TWI868041B - Skin multidimensional sensitive status data assessment system and assessment method thereof - Google Patents
Skin multidimensional sensitive status data assessment system and assessment method thereof Download PDFInfo
- Publication number
- TWI868041B TWI868041B TW113126270A TW113126270A TWI868041B TW I868041 B TWI868041 B TW I868041B TW 113126270 A TW113126270 A TW 113126270A TW 113126270 A TW113126270 A TW 113126270A TW I868041 B TWI868041 B TW I868041B
- Authority
- TW
- Taiwan
- Prior art keywords
- skin
- module
- image
- sub
- sensitivity state
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000035945 sensitivity Effects 0.000 claims abstract description 58
- 238000004364 calculation method Methods 0.000 claims abstract description 41
- 238000001914 filtration Methods 0.000 claims abstract description 21
- 230000037307 sensitive skin Effects 0.000 claims abstract description 19
- 238000013186 photoplethysmography Methods 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 26
- 238000011156 evaluation Methods 0.000 claims description 24
- 238000011157 data evaluation Methods 0.000 claims description 20
- 238000013507 mapping Methods 0.000 claims description 7
- 238000009499 grossing Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 5
- 230000007794 irritation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000037311 normal skin Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000009993 protective function Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 230000008326 skin blood flow Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本發明係關於一種皮膚狀態評估系統,特別是一種皮膚多維度敏感狀態數據評估系統及其評估方法。The present invention relates to a skin state evaluation system, in particular to a skin multi-dimensional sensitive state data evaluation system and an evaluation method thereof.
皮膚是人體最大的器官,皮膚可擋住外來侵入,以保護體內各種組織和器官受到物理、化學和病原微生物的侵襲。皮膚亦可保住水分,並且提供保暖、阻隔、感覺的功能。由於皮膚的彈性影響著皮膚的防護功能,其中皮膚的敏感狀態亦對皮膚的防護功能有重要的影響。The skin is the largest organ in the human body. It can block foreign invasion to protect various tissues and organs in the body from physical, chemical and pathogenic microorganisms. The skin can also retain moisture and provide warmth, barrier and sensory functions. The elasticity of the skin affects the skin's protective function, and the skin's sensitivity also has an important impact on the skin's protective function.
舉例來說,當皮膚會因為溫度、濕度變化而刺癢甚至起紅疹,或是使用保養品後容易出現不適感,這類的膚質可能是屬於敏感肌。當敏感肌患者沒好好照護皮膚,可能已經破壞皮膚層了卻不自覺。For example, if your skin becomes itchy or even develops rashes due to changes in temperature or humidity, or you feel uncomfortable after using skin care products, you may have sensitive skin. If people with sensitive skin do not take good care of their skin, they may have damaged their skin layer without realizing it.
因此,需要對皮膚進行敏感狀態的評估,才能根據評估結果給予合適的治療及保養。Therefore, it is necessary to assess the sensitivity of the skin so that appropriate treatment and care can be given based on the assessment results.
在現有技術中,對於皮膚敏感狀態的評估通常依賴主觀的評估方法(例如,肉眼觀察)或侵入性的檢測方法。然而,這些方法通常導致不準確的評估結果,或者不舒適的檢測過程。In the prior art, the assessment of skin sensitivity usually relies on subjective assessment methods (e.g., visual observation) or invasive testing methods. However, these methods usually lead to inaccurate assessment results or uncomfortable testing processes.
為了解決上述問題,本發明之目的在於提供了一種皮膚多維度敏感狀態數據評估系統,係針對皮膚於受刺激後在預定時間內進行評估,皮膚多維度敏感狀態數據評估系統包括:影像攝影模組,被配置為捕捉皮膚的影像,以產生捕捉影像;濾波模組,與影像攝影模組連接,被配置為對捕捉影像進行濾波處理,以產生濾波後影像;影像切割計算模組,與濾波模組連接,被配置為將濾波後影像分割成至少16個子畫面,並且計算每個子畫面的平均值;資料記錄與製圖模組,與影像切割計算模組連接,被配置為記錄每個子畫面的平均值,並且繪製成多個對應的波形圖;演算模組,與影像切割計算模組、資料記錄與製圖模組連接,被配置為基於至少16個子畫面的資料來執行皮膚敏感狀態評估參數演算法,以獲得離散參數;及評估模組,與演算模組連接,被配置為根據離散參數與閾值的關係來確認捕捉影像對應為敏感皮膚或穩定皮膚。In order to solve the above problems, the purpose of the present invention is to provide a skin multi-dimensional sensitivity state data evaluation system, which is to evaluate the skin within a predetermined time after being stimulated. The skin multi-dimensional sensitivity state data evaluation system includes: an image photography module, which is configured to capture the image of the skin to generate a captured image; a filtering module, which is connected to the image photography module and is configured to filter the captured image to generate a filtered image; an image cutting calculation module, which is connected to the filtering module and is configured to divide the filtered image into at least 16 sub-pictures, and and calculates the average value of each sub-screen; a data recording and drawing module is connected to the image cutting calculation module and is configured to record the average value of each sub-screen and draw it into a plurality of corresponding waveform graphs; a calculation module is connected to the image cutting calculation module and the data recording and drawing module and is configured to execute a skin sensitivity state evaluation parameter algorithm based on the data of at least 16 sub-screens to obtain discrete parameters; and an evaluation module is connected to the calculation module and is configured to confirm whether the captured image corresponds to sensitive skin or stable skin according to the relationship between the discrete parameters and the threshold value.
在一些實施例中,進一步包括處理模組,與影像切割計算模組、資料記錄與製圖模組、演算模組連接,處理模組被配置為對每個子畫面的資料進行平滑化處理。In some embodiments, a processing module is further included, which is connected to the image cutting calculation module, the data recording and mapping module, and the calculation module, and the processing module is configured to smooth the data of each sub-screen.
在一些實施例中,濾波處理的過濾波長範圍為400nm~1000nm的光訊號。In some embodiments, the filtering process filters optical signals in the wavelength range of 400nm to 1000nm.
在一些實施例中,皮膚敏感狀態評估參數演算法為: 其中, 為離散參數,𝑆為光電容積描記圖(Photoplethysmography, PPG)訊號總量, 為特定PPG訊號的波鋒間距,n為最接近特定PPG訊號的其他PPG訊號數目, 為其中一個最接近特定PPG訊號的波鋒間距。 In some embodiments, the skin sensitivity status assessment parameter algorithm is: in, is the discrete parameter, 𝑆 is the total signal of photoplethysmography (PPG), is the peak distance of a specific PPG signal, n is the number of other PPG signals closest to the specific PPG signal, is the peak distance that is closest to a specific PPG signal.
在一些實施例中,當離散參數大於或等於閾值時,確認捕捉影像對應為敏感皮膚;以及當離散參數小於閾值時,確認捕捉影像對應為穩定皮膚。In some embodiments, when the dispersion parameter is greater than or equal to a threshold, the captured image is confirmed to correspond to sensitive skin; and when the dispersion parameter is less than the threshold, the captured image is confirmed to correspond to stable skin.
為了解決上述問題,本發明之目的在於提供了一種皮膚多維度敏感狀態數據評估方法,係針對皮膚於受刺激後在預定時間內進行評估,皮膚多維度敏感狀態數據評估方法包括下列步驟:透過影像攝影模組來捕捉皮膚的影像,以產生捕捉影像;透過濾波模組對捕捉影像進行濾波處理,以產生濾波後影像;透過影像切割計算模組將濾波後影像分割成至少16個子畫面,並且計算每個子畫面的平均值;透過資料記錄與製圖模組來記錄每個子畫面的平均值,並且繪製成多個對應的波形圖;透過演算模組基於至少16個子畫面的資料來執行皮膚敏感狀態評估參數演算法,以獲得離散參數;及透過評估模組根據離散參數與閾值的關係來確認捕捉影像對應為敏感皮膚或穩定皮膚。In order to solve the above problems, the purpose of the present invention is to provide a method for evaluating the multi-dimensional sensitivity state data of the skin, which is to evaluate the skin within a predetermined time after being stimulated. The method for evaluating the multi-dimensional sensitivity state data of the skin includes the following steps: capturing an image of the skin through an image photography module to generate a captured image; filtering the captured image through a filtering module to generate a filtered image; and segmenting the filtered image through an image cutting calculation module. The image is divided into at least 16 sub-screens, and an average value of each sub-screen is calculated; the average value of each sub-screen is recorded through a data recording and drawing module, and is plotted into a plurality of corresponding waveform graphs; a skin sensitivity state evaluation parameter algorithm is executed through a calculation module based on data of at least 16 sub-screens to obtain discrete parameters; and a captured image is confirmed to correspond to sensitive skin or stable skin according to a relationship between the discrete parameters and a threshold value through an evaluation module.
綜上所述,本發明的皮膚多維度敏感狀態數據評估系統及其評估方法,透過捕捉皮膚的影像資料,並且對影像資料進行濾波處理來提升影像辨識、分析、處理時的品質,進而提升皮膚敏感狀態評估的準確度與可靠性,進而解決習知技術具有不準確評估結果與不舒適檢測過程的問題。In summary, the skin multi-dimensional sensitivity state data assessment system and assessment method of the present invention improves the quality of image recognition, analysis, and processing by capturing skin image data and filtering the image data, thereby improving the accuracy and reliability of skin sensitivity state assessment, thereby solving the problem of inaccurate assessment results and uncomfortable detection process in known technologies.
請參照圖1,是顯示根據本發明實施例的皮膚多維度敏感狀態數據評估系統的方塊圖。皮膚多維度敏感狀態數據評估系統100係針對皮膚於受刺激後在預定時間內進行評估。皮膚多維度敏感狀態數據評估系統100,包括:影像攝影模組10、濾波模組12、影像切割計算模組14、資料記錄與製圖模組16、演算模組18、評估模組20。Please refer to FIG. 1, which is a block diagram showing a skin multi-dimensional sensitivity state data evaluation system according to an embodiment of the present invention. The skin multi-dimensional sensitivity state data evaluation system 100 is for evaluating the skin within a predetermined time after being stimulated. The skin multi-dimensional sensitivity state data evaluation system 100 includes: an image photography module 10, a filtering module 12, an image cutting calculation module 14, a data recording and mapping module 16, a calculation module 18, and an evaluation module 20.
影像攝影模組10被配置為捕捉皮膚的影像,以產生捕捉影像,而捕捉影像可以包括皮膚受刺激前和/或皮膚受刺激後的影像資料。影像資料可以是二維和/或三維影像資料。前述的皮膚係指固定區域的皮膚(例如,手背、臉部、腿部、胸部等),並且讓影像攝影模組10針對固定區域進行捕捉皮膚的影像的操作。前述的捕捉方式可以是透過錄影或拍攝。例如,以錄影方式捕捉皮膚在預定時間內的影像,或者,以拍攝方式捕捉皮膚在預定時間內的影像。前述的預定時間可以根據受刺激的來源(例如,溫度、濕度、保養品…等)不同而設計為不同的時間值。藉此,可以觀察與辨識皮膚是否因為溫度、濕度、保養品的刺激在預定時間內產生敏感性的變化。舉例來說,當刺激來源為溫度時,前述的預定時間可以為3分鐘至5分鐘;當刺激來源為濕度時,前述的預定時間可以為10分鐘至16分鐘;當刺激來源為保養品時,前述的預定時間可以為30分鐘至2小時。前述預定時間的時間值可以是根據大數據的實驗結果來決定。另外,影像攝影模組10捕捉皮膚的影像的方式屬於非侵入性的檢測方式,因此,本發明實施例相較於習知技術的不舒適感非常低,甚至是沒有不舒適感。The image photography module 10 is configured to capture the image of the skin to generate a captured image, and the captured image may include image data of the skin before and/or after the skin is stimulated. The image data may be two-dimensional and/or three-dimensional image data. The aforementioned skin refers to the skin of a fixed area (e.g., the back of the hand, face, legs, chest, etc.), and the image photography module 10 is operated to capture the image of the skin in the fixed area. The aforementioned capturing method may be through recording or photographing. For example, the image of the skin within a predetermined time is captured by recording, or the image of the skin within a predetermined time is captured by photographing. The aforementioned predetermined time may be designed to different time values according to different sources of stimulation (e.g., temperature, humidity, skin care products, etc.). In this way, it is possible to observe and identify whether the skin has a change in sensitivity due to the stimulation of temperature, humidity, or skin care products within a predetermined time. For example, when the stimulus source is temperature, the predetermined time may be 3 minutes to 5 minutes; when the stimulus source is humidity, the predetermined time may be 10 minutes to 16 minutes; when the stimulus source is skin care products, the predetermined time may be 30 minutes to 2 hours. The time value of the predetermined time may be determined based on the experimental results of big data. In addition, the way the image camera module 10 captures the image of the skin is a non-invasive detection method. Therefore, the discomfort of the embodiment of the present invention is very low compared to the conventional technology, or even no discomfort.
濾波模組12與所述影像攝影模組10連接。濾波模組12被配置為對所述捕捉影像進行濾波處理,以產生濾波後影像。例如,將捕捉影像中不需要的雜訊及環境光訊號(例如,波長範圍為400nm~1000nm的光訊號)予以濾除,來改善對應於皮膚的影像品質,進而提升後續影像資料處理的準確度。The filter module 12 is connected to the image capturing module 10. The filter module 12 is configured to perform filtering processing on the captured image to generate a filtered image. For example, unnecessary noise and ambient light signals (e.g., light signals with a wavelength range of 400nm to 1000nm) in the captured image are filtered out to improve the image quality corresponding to the skin, thereby improving the accuracy of subsequent image data processing.
影像切割計算模組14與所述濾波模組連接。影像切割計算模組14被配置為將所述濾波後影像分割成至少16個子畫面,並且計算每個子畫面的平均值。例如,影像切割計算模組14依據預定窗格將濾波後影像切割為多數個子畫面,並且計算每個子畫面的平均值,以及記錄至少16個子畫面的每個幀率(Frame Per Second, FPS)畫面的平均值。The image cutting calculation module 14 is connected to the filtering module. The image cutting calculation module 14 is configured to divide the filtered image into at least 16 sub-frames and calculate the average value of each sub-frame. For example, the image cutting calculation module 14 divides the filtered image into a plurality of sub-frames according to a predetermined window, calculates the average value of each sub-frame, and records the average value of each frame rate (Frame Per Second, FPS) of at least 16 sub-frames.
資料記錄與製圖模組16與所述影像切割計算模組14連接。資料記錄與製圖模組16被配置為記錄所述每個子畫面的平均值,並且繪製成多個對應的波形圖。例如,以時間為單位來繪製波形圖161。例如,以秒、分鐘為時間單位。資料記錄與製圖模組16可以例如是由記憶體與圖形處理單元(Graphic Processing unit, GPU)、中央處理單元(Central Processing Unit, CPU)、數位訊號處理器(Digital Signal Processor, DSP)、一般用途或特殊用途的微處理器(Microprocessor)、現場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA)、特殊應用積體電路(Application-Specific Integrated Circuit, ASIC)、神經網路加速器所組成。The data recording and drawing module 16 is connected to the image cutting calculation module 14. The data recording and drawing module 16 is configured to record the average value of each sub-screen and draw a plurality of corresponding waveform graphs. For example, the waveform graph 161 is drawn in time units. For example, seconds and minutes are used as time units. The data recording and drawing module 16 can be composed of, for example, a memory and a graphics processing unit (GPU), a central processing unit (CPU), a digital signal processor (DSP), a general-purpose or special-purpose microprocessor (Microprocessor), a field programmable gate array (FPGA), an application-specific integrated circuit (ASIC), and a neural network accelerator.
演算模組18與所述影像切割計算模組14、所述資料記錄與製圖模組16連接。演算模組18被配置為基於所述至少16個子畫面的資料來執行皮膚敏感狀態評估參數演算法,以獲得離散參數。所述皮膚敏感狀態評估參數演算法為: The calculation module 18 is connected to the image cutting calculation module 14 and the data recording and drawing module 16. The calculation module 18 is configured to execute a skin sensitivity state evaluation parameter algorithm based on the data of the at least 16 sub-frames to obtain discrete parameters. The skin sensitivity state evaluation parameter algorithm is:
其中, 為所述離散參數,𝑆為光電容積描記圖(Photoplethysmography, PPG)訊號總量, 為特定PPG訊號的波鋒間距,n為最接近所述特定PPG訊號的其他PPG訊號數目, 為其中一個最接近所述特定PPG訊號的波鋒間距。由於敏感皮膚容易有發炎導致微血管擴張或增生的現象,這會導致敏感皮膚相較於正常皮膚有亂度增加的傾向,因此,透過演算模組18計算得到的離散參數值來評估皮膚的敏感狀態。 in, is the discrete parameter, 𝑆 is the total signal of photoplethysmography (PPG), is the peak distance of a specific PPG signal, n is the number of other PPG signals closest to the specific PPG signal, is the wavefront distance closest to the specific PPG signal. Since sensitive skin is prone to inflammation leading to microvascular dilation or hyperplasia, this will cause sensitive skin to have a tendency to increase in disorder compared to normal skin. Therefore, the discrete parameter value calculated by the calculation module 18 is used to evaluate the sensitivity of the skin.
評估模組20與所述演算模組18連接。評估模組20被配置為根據離散參數與閾值的關係來確認捕捉影像對應為敏感皮膚或穩定皮膚。例如,評估模組20可以自動地將離散參數值與閾值進行比較運算,以確認所述離散參數與閾值的關係。當離散參數大於或等於閾值時,確認捕捉影像對應為敏感皮膚。當離散參數小於閾值時,確認捕捉影像對應為穩定皮膚。閾值可以由使用者自行設定,或者由人工智慧模型決定。藉此,本發明實施例的皮膚多維度敏感狀態數據評估系統100採用濾波處理、影像分析與自動評估的方式來評估皮膚敏感狀態,相較於習知技術採用人為主觀(例如,肉眼觀察)的檢測方法而言,本發明實施例更為準確。另外,本發明實施例的皮膚多維度敏感狀態數據評估系統100採用影像分析的方式,相較於習知技術採用侵入性的檢測方法而言,本發明實施例的不舒適感非常低,甚至是沒有不舒適感。The evaluation module 20 is connected to the calculation module 18. The evaluation module 20 is configured to confirm whether the captured image corresponds to sensitive skin or stable skin based on the relationship between the discrete parameter and the threshold. For example, the evaluation module 20 can automatically compare the discrete parameter value with the threshold to confirm the relationship between the discrete parameter and the threshold. When the discrete parameter is greater than or equal to the threshold, it is confirmed that the captured image corresponds to sensitive skin. When the discrete parameter is less than the threshold, it is confirmed that the captured image corresponds to stable skin. The threshold can be set by the user or determined by an artificial intelligence model. Thus, the skin multi-dimensional sensitivity state data evaluation system 100 of the embodiment of the present invention adopts filtering processing, image analysis and automatic evaluation to evaluate the skin sensitivity state, which is more accurate than the detection method using human subjectivity (e.g., naked eye observation) in the known technology. In addition, the skin multi-dimensional sensitivity state data evaluation system 100 of the embodiment of the present invention adopts image analysis, which is very low in discomfort, or even no discomfort, compared with the invasive detection method used in the known technology.
請參照圖2,是顯示根據本發明實施例的資料記錄與製圖模組16所繪製的波形圖。如圖2所示,資料記錄與製圖模組16根據16個子畫面中每個子畫面的平均值,繪製成對應於16個子畫面的波形圖161。其中波形圖161上方的n表示為第n個子畫面。例如,n=1,表示為第1個子畫面、n=2,表示為第2個子畫面、n=3,表示為第3個子畫面,依此類推。藉此,可辨識出在影像攝影模組10的影像捕捉範圍區域內的不同皮膚部位的血液濃度變化。這些明顯的波形圖161所對應皮膚下方的微血管律動的數量(the amounts of capillary rhythm)。假設每一波形彼此越類似,所辨識的皮膚血流越一致。因此,若有敏感皮膚(例如,發炎組織),就可以從這些波形圖161中最特異的被辨識出來。Please refer to FIG. 2 , which shows a waveform diagram drawn by the data recording and drawing module 16 according to an embodiment of the present invention. As shown in FIG. 2 , the data recording and drawing module 16 draws a waveform diagram 161 corresponding to the 16 sub-screens based on the average value of each of the 16 sub-screens. The n above the waveform diagram 161 represents the nth sub-screen. For example, n=1 represents the first sub-screen, n=2 represents the second sub-screen, n=3 represents the third sub-screen, and so on. In this way, the changes in blood concentration in different skin areas within the image capture range of the image photography module 10 can be identified. These obvious waveform diagrams 161 correspond to the amounts of capillary rhythm under the skin. It is assumed that the more similar each waveform is to the other, the more consistent the skin blood flow is identified. Therefore, if there is sensitive skin (e.g., inflamed tissue), it can be identified most specifically from these waveforms 161.
請一併參照圖1、圖2與圖3,圖3是顯示根據本發明實施例的皮膚多維度敏感狀態數據評估方法的流程圖。本發明實施例的皮膚多維度敏感狀態數據評估方法係針對皮膚於受刺激後在預定時間內進行評估。Please refer to Figure 1, Figure 2 and Figure 3 together. Figure 3 is a flow chart showing the method for evaluating the multi-dimensional skin sensitivity state data according to the embodiment of the present invention. The method for evaluating the multi-dimensional skin sensitivity state data of the embodiment of the present invention is to evaluate the skin within a predetermined time after being stimulated.
步驟S300,透過影像攝影模組10來捕捉皮膚的影像,以產生捕捉影像。本發明實施例的皮膚多維度敏感狀態數據評估系統100採用影像分析的方式,相較於習知技術採用侵入性的檢測方法而言,本發明實施例的不舒適感非常低,甚至是沒有不舒適感。In step S300, the image of the skin is captured by the image camera module 10 to generate a captured image. The skin multi-dimensional sensitivity state data evaluation system 100 of the embodiment of the present invention adopts an image analysis method. Compared with the invasive detection method adopted in the prior art, the discomfort of the embodiment of the present invention is very low, or even no discomfort.
步驟S310,透過濾波模組12對所述捕捉影像進行濾波處理,以產生濾波後影像。例如,透過濾波模組12將捕捉影像中不需要的雜訊及環境光訊號(例如,波長範圍為400nm~1000nm的光訊號)予以濾除,來改善對應於皮膚的影像品質,進而提升後續影像資料處理的準確度。In step S310, the captured image is filtered by the filter module 12 to generate a filtered image. For example, the filter module 12 removes unnecessary noise and ambient light signals (e.g., light signals with a wavelength range of 400nm to 1000nm) in the captured image to improve the image quality corresponding to the skin, thereby improving the accuracy of subsequent image data processing.
步驟S320,透過影像切割計算模組14將所述濾波後影像分割成至少16個子畫面,並且計算每個子畫面的平均值。例如,透過影像切割計算模組14依據預定窗格將濾波後影像切割為多數個子畫面,並且計算每個子畫面的平均值,以及記錄至少16個子畫面的每個幀率畫面的平均值。In step S320, the filtered image is divided into at least 16 sub-frames by the image cutting calculation module 14, and the average value of each sub-frame is calculated. For example, the filtered image is divided into a plurality of sub-frames according to a predetermined window by the image cutting calculation module 14, and the average value of each sub-frame is calculated, and the average value of each frame rate frame of at least 16 sub-frames is recorded.
步驟S330,透過資料記錄與製圖模組16來記錄所述每個子畫面的平均值,並且繪製成多個對應的波形圖161。例如,以時間為單位來繪製波形圖161。In step S330, the average value of each sub-frame is recorded by the data recording and drawing module 16, and a plurality of corresponding waveform graphs 161 are drawn. For example, the waveform graphs 161 are drawn in units of time.
步驟S340,透過演算模組18基於所述至少16個子畫面的資料來執行皮膚敏感狀態評估參數演算法,以獲得離散參數。所述皮膚敏感狀態評估參數演算法為: In step S340, the calculation module 18 executes a skin sensitivity state evaluation parameter algorithm based on the data of the at least 16 sub-frames to obtain discrete parameters. The skin sensitivity state evaluation parameter algorithm is:
其中, 為所述離散參數,𝑆為光電容積描記圖(Photoplethysmography, PPG)訊號總量, 為特定PPG訊號的波鋒間距,n為最接近所述特定PPG訊號的其他PPG訊號數目, 為其中一個最接近所述特定PPG訊號的波鋒間距。由於敏感皮膚容易有發炎導致微血管擴張或增生的現象,這會導致敏感皮膚相較於正常皮膚有亂度增加的傾向,因此,透過演算模組18計算得到的離散參數值來評估皮膚的敏感狀態。 in, is the discrete parameter, 𝑆 is the total signal of photoplethysmography (PPG), is the peak distance of a specific PPG signal, n is the number of other PPG signals closest to the specific PPG signal, is the wavefront distance closest to the specific PPG signal. Since sensitive skin is prone to inflammation leading to microvascular dilation or hyperplasia, this will cause sensitive skin to have a tendency to increase in disorder compared to normal skin. Therefore, the discrete parameter value calculated by the calculation module 18 is used to evaluate the sensitivity of the skin.
步驟S350,透過評估模組20根據所述離散參數與閾值的關係來確認所述捕捉影像對應為敏感皮膚或穩定皮膚。例如,透過評估模組20自動地將離散參數值與閾值進行比較運算,以確認所述離散參數與閾值的關係。當離散參數大於或等於閾值時,確認捕捉影像對應為敏感皮膚。當離散參數小於閾值時,確認捕捉影像對應為穩定皮膚。In step S350, the evaluation module 20 is used to confirm whether the captured image corresponds to sensitive skin or stable skin according to the relationship between the discrete parameter and the threshold. For example, the evaluation module 20 automatically compares the discrete parameter value with the threshold to confirm the relationship between the discrete parameter and the threshold. When the discrete parameter is greater than or equal to the threshold, it is confirmed that the captured image corresponds to sensitive skin. When the discrete parameter is less than the threshold, it is confirmed that the captured image corresponds to stable skin.
請參照圖4,是顯示根據本發明另一實施例的皮膚多維度敏感狀態數據評估系統的方塊圖。圖4的實施例與圖1的實施例不同之處在於:皮膚多維度敏感狀態數據評估系統110進一步包括處理模組22,其餘模組與圖1的實施例相同或類似,以下不再贅述。Please refer to FIG4, which is a block diagram showing a skin multi-dimensional sensitivity state data evaluation system according to another embodiment of the present invention. The embodiment of FIG4 is different from the embodiment of FIG1 in that the skin multi-dimensional sensitivity state data evaluation system 110 further includes a processing module 22, and the remaining modules are the same or similar to the embodiment of FIG1, and will not be described in detail below.
處理模組22與所述影像切割計算模組14、資料記錄與製圖模組16、演算模組18連接。 處理模組22被配置為對所述每個子畫面的資料進行平滑化處理。處理模組22可以例如是由CPU、DSP、一般用途或特殊用途的微處理器(Microprocessor)、FPGA、特殊應用積體電路ASIC、神經網路加速器所組成。由於影像資料通常有雜訊,因此,處理模組22可以對所述每個子畫面的資料進行平滑化處理來降低影像資料(即,每個子畫面的資料)的雜訊,進而提升皮膚多維度敏感狀態數據評估系統110的準確度以及可靠性。在其他實施例中,處理模組22也可以對所述每個子畫面的資料進行邊緣偵測、自適應定限、磨蝕及擴張等處理技術來降低影像資料的雜訊。The processing module 22 is connected to the image cutting calculation module 14, the data recording and mapping module 16, and the calculation module 18. The processing module 22 is configured to smooth the data of each sub-screen. The processing module 22 can be composed of, for example, a CPU, a DSP, a general-purpose or special-purpose microprocessor, an FPGA, an application-specific integrated circuit ASIC, and a neural network accelerator. Since image data usually has noise, the processing module 22 can smooth the data of each sub-screen to reduce the noise of the image data (i.e., the data of each sub-screen), thereby improving the accuracy and reliability of the skin multidimensional sensitivity state data assessment system 110. In other embodiments, the processing module 22 may also perform edge detection, adaptive thresholding, erosion, and expansion on the data of each sub-frame to reduce the noise of the image data.
請一併參照圖4與圖5,圖5是顯示根據本發明另一實施例的皮膚多維度敏感狀態數據評估方法的流程圖。圖5與圖3的實施例不同之處在於:在步驟S320之後進一步包括步驟S322,其餘步驟與圖3的實施例相同或類似,以下不再贅述。Please refer to FIG. 4 and FIG. 5 together. FIG. 5 is a flow chart showing a method for evaluating skin multi-dimensional sensitivity state data according to another embodiment of the present invention. FIG. 5 differs from the embodiment of FIG. 3 in that: after step S320, step S322 is further included. The remaining steps are the same or similar to the embodiment of FIG. 3 and will not be described in detail below.
步驟S322,透過處理模組22對所述每個子畫面的資料進行平滑化處理。由於影像資料通常有雜訊,因此,透過處理模組22對所述每個子畫面的資料進行平滑化處理來降低影像資料(即,每個子畫面的資料)的雜訊,進而提升皮膚多維度敏感狀態數據評估系統110的準確度以及可靠性。在其他實施例中,處理模組22也可以對所述每個子畫面的資料進行邊緣偵測、自適應定限、磨蝕及擴張等處理技術來降低影像資料的雜訊。In step S322, the data of each sub-screen is smoothed by the processing module 22. Since the image data usually has noise, the noise of the image data (i.e., the data of each sub-screen) is reduced by smoothing the data of each sub-screen by the processing module 22, thereby improving the accuracy and reliability of the skin multi-dimensional sensitivity state data evaluation system 110. In other embodiments, the processing module 22 can also perform edge detection, adaptive thresholding, erosion and expansion processing techniques on the data of each sub-screen to reduce the noise of the image data.
綜上所述,本發明的皮膚多維度敏感狀態數據評估系統及其評估方法,透過捕捉皮膚的影像資料,並且對影像資料進行濾波處理來提升影像辨識、分析、處理時的品質,進而提升皮膚敏感狀態評估的準確度與可靠性,進而解決習知技術具有不準確評估結果與不舒適檢測過程的問題。In summary, the skin multi-dimensional sensitivity state data assessment system and assessment method of the present invention improves the quality of image recognition, analysis, and processing by capturing skin image data and filtering the image data, thereby improving the accuracy and reliability of skin sensitivity state assessment, thereby solving the problem of inaccurate assessment results and uncomfortable detection process in known technologies.
10:影像攝影模組 12:濾波模組 14:影像切割計算模組 16:資料記錄與製圖模組 18:演算模組 20:評估模組 22:處理模組 100:皮膚多維度敏感狀態數據評估系統 110:皮膚多維度敏感狀態數據評估系統 161:波形圖 S300,S310,S320,S322,S330,S340,S350:步驟10: Image photography module 12: Filtering module 14: Image cutting calculation module 16: Data recording and mapping module 18: Calculation module 20: Evaluation module 22: Processing module 100: Skin multi-dimensional sensitivity state data evaluation system 110: Skin multi-dimensional sensitivity state data evaluation system 161: Waveform diagram S300, S310, S320, S322, S330, S340, S350: Steps
圖1是顯示根據本發明實施例的皮膚多維度敏感狀態數據評估系統的方塊圖。 圖2是顯示根據本發明實施例的資料記錄與製圖模組所繪製的波形圖。 圖3是顯示根據本發明實施例的皮膚多維度敏感狀態數據評估方法的流程圖。 圖4是顯示根據本發明另一實施例的皮膚多維度敏感狀態數據評估系統的方塊圖。 圖5是顯示根據本發明另一實施例的皮膚多維度敏感狀態數據評估方法的流程圖。 FIG. 1 is a block diagram showing a skin multidimensional sensitivity state data evaluation system according to an embodiment of the present invention. FIG. 2 is a waveform diagram drawn by a data recording and drawing module according to an embodiment of the present invention. FIG. 3 is a flow chart showing a skin multidimensional sensitivity state data evaluation method according to an embodiment of the present invention. FIG. 4 is a block diagram showing a skin multidimensional sensitivity state data evaluation system according to another embodiment of the present invention. FIG. 5 is a flow chart showing a skin multidimensional sensitivity state data evaluation method according to another embodiment of the present invention.
10:影像攝影模組 10: Image photography module
12:濾波模組 12: Filter module
14:影像切割計算模組 14: Image cutting calculation module
16:資料記錄與製圖模組 16: Data recording and mapping module
18:演算模組 18: Calculation module
20:評估模組 20: Evaluation module
100:皮膚敏感狀態評估系統 100: Skin sensitivity status assessment system
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW113126270A TWI868041B (en) | 2024-07-12 | 2024-07-12 | Skin multidimensional sensitive status data assessment system and assessment method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW113126270A TWI868041B (en) | 2024-07-12 | 2024-07-12 | Skin multidimensional sensitive status data assessment system and assessment method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI868041B true TWI868041B (en) | 2024-12-21 |
Family
ID=94769603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113126270A TWI868041B (en) | 2024-07-12 | 2024-07-12 | Skin multidimensional sensitive status data assessment system and assessment method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI868041B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016149416A1 (en) * | 2015-03-16 | 2016-09-22 | Magic Leap, Inc. | Methods and systems for diagnosing and treating health ailments |
CN108471949A (en) * | 2015-10-28 | 2018-08-31 | 光谱Md公司 | The tissue typing multispectral time discrimination optics imaging method of reflective-mode and equipment |
CN113260835A (en) * | 2018-12-14 | 2021-08-13 | 光谱Md公司 | System and method for high precision multi-aperture spectral imaging |
CN116433614A (en) * | 2023-03-21 | 2023-07-14 | 山东大学 | Non-contact blood pressure measurement system |
-
2024
- 2024-07-12 TW TW113126270A patent/TWI868041B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016149416A1 (en) * | 2015-03-16 | 2016-09-22 | Magic Leap, Inc. | Methods and systems for diagnosing and treating health ailments |
CN108471949A (en) * | 2015-10-28 | 2018-08-31 | 光谱Md公司 | The tissue typing multispectral time discrimination optics imaging method of reflective-mode and equipment |
CN113260835A (en) * | 2018-12-14 | 2021-08-13 | 光谱Md公司 | System and method for high precision multi-aperture spectral imaging |
CN116433614A (en) * | 2023-03-21 | 2023-07-14 | 山东大学 | Non-contact blood pressure measurement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11857323B2 (en) | System and method for camera-based stress determination | |
US20160220129A1 (en) | Systems and methods for quantitative microcirculation state monitoring | |
US20120220846A1 (en) | System and method for diagnosing sleep apnea | |
CN110573064B (en) | Systems and methods for assessing diabetic circulatory complications | |
CN112037913B (en) | Periodontitis intelligent detection system based on convolutional neural network | |
US11406304B2 (en) | Systems and methods for physiological sign analysis | |
CN109154558B (en) | Method and apparatus for assessing tissue vascular health | |
CN110021140A (en) | Monitoring system and monitoring method applied to infant | |
US10966662B2 (en) | Motion-dependent averaging for physiological metric estimating systems and methods | |
KR102243012B1 (en) | Estimation method of blood vessel elasticity and arrhythmia using skin image | |
CN109497977A (en) | Human heart rate and method for detecting blood oxygen saturation and device | |
CN107510461A (en) | Organizational vitality, blood oxygen change and method for detecting blood oxygen saturation and intelligent terminal | |
JP2019097757A5 (en) | ||
CN111035395A (en) | Blood oxygen saturation signal analysis method, device, computer equipment and storage medium | |
CN117158926A (en) | A long-distance non-contact physiological parameter detection method, system and device | |
WO2021164350A1 (en) | Method and device for generating photoplethysmography signal | |
JP6582276B2 (en) | Head image evaluation device | |
TWI868041B (en) | Skin multidimensional sensitive status data assessment system and assessment method thereof | |
Sharma et al. | Automated detection of newborn sleep apnea using video monitoring system | |
KR20210142904A (en) | Methods and apparatuses for measuring and managing stress index using respiratory signals of skin image | |
CN115916045A (en) | Method for determining the scalp type of a user | |
Shangkai et al. | An Autoregressive Model of the BAEP Signal for Hearng-Threshold Testing | |
CN116843612A (en) | Image processing method for diabetic retinopathy diagnosis | |
JP2023029618A (en) | Method of calculating health index of gingiva | |
CN116138751A (en) | Non-contact respiration detection method and system based on face video |