TWI867923B - Lactate oxidase variants and their uses for lactate detection - Google Patents
Lactate oxidase variants and their uses for lactate detection Download PDFInfo
- Publication number
- TWI867923B TWI867923B TW112151168A TW112151168A TWI867923B TW I867923 B TWI867923 B TW I867923B TW 112151168 A TW112151168 A TW 112151168A TW 112151168 A TW112151168 A TW 112151168A TW I867923 B TWI867923 B TW I867923B
- Authority
- TW
- Taiwan
- Prior art keywords
- lactate
- ala
- gly
- asp
- ile
- Prior art date
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本揭示內容關於乳酸氧化酶變異體以及其用於乳酸偵測之用途。特別是關於乳酸氧化酶變異體以及該些變異體用於電性偵測及定量液體樣本內乳酸(或乳酸鹽)的用途。The present disclosure relates to lactate oxidase variants and their use in lactate detection, and more particularly to lactate oxidase variants and their use in electrical detection and quantification of lactic acid (or lactate) in liquid samples.
乳酸(或乳酸鹽)是細胞內厭氧代謝路徑的關鍵代謝物,因此可做為監測各種生物體多種生理過程的線索。因此,乳酸(或乳酸鹽)濃度已經作為一個重要參數,被廣泛用在臨床診斷中評估患者健康狀況以及用於食品和發酵工業的持續監測。Lactate (or lactate) is a key metabolite of the anaerobic metabolic pathway in cells and can therefore be used as a cue to monitor a variety of physiological processes in various organisms. Therefore, lactate (or lactate) concentration has been widely used as an important parameter in clinical diagnosis to assess patient health status and for continuous monitoring in the food and fermentation industries.
在臨床診斷中,乳酸濃度的堆積是肇因於持續的無氧代謝導致的乳酸堆積,進而無可避免地導致乳酸中毒,成為嚴重敗血症症狀之一。因此,病患的血液乳酸量可以作為疾病嚴重程度的警報訊號,以改善廣泛疾病的診斷與治療。乳酸也是運動醫學中一個顯著因子,特別是用來測定運動員的體適能(physical fitness)。血液乳酸量的升高會導致血液pH值降低,為疲勞成因之一,因此運動期間血液乳酸量可作為評價運動訓練狀態及體適能的指標。In clinical diagnosis, the accumulation of lactic acid concentration is caused by continuous anaerobic metabolism, which inevitably leads to lactic acidosis and becomes one of the symptoms of severe sepsis. Therefore, the patient's blood lactate level can be used as a warning signal for the severity of the disease to improve the diagnosis and treatment of a wide range of diseases. Lactate is also a significant factor in sports medicine, especially for measuring the physical fitness of athletes. An increase in blood lactate will lead to a decrease in blood pH, which is one of the causes of fatigue. Therefore, the blood lactate level during exercise can be used as an indicator to evaluate exercise training status and physical fitness.
在食品與發酵工業中也可發現乳酸估計。食物發酵過程會產生乳酸,因此可作為偵測發酵食品例如發酵乳製品、酒、醃肉和魚以及醃製蔬菜中微生物發酵的存在,如此,乳酸可作為食物新鮮度和品質的指標。Lactic acid is also found in the food and fermentation industries. Lactic acid is produced during the food fermentation process and can be used to detect the presence of microbial fermentation in fermented foods such as fermented dairy products, wine, cured meats and fish, and cured vegetables. In this way, lactic acid can be used as an indicator of food freshness and quality.
已經有發展多種用來偵測乳酸量的方法;其中高效液相層析術(HPLC)是最普遍的技術。其他分析方法包含螢光測定法、比色法、化學發光和磁振頻譜法也很常見。然而,這些方法存在一些缺陷,像是耗時的分析以及昂貴的器械設備及訓練有素的人力。為克服前述限制,目前正在開發可攜式及拋棄式生物感測器。通常,生物傳感方法具備簡單直接且快速響應和高特異性、經濟實惠易於使用等優點。理想情況下,可透過生物感測器測定生物體液(例如全血、汗液和唾液)的乳酸濃度;然而,目前市場上的生物感測器僅適用於血液乳酸偵測,需要侵入性的樣本採集方法,如此,不受使用者歡迎也無法用於偵測除了血液以外的樣本。A variety of methods have been developed to detect lactate levels; high performance liquid chromatography (HPLC) is the most common technique. Other analytical methods including fluorescence, colorimetry, chemiluminescence, and magnetic resonance spectroscopy are also common. However, these methods have some drawbacks, such as time-consuming analysis and expensive equipment and trained manpower. To overcome the aforementioned limitations, portable and disposable biosensors are currently being developed. In general, biosensing methods have the advantages of being simple, direct, fast-response, high specificity, economical, and easy to use. Ideally, the lactate concentration of biological fluids (such as whole blood, sweat, and saliva) can be measured by a biosensor; however, the biosensors currently available on the market are only suitable for blood lactate detection, which requires invasive sample collection methods, is not user-friendly, and cannot be used to detect samples other than blood.
以人體汗液為例,其乳酸濃度的範圍較在血液中的乳酸濃度範圍要廣,變化也更大(在某些情況下,運動後汗液乳酸可升高至 80 mM,然而運動時血液中的乳酸量僅升高至 25 mM),導致常規的乳酸測量儀對汗液乳酸(或乳酸鹽)的測量精準度較差。更甚者,目前所有的生物感測器都需要大量的液體體積來操作,而且血液與汗液的pH值之差異也會對血液乳酸偵測儀用於偵測汗液乳酸濃度帶來一定難度。Taking human sweat as an example, the range of lactate concentration is wider than that in blood, and the variation is greater (in some cases, sweat lactate can rise to 80 mM after exercise, while the amount of lactate in blood only rises to 25 mM during exercise), resulting in poor accuracy of conventional lactate meters for sweat lactate (or lactate). Moreover, all current biosensors require a large volume of liquid to operate, and the difference in pH between blood and sweat also makes it difficult for blood lactate detectors to detect sweat lactate concentration.
鑑於上述,現有技術有必要提供一種改良的工具及方法,以非侵入及有效的方式來連續性偵測人類體液的乳酸含量。In view of the above, there is a need in the prior art to provide an improved tool and method for continuously detecting the lactate content in human body fluids in a non-invasive and effective manner.
為了給讀者提供基本的理解,以下提供本揭示內容的簡要發明內容。此發明內容不是本揭示內容的廣泛概述,同時非用來識別本發明的關鍵/必需元件或勾勒本發明的範圍。其唯一目的是以簡化的概念形式呈現本揭示內容的一些概念,以作為呈現於後文中更詳細描述的序言。In order to provide readers with a basic understanding, a brief summary of the present disclosure is provided below. This disclosure is not an extensive overview of the present disclosure, nor is it intended to identify key/essential elements of the present disclosure or to outline the scope of the present disclosure. Its sole purpose is to present some concepts of the present disclosure in a simplified conceptual form as a preface to the more detailed description presented later.
如本文體現及廣泛地描述的,本揭示內容之一態樣是關於一種衍生自野生型序列編號:1之乳酸氧化酶的乳酸氧化酶變異體,其展現出降低的乳酸親和力,卻導致更大的可偵測範圍,其中,所述乳酸氧化酶變異體包含在序列編號:1第95、96或175位置或是前述組合的胺基酸取代。在本揭示內容乳酸氧化酶變異體中,序列編號:1第95位置之丙胺酸(A)被天冬醯胺酸(N)或穀醯胺(Q)取代;序列編號:1第96位置之丙胺酸(A)被半胱胺酸(C)取代;及/或序列編號1第175位置之絲胺酸(S)被半胱胺酸(C)取代。As embodied and broadly described herein, one aspect of the present disclosure is a lactate oxidase variant derived from the wild-type lactate oxidase of SEQ ID NO: 1, which exhibits reduced lactate affinity but results in a greater detectable range, wherein the lactate oxidase variant comprises an amino acid substitution at position 95, 96, or 175 of SEQ ID NO: 1, or a combination thereof. In the lactate oxidase variant of the present disclosure, alanine (A) at position 95 of SEQ ID NO: 1 is substituted with aspartate (N) or glutamine (Q); alanine (A) at position 96 of SEQ ID NO: 1 is substituted with cysteine (C); and/or serine (S) at position 175 of SEQ ID NO: 1 is substituted with cysteine (C).
根據本揭示內容之一實施方式,乳酸氧化酶變異體包含序列編號:1之胺基酸序列,其中該序列第95位置之丙胺酸(A)被天冬醯胺酸(N)取代。According to one embodiment of the present disclosure, the lactate oxidase variant comprises an amino acid sequence of SEQ ID NO: 1, wherein alanine (A) at position 95 of the sequence is substituted by aspartic acid (N).
根據本揭示內容一替選實施方式,乳酸氧化酶變異體包含序列編號:1之胺基酸序列,其中該序列第95位置之丙胺酸(A)被穀醯胺(Q)取代。According to an alternative embodiment of the present disclosure, the lactate oxidase variant comprises an amino acid sequence of SEQ ID NO: 1, wherein alanine (A) at position 95 of the sequence is substituted by glutamine (Q).
根據本揭示內容另一實施方式,該序列編號:1第96位置之丙胺酸(A)被半胱胺酸(C)取代。According to another embodiment of the present disclosure, the alanine (A) at position 96 of SEQ ID NO: 1 is replaced by cysteine (C).
根據本揭示內容又另一實施方式,該序列編號:1第175位置之絲胺酸(S)被半胱胺酸(C)取代。According to yet another embodiment of the present disclosure, the serine (S) at position 175 of SEQ ID NO: 1 is substituted by cysteine (C).
替選地或非必要地,序列編號:1之第175位置之半胱胺酸(C)可被羧甲基化。Alternatively or optionally, the cysteine (C) at position 175 of SEQ ID NO: 1 may be carboxymethylated.
根據本揭示內容優選實施方式,乳酸氧化酶變異體具有序列編號:2、3、4、5或6之胺基酸序列。According to a preferred embodiment of the present disclosure, the lactate oxidase variant has an amino acid sequence of SEQ ID NO: 2, 3, 4, 5 or 6.
在一些實施方式中,本揭示內容乳酸氧化酶變異體對乳酸之結合親和力低於野生型乳酸氧化酶對乳酸之結合親和力。In some embodiments, the present disclosure provides that the lactate oxidase variant has a binding affinity for lactate that is lower than the binding affinity of wild-type lactate oxidase for lactate.
本揭示內容之另一態樣是關於用於偵測及定量液體樣本之乳酸及/或乳酸鹽的方法。所述方法包含步驟(a):將前述乳酸氧化酶變異體與液體樣本接觸;步驟(b):測量上述乳酸氧化酶變異體與液體樣本乳酸之間的反應所產生之電流;以及步驟(c):藉由將步驟(b)測得之電流與具有已知乳酸濃度之控制樣本的電流進行內插或外推,以測定液體樣本之乳酸濃度等。Another aspect of the present disclosure is a method for detecting and quantifying lactic acid and/or lactate in a liquid sample. The method comprises step (a): contacting the aforementioned lactate oxidase variant with a liquid sample; step (b): measuring the current generated by the reaction between the aforementioned lactate oxidase variant and lactic acid in the liquid sample; and step (c): determining the lactic acid concentration of the liquid sample by interpolating or extrapolating the current measured in step (b) with the current of a control sample with a known lactic acid concentration.
根據某些實施方式,液體樣本具有範圍從4至9之pH值。According to some embodiments, the liquid sample has a pH value ranging from 4 to 9.
根據某些實施方式,液體樣本具有介於0至1000 mM之間的鹽度。According to some embodiments, the liquid sample has a salinity between 0 and 1000 mM.
在某些較佳實施方式中,液體樣本為汗液。In certain preferred embodiments, the liquid sample is sweat.
根據本揭示內容某些實施方式,該方法能夠偵測液體樣本內濃度範圍從0至300 mM的乳酸。According to certain embodiments of the present disclosure, the method is capable of detecting lactate in a liquid sample at a concentration ranging from 0 to 300 mM.
在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。After reading the following implementation methods, a person with ordinary knowledge in the technical field to which the present invention belongs can easily understand the basic spirit and other invention purposes of the present invention, as well as the technical means and implementation modes adopted by the present invention.
為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。In order to make the description of the disclosure more detailed and complete, the following provides an illustrative description of the implementation and specific embodiments of the present invention; however, this is not the only form of implementing or using the specific embodiments of the present invention. The implementation covers the features of multiple specific embodiments and the method steps and their sequence for constructing and operating these specific embodiments. However, other specific embodiments can also be used to achieve the same or equal functions and step sequences.
1.1. 定義Definition
為了便於說明,此處統整性地說明本說明書、實施例以及後附的申請專利範圍中所記載的特定術語。除非本文另有定義,本文所有的技術及科學術語與本發明所屬技術領域具有通常知識者習知的術語的意思相同。For the convenience of explanation, the specific terms recorded in this specification, embodiments and the attached patent application are collectively explained here. Unless otherwise defined herein, all technical and scientific terms herein have the same meaning as the terms commonly known to those skilled in the art to which the present invention belongs.
除非上下文另有明確說明,本文所使用的單數形式「一 (a, an)」以及「該 (the)」均包含複數形式。As used herein, the singular forms "a," "an," and "the" include plural forms as well, unless the context clearly indicates otherwise.
雖然用以界定本發明較廣範圍的數值範圍與參數皆是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。Although the numerical ranges and parameters used to define the broader scope of the present invention are approximate, the relevant numerical values in the specific embodiments have been presented as accurately as possible. However, any numerical value inherently inevitably contains standard deviations caused by individual testing methods.
通常,「野生型」一詞是用來描述以自然、非突變(未改變)形式存在的基因或蛋白質。本文使用之「野生型乳酸氧化酶」一詞是指一種乳酸氧化酶蛋白的形式,通常存在於自然界(即,細菌),沒有基因、結構及/或功能性變化。具體地,乳酸氧化酶的野生型形式具有如序列編號:1所示的374個胺基酸的全長天然乳酸氧化酶。Typically, the term "wild-type" is used to describe a gene or protein that exists in its natural, non-mutated (unaltered) form. As used herein, the term "wild-type lactate oxidase" refers to a form of lactate oxidase protein that is commonly found in nature (i.e., bacteria) without genetic, structural and/or functional changes. Specifically, the wild-type form of lactate oxidase has the full-length native lactate oxidase of 374 amino acids as shown in SEQ ID NO: 1.
本文使用的「乳酸氧化酶變異體」旨在涵蓋透過取代衍生自野生型乳酸氧化酶的一或多種乳酸氧化酶多肽形式,取代是指在野生型乳酸氧化酶序列中至少一胺基酸被另一胺基酸替換。「乳酸氧化酶變異體」一詞替選地或非必要地指稱一種乳酸氧化酶形式,其中一或多個殘基經轉譯後修飾(post-translational modification,PTM)及/或化學修飾以增加蛋白質體之功能多樣性。PTM的類型包含磷酸化、甲基化、乙醯化、泛蛋白化、羥化、琥珀醯化、醣基化以及類小泛素化,但不限於此;且例示性化學修飾包含但不限於羧甲基化。在本揭示內容,發生在胺基酸上的修飾是羧甲基化。習知及常用的名稱在本文中可交替使用以指示發生在胜肽序列上的相同突變。根據本揭示內容,舉例來說,在第95位置從丙胺酸(A)取代成天冬醯胺酸(N)可以95A、A95、A95N或Ala95Asp表示。As used herein, "lactate oxidase variants" are intended to encompass one or more lactate oxidase polypeptide forms derived from wild-type lactate oxidase by substitution, where substitution refers to the replacement of at least one amino acid in the wild-type lactate oxidase sequence with another amino acid. The term "lactate oxidase variant" alternatively or optionally refers to a form of lactate oxidase in which one or more residues are post-translational modified (PTM) and/or chemically modified to increase the functional diversity of the proteosome. Types of PTMs include, but are not limited to, phosphorylation, methylation, acetylation, ubiquitination, hydroxylation, succinylation, glycosylation, and ubiquitination; and exemplary chemical modifications include, but are not limited to, carboxymethylation. In the present disclosure, the modification occurring on the amino acid is carboxymethylation. Commonly known and commonly used names are used interchangeably herein to refer to the same mutation occurring in a peptide sequence. For example, a substitution from alanine (A) to aspartate (N) at position 95 may be represented by 95A, A95, A95N, or Ala95Asp according to the present disclosure.
「結合親和力」一詞是指受質(亦即,乳酸鹽及/或乳酸)之單一結合位點與酵素(例如,乳酸氧化酶或其突變變異體)之間非共價交互作用之總和的強度。酵素對受質的親和力通常被認為與米氏常數( K m )有關,該常數描述受質濃度,在該濃度下,酵素的一半活性位點被該受質佔據。若 K m 較小,對受質之結合親和力越強。通常,與野生型酵素相比,其突變形式的結合親和力可能會或不會改變,取決於突變發生的位置。根據本揭示內容,相較於野生型乳酸氧化酶,本發明乳酸氧化酶變異體對乳酸鹽及/或乳酸的結合親和力下降。 The term "binding affinity" refers to the strength of the sum of non-covalent interactions between a single binding site of a substrate (i.e., lactate and/or lactic acid) and an enzyme (e.g., lactate oxidase or a mutant variant thereof). The affinity of an enzyme for a substrate is generally considered to be related to the Michaelis constant ( Km ), which describes the substrate concentration at which half of the active sites of the enzyme are occupied by the substrate. The smaller the Km , the stronger the binding affinity for the substrate. Generally, the binding affinity of a mutant form may or may not be altered compared to the wild-type enzyme, depending on the location at which the mutation occurs. According to the present disclosure, the lactate oxidase variants of the present invention have a decreased binding affinity for lactate and/or lactic acid compared to the wild-type lactate oxidase.
本文所稱「液體樣本」指稱從自然環境或人工產物收集及/或獲得的樣本,以液體的形式可能含有或不含有乳酸鹽及/或乳酸,且該溶劑大多為水。本揭示內容採用的液體樣本可以是具有有機體代謝產物(即,乳酸及/或乳酸鹽)的生物樣本。適用於本揭示內容的生物樣本實例包含哺乳動物的體液,較佳為人類的體液(例如:汗液、尿液、唾液、血液以及組織間液);以及由微生物產生的發酵液(例如:發酵食品及酸敗食物)。液體樣本可包含一或多種物質,包含但不限於礦物質、微量元素、金屬離子和/或重金屬離子、代謝物、排泄物、微塑料、微游泳生物以及微生物。此外,液體樣本具有各種可測量的參數,包含但不限於pH值以及鹽度。The "liquid sample" referred to herein refers to a sample collected and/or obtained from a natural environment or an artificial product, which may or may not contain lactate and/or lactic acid in the form of a liquid, and the solvent is mostly water. The liquid sample used in the present disclosure may be a biological sample with an organism's metabolites (i.e., lactic acid and/or lactate). Examples of biological samples suitable for the present disclosure include mammalian body fluids, preferably human body fluids (e.g., sweat, urine, saliva, blood, and interstitial fluids); and fermented liquids produced by microorganisms (e.g., fermented foods and sour foods). The liquid sample may contain one or more substances, including but not limited to minerals, trace elements, metal ions and/or heavy metal ions, metabolites, excrement, microplastics, microswimmers, and microorganisms. Additionally, liquid samples have various measurable parameters, including but not limited to pH and salinity.
2.2. 具體實施方式Specific implementation methods
本揭示內容至少部分基於發現,比起野生型乳酸氧化酶,某些乳酸氧化酶變異體具有較低的乳酸/乳酸鹽結合親和力,從而能夠以高靈敏度偵測濃縮乳酸而不受到pH值或鹽度的影響。此外,在存在電場的情況下,酵素(即,乳酸氧化酶)及受質(即,乳酸鹽、乳酸或其組合)反應時會產生電流,而本發明意外地發現高濃度的乳酸(例如,> 20 mM)與電流之間存在線性關係,如此所述電流可做為乳酸偵測的指示物。The present disclosure is based, at least in part, on the discovery that certain lactate oxidase variants have lower lactate/lactate binding affinity than wild-type lactate oxidase, thereby being able to detect concentrated lactate with high sensitivity without being affected by pH or salinity. In addition, in the presence of an electric field, the enzyme (i.e., lactate oxidase) and substrate (i.e., lactate, lactate, or a combination thereof) react to generate an electric current, and the present invention surprisingly found that there is a linear relationship between high concentrations of lactate (e.g., >20 mM) and the current, so that the current can be used as an indicator of lactate detection.
2.12.1 乳酸氧化酶變異體Lactate oxidase variants
本揭示內容第一態樣屬於乳酸氧化酶變異體,其包含至少一胺基酸突變,該突變導致對乳酸鹽/乳酸之結合親和力相比於野生型乳酸氧化酶是降低的。所述乳酸氧化酶變異體具有從如序列編號:1闡述之野生型乳酸氧化酶衍生之胺基酸序列,其中在序列編號:1之第95、96及/或175位置有一或多個胺基酸被取代。具體地,序列編號:1第95位置的丙胺酸(A)被天冬醯胺酸(N)或穀醯胺(Q)取代;序列編號:1第96位置的丙胺酸(A)被半胱胺酸(C)取代;及/或序列編號:1第175位置的絲胺酸(S)被半胱胺酸(C)取代。The first aspect of the present disclosure belongs to a lactate oxidase variant, which comprises at least one amino acid mutation, which results in a reduced binding affinity for lactate/lactic acid compared to the wild-type lactate oxidase. The lactate oxidase variant has an amino acid sequence derived from the wild-type lactate oxidase as described in SEQ ID NO: 1, wherein one or more amino acids at positions 95, 96 and/or 175 of SEQ ID NO: 1 are substituted. Specifically, the alanine (A) at position 95 of SEQ ID NO: 1 is substituted by asparagine (N) or glutamine (Q); the alanine (A) at position 96 of SEQ ID NO: 1 is substituted by cysteine (C); and/or the serine (S) at position 175 of SEQ ID NO: 1 is substituted by cysteine (C).
根據本揭示內容之實施方式,本發明乳酸氧化酶可具有與序列編號:1至少99%相同之胺基酸序列,例如與序列編號:1具有99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%及99.9%之序列相似度;較佳地,具有與序列編號:1至少99.2%相同之胺基酸序列;更佳地,具有與序列編號1至少99.8%相同之胺基酸序列,且至少一胺基酸取代發生在序列編號:1的第95、96或175位置,且該胺基酸取代是選自由A95N、A95Q、A96C、S175C及其組合所組成之群組。According to embodiments of the present disclosure, the lactate oxidase of the present invention may have an amino acid sequence that is at least 99% identical to SEQ ID NO: 1, for example, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% and 99.9% sequence similarity to SEQ ID NO: 1; preferably, it has an amino acid sequence that is at least 99.2% identical to SEQ ID NO: 1; more preferably, it has an amino acid sequence that is at least 99.8% identical to SEQ ID NO: 1, and at least one amino acid substitution occurs at position 95, 96 or 175 of SEQ ID NO: 1, and the amino acid substitution is selected from the group consisting of A95N, A95Q, A96C, S175C and combinations thereof.
根據本揭示內容一些實施方式,本發明乳酸氧化酶變異體稱為A95N,可具有與序列編號:1至少99.8%相同的胺基酸序列,其中序列編號:1第95位置的丙胺酸(A)被天冬醯胺酸(N)取代。據此,乳酸氧化酶A95N變異體具有序列編號:2之胺基酸序列。According to some embodiments of the present disclosure, the lactate oxidase variant of the present invention is called A95N, which may have an amino acid sequence that is at least 99.8% identical to SEQ ID NO: 1, wherein the alanine (A) at position 95 of SEQ ID NO: 1 is replaced by aspartic acid (N). Accordingly, the lactate oxidase A95N variant has the amino acid sequence of SEQ ID NO: 2.
根據本揭示內容其他實施方式,本發明名為A95Q的乳酸氧化酶變異體可具有與序列編號:1至少99.8%相同的胺基酸序列,其中序列編號:1第95位置的丙胺酸(A)被穀醯胺(Q)取代。據此,乳酸氧化酶A95Q變異體具有序列編號:3之胺基酸序列。According to other embodiments of the present disclosure, the lactate oxidase variant named A95Q of the present invention may have an amino acid sequence that is at least 99.8% identical to SEQ ID NO: 1, wherein the alanine (A) at position 95 of SEQ ID NO: 1 is substituted with glutamine (Q). Accordingly, the lactate oxidase A95Q variant has the amino acid sequence of SEQ ID NO: 3.
根據本揭示內容其他實施方式,本發明乳酸氧化酶變異體稱為A96C,可具有與序列編號:1至少99.8%相同的胺基酸序列,其中序列編號:1第96位置的丙胺酸(A)被半胱胺酸(C)取代。據此,乳酸氧化酶A96C變異體具有序列編號:4之胺基酸序列。According to other embodiments of the present disclosure, the lactate oxidase variant of the present invention is called A96C, which may have an amino acid sequence that is at least 99.8% identical to SEQ ID NO: 1, wherein the alanine (A) at position 96 of SEQ ID NO: 1 is replaced by cysteine (C). Accordingly, the lactate oxidase A96C variant has the amino acid sequence of SEQ ID NO: 4.
根據本揭示內容又其他實施方式,本發明乳酸氧化酶變異體S175C,可具有與序列編號:1至少99.8%相同之胺基酸序列,其中序列編號:1第175位置的絲胺酸(S)被半胱胺酸(C)取代。據此,乳酸氧化酶S175C變異體具有序列編號:5之胺基酸序列。According to another embodiment of the present disclosure, the lactate oxidase variant S175C of the present invention may have an amino acid sequence that is at least 99.8% identical to SEQ ID NO: 1, wherein the serine (S) at position 175 of SEQ ID NO: 1 is replaced by cysteine (C). Accordingly, the lactate oxidase S175C variant has the amino acid sequence of SEQ ID NO: 5.
可使用本領域習知的遺傳學或化學方法藉由取代或修飾來製備本揭示內容的乳酸氧化酶變異體。遺傳學方法可包含編碼DNA序列之定點誘變(site-specific mutagenesis)、聚合酶連鎖反應(PCR)、基因合成、CRISPR/cas9基因編輯,等等。舉例來說可藉由定序來確保正確的核苷酸改變。天然細菌(例如草綠色氣球菌( Aerococcus viridans))乳酸氧化酶的核苷酸序列可從公開資料庫像是UniProtKB (草綠色氣球菌 ATCC 11563;登錄碼:D4YFm2)取得。野生型乳酸氧化酶的胺基酸序列如序列編號:1所示。 The lactate oxidase variants of the present disclosure can be prepared by substitution or modification using genetic or chemical methods known in the art. Genetic methods may include site-specific mutagenesis, polymerase chain reaction (PCR), gene synthesis, CRISPR/cas9 gene editing, and the like of the coding DNA sequence. For example, sequencing can be used to ensure the correct nucleotide changes. The nucleotide sequence of lactate oxidase from natural bacteria (e.g., Aerococcus viridans ) can be obtained from public databases such as UniProtKB (Aerococcus viridans ATCC 11563; accession code: D4YFm2). The amino acid sequence of wild-type lactate oxidase is shown in sequence number: 1.
可透過例如固態肽合成或是重組生產,來製造本揭示內容乳酸氧化酶變異體。針對重組生產,編碼所述乳酸氧化酶變異體的一或多個多核苷酸各自分離並插入合適的載體中,用於在宿主細胞(多數情況是大腸桿菌( Escherichia coli))中進一步選殖或表現。可使用常規流程輕易地分離及定序此類多核苷酸。本領域具有通常知識者熟知的方法可用於構建含有本發明乳酸氧化酶變異體的編碼序列以及合適的轉錄/轉譯調控訊號的表現載體。這些方法的實例包含但不限於體外重組DNA技術、合成技術以及活體重組/基因重組。表現載體可以是質體、病毒的一部分,或可以是核酸片段。通常,表現載體是一表現卡匣,在其內編碼本發明乳酸氧化酶變異體的多核苷酸被轉殖到與啟動子及/或其他轉錄或轉譯控制元件可操作地關聯,所述啟動子及/或其他轉錄或轉譯控制元件是可操作地與編碼多核苷酸的核酸關聯,前提是該啟動子能夠影響該核酸之轉錄。根據本揭示內容一些實施方式,透過使用pRSET表現載體以及本領域熟知的常規工具來表現和執行對天然乳酸氧化酶的定點誘變。 The lactate oxidase variants disclosed herein can be produced, for example, by solid-state peptide synthesis or recombinant production. For recombinant production, one or more polynucleotides encoding the lactate oxidase variants are each isolated and inserted into a suitable vector for further cloning or expression in a host cell (most often Escherichia coli ). Such polynucleotides can be easily isolated and sequenced using conventional procedures. Methods well known to those of ordinary skill in the art can be used to construct expression vectors containing the coding sequence of the lactate oxidase variants of the present invention and appropriate transcription/translation regulatory signals. Examples of these methods include, but are not limited to, in vitro recombinant DNA technology, synthetic technology, and in vivo recombination/genetic recombination. The expression vector can be a part of a plasmid, a virus, or can be a nucleic acid fragment. Typically, the expression vector is an expression cassette in which the polynucleotide encoding the lactate oxidase variant of the present invention is transferred to a promoter and/or other transcriptional or translational control elements that are operably associated with the nucleic acid encoding the polynucleotide, provided that the promoter is capable of affecting the transcription of the nucleic acid. According to some embodiments of the present disclosure, site-directed mutagenesis of natural lactate oxidase is expressed and performed by using the pRSET expression vector and conventional tools well known in the art.
本發明乳酸氧化酶變異體可替代或非必要地更接受轉譯後修飾(下稱PTM)及/或化學修飾,其中在其殘基上引入額外的官能基。例示性轉譯後修飾包含,但不限於,磷酸化、醣苷化、泛蛋白化、s-亞硝基化(s-nitrosylation)、甲基化、乙醯化、羥化、琥珀醯化以及類小泛素化。例示性化學修飾包含但不限於羧甲基化。可取決於實際需要及期望目的,透過任何本領域熟知的方法及工具來對蛋白執行PTM及/或化學修飾。根據本揭示內容一實施方式,本發明乳酸氧化酶變異體透過與碘乙酸鹽(iodoacetate, IA)或碘乙酸(iodoacetic acid, IAA)反應進行羧甲基化,其中,碘乙酸鹽或碘乙酸與半胱胺酸(C)的硫醇基共價結合,進而產生羧基-甲基。在一具體實施例,藉由與碘乙酸反應,對本揭示內容乳酸氧化酶變異體S175C進行化學修飾,進而產生一經羧甲基化之半胱胺酸殘基。據此,羧甲基化乳酸氧化酶S175C具有序列編號:6的胺基酸序列。The lactate oxidase variants of the present invention may alternatively or optionally be subjected to post-translational modifications (hereinafter referred to as PTMs) and/or chemical modifications, wherein additional functional groups are introduced into their residues. Exemplary post-translational modifications include, but are not limited to, phosphorylation, glycosylation, ubiquitination, s-nitrosylation, methylation, acetylation, hydroxylation, succinylation, and ubiquitination. Exemplary chemical modifications include, but are not limited to, carboxymethylation. PTMs and/or chemical modifications may be performed on proteins by any method and tool known in the art, depending on actual needs and desired purposes. According to an embodiment of the present disclosure, the lactate oxidase variant of the present invention is carboxymethylated by reacting with iodoacetate (IA) or iodoacetic acid (IAA), wherein iodoacetate or iodoacetic acid covalently binds to the thiol group of cysteine (C) to generate a carboxyl-methyl group. In a specific embodiment, the lactate oxidase variant S175C of the present disclosure is chemically modified by reacting with iodoacetic acid to generate a carboxymethylated cysteine residue. Accordingly, the carboxymethylated lactate oxidase S175C has the amino acid sequence of SEQ ID NO: 6.
在特定實施方式中,對野生型乳酸氧化酶進行的胺基酸取代/及修飾會導致酵素(即,乳酸氧化酶)對受質(即,乳酸鹽/乳酸)的結合親和力降低至原有的50%,例如至少30%、25%、20%、10%、7%、5%、2%或甚至1%。本發明乳酸氧化酶變異體對其受質的結合親和力可透過各種本領域習知的方式來測量測定,例如比色測定法,其中各乳酸氧化酶變異體的動力學參數(如米氏方程式(Michaelis–Menten equation)的 K m 及 V max )可藉由遵循本領域已知的完善流程來測定。 In certain embodiments, the amino acid substitutions and modifications made to the wild-type lactate oxidase result in a reduction in the binding affinity of the enzyme (i.e., lactate oxidase) to a substrate (i.e., lactate/lactic acid) to 50%, such as at least 30%, 25%, 20%, 10%, 7%, 5%, 2% or even 1%. The binding affinity of the lactate oxidase variants of the present invention to their substrates can be measured by various methods known in the art, such as colorimetric assays, wherein the kinetic parameters of each lactate oxidase variant (e.g., Km and Vmax of the Michaelis-Menten equation) can be determined by following well-established procedures known in the art.
2.22.2 用於偵測並定量乳酸的方法Method for detecting and quantifying lactate
本揭示內容之另一態樣是關於用於偵測及定量液體樣本之乳酸及/或乳酸鹽的方法。所述方法至少包含以下步驟: (a) 使該液體樣本與前一段闡述之本發明乳酸氧化酶變異體接觸; (b) 測量由本發明乳酸氧化酶變異體與液體樣本內乳酸之間反應所產生之電流;以及 (c) 藉由對具有一已知乳酸濃度的控制樣本的電流內插或外推步驟(b)測得之電流,測定該液體樣本的乳酸濃度。 Another aspect of the present disclosure is a method for detecting and quantifying lactic acid and/or lactate in a liquid sample. The method comprises at least the following steps: (a) contacting the liquid sample with the lactate oxidase variant of the present invention as described in the previous paragraph; (b) measuring the current generated by the reaction between the lactate oxidase variant of the present invention and lactic acid in the liquid sample; and (c) determining the lactate concentration of the liquid sample by interpolating or extrapolating the current measured in step (b) with the current of a control sample with a known lactate concentration.
根據本揭示內容,可以借助於電極系統測量在步驟(a)本發明乳酸氧化酶變異體及液體樣本之乳酸之間反應所產生的電流。考慮到這點,在開始本發明方法之前,最好是透過測量乳酸氧化酶與各種已知濃度乳酸之間產生的電流,來建構乳酸偵測的一標準校準曲線。電極系統其結構本身通常包含工作電極及反電極(counter electrode),非必要地還有參考電極。適用於構建工作電極及/或反電極的例示性材料包含但不限於:碳(例如,熱裂解碳、石墨、石墨烯、玻璃石墨、碳糊、全氟碳(perfluorocarbon,PFC)或類似物)以及金屬(例如:鉑、金、銀、鎳、鈀或類似物)。此外,例示性參考電極可以是飽和甘汞電極或是銀/氯化銀電極。可透過本領域熟知的方法,例如光刻汽相沉積、濺射或印刷(例如:網版印刷、凹版印刷、快乾印刷等)以前述列舉之任何指定材料製作電極系統。在一具體實施例中,本揭示內容的電極系統是以石墨和石墨烯製成的網版印刷碳電極(screen-printed carbon electrode,下稱SPCE)。According to the present disclosure, the current generated by the reaction between the lactate oxidase variant of the present invention and the lactic acid in the liquid sample in step (a) can be measured by means of an electrode system. In view of this, before starting the method of the present invention, it is best to construct a standard calibration curve for lactate detection by measuring the current generated between lactate oxidase and various known concentrations of lactic acid. The structure of the electrode system itself usually includes a working electrode and a counter electrode, and optionally a reference electrode. Exemplary materials suitable for constructing a working electrode and/or a counter electrode include, but are not limited to: carbon (e.g., pyrolytic carbon, graphite, graphene, glass graphite, carbon paste, perfluorocarbon (PFC) or the like) and metal (e.g., platinum, gold, silver, nickel, palladium or the like). In addition, an exemplary reference electrode may be a saturated calomel electrode or a silver/silver chloride electrode. The electrode system may be made with any of the above-listed specified materials by methods well known in the art, such as photolithography vapor deposition, sputtering or printing (e.g., screen printing, gravure printing, quick-dry printing, etc.). In a specific embodiment, the electrode system of the present disclosure is a screen-printed carbon electrode (hereinafter referred to as SPCE) made of graphite and graphene.
為偵測乳酸之目的,本發明乳酸氧化酶變異體在有氧化還原介質存在下,沉積在前述電極系統(例如SPCE)表面上。根據具體實施方式,以指定比例混合本發明乳酸氧化酶變異體以及氧化還原介質,以形成一混合物,接著透過電沉積或滴落塗佈(drop-casting)固定在SPCE的表面上,從而製成適用於本發明方法的乳酸感測器。For the purpose of detecting lactic acid, the lactate oxidase variant of the present invention is deposited on the surface of the aforementioned electrode system (e.g., SPCE) in the presence of a redox medium. According to a specific embodiment, the lactate oxidase variant of the present invention and the redox medium are mixed in a specified ratio to form a mixture, which is then fixed on the surface of the SPCE by electrodeposition or drop-casting, thereby producing a lactate sensor suitable for the method of the present invention.
適用於本發明的氧化還原介質實例包含但不限於,聚(苯胺)–聚(丙烯酸酯)(poly(aniline)–poly(acrylate))、聚(苯胺)–聚(乙烯磺酸)(poly(aniline)–poly(vinyl sulfonate))、聚(吡咯)(poly(pyrrole))、聚(吡咯)–聚(乙烯磺酸)(poly(pyrrole)–poly(vinyl sulfonate))、聚(乙烯吡咯啶酮)(poly(vinylpyrrolidone))、聚(1-乙烯咪唑)(poly(1-vinylimidazole,PVIm))、鐵氰化物鹽類、亞鐵氰化物鹽類、鈷酞青(cobalt phthalocyanine)、羥甲鐵莘(hydroxymethyl ferrocene)、鋨(Os)複合物、氯化[7-(二甲胺基)-4-硝基吩噻嗪-3-亞基]-二甲基銨([7-(dimethylamino)-4-nitrophenothiazin-3-ylidene]-dimethylazanium chloride)、苯并[a]酚㗁𠯤-9-亞基(二甲基)銨(benzo[a]phenoxazin-9-ylidene(dimethyl)azanium)、四硫富烯(tetrathiafulvalene)以及其共聚物或組合。在具體實施例中,氧化還原介質為聚(1-乙烯咪唑)及鋨複合體的共聚物(PVImQOs);在其他具體實施例中,氧化還原介質為鐵氰化鉀(potassium ferricyanide,K 3[Fe(CN) 6])。 Examples of redox mediators suitable for use in the present invention include, but are not limited to, poly(aniline)-poly(acrylate), poly(aniline)-poly(vinyl sulfonate), poly(pyrrole), poly(pyrrole)-poly(vinyl sulfonate), poly(vinylpyrrolidone), poly(1-vinylimidazole, PVIm), ferricyanide salts, ferrocyanide salts, cobalt phthalocyanine, hydroxymethyl ferrocyanide, ferrocene), zirconium (Os) complex, [7-(dimethylamino)-4-nitrophenothiazin-3-ylidene]-dimethylazanium chloride, benzo[a]phenoxazin-9-ylidene(dimethyl)azanium, tetrathiafulvalene, and copolymers or combinations thereof. In a specific embodiment, the redox medium is a copolymer of poly(1-vinylimidazole) and a zirconium complex (PVImQOs); in other specific embodiments, the redox medium is potassium ferricyanide (K 3 [Fe(CN) 6 ]).
為建立校準曲線,具有已知濃度乳酸或乳酸鹽的控制樣本可與施加有固定電位的乳酸感測器接觸,使得由固定在電極上的本發明乳酸氧化酶變異體與乳酸之間電化學反應而產生的電流可被任何本領域的習知手段偵測,特別是透過電化學分析儀來偵測。據此,可基於測得的電流並相應於已知乳酸濃度,即可建立標準校準曲線。在本揭示內容一些實施方式中,已知乳酸濃度的範圍介於約0至300 mM;舉例來說,0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、4、5、6、7、8、9、9.9、10、14.8、19.6、20、29.1、30、38.5、40、47.6、50、56.6、60、65.4、70、74.1、80、82.6、90、90.9、100、110、120、130、130.4、140、150、160、166.7、170、180、190、200、210、220、230、240、250、259.3、260、270、280、290或300 mM。在一具體實施例,以0.2、0.5、1、2、5、10、15、20、30、38.5、47.6、56.6、65.4、74.1、82.6、90.9、130.4以及 166.7 mM之乳酸濃度來建構校準曲線。在其他具體實施例中,以0.2、0.5、1、2、5、9.9、19.6、29.1、47.6、90.9、130.4、166.7、200以及259.3 mM之乳酸濃度來建構校準曲線。在又其他具體實施例中,以0.2、0.4、0.6、0.8、1、1.5、2、2.5、3、4、5、6、7、8以及10 mM之乳酸濃度來建構校準曲線。在又其他具體實施例中,以0、5、10、20、30、40、50、60、70、80、90、100、120以及200 mM之乳酸濃度來建構校準曲線。根據本揭示內容的實施方式,控制樣本是一人類汗液的擬真物;較佳地用在本發明方法的控制樣本是根據國際標準調製的人工汗液。替選地或非必要地,本發明方法採用的控制樣本具體模仿人類體液的pH值、滲透壓及離子濃度;優選控制樣本是磷酸鹽緩衝液。To establish a calibration curve, a control sample with a known concentration of lactic acid or lactate salt can be brought into contact with a lactate sensor to which a fixed potential is applied, so that the current generated by the electrochemical reaction between the lactate oxidase variant of the present invention fixed on the electrode and lactic acid can be detected by any means known in the art, in particular, by an electrochemical analyzer. Accordingly, a standard calibration curve can be established based on the measured current and corresponding to the known lactic acid concentration. In some embodiments of the present disclosure, the known lactic acid concentration ranges from about 0 to 300. mM; for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 9.9, 10, 14.8, 19.6, 20, 29.1, 30, 38.5, 40, 47.6, 50, 56.6, 60, 65. 4, 70, 74.1, 80, 82.6, 90, 90.9, 100, 110, 120, 130, 130.4, 140, 150, 160, 166.7, 170, 180, 190, 200, 210, 220, 230, 240, 250, 259.3, 260, 270, 280, 290 or 300 mM. In a specific embodiment, the calibration curve is constructed with lactate concentrations of 0.2, 0.5, 1, 2, 5, 10, 15, 20, 30, 38.5, 47.6, 56.6, 65.4, 74.1, 82.6, 90.9, 130.4 and 166.7 mM. In other embodiments, the calibration curve is constructed with lactate concentrations of 0.2, 0.5, 1, 2, 5, 9.9, 19.6, 29.1, 47.6, 90.9, 130.4, 166.7, 200, and 259.3 mM. In still other embodiments, the calibration curve is constructed with lactate concentrations of 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, and 10 mM. In still other embodiments, the calibration curve is constructed with lactate concentrations of 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, and 200 mM. According to the implementation mode of the present disclosure, the control sample is a simulation of human sweat; preferably, the control sample used in the method of the present invention is artificial sweat prepared according to international standards. Alternatively or optionally, the control sample used in the method of the present invention specifically simulates the pH value, osmotic pressure and ion concentration of human body fluids; preferably, the control sample is a phosphate buffer.
在本發明方法的步驟(a),液體樣本(例如,人類汗液、緩衝液等)與固定在電極系統上的本發明乳酸氧化酶變異體接觸至少5、10、20或 60秒,只要該時間足以使酵素與受質之間的反應產生電化學電流即可。接著,在步驟(b),可透過本領域習知的任何方式測量及測定電流,像是透過前面提到的電化學分析儀。In step (a) of the method of the present invention, a liquid sample (e.g., human sweat, buffer, etc.) is contacted with the lactate oxidase variant of the present invention immobilized on the electrode system for at least 5, 10, 20 or 60 seconds, as long as the time is sufficient for the reaction between the enzyme and the substrate to generate an electrochemical current. Then, in step (b), the current can be measured and determined by any means known in the art, such as by the electrochemical analyzer mentioned above.
根據本揭示內容一些實施方式,液體樣本具有介於4至9之間的pH值;舉例來說,是4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、或9的pH值。在一具體實施例中,液體樣本具有5.0、6.0或7.0的pH值。根據本揭示內容替選實施方式,液體樣本具有0至1000 mM的鹽度;舉例來說,0、100、200、300、400、500、600、700、800、900或1000 mM的鹽度。在其他具體實施例中,液體樣本的鹽度為0、100、200、300、400、500、600、700或800 mM。適合用於本發明的液體樣本可源自於自然環境(例如動物體)或人造產品(例如食品)。適用於本發明方法的液體樣本實施例包含但不限於,液體、尿液、唾液、血液、組織間液以及由微生物產生的發酵液。在具體實施例中,液體樣本為汗液。According to some embodiments of the present disclosure, the liquid sample has a pH value between 4 and 9; for example, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, or 9. In one embodiment, the liquid sample has a pH of 5.0, 6.0 or 7.0. According to an alternative embodiment of the present disclosure, the liquid sample has a salinity of 0 to 1000 mM; for example, 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 mM. In other embodiments, the salinity of the liquid sample is 0, 100, 200, 300, 400, 500, 600, 700 or 800 mM. Liquid samples suitable for use in the present invention can be derived from the natural environment (e.g., an animal body) or a man-made product (e.g., a food). Examples of liquid samples suitable for the method of the present invention include, but are not limited to, liquid, urine, saliva, blood, interstitial fluid, and fermentation fluid produced by microorganisms. In a specific embodiment, the liquid sample is sweat.
在本方法的最後步驟中,亦即,步驟(c),可透過內插法或外推法從校準曲線測得液體樣本的乳酸濃度。具體,將步驟(b)測得的電流代入在如上述步驟(a)之前基於控制樣本的已知乳酸濃度建構的校準曲線中,從而獲得液體樣本的乳酸濃度。In the last step of the method, i.e., step (c), the lactic acid concentration of the liquid sample can be measured from the calibration curve by interpolation or extrapolation. Specifically, the current measured in step (b) is substituted into the calibration curve constructed based on the known lactic acid concentration of the control sample before step (a) to obtain the lactic acid concentration of the liquid sample.
綜上,本發明方法包含至少前述的步驟(a)至(c),其中本發明方法能夠檢測任何具有微量或大量乳酸的液體樣本中的乳酸。根據本揭示內容,本發明方法能夠偵測的乳酸範圍從0至300 mM;舉例來說,範從0至280 mM、從0至260 mM、從0至250mM、、從0至200 mM、從0至150 mM、從0至130 mM、從0至120 mM、從0至110 mM、從0至100 mM、從 0.2至5 mM、從 0.2至10 mM、從0.2至166 mM、從 0.2至180 mM、從0.2至260 mM、從0.5至90 mM、從0.5至100 mM、從0.5至110 mM、從0.5至120 mM或從5至100 mM。在某些優選實施例,本發明能夠偵測液體樣本中濃度超過100 mM之乳酸。In summary, the method of the present invention comprises at least the aforementioned steps (a) to (c), wherein the method of the present invention is capable of detecting lactic acid in any liquid sample having a trace amount or a large amount of lactic acid. According to the present disclosure, the method of the present invention can detect lactate in a range from 0 to 300 mM; for example, from 0 to 280 mM, from 0 to 260 mM, from 0 to 250 mM, from 0 to 200 mM, from 0 to 150 mM, from 0 to 130 mM, from 0 to 120 mM, from 0 to 110 mM, from 0 to 100 mM, from 0.2 to 5 mM, from 0.2 to 10 mM, from 0.2 to 166 mM, from 0.2 to 180 mM, from 0.2 to 260 mM, from 0.5 to 90 mM, from 0.5 to 100 mM, from 0.5 to 110 mM, from 0.5 to 120 mM or from 5 to 100 mM. In certain preferred embodiments, the present invention is capable of detecting lactic acid at a concentration exceeding 100 mM in a liquid sample.
藉由前述特徵,本揭示內容方法可偵測並定量乳酸濃度,特別是針對那些在液體環境中,無法透過常規檢測方法測得的高量乳酸。此外,本揭示內容方法能夠檢測含有多種物質的水性樣本中的乳酸,因此可應用於多樣的液體來源。By virtue of the above characteristics, the disclosed method can detect and quantify lactic acid concentration, especially for high amounts of lactic acid in liquid environments that cannot be detected by conventional detection methods. In addition, the disclosed method can detect lactic acid in aqueous samples containing a variety of substances, and thus can be applied to a variety of liquid sources.
實施例Embodiment
材料與方法Materials and methods
基因合成及突變誘發Gene synthesis and mutation induction
以分別表現野生型及突變乳酸氧化酶的表現載體對大腸桿菌( Escherichia coliBL21 (DE3))進行轉形。基於從資料庫UniProtKB檢索到的草綠色氣球菌( Aerococcus viridans)(美國典型培養物保藏中心(American Type Culture Collection, ATCC) 編號11563 菌株(登錄號:D4YFm2)的野生型序列選殖乳酸氧化酶基因,其中,野生型序列是插入表現載體pRSET的多選殖位點,且根據大腸桿菌優先使用的密碼子。使用市售的突變誘發套組(Quikchange, Agilent, US)及其提供的常規流程,以列於表1的引子對進行定點誘變。以DNA分析儀(型號:3730XL;供應商:Thermo Fisher Scientific, USA)確認質體序列。 Escherichia coli BL21 (DE3) was transformed with expression vectors expressing wild-type and mutant lactate oxidase, respectively. The lactate oxidase gene was cloned based on the wild-type sequence of Aerococcus viridans (American Type Culture Collection, ATCC) strain No. 11563 (Accession No.: D4YFm2) retrieved from the database UniProtKB, wherein the wild-type sequence was inserted into the multiple cloning site of the expression vector pRSET and the codons preferentially used by Escherichia coli were used. Site-directed mutagenesis was performed using a commercially available mutation induction kit (Quikchange, Agilent, US) and the routine protocol provided therein with the primer pairs listed in Table 1. The plasmid sequence was confirmed using a DNA analyzer (Model: 3730XL; Supplier: Thermo Fisher Scientific, USA).
表1:引子序列
野生型及本發明突變乳酸氧化酶之製備Preparation of wild-type and mutant lactate oxidase of the present invention
以分別含有野生型及乳酸氧化酶變種的質體轉形 E. coliBL21 (下稱DE3),被轉形的DE3接種至含有胺苄青黴素的LB培養液,並在37°C的振盪培養箱(250 rpm)中培養16至20小時。取出1%的細菌培養物並將其接種至主要培養基:含有100 µg/mL之胺苄青黴素的500 毫升ZYP-5052培養基(0.5%甘油、0.05%葡萄糖、0.2%乳糖、50 mM的KH 2PO 4、25 mM的(NH 4) 2SO 4、50 mM的Na 2HPO 4以及1 mM的MgSO 4)。接著在37°C 以振盪培養該培養基8小時。離心(4°C,5000 g)20分鐘移除上清液,收集細胞沉澱物並儲存在-20°C環境中。 E. coli BL21 (hereinafter referred to as DE3) was transformed with plasmids containing wild-type and lactate oxidase mutants, respectively, and the transformed DE3 was inoculated into LB medium containing ampicillin and cultured in a shaking incubator (250 rpm) at 37°C for 16 to 20 hours. 1% of the bacterial culture was removed and inoculated into the main medium: 500 mL ZYP-5052 medium (0.5% glycerol, 0.05% glucose, 0.2% lactose, 50 mM KH 2 PO 4 , 25 mM (NH 4 ) 2 SO 4 , 50 mM Na 2 HPO 4 and 1 mM MgSO 4 ) containing 100 µg/mL ampicillin. The culture medium was then incubated with shaking at 37°C for 8 hours. The supernatant was removed by centrifugation (4°C, 5000 g) for 20 minutes, and the cell pellet was collected and stored at -20°C.
純化野生型及本發明突變乳酸氧化酶Purification of wild-type and mutant lactate oxidase of the present invention
將經野生型或突變乳酸氧化酶轉形的 E coli細胞重新懸浮至50 mL的磷酸鉀緩衝液(50 mM)(PPB,pH 7.0),該緩衝液含有500 mM之NaCl及20 mM之咪唑,並經均質機(NanoLyzer)處理。在4°C,以10,000 g離心所獲得的細胞液體1小時,並收集上清液。所收集來的上清液,含有重組組胺酸標籤(His-tag)蛋白作為粗細胞萃取物,透過鎳親和管柱及蛋白純化套組(供應商:ÄKTA start, Cytiva)進行純化。以五倍體積之緩衝液A(pH 7.0,20 mM之咪唑,500 mM的NaCl及50 mM之PPB)洗脫該管柱,將粗細胞萃取物裝填至該管柱中,再以緩衝液A洗滌(3-倍體積),接著以20倍體積的4至100%緩衝液B(pH7.0,500 mM 咪唑,500 mM之NaCl以及 50 mM PPB)洗脫,最後收集共20個分率。經SDS-PAGE分析,使用透析膜(10 kDa)對含有目標蛋白的分率進行透析及濃縮。經50 mM之Tri-HCl溶液(pH 7.0)取代之後,凍乾所純化的酵素溶液並儲存於-20°C。 E coli cells transformed with wild-type or mutant lactate oxidase were resuspended in 50 mL of potassium phosphate buffer (50 mM) (PPB, pH 7.0) containing 500 mM NaCl and 20 mM imidazole and treated with a homogenizer (NanoLyzer). The obtained cell fluid was centrifuged at 10,000 g for 1 hour at 4°C and the supernatant was collected. The collected supernatant, containing recombinant histidine-tagged (His-tag) protein, was purified as a crude cell extract using a nickel affinity column and a protein purification kit (supplier: ÄKTA start, Cytiva). The column was eluted with five volumes of buffer A (pH 7.0, 20 mM imidazole, 500 mM NaCl and 50 mM PPB), the crude cell extract was loaded into the column, washed with buffer A (3 volumes), and then eluted with 20 volumes of 4 to 100% buffer B (pH 7.0, 500 mM imidazole, 500 mM NaCl and 50 mM PPB), and finally 20 fractions were collected. The fractions containing the target protein were dialyzed and concentrated using a dialysis membrane (10 kDa) after SDS-PAGE analysis. After replacement with 50 mM Tri-HCl solution (pH 7.0), the purified enzyme solution was freeze-dried and stored at -20°C.
突變乳酸氧化酶的羧甲基化Carboxylmethylation of mutant lactate oxidase
在37°C,純化乳酸氧化酶變異體溶液 (80 μL或3.5 U)與0.1 M的碘乙酸(IAA)(20 μL)混合60分鐘。Purified lactate oxidase variant solution (80 μL or 3.5 U) was mixed with 0.1 M iodoacetic acid (IAA) (20 μL) at 37°C for 60 min.
酵素測定Enzyme assay
測定蛋白質濃度Determination of protein concentration
將分析物(20 μL)與200 μL之蛋白染劑(Bradford 試劑)混合5分鐘以形成一混合物,並測量該混合物在595 nm波長之O.D.值。基於根據0.05至0.3 mg/mL之牛血清蛋白(BSA)溶液及其相應O.D.值所建構的校準曲線來測定蛋白質濃度。The analyte (20 μL) was mixed with 200 μL of protein stain (Bradford reagent) for 5 minutes to form a mixture, and the O.D. value of the mixture was measured at a wavelength of 595 nm. The protein concentration was determined based on a calibration curve constructed from 0.05 to 0.3 mg/mL bovine serum albumin (BSA) solutions and their corresponding O.D. values.
蛋白活性測定Protein activity assay
1. 乳酸氧化活性1. Lactic acid oxidation activity
將稀釋酵素以每孔50 μL添加至微孔盤,接著添加混有0.25 mg/mL之3, 3', 5, 5'-四甲基聯苯胺(3, 3', 5, 5'-tetramethylbenzidine, TMB)以及5 U/mL 山葵過氧化酶(horseradish peroxidase, HRP)及50 μL之10 mM乳酸至每孔,使混合物在30°C透過間歇振盪五分鐘進行反應。接著加入50 μL的1 M HCl阻斷反應,莫耳衰減係數設定為59 cm
-1·mmol
-1,在450 nm光波長下測定溶液吸光值(O.D.)。以下列方程式計算乳酸氧化酶在30°C,pH 7.0的活性(即,1U):
活性 (U/mL) = [Δ
O.D.(
OD 測試−
OD 空白) ×
Vt× df ] / (ε×
t×
l×
Vs),
其中
Vt是總體積,df是稀釋率,ε為體積莫耳衰減係數,
t為反應時間,
l是光徑長度(cm)以及
Vs為酵素體積。
50 μL of the diluted enzyme was added to each well of the microtiter plate, followed by a mixture of 0.25 mg/
2. 去氫酶活性2. Dehydrogenase activity
在磷酸鉀緩衝液(PPB,20 mM, pH 7.0)中混合啡𠯤甲基硫酸(phenazine methosulfate,PMS, 0.5 mM)與2,6-二氯靛酚(2,6-dichlorophenol-indophenol (DCIP),1.2 mM)混合以產生反應試劑。將稀釋酵素(50 μL 溶於50 mM PPB, pH 7.0)以每孔50 μL添加至微孔盤,將所述反應試劑(50 μL)及10 mM的乳酸(50 μL)依序加入各孔,接著在30°C下間歇振盪該微孔盤五分鐘。將莫耳衰減係數設定為16.3 cm -1·mmol -1,在波長600 nm下量測測定每孔的吸光值(O.D.)。以下列方程式計算乳酸去氫酶(即,1 U)在30°C,pH 7.0 的活性: 活性 (U/mL) = [Δ O.D.( OD 測試− OD 空白) × Vt× df ] / (ε× t× l× Vs), 其中 Vt為總體積,df是稀釋率,ε為體積莫耳衰減係數, t為反應時間, l是光徑長度(cm),而 Vs為酵素體積。 Phenazine methosulfate (PMS, 0.5 mM) and 2,6-dichlorophenol-indophenol (DCIP, 1.2 mM) were mixed in potassium phosphate buffer (PPB, 20 mM, pH 7.0) to produce a reaction reagent. Diluted enzyme (50 μL dissolved in 50 mM PPB, pH 7.0) was added to the microplate at 50 μL per well, and the reaction reagent (50 μL) and 10 mM lactic acid (50 μL) were added to each well in sequence, followed by intermittent shaking of the microplate at 30°C for five minutes. The molar attenuation factor was set to 16.3 cm -1 ·mmol -1 , and the absorbance (OD) of each well was measured at a wavelength of 600 nm. The activity of lactate dehydrogenase (i.e., 1 U) at 30°C, pH 7.0 was calculated using the following equation: Activity (U/mL) = [Δ OD ( ODtest − ODblank ) × Vt × df ] / (ε× t × l × Vs ), where Vt is the total volume, df is the dilution rate , ε is the volume molar attenuation coefficient, t is the reaction time, l is the optical pathlength (cm), and Vs is the enzyme volume.
3. 結合親和力3. Binding affinity
藉由不同濃度之乳酸(0.1至200 mM的氧化酶;0.1至900 mM的去氫酶)與分別在pH 5.0或pH 7.0的本發明乳酸氧化酶變異體與野生型乳酸氧化酶各自反應,從而測定野生型或突變乳酸氧化酶的酵素動力學參數 K m 、 K cat 以及 V max ,從而分別基於時間(即,反應間隔)與反應間隔內每3秒檢測的450或600 nm波長處的吸光值(O.D.)的線性圖的斜率各別測定其反應速率。透過在米氏方程式下的乳酸濃度(取x-軸)與反應速率(取y-軸)之間繪製的校準曲線獲得 K m 、 K cat 以及 V max 值。 By reacting the lactate oxidase variant of the present invention and the wild-type lactate oxidase at pH 5.0 or pH 7.0 with different concentrations of lactate (0.1 to 200 mM oxidase; 0.1 to 900 mM dehydrogenase), the enzyme kinetic parameters K m , K cat and V max of the wild-type or mutant lactate oxidase were determined, and the reaction rate was determined based on the slope of the linear graph of the time (i.e., reaction interval) and the absorbance (OD) at a wavelength of 450 or 600 nm detected every 3 seconds during the reaction interval. The K m , K cat and V max values were obtained by plotting a calibration curve between lactate concentration (on the x-axis) and reaction rate (on the y-axis) under the Michaelis - Menten equation .
帶有修飾電極之乳酸感測器製備Preparation of lactate sensor with modified electrodes
以網版印刷的碳電極(下稱SPCE,供應商:TE100,Zensor) 作為三電極系統來執行循環伏安法(cyclic voltammetry,CV),其中,本發明酵素透過如前述的電沉積或滴落塗佈固定在工作電極的表面上。 Cyclic voltammetry (CV) was performed using a screen-printed carbon electrode (hereinafter referred to as SPCE, supplier: TE100, Zensor) as a three-electrode system, wherein the enzyme of the present invention was fixed on the surface of the working electrode by electrodeposition or drip coating as described above.
電沉積Electrodeposition
以ddH 2O洗滌SPCE外表面,接著以20 μL的PVImQOs (10 mg/mL)與100 μL之酵素溶液(4U)混合物覆蓋,無論是野生型乳酸氧化酶或本發明乳酸氧化酶變異體(即,A95N、A95Q、A96C、S175C或修飾S175C)。在37°C下以-1.0V至0.0V的預設電位和預設的掃描速率200 mV/s對SPCE進行循環伏安伏法50個循環,從而達成表面改質。將改質的SPCE置於PPB溶液(pH 5.0, 100 mM)中,以介於-300 mV至600 mV之間的第二預設電位以及預設掃描速率60 mV/s再次進行循環伏安法20個循環,藉以移除殘餘PVImQOs。室溫乾燥之後,將含有1%之聚葡萄胺糖及0.075%之京尼平(genipin)的4 μL保護劑進一步加至改質SPCE上。 The outer surface of SPCE was washed with ddH 2 O and then coated with a mixture of 20 μL of PVImQOs (10 mg/mL) and 100 μL of enzyme solution (4U), either wild-type lactate oxidase or lactate oxidase variants of the present invention (i.e., A95N, A95Q, A96C, S175C or modified S175C). Surface modification was achieved by cyclic voltammetry of SPCE at 37°C with a preset potential of -1.0 V to 0.0 V and a preset scan rate of 200 mV/s for 50 cycles. The modified SPCE was placed in PPB solution (pH 5.0, 100 mM) and cyclic voltammetry was performed again for 20 cycles at a second preset potential between -300 mV and 600 mV and a preset scan rate of 60 mV/s to remove residual PVImQOs. After drying at room temperature, 4 μL of protective agent containing 1% polyglucosamine and 0.075% genipin was further added to the modified SPCE.
滴落塗佈方法i. 將酵素溶液(1至8 U/μL)、鐵氰化鉀(K 3[Fe(CN) 6],25至50 mM)及 0.1%的Triton X-100之混合溶液(1 μL)滴加並覆蓋電極表面,並在室溫下乾燥。 ii. 替選地,5 μL的PVImQOs (10 毫克/毫升)及2.5 μL 的酵素溶液分別且依序地滴落沉積至SPCE的電極區域上。4°C乾燥之後, 將含有1%之聚葡萄胺糖及0.075%之京尼平的保護劑(4 μL)進一步加至SPCE之表面。乾燥改質SPCE並存放於室溫。 Drip coating method i. A mixed solution (1 μL) of enzyme solution (1 to 8 U/μL), potassium ferrocyanide (K 3 [Fe(CN) 6 ], 25 to 50 mM) and 0.1% Triton X-100 was dripped onto the electrode surface and dried at room temperature. ii. Alternatively, 5 μL of PVImQOs (10 mg/mL) and 2.5 μL of enzyme solution were dripped onto the electrode area of SPCE separately and sequentially. After drying at 4°C, a protective agent (4 μL) containing 1% polyglucosamine and 0.075% genipin was further added to the surface of SPCE. The modified SPCE was dried and stored at room temperature.
電化學評估Electrochemical evaluation
SPCE與帶有ECP100 (供應商:Zensor)電纜連接器及CS100電極升降架的電化學分析儀(ACIP100)連結。藉由內建ACIP100軟體紀錄及分析伏安圖。The SPCE is connected to an electrochemical analyzer (ACIP100) with an ECP100 (supplier: Zensor) cable connector and a CS100 electrode lift. The voltammogram is recorded and analyzed using the built-in ACIP100 software.
乳酸偵測Lactate detection
樣本製備Sample preparation
根據國際標準ISO 3160-2的處方調配人工汗液,並透過調整其中的氫氧化鈉的含量將pH值設成5、6或7。可藉由調整單鹽基與二鹽基的磷酸鉀(取自供應商)的量來製備本發明使用的磷酸鉀緩衝液(0.1 M)以及其pH值。Artificial sweat was prepared according to the recipe of international standard ISO 3160-2 and the pH value was set to 5, 6 or 7 by adjusting the content of sodium hydroxide. The potassium phosphate buffer (0.1 M) used in the present invention was prepared by adjusting the amount of monobasic and dibasic potassium phosphate (obtained from the supplier) and its pH value.
建立校準曲線Create a calibration curve
不同濃度的乳酸溶液(即,人工汗液或磷酸鹽緩衝液的0、0.2、0.4、0.5、0.6、0.8、1、1.5 2、2.5、3、4、5、6、7、8、9.9、10、14.8、19.6、20. 29.1、30、38.5、40、47.6、50、56.6、60、65.4、70、74.1、80、82.6、90、90.9、100、120、130.4、166.7、200、或259.3 mM之乳酸)分別應用至已固定有酵素的乳酸感測器上,並測量固定電位300或400 mV下電極之間產生的電流。紀錄空白樣本(即,0 mM之乳酸)及酵素(即,本發明突變乳酸氧化酶)之間產生的反應在第60秒的電流值為背景值,接著分別添加含有所述乳酸濃度的緩衝液溶液至乳酸感測器。每個反應持續約20至60秒,並在第5或10秒時紀錄各反應的電流,從而建立電流 vs.乳酸濃度的校準曲線。Lactic acid solutions of different concentrations (i.e., 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9.9, 10, 14.8, 19.6, 20. 29.1, 30, 38.5, 40, 47.6, 50, 56.6, 60, 65.4, 70, 74.1, 80, 82.6, 90, 90.9, 100, 120, 130.4, 166.7, 200, or 259.3 mM lactate in artificial sweat or phosphate buffer) were applied to the enzyme-immobilized lactate sensor, and the current generated between the electrodes at a fixed potential of 300 or 400 mV was measured. The current value of the reaction between the blank sample (i.e., 0 mM lactate) and the enzyme (i.e., the mutant lactate oxidase of the present invention) at 60 seconds was recorded as the background value, and then the buffer solution containing the lactate concentration was added to the lactate sensor. Each reaction lasted for about 20 to 60 seconds, and the current of each reaction was recorded at 5 or 10 seconds, thereby establishing a calibration curve of current vs. lactate concentration.
實施例Embodiment 11 :製備本發明乳酸氧化酶變異體: Preparation of lactate oxidase variants of the present invention
以前述「材料與方法」一節描述之方法生產本發明五種乳酸氧化酶變異體。所產生的乳酸氧化酶變異體以及其胺基酸序列則於表2,其中,以粗體表示指定胺基酸取代及修飾。Five lactate oxidase variants of the present invention were generated by the method described in the above "Materials and Methods" section. The generated lactate oxidase variants and their amino acid sequences are shown in Table 2, wherein the designated amino acid substitutions and modifications are indicated in bold.
表2:本發明乳酸氧化酶變異體
實施例Embodiment 22 :本發明乳酸氧化酶變異體的特性分析: Characteristic analysis of lactate oxidase variants of the present invention
2.12.1 氧化酶及去氫酶活性Oxidase and dehydrogenase activities
本實驗主要對本發明乳酸氧化酶變異體的氧化及去氫酶活性進行特性分析。為此,將野生型與本發明突變乳酸氧化酶分別與乳酸混和(10 mM)並反應,並根據「材料與方法」一節描述的流程分別計算該些蛋白活性。定量結果列於表3。This experiment mainly analyzes the oxidation and dehydrogenase activities of the lactate oxidase variants of the present invention. To this end, the wild-type and mutant lactate oxidases of the present invention were mixed with lactic acid (10 mM) and reacted, and the activities of these proteins were calculated according to the process described in the "Materials and Methods" section. The quantitative results are listed in Table 3.
表3:野生型(WT)及突變乳酸氧化酶之氧化酶及去氫酶活性之定量結果
表3的數據表明,相較於野生型蛋白質,突變乳酸氧化酶的氧化及去氫活性都顯著地降低,特別是A95Q變異體的氧化酶活性或去氫酶活性,分別少野生型乳酸氧化酶98.4%及95%。The data in Table 3 show that compared with the wild-type protein, the oxidation and dehydrogenase activities of the mutant lactate oxidase are significantly reduced, especially the oxidase activity or dehydrogenase activity of the A95Q variant, which is 98.4% and 95% less than that of the wild-type lactate oxidase, respectively.
2.22.2 酵素動力學Enzyme kinetics
本實驗評估乳酸氧化酶變異體的結合親和力是否會受pH影響。為此,使本發明乳酸氧化酶變異體分別在pH 5.0 或pH 7.0與不同濃度的乳酸進行反應,並依據「材料與方法」 描述的流程測定酵素的 K m 及 K cat 值。 K m 及 K cat 值則列於表4。 This experiment evaluated whether the binding affinity of lactate oxidase variants is affected by pH. To this end, the lactate oxidase variants of the present invention were reacted with different concentrations of lactic acid at pH 5.0 or pH 7.0, and the K m and K cat values of the enzyme were determined according to the process described in "Materials and Methods". The K m and K cat values are listed in Table 4.
表4:本發明乳酸氧化酶變異體及野生型(WT)酵素的
K
m 及
K
cat 值
結果發現,無論pH值是否有變化(即,pH 5.0或pH 7.0),本發明乳酸氧化酶變異體的 K m 值都顯著地高於野生型酵素的值,這表示各個本發明乳酸氧化酶變異體具有較低的乳酸結合親和力。 As a result, it was found that the K m values of the lactate oxidase variants of the present invention were significantly higher than that of the wild-type enzyme regardless of whether the pH value was changed (i.e., pH 5.0 or pH 7.0), indicating that each of the lactate oxidase variants of the present invention has a lower lactate binding affinity.
實施例Embodiment 33 :透過使用本發明乳酸氧化酶變異體進行乳酸偵測: Lactate detection by using the lactate oxidase variant of the present invention
本實驗評估在不同樣本中本發明乳酸氧化酶變異體對於乳酸偵測的敏感度及廣用度。為此,根據「材料與方法」描述的流程,基於固定在SPCE的不同氧化還原介質建構兩種乳酸感測器(下稱LS-I及LS-II)。具體而言,LS-I是藉由沉積酵素溶液(即,本發明乳酸氧化酶變異體A95Q、A96C、S175C及羧甲基化S175C)與高分子介質之混合物到SPCE的表面而製得;而LS-II則是藉由將酵素與鐵氰化鉀(K3[Fe(CN)6])固定到SPCE之表面上而製得。LS-I及LS-II則分別用於偵測指定樣本的乳酸。This experiment evaluated the sensitivity and versatility of the lactate oxidase variants of the present invention for lactate detection in different samples. To this end, two lactate sensors (hereinafter referred to as LS-I and LS-II) were constructed based on different redox media immobilized on SPCE according to the process described in "Materials and Methods". Specifically, LS-I was prepared by precipitating a mixture of an enzyme solution (i.e., lactate oxidase variants A95Q, A96C, S175C and carboxymethylated S175C of the present invention) and a polymer medium onto the surface of SPCE; while LS-II was prepared by immobilizing the enzyme and potassium ferrocyanide (K3[Fe(CN)6]) onto the surface of SPCE. LS-I and LS-II were used to detect lactate in designated samples, respectively.
3.13.1 結合親和力Binding affinity
本實驗評估本發明乳酸氧化酶變異體的結合親和力是否受pH值影響。為此,藉由乳酸感測器LS-I測定(各種濃度的)乳酸與本發明乳酸氧化酶變異體在pH 5.0或pH 7.0值時的反應。酵素的 Km及Vmax值(即,本發明乳酸氧化酶變異體)則是基於「材料與方法」一節所描述的流程來測定,結果總結於表5。 This experiment evaluates whether the binding affinity of the lactate oxidase variants of the present invention is affected by pH. To this end, the reaction of lactic acid (of various concentrations) with the lactate oxidase variants of the present invention at pH 5.0 or pH 7.0 was measured by the lactate sensor LS-I. The Km and Vmax values of the enzyme (i.e., the lactate oxidase variants of the present invention) were determined based on the process described in the "Materials and Methods" section, and the results are summarized in Table 5.
表5:野生型(WT)與本發明突變乳酸氧化酶的Km及Vmax值
結果發現,如表5所統整,本發明乳酸氧化酶變異體比起野生型酵素具有更高的 K m 值。表5中的數據與先前實施例2的評估一致,兩者都表明本發明乳酸氧化酶變異體對乳酸的結合親和力低於野生型對乳酸的結合親和力,特別是在較低pH值的環境下。 As a result, it was found that the lactate oxidase variants of the present invention had a higher K m value than the wild-type enzyme, as summarized in Table 5. The data in Table 5 are consistent with the evaluation of the previous Example 2, both of which indicate that the lactate oxidase variants of the present invention have a lower binding affinity for lactate than the wild-type, especially in a low pH environment.
3.23.2 透過本發明乳酸氧化酶變異體進行乳酸偵測Lactate detection using the lactate oxidase variants of the present invention
3.2.1 A95Q3.2.1 A95Q 、, A96CA96C 或or S175CS175C
本實驗調查本發明突變乳酸氧化酶A95Q、A96C及S175C的偵測效率及限制。為此,本發明突變乳酸氧化酶A95Q、A96C或S175C分別與介質 PVImQOs固定在SPCE的表面,從而製造第一型乳酸感測器(以下稱之A95Q-LS-I、A96C-LS-I及S175C-LS-I)。接著,將含有不同乳酸濃度(0–300 mM)的磷酸鹽緩衝液(pH 5及pH 7) 或人工汗液(pH 5)分別施加各乳酸感測器上,並依據「材料與方法」一節描述的流程測量及記錄所產生的電流。結果呈現於第1至3圖。This experiment investigated the detection efficiency and limitation of the mutant lactate oxidase A95Q, A96C and S175C of the present invention. To this end, the mutant lactate oxidase A95Q, A96C or S175C of the present invention was immobilized on the surface of SPCE with the medium PVImQOs, thereby manufacturing the first type of lactate sensor (hereinafter referred to as A95Q-LS-I, A96C-LS-I and S175C-LS-I). Then, phosphate buffer (
結果發現,無論緩衝液的pH值為何,本發明A95Q酵素可成功地偵測不同濃度的乳酸,且最小值及最大值的濃度分別約為0.2 mM及166 mM。呈現於第1A及1B圖的結果分別表明本發明乳酸氧化酶A95Q變異體在液體樣本中能夠偵測到廣範圍的乳酸。The results showed that the A95Q enzyme of the present invention could successfully detect different concentrations of lactic acid regardless of the pH value of the buffer, and the minimum and maximum concentrations were approximately 0.2 mM and 166 mM, respectively. The results presented in Figures 1A and 1B respectively indicate that the A95Q variant of lactate oxidase of the present invention can detect a wide range of lactic acid in liquid samples.
至於A96C,發現無論是在pH 5.0 (第2A圖)或pH 7.0 (第2B圖)的緩衝液中,A96C都可偵測從約 0.5 mM至90 mM範圍的乳酸濃度。在人工汗液(pH 5.0)的乳酸偵測也可觀察到一致的結果(第2C圖)。在人工汗液中,可偵測的乳酸濃度範圍從0.5 mM至90 mM,這表示本發明乳酸氧化酶A96C能夠偵測模擬生物體液環境中的乳酸。As for A96C, it was found that A96C could detect lactate concentrations ranging from about 0.5 mM to 90 mM in either pH 5.0 (FIG. 2A) or pH 7.0 (FIG. 2B) buffer. Consistent results were also observed in lactate detection in artificial sweat (pH 5.0) (FIG. 2C). In artificial sweat, the detectable lactate concentration ranged from 0.5 mM to 90 mM, indicating that the lactate oxidase A96C of the present invention is capable of detecting lactate in a simulated biological fluid environment.
至於S175C,發現微量的乳酸濃度(即,0.2 mM至10 mM)亦可被本發明乳酸氧化酶變異體S175C偵測,無論緩衝液的pH值為何(第3A圖及第3B圖)。這些結果表明本發明乳酸氧化酶變異體S175C可在水性樣本中偵測定量小尺度(例如,本發明低於10 mM)的乳酸,而不受到不同pH值的影響。As for S175C, it was found that trace lactic acid concentrations (i.e., 0.2 mM to 10 mM) could also be detected by the lactate oxidase variant S175C of the present invention, regardless of the pH value of the buffer (Figures 3A and 3B). These results indicate that the lactate oxidase variant S175C of the present invention can detect small amounts of lactic acid (e.g., less than 10 mM) in aqueous samples without being affected by different pH values.
3.2.23.2.2 羧甲基化Carboxymethylation S175CS175C
在本實驗,S175C變異體與0.1 M的碘乙酸(IAA)反應以產生羧甲基化的S175C,並評估其對乳酸偵測的影響。結果描述於第4A及4B圖。In this experiment, the S175C variant was reacted with 0.1 M iodoacetic acid (IAA) to produce carboxymethylated S175C, and its effect on lactate detection was evaluated. The results are depicted in Figures 4A and 4B.
如圖,相較於控制組變異體,羧甲基化大幅地改善S175C變異體對乳酸的偵測範圍。具體而言,羧甲基化變異體在酸性緩衝液(pH 5.0)及中性緩衝液(pH 7.0)可偵測到的乳酸的最大濃度分別可至166.7 mM及259.3 mM。As shown in the figure, carboxylation significantly improved the detection range of lactate by the S175C variant compared to the control variant. Specifically, the maximum concentration of lactate that the carboxylation variant could detect in acidic buffer (pH 5.0) and neutral buffer (pH 7.0) was 166.7 mM and 259.3 mM, respectively.
3.33.3 本發明乳酸氧化酶變異體偵測乳酸之通用性The universality of the lactate oxidase variants of the present invention for detecting lactate
本實驗透過改變固定在偵測電極的酵素的量、緩衝液的pH值及/或鹽度來評估本發明乳酸氧化酶變異體的通用性。結果則呈現於第5至7圖。This experiment evaluates the versatility of the lactate oxidase variants of the present invention by varying the amount of enzyme immobilized on the detection electrode, the pH value and/or the salinity of the buffer. The results are presented in Figures 5 to 7.
結果發現,固定有1、1.5或2單位(U)之A96C的感測器可偵測到的最大乳酸量超過100 mM,特別是固定有1.5U之A96C的乳酸感測器(即,A96C-LS-II-1.5U)呈現最強的偵測能力,可偵測人工汗液的乳酸濃度到120 mM (第5圖)。此外,固定有1單位之A96C (即,A96C-LS-II-1U)的感測器展現最高的解析度及較小的變異性,這表示僅需少量的突變酵素就可達到期望的偵測效率。The results showed that the maximum lactate amount that could be detected by sensors with 1, 1.5 or 2 units (U) of A96C was over 100 mM. In particular, the lactate sensor with 1.5U of A96C (i.e., A96C-LS-II-1.5U) showed the strongest detection ability, which could detect the lactate concentration of artificial sweat up to 120 mM (Figure 5). In addition, the sensor with 1 unit of A96C (i.e., A96C-LS-II-1U) showed the highest resolution and smaller variability, which means that only a small amount of mutant enzyme is needed to achieve the desired detection efficiency.
至於pH值對乳酸偵測的影響,實驗發現本發明突變乳酸氧化酶 A96C能夠偵測人工汗液樣本範圍0至200 mM的乳酸(第6圖)。As for the effect of pH on lactate detection, the experiment found that the mutant lactate oxidase A96C of the present invention was able to detect lactate in the range of 0 to 200 mM in artificial sweat samples ( FIG. 6 ).
至於鹽度的影響,結果發現,本發明乳酸氧化酶A96C變異體與乳酸之反應所產生的電流在不同pH值及/或鹽度中僅有相當小的差異(第7圖)。第7圖呈現的數據證實本發明乳酸氧化酶A96C的偵測效能不會受人工汗液的鹽度影響或干擾。As for the effect of salinity, the results showed that the current generated by the reaction of the lactate oxidase A96C variant of the present invention with lactic acid had only a very small difference in different pH values and/or salinity (Figure 7). The data presented in Figure 7 confirm that the detection performance of the lactate oxidase A96C of the present invention is not affected or interfered by the salinity of artificial sweat.
綜上所述,實施例1至3的結果數據整合地表明本發明乳酸氧化酶變異體具有改良的乳酸偵測效能,可不受液體樣本之pH值及/或鹽度干擾,從而達到更廣用通用的乳酸偵測。In summary, the results of Examples 1 to 3 collectively indicate that the lactate oxidase variants of the present invention have improved lactate detection performance and are not affected by the pH value and/or salinity of the liquid sample, thereby achieving more widely applicable lactate detection.
應當理解的是,前述對實施方式的描述僅是以實施例的方式給出,且本領域所屬技術領域中具有通常知識者可進行各種修改。以上說明書、實施例及實驗結果提供本發明之例示性實施方式之結構與用途的完整描述。雖然上文實施方式中揭露了本發明的各種具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。It should be understood that the above description of the embodiments is given only in the form of embodiments, and various modifications can be made by those with ordinary knowledge in the art to which the present invention belongs. The above specification, embodiments and experimental results provide a complete description of the structure and use of the exemplary embodiments of the present invention. Although various specific embodiments of the present invention are disclosed in the above embodiments, they are not used to limit the present invention. Those with ordinary knowledge in the art to which the present invention belongs can make various changes and modifications without departing from the principles and spirit of the present invention. Therefore, the scope of protection of the present invention shall be based on the scope defined by the attached patent application.
無without
為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:In order to make the above and other purposes, features, advantages and embodiments of the present invention more clearly understood, the attached drawings are described as follows:
第1A圖的線圖繪示透過使用本發明突變乳酸氧化酶A95Q並依據在磷酸鹽(下稱PB)緩衝液(pH 5.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 1A is a line graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A95Q of the present invention and performing the method of the present disclosure in phosphate (PB) buffer (pH 5.0).
第1B圖的線圖繪示透過使用本發明突變乳酸氧化酶A95Q並依據在PB緩衝液(pH 7.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 1B is a line graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A95Q of the present invention and performing the method of the present disclosure in PB buffer (pH 7.0).
第2A圖的線圖繪示透過使用本發明突變乳酸氧化酶A96C並依據在PB緩衝液(pH 5.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 2A is a line graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A96C of the present invention and performing the method of the present disclosure in PB buffer (pH 5.0).
第2B圖的線圖繪示透過使用本發明突變乳酸氧化酶A96C並依據在PB緩衝液(pH 7.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 2B is a line graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A96C of the present invention and performing the method of the present disclosure in PB buffer (pH 7.0).
第2C圖的線圖繪示透過使用本發明突變乳酸氧化酶A96C並依據在人工汗液(pH 5.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 2C is a line graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A96C of the present invention and performing the method of the present disclosure in artificial sweat (pH 5.0).
第3A圖繪示透過使用本發明突變乳酸氧化酶S175C並依據在PB緩衝液(pH 5.0)中執行本揭示內容方法所得之乳酸濃度及測得電流之間相關性。FIG. 3A shows the correlation between lactate concentration and measured current obtained by performing the method of the present disclosure in PB buffer (pH 5.0) using the lactate oxidase mutant S175C of the present invention.
第3B圖繪示透過使用本發明突變乳酸氧化酶S175C並依據在PB緩衝液(pH 7.0)中執行本揭示內容方法所得之乳酸濃度及測得電流之間相關性。FIG. 3B shows the correlation between lactate concentration and measured current obtained by performing the method of the present disclosure in PB buffer (pH 7.0) using the lactate oxidase mutant S175C of the present invention.
第4A圖繪示透過使用本發明突變乳酸氧化酶S175C並依據在PB緩衝液(pH 5.0)中執行本揭示內容方法所得之乳酸濃度及測得電流之間相關性。FIG. 4A shows the correlation between lactate concentration and measured current obtained by performing the method of the present disclosure in PB buffer (pH 5.0) using the lactate oxidase mutant S175C of the present invention.
第4B圖繪示透過使用本發明突變乳酸氧化酶S175C並依據在PB緩衝液(pH 7.0)中執行本揭示內容方法所得之乳酸濃度及測得電流之間相關性。FIG. 4B shows the correlation between lactate concentration and measured current obtained by performing the method of the present disclosure in PB buffer (pH 7.0) using the lactate oxidase mutant S175C of the present invention.
第5圖的線圖繪示透過使用本發明突變乳酸氧化酶A96C並依據在人工汗液(pH 5.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 5 is a graph showing a calibration curve of lactate concentration vs. current established by using the lactate oxidase mutant A96C of the present invention and performing the method of the present disclosure in artificial sweat (pH 5.0).
第6圖的線圖繪示透過使用本發明突變乳酸氧化酶A96C並依據在具有各種pH值之人工汗液(pH 5.0-7.0)中執行本揭示內容方法所建立的乳酸濃度vs. 電流的校準曲線。FIG. 6 is a line graph showing a calibration curve of lactate concentration vs. current established by using the mutant lactate oxidase A96C of the present invention and performing the method of the present disclosure in artificial sweat having various pH values (pH 5.0-7.0).
第7圖繪示透過使用本發明A96C在具有各種鹽度(0至800 mM)及pH值的人工汗液樣本中對應特定乳酸濃度(40 mM)的偵測電流。FIG. 7 shows the detection current corresponding to a specific lactic acid concentration (40 mM) in artificial sweat samples having various salinity (0 to 800 mM) and pH values using the A96C of the present invention.
序列表
<![CDATA[<110> 聚碩生技股份有限公司]]>
<![CDATA[<120> 乳酸氧化酶變異體及其在乳酸檢測的用途 ]]>
<![CDATA[<130> P4263-TW]]>
<![CDATA[<160> 14 ]]>
<![CDATA[<170> PatentIn version 3.5]]>
<![CDATA[<210> 1]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 草綠色氣球菌(Aerococcus viridans)]]>
<![CDATA[<400> 1]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 2]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> SEQ ID NO:1第95位置的單一取代]]>
<![CDATA[<400> 2]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Asn Ala
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 3]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> SEQ ID NO:1第95位置的單一取代]]>
<![CDATA[<400> 3]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Gln Ala
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 4]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> SEQ ID NO:1第96位置的單一取代]]>
<![CDATA[<400> 4]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Cys
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 5]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> SEQ ID NO:1第175位置的單一取代]]>
<![CDATA[<400> 5]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Cys Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 6]]>
<![CDATA[<211> 374]]>
<![CDATA[<212> PRT]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> SEQ ID NO:5第175位置的半胱胺酸(C)被羧甲基化]]>
<![CDATA[<220>]]>
<![CDATA[<221> UNSURE]]>
<![CDATA[<222> (175)..(175)]]>
<![CDATA[<223> 羧甲基化]]>
<![CDATA[<400> 6]]>
Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr
1 5 10 15
Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val
20 25 30
Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu
35 40 45
Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr
50 55 60
Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile
65 70 75 80
Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala
85 90 95
His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val
100 105 110
Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr
115 120 125
Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln
130 135 140
Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu
145 150 155 160
Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Cys Thr
165 170 175
Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro
180 185 190
Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly
195 200 205
Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro
210 215 220
Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val
225 230 235 240
Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly
245 250 255
Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu
260 265 270
Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn
275 280 285
Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His
290 295 300
Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg
305 310 315 320
Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser
325 330 335
Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr
340 345 350
Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn
355 360 365
Pro Tyr Gly Tyr Glu Tyr
370
<![CDATA[<210> 7]]>
<![CDATA[<211> 44]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A95N的正向引子]]>
<![CDATA[<400> 7]]>
ccgtttatta tggcaccgat taacgcacat ggtctggcac atac 44
<![CDATA[<210> 8]]>
<![CDATA[<211> 44]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A95N的反向引子]]>
<![CDATA[<400> 8]]>
gtatgtgcca gaccatgtgc gttaatcggt gccataataa acgg 44
<![CDATA[<210> 9]]>
<![CDATA[<211> 41]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A95Q的正向引子]]>
<![CDATA[<400> 9]]>
cgtttattat ggcaccgatt caagcacatg gtctggcaca t 41
<![CDATA[<210> 10]]>
<![CDATA[<211> 41]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A95Q的反向引子]]>
<![CDATA[<400> 10]]>
atgtgccaga ccatgtgctt gaatcggtgc cataataaac g 41
<![CDATA[<210> 11]]>
<![CDATA[<211> 40]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A96C的正向引子]]>
<![CDATA[<400> 11]]>
ttatggcacc gattgcatgc catggtctgg cacataccac 40
<![CDATA[<210> 12]]>
<![CDATA[<211> 40]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶A96C的反向引子]]>
<![CDATA[<400> 12]]>
gtggtatgtg ccagaccatg gcatgcaatc ggtgccataa 40
<![CDATA[<210> 13]]>
<![CDATA[<211> 35]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶S175C的正向引子]]>
<![CDATA[<400> 13]]>
tattctgacc gcagattgca ccgttagcgg taatc 35
<![CDATA[<210> 14]]>
<![CDATA[<211> 35]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> 突變乳酸氧化酶S175C的反向引子]]>
<![CDATA[<400> 14]]>
gattaccgct aacggtgcaa tctgcggtca gaata 35
Sequence Listing <![CDATA[<110> PolyShuo Biotech Co., Ltd.]]> <![CDATA[<120> Lactate oxidase variants and their use in lactate detection ]]> <![CDATA[<130> P4263-TW]]> <![CDATA[<160> 14 ]]> <![CDATA[<170> PatentIn version 3.5]]> <![CDATA[<210> 1]]> <![CDATA[<211> 374]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Aerococcus viridans ]]> <![CDATA[<400> 1]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val 225 230 235 240 Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly 245 250 255 Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu 260 265 270 Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn 355 360 365 Pro Tyr Gly Tyr Glu Tyr 370 <![CDATA[<210> 2]]> <![CDATA[<211> 374]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial sequence ]]> <![CDATA[<220>]]> <![CDATA[<223> Single substitution at position 95 of SEQ ID NO:1 ]]> <![CDATA[<400> 2]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Asn Ala 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val 225 230 235 240 Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly 245 250 255 Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu 260 265 270 Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp 3]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Gln Ala 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn 355 360 365 Pro Tyr Gly Tyr Glu Tyr 370 <![CDATA[<210> 4]]> <![CDATA[<211> 374]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> SEQ ID NO:1 Single substitution at position 96]]> <![CDATA[<400> 4]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Cys 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Ser Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val 225 230 235 240 Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly 245 250 255 Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu 260 265 270 Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn 355 360 365 Pro Tyr Gly Tyr Glu Tyr 370 <![CDATA[<210> 5]]> <![CDATA[<211> 374]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Single substitution at position 175 of SEQ ID NO:1]]> <![CDATA[<400> 5]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Cys Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val 225 230 235 240 Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly 245 250 255 Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu 260 265 270 Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Ser Gly Ala Asp Val Val Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn 355 360 365 Pro Tyr Gly Tyr Glu Tyr 370 <![CDATA[<210> 6]]> <![CDATA[<211> 374]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> The cysteine (C) at position 175 of SEQ ID NO:5 is carboxymethylated]]> <![CDATA[<220>]]> <![CDATA[<221> UNSURE]]> <![CDATA[<222> (175)..(175)]]> <![CDATA[<223> Carboxymethylation]]> <![CDATA[<400> 6]]> Met Asn Asn Asn Asp Ile Glu Tyr Asn Ala Pro Ser Glu Ile Lys Tyr 1 5 10 15 Ile Asp Val Val Asn Thr Tyr Asp Leu Glu Glu Glu Ala Ser Lys Val 20 25 30 Val Pro His Gly Gly Phe Asn Tyr Ile Ala Gly Ala Ser Gly Asp Glu 35 40 45 Trp Thr Lys Arg Ala Asn Asp Arg Ala Trp Lys His Lys Leu Leu Tyr 50 55 60 Pro Arg Leu Ala Gln Asp Val Glu Ala Pro Asp Thr Ser Thr Glu Ile 65 70 75 80 Leu Gly His Lys Ile Lys Ala Pro Phe Ile Met Ala Pro Ile Ala Ala 85 90 95 His Gly Leu Ala His Thr Thr Lys Glu Ala Gly Thr Ala Arg Ala Val 100 105 110 Ser Glu Phe Gly Thr Ile Met Ser Ile Ser Ala Tyr Ser Gly Ala Thr 115 120 125 Phe Glu Glu Ile Ser Glu Gly Leu Asn Gly Gly Pro Arg Trp Phe Gln 130 135 140 Ile Tyr Met Ala Lys Asp Asp Gln Gln Asn Arg Asp Ile Leu Asp Glu 145 150 155 160 Ala Lys Ser Asp Gly Ala Thr Ala Ile Ile Leu Thr Ala Asp Cys Thr 165 170 175 Val Ser Gly Asn Arg Asp Arg Asp Val Lys Asn Lys Phe Val Tyr Pro 180 185 190 Phe Gly Met Pro Ile Val Gln Arg Tyr Leu Arg Gly Thr Ala Glu Gly 195 200 205 Met Ser Leu Asn Asn Ile Tyr Gly Ala Ser Lys Gln Lys Ile Ser Pro 210 215 220 Arg Asp Ile Glu Glu Ile Ala Ala His Ser Gly Leu Pro Val Phe Val 225 230 235 240 Lys Gly Ile Gln His Pro Glu Asp Ala Asp Met Ala Ile Lys Ala Gly 245 250 255 Ala Ser Gly Ile Trp Val Ser Asn His Gly Ala Arg Gln Leu Tyr Glu 260 265 270 Ala Pro Gly Ser Phe Asp Thr Leu Pro Ala Ile Ala Glu Arg Val Asn 275 280 285 Lys Arg Val Pro Ile Val Phe Asp Ser Gly Val Arg Arg Gly Glu His 290 295 300 Val Ala Lys Ala Leu Ala Val Ser Gly Val Ala Ala Asp Ala Leu Gly Arg 305 310 315 320 Pro Val Leu Phe Gly Leu Ala Leu Gly Gly Trp Gln Gly Ala Tyr Ser 325 330 335 Val Leu Asp Tyr Phe Gln Lys Asp Leu Thr Arg Val Met Gln Leu Thr 340 345 350 Gly Ser Gln Asn Val Glu Asp Leu Lys Gly Leu Asp Leu Phe Asp Asn 355 360 365 Pro Tyr Gly Tyr Glu Tyr 370 <![CDATA[<210> 7]]> <![CDATA[<211> 44]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Forward primer for mutant lactate oxidase A95N]]> <![CDATA[<400> 7]]> ccgtttatta tggcaccgat taacgcacat ggtctggcac atac 44 <![CDATA[<210> 8]]> <![CDATA[<211> 44]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Reverse primer for mutant lactate oxidase A95N]]> <![CDATA[<400> 8]]> gtatgtgcca gaccatgtgc gttaatcggt gccataataa acgg 44 <![CDATA[<210> 9]]> <![CDATA[<211> 41]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Forward primer for mutant lactate oxidase A95Q]]> <![ CDATA[<400> 9]]> cgtttattat ggcaccgatt caagcacatg gtctggcaca t 41 <![CDATA[<210> 10]]> <![CDATA[<211> 41]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Reverse primer for mutant lactate oxidase A95Q]]> <![CDATA[<400> 10]]> atgtgccaga ccatgtgctt gaatcggtgc cataataaac g 41 <![CDATA[<210> 11]]> <![CDATA[<211> 40]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Forward primer of mutant lactate oxidase A96C]]> <![CDATA[<400> 11]]> ttatggcacc gattgcatgc catggtctgg cacataccac 40 <![CDATA[<210> 12]]> <![CDATA[<211> 40]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Reverse primer of mutant lactate oxidase A96C]]> <![CDATA[<400> 12]]> gtggtatgtg ccagaccatg gcatgcaatc ggtgccataa 40 <![CDATA[<210> 13]]> <![CDATA[<211> 35]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Forward primer of mutant lactate oxidase S175C]]> <![CDATA[<400> 13]]> tattctgacc gcagattgca ccgttagcgg taatc 35 <![CDATA[<210> 14]]> <![CDATA[<211> 35]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Reverse primer for mutant lactate oxidase S175C]]> <![CDATA[<400> 14]]> gattaccgct aacggtgcaa tctgcggtca gaata 35
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112151168A TWI867923B (en) | 2022-07-28 | 2022-07-28 | Lactate oxidase variants and their uses for lactate detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112151168A TWI867923B (en) | 2022-07-28 | 2022-07-28 | Lactate oxidase variants and their uses for lactate detection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202417471A TW202417471A (en) | 2024-05-01 |
TWI867923B true TWI867923B (en) | 2024-12-21 |
Family
ID=92074232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112151168A TWI867923B (en) | 2022-07-28 | 2022-07-28 | Lactate oxidase variants and their uses for lactate detection |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI867923B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103013940A (en) * | 2011-09-20 | 2013-04-03 | 霍夫曼-拉罗奇有限公司 | Mutant lactate oxidase with increased stability and product, methods and uses involving the same |
JP2018121545A (en) * | 2017-01-30 | 2018-08-09 | アイシン精機株式会社 | Lactate oxidase, nucleic acid molecule encoding lactate oxidase, measuring method of lactate using lactate oxidase, lactate sensor, and biofuel cell |
-
2022
- 2022-07-28 TW TW112151168A patent/TWI867923B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103013940A (en) * | 2011-09-20 | 2013-04-03 | 霍夫曼-拉罗奇有限公司 | Mutant lactate oxidase with increased stability and product, methods and uses involving the same |
JP2018121545A (en) * | 2017-01-30 | 2018-08-09 | アイシン精機株式会社 | Lactate oxidase, nucleic acid molecule encoding lactate oxidase, measuring method of lactate using lactate oxidase, lactate sensor, and biofuel cell |
Also Published As
Publication number | Publication date |
---|---|
TW202417471A (en) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6185617B2 (en) | Improved mutants of pyrroloquinoline quinone-dependent soluble glucose dehydrogenase | |
CN102471763B (en) | Fructosyl amino acid oxidase | |
JP5870027B2 (en) | Sensor for fructosyl peptidyl oxidase and glycated protein assays | |
US8999691B2 (en) | Glucose dehydrogenase | |
US10351892B2 (en) | Mutant-type glucose dehydrogenase and use thereof | |
JP2004512047A (en) | Variants of soluble pyrroloquinoline quinone-dependent glucose dehydrogenase | |
EP2748311B1 (en) | Glucose oxidase | |
NO340499B1 (en) | Variant of the soluble form of pyrroloquinoline quinone-dependent glucose dehydrogenase comprising one amino acid insertion and at least one amino acid substitution, an isolated polynucleotide encoding the variant, an expression vector comprising the isolated polynucleotide, a host cell comprising the expression vector, a expression vector, and the expression vector. variants comprising culturing the host cell, a method for producing s-GDH variants in a cell-free peptide synthesis system, a method for detecting, determining or measuring glucose in a sample using a variant, and a device for detecting or measuring glucose in a sample. | |
JP2022081510A (en) | HbA1c dehydrogenase | |
JP6980383B2 (en) | Amadriase with improved dehydrogenase activity | |
TWI867923B (en) | Lactate oxidase variants and their uses for lactate detection | |
CN105331591B (en) | PQQ-sGDH mutant, polynucleotide and glucose detection device | |
TWI827165B (en) | Lactate oxidase variants and their uses for lactate detection | |
US12116610B2 (en) | Glycerol 3-phosphate oxidase mutants, compositions, devices, kits and uses thereof | |
WO2024020909A1 (en) | Lactate oxidase variants and their uses for lactate detection | |
JP2011525361A (en) | Novel variant of PQQ-dependent glucose dehydrogenase with improved substrate specificity | |
US20180282705A1 (en) | Compositions and methods for measuring blood glucose levels | |
JP5036550B2 (en) | Fructosylamine oxidase |