generator 24 satisfies both 1) and 2) above. More specifically, in the steady-state period T1 shown in FIG. 5 , the flap 101 receives the demodulation signal +SV, which is a high voltage V H , and is actuated to bend upward; the flap 103 receives the demodulation signal -SV, which is a low voltage V L , and is actuated to bend downward. In the steady-state period T2 , the flap 101 receives the demodulation signal +SV, which is a low voltage V L , and is actuated to bend downward; the flap 103 receives the demodulation signal -SV, which is a high voltage V H , and is actuated to bend upward. During a transient period T12 between T1 and T2 , the flap 101 moves in the −Z direction, and the flap 103 moves in the +Z direction, which is opposite to the −Z direction.
更進一步地,在導通/暫態/轉態期間T12/T21,諧振電路240內的電感L與致動器101A/103A內壓電層的電容可(共同)執行一電感電容諧振。電感電容諧振可在期間T12內傳送從N101到N103的電流,並且在期間T21內傳送從N103到N101的電流。Furthermore, during the conduction/transient/transition period T12/T21, the inductor L in the resonant circuit 240 and the capacitance of the piezoelectric layer in the actuator 101A/103A can (together) perform an LC resonance. The LC resonance can transmit a current from N101 to N103 during the period T12, and transmit a current from N103 to N101 during the period T21.
第6圖繪示本申請實施例一解調訊號產生器34之示意圖。解調訊號產生器34類似於解調訊號產生器24,故相同元件皆以相同符號表示。不同於解調訊號產生器24,位於解調訊號產生器34之一交換模組342或一諧振電路340中的切換單元SW ER另包含有一開關器SW ER2,耦接於電感L及節點N103之間,其中,開關器SW ER1及SW ER2形成切換單元SW ER,而電感L及切換單元SW ER形成交換模組342。在本申請中,切換單元SW ER開啟表示開關器SW ER1及SW ER2皆開啟,切換單元SW ER關閉表示開關器SW ER1及SW ER2當中至少一者關閉。 FIG. 6 is a schematic diagram of a demodulation signal generator 34 according to an embodiment of the present application. The demodulation signal generator 34 is similar to the demodulation signal generator 24, and the same elements are represented by the same symbols. Different from the demodulation signal generator 24, the switching unit SW ER in a switching module 342 or a resonant circuit 340 of the demodulation signal generator 34 further includes a switch SW ER2 coupled between the inductor L and the node N103, wherein the switches SW ER1 and SW ER2 form the switching unit SW ER , and the inductor L and the switching unit SW ER form the switching module 342. In the present application, the switching unit SW ER is turned on, which means that both switches SW ER1 and SW ER2 are turned on, and the switching unit SW ER is turned off, which means that at least one of switches SW ER1 and SW ER2 is turned off.
在一實施例中,開關器SW ER1/SW ER2可透過具有體二極體(body diode)BD1/BD2的金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)來實現,如第6圖下半部分所示。開關器SW ER1/SW ER2被設定使得開關器SW ER1/SW ER2關閉時體二極體BD1/BD2能夠阻擋電流。在一實施例中,體二極體BD1/BD2之陽極耦接於節點N101/N103,體二極體BD1/BD2之陰極耦接於電感L。在此情況下,當開關器SW ER1/SW ER2關閉時,體二極體BD1/BD2可避免電流從電感L流至N101/N103。 In one embodiment, the switch SW ER1 /SW ER2 can be implemented by a metal-oxide-semiconductor field-effect transistor (MOSFET) having a body diode BD1 / BD2, as shown in the lower half of FIG. 6. The switch SW ER1 /SW ER2 is configured so that the body diode BD1 / BD2 can block the current when the switch SW ER1 /SW ER2 is turned off. In one embodiment, the anode of the body diode BD1 / BD2 is coupled to the node N101 / N103, and the cathode of the body diode BD1 / BD2 is coupled to the inductor L. In this case, when the switch SW ER1 /SW ER2 is turned off, the body diode BD1 / BD2 can prevent the current from flowing from the inductor L to N101 / N103.
對於雙開關器的交換模組342而言,其在導通期間結束時無須同時關閉兩個開關器,而是在適當的體二極體設定之下,在導通期間T12/T21結束時一次僅關閉一個開關器即可)。舉例來說,在導通期間T12結束時,其解調訊號+SV下降而解調訊號-SV上升(或導通期間T12結束時節點N101的電壓小於節點N103的電壓),開關器SW ER1關閉而開關器SW ER2維持開啟。在此情況下,具有如第6圖所示的設定之體二極體BD1將阻隔從電感到節點N101的電流。同樣地,在導通期間T21結束時,開關器SW ER2關閉而開關器SW ER1維持開啟。 For the dual-switch switching module 342, it is not necessary to turn off both switches at the same time at the end of the conduction period. Instead, under the appropriate body diode setting, only one switch is turned off at the end of the conduction period T12/T21. For example, at the end of the conduction period T12, its demodulated signal +SV decreases and the demodulated signal -SV increases (or the voltage of the node N101 is less than the voltage of the node N103 at the end of the conduction period T12), the switch SW ER1 is turned off and the switch SW ER2 remains on. In this case, the body diode BD1 with the setting shown in FIG. 6 will block the current from the inductor to the node N101. Likewise, at the end of the conduction period T21, the switch SW ER2 is turned off while the switch SW ER1 remains turned on.
開關器SW ER1及SW ER2的時序可參考第7圖。一次開啟一個開關器(SW ER1或SW ER2)可降低每一開關器的切換速率,進而使交換模組342內開關器之功耗進一步下降。 The timing of switches SW ER1 and SW ER2 can be referred to FIG. 7. Turning on one switch (SW ER1 or SW ER2 ) at a time can reduce the switching rate of each switch, thereby further reducing the power consumption of the switches in the switching module 342.
值得注意的是,開關器SW ER1及SW ER2不限定位於電感L兩側,如第6圖所示。在一實施例中,開關器SW ER1及SW ER2可位於電感L同側(未繪示),其中,體二極體BD1/2仍可在開關器SW ER1/2關閉時阻隔電流。只要開關器SW ER1及SW ER2耦接於節點N101及N103之間,皆屬於本申請之範疇。 It is worth noting that the switches SW ER1 and SW ER2 are not limited to being located on both sides of the inductor L, as shown in FIG. 6 . In one embodiment, the switches SW ER1 and SW ER2 may be located on the same side of the inductor L (not shown), wherein the body diode BD1/2 may still block the current when the switches SW ER1/2 are turned off. As long as the switches SW ER1 and SW ER2 are coupled between the nodes N101 and N103, they are within the scope of the present application.
除了諧振電路240/340採用的電感電容諧振以外,亦可利用互補式金屬氧化物半導體微機電系統(Complementary Metal Oxide Semiconductor Micro Electro Mechanical Systems,CMOS-MEMS)諧振/振盪來產生解調訊號±SV。In addition to the inductor-capacitor resonance used in the resonant circuit 240/340, a complementary metal oxide semiconductor micro electro mechanical system (CMOS-MEMS) resonance/oscillation may also be used to generate the demodulation signal ±SV.
第8圖繪示本申請實施例一解調訊號產生器44之示意圖。解調訊號產生器44包含有一諧振電路440,其可以是或包含有一起始電路442。諧振電路440或起始電路442耦接於瓣片101及103,並利用瓣片101/103的諧振特性來產生解調訊號±SV,其可視為與瓣片對102共同執行一諧振操作。起始電路442包含有一轉阻(transimpedance)放大器444、一偵測與控制電路446及一可變增益放大器(Variable Gain Amplifier,VGA)448。FIG. 8 is a schematic diagram of a demodulation signal generator 44 of an embodiment of the present application. The demodulation signal generator 44 includes a resonant circuit 440, which may be or include a starting circuit 442. The resonant circuit 440 or the starting circuit 442 is coupled to the petals 101 and 103, and utilizes the resonant characteristics of the petals 101/103 to generate demodulation signals ±SV, which can be regarded as performing a resonant operation together with the petal pair 102. The starting circuit 442 includes a transimpedance amplifier 444, a detection and
轉阻放大器444包含有一第一輸入端,其耦接於瓣片101以接收一電流i+,並包含有一第二輸入端,其耦接於瓣片103以接收一電流i-。轉阻放大器444可根據電流i+及i-產生一輸出訊號Vo。如第8圖所示,轉阻放大器444包含有一運算放大器,以及耦接於輸入端及輸出端之間的回授電阻及回授電容。The transimpedance amplifier 444 includes a first input terminal coupled to the flap 101 to receive a current i+, and includes a second input terminal coupled to the flap 103 to receive a current i-. The transimpedance amplifier 444 can generate an output signal Vo according to the currents i+ and i-. As shown in FIG. 8 , the transimpedance amplifier 444 includes an operational amplifier, and a feedback resistor and a feedback capacitor coupled between the input terminal and the output terminal.
偵測與控制電路446耦接於轉阻放大器444之輸出端。偵測與控制電路446被設定根據訊號Vo來執行一偵測操作,其中,偵測操作可以是振幅偵測、相位偵測、頻率偵測操作、或上述各種偵測的組合。The detection and
偵測與控制電路446控制可變增益放大器448,使得位於一封閉迴路46內的起始電路442可滿足巴克豪森準則(Barkhausen criterion),即迴路增益大於或等於1,且迴路相位等於0或2π的整數倍。因此,瓣片對102及諧振電路440可共同執行互補式金屬氧化物半導體微機電系統諧振/振盪。The detection and
在一實施例中,偵測與控制電路446可包含一振幅控制電路4461(如第9圖所示),使得振幅控制電路4461可控制可變增益放大器448形成一自動增益控制(Automatic Gain Control,AGC)迴路,以滿足巴克豪森準則。In one embodiment, the detection and
在一實施例中,偵測與控制電路446可執行一頻率偵測操作,以追蹤瓣片101/103的一諧振頻率。頻率偵測操作可藉由施加一掃頻測試訊號來執行。在一實施例中,偵測與控制電路446可包含一鎖相迴路(Phase Lock Loop,PLL)電路4462(如第9圖所示)。鎖相迴路電路4462可用來執行頻率偵測操作,以追蹤瓣片101/103或瓣片對102的諧振頻率。In one embodiment, the detection and
在一實施例中,可包含一迴路濾波器(未繪示於第8圖)以避免不必要的振盪。In one embodiment, a loop filter (not shown in FIG. 8 ) may be included to avoid unwanted oscillations.
由瓣片對102及諧振電路440形成的迴路46可執行一自持振盪(self-sustain oscillation)操作。在自持振盪之下,瓣片101/103的位移量可放大Q倍。需注意的是,Q為101及103的機械諧振模式之品質因數(quality factor)。因此,+SV及–SV的輸入訊號振幅可降低Q倍,以維持所需要的位移,且功率大幅減少Q 2倍。 The loop 46 formed by the petal pair 102 and the resonant circuit 440 can perform a self-sustaining oscillation operation. Under self-sustaining oscillation, the displacement of the petals 101/103 can be amplified by Q times. It should be noted that Q is the quality factor of the mechanical resonant mode of 101 and 103. Therefore, the input signal amplitude of +SV and -SV can be reduced by Q times to maintain the required displacement, and the power is greatly reduced by Q2 times.
值得注意的是,第8圖僅繪示振盪起始電路之一實施例。解調訊號+SV及-SV可根據任何類型的振盪起始電路或頻率偵測電路來產生,而不限於此。只要能夠形成瓣片對與諧振電路之間的諧振/振盪,皆應屬於本申請之範疇。It is worth noting that FIG. 8 only shows an embodiment of the oscillation start circuit. The demodulated signals +SV and -SV can be generated according to any type of oscillation start circuit or frequency detection circuit, but are not limited thereto. As long as the resonance/oscillation between the petal pair and the resonant circuit can be formed, it should fall within the scope of this application.
更進一步地,解調訊號產生器44可包含一移相器(phase shifter)41,耦接於瓣片101及瓣片103之間。移相器41將解調訊號+SV及解調訊號-SV之間的相位差設定為180度,使得解調訊號+SV及-SV具有相反的極性。將解調訊號+SV及-SV施加至瓣片101及103,使得瓣片對102可執行差動運動,其中,利用解調訊號產生器44的差動運動滿足上述段落所述的狀態1)。Furthermore, the demodulation signal generator 44 may include a phase shifter 41 coupled between the flap 101 and the flap 103. The phase shifter 41 sets the phase difference between the demodulation signal +SV and the demodulation signal -SV to 180 degrees, so that the demodulation signals +SV and -SV have opposite polarities. The demodulation signals +SV and -SV are applied to the flaps 101 and 103, so that the flap pair 102 can perform differential motion, wherein the differential motion of the demodulation signal generator 44 satisfies the state 1) described in the above paragraph.
除此之外,解調訊號產生器44可包含一倍頻器(frequency multiplier)43,耦接於起始電路442並接收起始電路442之一輸出訊號,表示為SV_out。倍頻器43係用來加倍SV_out的頻率以產生一輸出訊號SM_ref,使得調變訊號SM可根據訊號SM_ref產生,其中,輸出訊號SM_ref的頻率為輸出訊號SV_out的頻率的兩倍,使得解調頻率等於脈衝率的一半,抑或在調變頻率為脈衝率時等於調變頻率的一半。In addition, the demodulation signal generator 44 may include a frequency multiplier 43 coupled to the start circuit 442 and receiving an output signal, denoted as SV_out, of the start circuit 442. The frequency multiplier 43 is used to double the frequency of SV_out to generate an output signal SM_ref, so that the modulation signal SM can be generated according to the signal SM_ref, wherein the frequency of the output signal SM_ref is twice the frequency of the output signal SV_out, so that the demodulation frequency is equal to half of the pulse rate, or when the modulation frequency is the pulse rate, it is equal to half of the modulation frequency.
值得注意的是,諧振電路240/340及瓣片對共同執行的諧振操作係利用其內部元件的電性諧振;而諧振電路440及瓣片對共同執行的諧振操作係利用其內部元件的機械諧振。It is worth noting that the resonance operation performed by the resonance circuit 240 / 340 and the petal pair utilizes the electrical resonance of its internal components; while the resonance operation performed by the resonance circuit 440 and the petal pair utilizes the mechanical resonance of its internal components.
利用諧振來產生解調訊號±SV的解調訊號產生器之眾多優點之一為降低功耗。諧振操作不限於上述電感電容諧振或互補式金屬氧化物半導體微機電系統諧振。解調訊號產生器及諧振電路可利用任何諧振方式來產生相反的極性解調訊號產生器,其皆屬於本申請之範疇。One of the many advantages of a demodulation signal generator that uses resonance to generate a demodulation signal ±SV is reduced power consumption. The resonant operation is not limited to the above-mentioned LC resonance or complementary metal oxide semiconductor micro-electromechanical system resonance. The demodulation signal generator and the resonant circuit can use any resonant method to generate an opposite polarity demodulation signal generator, which all belong to the scope of this application.
簡言之,本申請利用諧振電路與瓣片對共同執行諧振操作,以產生具有相反極性的解調訊號±SV,其中,諧振操作可以是電感電容諧振或滿足巴克豪森準則的互補式金屬氧化物半導體微機電系統諧振。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In short, the present application utilizes a resonant circuit and a pair of petals to jointly perform a resonant operation to generate a demodulated signal ±SV with opposite polarities, wherein the resonant operation can be an inductor-capacitor resonance or a complementary metal oxide semiconductor micro-electromechanical system resonance that satisfies the Barkhausen criterion. The above is only a preferred embodiment of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention should be within the scope of the present invention.
1:氣脈衝產生器 10:膜結構 102:瓣片對 101, 103:瓣片 14, 24, 34, 44:解調訊號產生器 16:調變訊號產生器 SM:調變訊號 +SV, -SV:解調訊號 N101, N103:節點 131~133:方案 101A, 103A:致動器 112:開口 140, 240, 340, 440:諧振電路 SW 1H, SW 1L, SW 2H, SW 2L, SW ER1, SW ER2:開關器 242, 342:交換模組 L:電感 SW ER:切換單元 V H:高電壓準位 V L:低電壓準位 T12, T21:導通期間 T1, T2:期間 BD1, BD2:體二極體 442:起始電路 444:轉阻放大器 446:偵測與控制電路 448:可變增益放大器 i+, i-:電流 Vo, SV_out, SM_ref:輸出訊號 41:移相器 43:倍頻器 46:迴路 4461:振幅控制電路 4462:鎖相迴路電路 1: Pulse generator 10: Membrane structure 102: Petal pair 101, 103: Petals 14, 24, 34, 44: Demodulation signal generator 16: Modulation signal generator SM: Modulation signal +SV, -SV: Demodulation signal N101, N103: Nodes 131-133: Scheme 101A, 103A: Actuator 112: Opening 140, 240, 340, 440: Resonance circuit SW 1H , SW 1L , SW 2H , SW 2L , SW ER1 , SW ER2 : Switch 242, 342: Switch module L: Inductor SW ER : Switching unit V H : High voltage level V L : low voltage level T12, T21: conduction period T1, T2: period BD1, BD2: body diode 442: start circuit 444: transimpedance amplifier 446: detection and control circuit 448: variable gain amplifier i+, i-: current Vo, SV_out, SM_ref: output signal 41: phase shifter 43: frequency multiplier 46: loop 4461: amplitude control circuit 4462: phase-locked loop circuit
第1圖繪示本申請實施例一氣脈衝產生器之示意圖。 第2圖繪示本申請實施例的接線方案。 第3圖繪示本申請實施例一解調訊號產生器之示意圖。 第4圖繪示本申請實施例一解調訊號產生器之示意圖。 第5圖繪示第4圖的解調訊號產生器之時序圖。 第6圖繪示本申請實施例一解調訊號產生器之示意圖。 第7圖繪示第6圖的解調訊號產生器之時序圖。 第8圖繪示本申請實施例一解調訊號產生器之示意圖。 第9圖繪示本申請實施例一偵測與控制電路之示意圖。 FIG. 1 is a schematic diagram of a gas pulse generator in an embodiment of the present application. FIG. 2 is a wiring scheme in an embodiment of the present application. FIG. 3 is a schematic diagram of a demodulation signal generator in an embodiment of the present application. FIG. 4 is a schematic diagram of a demodulation signal generator in an embodiment of the present application. FIG. 5 is a timing diagram of the demodulation signal generator in FIG. 4. FIG. 6 is a schematic diagram of a demodulation signal generator in an embodiment of the present application. FIG. 7 is a timing diagram of the demodulation signal generator in FIG. 6. FIG. 8 is a schematic diagram of a demodulation signal generator in an embodiment of the present application. FIG. 9 is a schematic diagram of a detection and control circuit in an embodiment of the present application.
14:解調訊號產生器 14: Demodulation signal generator
+SV,-SV:解調訊號 +SV,-SV: demodulated signal
N101,N103:節點 N101, N103: Node
140:諧振電路 140: Resonance circuit
Claims (25)
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263436103P | 2022-12-29 | 2022-12-29 | |
US63/436,103 | 2022-12-29 | ||
US202363437371P | 2023-01-06 | 2023-01-06 | |
US63/437,371 | 2023-01-06 | ||
US202363447758P | 2023-02-23 | 2023-02-23 | |
US202363447835P | 2023-02-23 | 2023-02-23 | |
US63/447,835 | 2023-02-23 | ||
US63/447,758 | 2023-02-23 | ||
US202363459170P | 2023-04-13 | 2023-04-13 | |
US63/459,170 | 2023-04-13 | ||
US18/321,757 | 2023-05-22 | ||
US18/321,757 US12075213B2 (en) | 2021-01-14 | 2023-05-22 | Air-pulse generating device |
US18/396,678 | 2023-12-26 | ||
US18/396,678 US12261567B2 (en) | 2021-01-14 | 2023-12-26 | Demodulation signal generator for air pulse generator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202429914A TW202429914A (en) | 2024-07-16 |
TWI869146B true TWI869146B (en) | 2025-01-01 |
Family
ID=91810402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112151064A TWI869146B (en) | 2022-12-29 | 2023-12-27 | Demodulation signal generator for air pulse generator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024096072A (en) |
KR (1) | KR20240107048A (en) |
TW (1) | TWI869146B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011160309A (en) * | 2010-02-03 | 2011-08-18 | Murata Mfg Co Ltd | Capacitive load driving circuit |
US20170201192A1 (en) * | 2016-01-11 | 2017-07-13 | Infineon Technologies Ag | System and Method for a Variable Flow Transducer |
US20170255007A1 (en) * | 2014-09-18 | 2017-09-07 | Mitsumi Electric Co., Ltd. | Capacitive load drive circuit and optical scanning device |
US20200100033A1 (en) * | 2017-05-26 | 2020-03-26 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Micromechanical sound transducer |
CN108496345B (en) * | 2016-01-19 | 2021-02-26 | 株式会社精好 | Pen type calling-in and calling-out communication device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11043197B1 (en) * | 2020-01-31 | 2021-06-22 | xMEMS Labs, Inc. | Air pulse generating element and sound producing device with virtual valve |
JP7381634B2 (en) * | 2021-04-06 | 2023-11-15 | エクスメムス ラブズ,インコーポレイテッド | Air pulse generator and its sound generation method |
-
2023
- 2023-12-27 TW TW112151064A patent/TWI869146B/en active
- 2023-12-28 JP JP2023222052A patent/JP2024096072A/en active Pending
- 2023-12-29 KR KR1020230197253A patent/KR20240107048A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011160309A (en) * | 2010-02-03 | 2011-08-18 | Murata Mfg Co Ltd | Capacitive load driving circuit |
US20170255007A1 (en) * | 2014-09-18 | 2017-09-07 | Mitsumi Electric Co., Ltd. | Capacitive load drive circuit and optical scanning device |
US20170201192A1 (en) * | 2016-01-11 | 2017-07-13 | Infineon Technologies Ag | System and Method for a Variable Flow Transducer |
CN108496345B (en) * | 2016-01-19 | 2021-02-26 | 株式会社精好 | Pen type calling-in and calling-out communication device |
US20200100033A1 (en) * | 2017-05-26 | 2020-03-26 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Micromechanical sound transducer |
Also Published As
Publication number | Publication date |
---|---|
TW202429914A (en) | 2024-07-16 |
KR20240107048A (en) | 2024-07-08 |
JP2024096072A (en) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113207068B (en) | Air pulse generating element with virtual valve and sound generating device | |
US7461281B2 (en) | Capacitive load driving circuit, electrostatic transducer, method of setting circuit constant, ultrasonic speaker, display device, and directional acoustic system | |
CN101860778B (en) | Amplifier circuit of capacitor microphone | |
US8594346B2 (en) | Audio output drivers for piezo speakers | |
JP2012022537A (en) | Piezoelectric actuator drive unit | |
JPH0685343A (en) | Piezoelectric transconverter for power | |
JP2002036197A (en) | Method and apparatus for controlling a micromachined device | |
US12257601B2 (en) | Driver circuitry and operation | |
US8736142B2 (en) | Polarity switching circuit | |
US11998948B2 (en) | Driver circuitry for piezoelectric transducers | |
TWI869146B (en) | Demodulation signal generator for air pulse generator | |
US11539335B2 (en) | Transducer driver circuitry | |
CN118282370A (en) | Demodulation signal generator for gas pulse generator | |
US12261567B2 (en) | Demodulation signal generator for air pulse generator | |
EP4398240A1 (en) | Demodulation signal generator for air pulse generator | |
CA2257447A1 (en) | Electroacoustic transducer | |
JPH04313369A (en) | Ultrasonic actuator driving circuit | |
US20250100870A1 (en) | Controller for sound producing device with dynamic vent function | |
CN117896651A (en) | Driving circuit and wearable sound device thereof | |
US20140042872A1 (en) | Polarity switching circuit | |
JP2013009177A (en) | Driving driver, driving amplifier and information apparatus | |
TW202448148A (en) | Driving circuit producing dsb-sc modulation signal | |
TW202416735A (en) | Driving circuit and wearable sound device thereof | |
JPH09140166A (en) | Driver for oscillation motor | |
JP2000070851A (en) | Driver of capacitive load |