TWI867165B - Abrasive composition - Google Patents
Abrasive composition Download PDFInfo
- Publication number
- TWI867165B TWI867165B TW110106517A TW110106517A TWI867165B TW I867165 B TWI867165 B TW I867165B TW 110106517 A TW110106517 A TW 110106517A TW 110106517 A TW110106517 A TW 110106517A TW I867165 B TWI867165 B TW I867165B
- Authority
- TW
- Taiwan
- Prior art keywords
- water
- silicon dioxide
- polishing
- abrasive composition
- dioxide particles
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 71
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 135
- 239000002245 particle Substances 0.000 claims abstract description 65
- 150000001875 compounds Chemical class 0.000 claims abstract description 60
- 239000013078 crystal Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 50
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 50
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 32
- 238000000227 grinding Methods 0.000 claims abstract description 27
- AWJDQCINSGRBDJ-UHFFFAOYSA-N [Li].[Ta] Chemical compound [Li].[Ta] AWJDQCINSGRBDJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229920001577 copolymer Polymers 0.000 claims abstract description 21
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 21
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000001408 amides Chemical class 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 43
- 239000000178 monomer Substances 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 20
- 229920002554 vinyl polymer Polymers 0.000 claims description 20
- 150000007524 organic acids Chemical class 0.000 claims description 16
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 16
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 14
- 150000007522 mineralic acids Chemical class 0.000 claims description 9
- 239000013522 chelant Substances 0.000 claims description 3
- 238000005498 polishing Methods 0.000 abstract description 93
- 239000000758 substrate Substances 0.000 abstract description 29
- 238000007517 polishing process Methods 0.000 abstract description 9
- 230000000052 comparative effect Effects 0.000 description 44
- 230000015572 biosynthetic process Effects 0.000 description 34
- 238000003786 synthesis reaction Methods 0.000 description 34
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 19
- 239000008119 colloidal silica Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 16
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- -1 etc. Chemical compound 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- 235000005985 organic acids Nutrition 0.000 description 6
- 239000003082 abrasive agent Substances 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 229920002401 polyacrylamide Polymers 0.000 description 5
- 159000000001 potassium salts Chemical class 0.000 description 5
- 239000007870 radical polymerization initiator Substances 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ZAWQXWZJKKICSZ-UHFFFAOYSA-N 3,3-dimethyl-2-methylidenebutanamide Chemical compound CC(C)(C)C(=C)C(N)=O ZAWQXWZJKKICSZ-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- CFQZKFWQLAHGSL-FNTYJUCDSA-N (3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e)-octadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoic acid Chemical compound OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C CFQZKFWQLAHGSL-FNTYJUCDSA-N 0.000 description 1
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 1
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000005325 alkali earth metal hydroxides Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
提供一種在單晶氧化物基板之研磨過程中,除可抑制研磨時產生之托架噪音,並提升研磨後之研磨表面平坦性,且提升研磨速度之研磨劑組合物。該用於研磨加工鉭酸鋰單晶材料或鈮酸鋰單晶材料之研磨劑組合物,其包含:二氧化矽粒子、水溶性高分子化合物、及水;其中二氧化矽粒子包含平均粒徑為10~60nm之小粒徑二氧化矽粒子,與平均粒徑為70~200nm之大粒徑二氧化矽粒子,且相對於小粒徑二氧化矽粒子及大粒徑二氧化矽粒子之總質量,小粒徑二氧化矽粒子之質量比為50~95質量%;其中水溶性高分子化合物由含有以不飽和醯胺為結構單元之聚合物或共聚物所構成。 The invention provides an abrasive composition which can suppress the bracket noise generated during the polishing process of a single crystal oxide substrate, improve the flatness of the polished surface after polishing, and increase the polishing speed. The abrasive composition for grinding lithium tantalum single crystal material or lithium niobate single crystal material comprises: silicon dioxide particles, water-soluble polymer compound, and water; wherein the silicon dioxide particles comprise small-sized silicon dioxide particles with an average particle size of 10-60 nm and large-sized silicon dioxide particles with an average particle size of 70-200 nm, and the mass ratio of the small-sized silicon dioxide particles to the total mass of the small-sized silicon dioxide particles and the large-sized silicon dioxide particles is 50-95% by mass; wherein the water-soluble polymer compound is composed of a polymer or copolymer containing unsaturated amide as a structural unit.
Description
本發明係關於一種研磨劑組合物。更具體而言,係關於一種用於進行精密研磨加工之研磨劑組合物,而被研磨物係一種單晶氧化物,即鉭酸鋰單晶材料或鈮酸鋰單晶材料。 The present invention relates to an abrasive composition. More specifically, it relates to an abrasive composition for precision grinding, and the object to be ground is a single crystal oxide, namely, lithium tantalum single crystal material or lithium niobate single crystal material.
傳統上,利用壓電體當中的壓電效果所產生之表面彈性波(SAW)之表面彈性波裝置已被廣泛使用作為電子元件,例如電視的中頻濾波器及諧振器等。作為構成這種表面彈性波裝置之壓電元件的材料,正在檢討壓電陶瓷、壓電薄膜等各種壓電性物質之採用。特別是近年來,由於硬脆材料具有優異特性,鉭酸鋰單晶材料及鈮酸鋰單晶材料(以下稱為「單晶氧化物材料」)被廣泛採用。 Traditionally, surface elastic wave devices that utilize surface elastic waves (SAW) generated by the piezoelectric effect in piezoelectrics have been widely used as electronic components, such as medium-frequency filters and resonators for televisions. As materials for piezoelectric components constituting such surface elastic wave devices, the use of various piezoelectric materials such as piezoelectric ceramics and piezoelectric films is being examined. In particular, in recent years, lithium tantalum single crystal materials and lithium niobate single crystal materials (hereinafter referred to as "single crystal oxide materials") have been widely used due to the excellent properties of hard and brittle materials.
為使各種表面彈性波裝置之表面獲得鏡面效果,通常會實施拋光研磨加工。在此,已知單晶氧化物材料為一種硬度高,且在化學上極為穩定之材料,卻會使研磨速度變慢。因此,傳統的單晶氧化物材料研磨,在工業上普遍採用持續供應及回收研磨液之循環供應方式。然而,如欲研磨至所需厚度,則研磨時間例如可能需耗時約10小時,就產品之產能及生產效率方面造成問題。 In order to obtain a mirror effect on the surface of various surface elastic wave devices, polishing and grinding are usually performed. Here, it is known that single-crystal oxide materials are a kind of material with high hardness and extremely stable chemically, but it will slow down the grinding speed. Therefore, the traditional single-crystal oxide material grinding generally adopts a circulating supply method of continuous supply and recycling of grinding fluid in the industry. However, if you want to grind to the required thickness, the grinding time may take about 10 hours, for example, which causes problems in terms of product capacity and production efficiency.
再者,以上述之單晶氧化物材料為被研磨物進行研磨時,已知容易產生獨特的「吱吱」摩擦聲,也就是一般被稱為「托架噪音(carrier noise)」之細微震動。這種產生細微震動之現象,被認為肇因於單晶氧化物材料作為壓電材料之特性。並且,發生如此細微震動,可能導致被研磨物從規定的研磨位置移動,甚至發生破裂等不良情況。因此,如何抑制研磨時的細微震動已然成為重要課題。 Furthermore, when the above-mentioned single crystal oxide material is used as the object to be polished, it is known that a unique "squeaking" friction sound is easily generated, which is generally referred to as "carrier noise". This phenomenon of fine vibration is believed to be caused by the characteristics of single crystal oxide materials as piezoelectric materials. In addition, such fine vibrations may cause the object to be polished to move from the specified polishing position or even crack. Therefore, how to suppress fine vibrations during polishing has become an important issue.
鉭酸鋰單晶材料等氧化物結晶材料之研磨,亦採用以含有用於研磨矽晶圓之膠質氧化矽為主成分的研磨劑。含有這般膠質氧化矽成分之研磨劑,具備以下優異特徴:表面及背面不產生缺陷、可高度達成研磨面之精度。然而,另一方面,根據研磨條件等因素,可能會產生上述被稱為托架噪音的被研磨物細微震動。 The polishing of oxide crystal materials such as lithium tantalum single crystal materials also uses abrasives containing colloidal silicon oxide used for polishing silicon wafers as the main component. Abrasives containing such colloidal silicon oxide components have the following excellent characteristics: no defects are generated on the surface and back, and a high degree of precision of the polished surface can be achieved. However, on the other hand, depending on factors such as polishing conditions, the above-mentioned fine vibration of the object being polished, which is called bracket noise, may be generated.
另一方面,以提升單晶氧化物材料之研磨速度為目的,提出僅含BET比表面積為10~60m2/g、二次粒子之平均粒徑為0.5~5μm之沉澱法二氧化矽微粒作為固形成分之水性漿料分散液,作為硬脆材料用之精密研磨劑(如參照專利文獻1)。再者,作為同樣用於硬脆材料之研磨劑,為提升膠質氧化矽之分散穩定性,已提出藉由添加葡萄糖酸鈉等添加劑,製備以提升研磨速度為目的之研磨劑(如參照專利文獻2)。 On the other hand, for the purpose of improving the polishing rate of single-crystal oxide materials, an aqueous slurry dispersion containing only precipitated silica particles with a BET specific surface area of 10 to 60 m 2 /g and an average secondary particle size of 0.5 to 5 μm as a solid component has been proposed as a precision abrasive for hard and brittle materials (see patent document 1). Furthermore, as an abrasive for hard and brittle materials, in order to improve the dispersion stability of colloidal silica, it has been proposed to prepare an abrasive for the purpose of improving the polishing rate by adding additives such as sodium gluconate (see patent document 2).
其他,已提出以鉭酸鋰單晶材料或鈮酸鋰單晶材料構成之基板專用的基板用研磨劑(如參照專利文獻3),以及研磨鉭酸鋰單晶等材料時,為抑制托架噪音而「於研磨劑添加含有以不飽和醯胺為結構單元之聚合物或共聚物」之方法(如參照專利文獻4)。 In addition, a substrate polishing agent specifically for substrates made of lithium tantalum single crystal material or lithium niobate single crystal material has been proposed (see patent document 3), and a method of "adding a polymer or copolymer containing unsaturated amide as a structural unit to the polishing agent" to suppress bracket noise when polishing materials such as lithium tantalum single crystal (see patent document 4).
【先前技術文獻】 【Previous technical literature】
【專利文獻】 【Patent Literature】
【專利文獻1】日本專利特開平5-1279號公報 [Patent document 1] Japanese Patent Publication No. 5-1279
【專利文獻2】日本專利特開2006-150482號公報 [Patent document 2] Japanese Patent Publication No. 2006-150482
【專利文獻3】日本專利特開2002-184726號公報 [Patent document 3] Japanese Patent Publication No. 2002-184726
【專利文獻4】日本專利特開2017-218514號公報 [Patent Document 4] Japanese Patent Publication No. 2017-218514
然而,上述專利文獻1及專利文獻2所示之研磨劑,針對壓電材料研磨過程中,對於如何抑制被稱為「托架噪音」之細微震動,無任何揭示或教示。 However, the abrasives shown in the above-mentioned Patent Documents 1 and 2 do not disclose or teach how to suppress the minute vibrations known as "bracket noise" during the piezoelectric material grinding process.
另一方面,如專利文獻3所揭示,在以硬脆材料所構成之基板用研磨劑之情況下,其主要目的為使研磨過程中之研磨速度快,且研磨面等外觀維持良好。因此,成分中含γ-氧化鋁及二氧化矽,且含大量潤滑劑及分散助劑。在此得知,一旦含有如γ-氧化鋁般之氧化鋁成分及二氧化矽成分,則易產生沉澱,不利於上述循環供應方式之研磨。 On the other hand, as disclosed in Patent Document 3, in the case of abrasives for substrates made of hard and brittle materials, the main purpose is to make the polishing speed during the polishing process fast and maintain a good appearance of the polished surface. Therefore, the ingredients contain γ-alumina and silica, and contain a large amount of lubricants and dispersing aids. It is known that once aluminum oxide components such as γ-alumina and silica components are contained, precipitation is easy to occur, which is not conducive to the polishing of the above-mentioned circulation supply method.
再者,一旦含有大量潤滑劑及分散助劑,將使研磨劑本身黏度增高,而易衍生種種問題。此外,專利文獻3針對托架噪音,亦無任何揭示或教示。 Furthermore, once a large amount of lubricant and dispersant is contained, the viscosity of the abrasive itself will increase, which can easily lead to various problems. In addition, Patent Document 3 does not disclose or teach anything about bracket noise.
另一方面,專利文獻4中,為抑制研磨鉭酸鋰單晶材料等單晶氧化物材料過程中之托架噪音,提出於研磨劑中添加含有以不飽和醯胺為結構單元之聚合物或共聚物之方法。然而如眾所周知,從提升研磨速度之角度看來,該方法仍不充分,且普遍認為需更進一步之改善或改良。 On the other hand, in Patent Document 4, in order to suppress the bracket noise during the polishing process of single crystal oxide materials such as lithium tantalum single crystal materials, a method of adding a polymer or copolymer containing unsaturated amide as a structural unit to the polishing agent is proposed. However, as is well known, from the perspective of increasing the polishing speed, this method is still insufficient and is generally considered to require further improvement or modification.
在此,以鉭酸鋰單晶材料或鈮酸鋰單晶材料等單晶氧化物材 料為被研磨物之研磨加工中,期望有在提升研磨速度之同時,並抑制隨著研磨速度升高而產生的托架噪音(細微震動),且不發生研磨位置偏移或被研磨物開裂等加工不良現象,可實施穩定研磨之研磨劑。 Here, in the grinding process of single crystal oxide materials such as lithium tantalum single crystal materials or lithium niobate single crystal materials as the grinding object, it is desired to have a grinding agent that can improve the grinding speed while suppressing the bracket noise (fine vibration) generated as the grinding speed increases, and does not cause grinding position deviation or cracking of the grinding object, so as to achieve stable grinding.
鑑於上述實情,本發明之課題在於提供一種在單晶氧化物材料(基板)之研磨過程中,除可抑制研磨時產生之托架噪音,並提升研磨後之研磨表面平坦性,且提升研磨速度之研磨劑組合物。 In view of the above facts, the subject of the present invention is to provide an abrasive composition that can suppress the bracket noise generated during the polishing process of a single crystal oxide material (substrate), improve the flatness of the polished surface after polishing, and increase the polishing speed.
本發明者等為解決上述課題,經潛心研究發現,可藉由使用一種研磨劑組合物,其特徵為:含平均粒徑互異之兩種二氧化矽粒子、水溶性高分子化合物及水,其中該水溶性高分子化合物係一種含有以不飽和醯胺為結構單元之聚合物或共聚物。該研磨劑組合物在鉭酸鋰單晶材料或鈮酸鋰單晶材料之單晶氧化物基板之研磨過程中,可抑制一種被稱為「托架噪音」之被研磨物細微震動,並提升研磨速度,且提升研磨後之基板平坦性,進而完成本發明。意即,如藉由本發明,可以提供如下所示之研磨劑組合物。 In order to solve the above problems, the inventors of the present invention have found through intensive research that an abrasive composition can be used, which is characterized by: containing two kinds of silicon dioxide particles with different average particle sizes, a water-soluble polymer compound and water, wherein the water-soluble polymer compound is a polymer or copolymer containing unsaturated amide as a structural unit. During the polishing process of a single crystal oxide substrate of a lithium tantalum single crystal material or a lithium niobate single crystal material, the abrasive composition can suppress a kind of fine vibration of the polished object called "bracket noise", and increase the polishing speed, and improve the flatness of the substrate after polishing, thereby completing the present invention. That is, by using the present invention, an abrasive composition as shown below can be provided.
〔1〕一種用於鉭酸鋰單晶材料或鈮酸鋰單晶材料之研磨加工的研磨劑組合物,其包含:二氧化矽粒子、水溶性高分子化合物、及水。其中該二氧化矽粒子,包含平均粒徑為10~60nm之小粒徑二氧化矽粒子,與平均粒徑為70~200nm之大粒徑二氧化矽粒子;相對於該小粒徑二氧化矽粒子及該大粒徑二氧化矽粒子之總質量,該小粒徑二氧化矽粒子之質量比為50~95質量%。該水溶性高分子化合物,由含有以不飽和醯胺為結構單元之聚合物或共聚物所構成。 [1] An abrasive composition for grinding lithium tantalum single crystal material or lithium niobate single crystal material, comprising: silica particles, a water-soluble polymer compound, and water. The silica particles include small-sized silica particles with an average particle size of 10-60 nm and large-sized silica particles with an average particle size of 70-200 nm; the mass ratio of the small-sized silica particles to the total mass of the small-sized silica particles and the large-sized silica particles is 50-95 mass%. The water-soluble polymer compound is composed of a polymer or copolymer containing unsaturated amide as a structural unit.
〔2〕如上述第〔1〕項所述之研磨劑組合物,其中該水溶性高分子化合物,係一種含有衍生自(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺的結構單元之聚合物或共聚物。 [2] The abrasive composition as described in item [1] above, wherein the water-soluble polymer compound is a polymer or copolymer containing structural units derived from (meth)acrylamide and/or N-substituted (meth)acrylamide.
〔3〕如上述第〔1〕或第〔2〕項所述之研磨劑組合物,其中該水溶性高分子化合物,係一種具備衍生自(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺的結構單元,與衍生自含羧基之乙烯單體的結構單元之共聚物。 [3] The abrasive composition as described in item [1] or [2] above, wherein the water-soluble polymer compound is a copolymer having structural units derived from (meth)acrylamide and/or N-substituted (meth)acrylamide and structural units derived from carboxyl-containing vinyl monomers.
〔4〕如上述第〔1〕項~第〔3〕項之任一項所述之研磨劑組合物,更進一步含有無機酸及/或其鹽類、有機酸及/或其鹽類、及鹼基性化合物當中之至少一種。 [4] The abrasive composition as described in any one of items [1] to [3] above further contains at least one of an inorganic acid and/or its salt, an organic acid and/or its salt, and an alkaline compound.
〔5〕如上述第〔4〕項所述之研磨劑組合物,其中該有機酸及/或其鹽類係一種螯合物。 [5] The abrasive composition as described in item [4] above, wherein the organic acid and/or its salt is a chelate.
一種研磨劑組合物,其特徵在於:包含平均粒徑互異之兩種二氧化矽粒子、水溶性高分子化合物、以及水;其中該水溶性高分子化合物係一種含有以不飽和醯胺為結構單元之聚合物或共聚物。研磨鉭酸鋰單晶材料或鈮酸鋰單晶材料之際,藉由該研磨劑組合物之運用,可實現平坦性之提升、研磨速度之提升,及托架噪音之抑制等效果。 An abrasive composition is characterized by comprising two kinds of silicon dioxide particles with different average particle sizes, a water-soluble polymer compound, and water; wherein the water-soluble polymer compound is a polymer or copolymer containing unsaturated amide as a structural unit. When polishing lithium tantalum single crystal material or lithium niobate single crystal material, the use of the abrasive composition can achieve the effects of improving flatness, improving polishing speed, and suppressing bracket noise.
以下說明本發明之實施方式,惟本發明並不限定於以下實施 方式,可在不脫離本發明範疇的情形下進行變更、修正與改良。 The following describes the implementation of the present invention, but the present invention is not limited to the following implementation, and can be changed, modified and improved without departing from the scope of the present invention.
1.研磨劑組合物 1. Abrasive composition
本發明之一種實施方式之研磨劑組合物,係用於鉭酸鋰單晶材料或鈮酸鋰單晶材料之研磨加工,其包含:二氧化矽粒子、水溶性高分子化合物、及水;其中該二氧化矽粒子依各別規定之比例,包含平均粒徑互異之小粒徑二氧化矽粒子及大粒徑二氧化矽粒子;其中該水溶性高分子化合物係一種含有以不飽和醯胺為結構單元之聚合物或共聚物。 An abrasive composition of one embodiment of the present invention is used for grinding lithium tantalum single crystal material or lithium niobate single crystal material, and comprises: silicon dioxide particles, a water-soluble polymer compound, and water; wherein the silicon dioxide particles comprise small-sized silicon dioxide particles and large-sized silicon dioxide particles with different average particle sizes according to respective prescribed ratios; wherein the water-soluble polymer compound is a polymer or copolymer containing unsaturated amide as a structural unit.
1.1 二氧化矽粒子 1.1 Silica particles
本實施方式之研磨劑組合物所使用之二氧化矽粒子,可列舉:膠質氧化矽、濕式法二氧化矽(沉澱法二氧化矽、凝膠法二氧化矽等)、高溫成型二氧化矽(fumed silica)等,尤其較佳為使用膠質氧化矽。膠質氧化矽之製備方法有下列幾種,包括:將矽酸鈉等鹼金屬矽酸鹽與無機酸反應而進行製備之水玻璃法、或將四乙基矽氧烷等烷氧基矽烷以酸或鹼加水分解之方法、或將金屬矽與水在鹼觸媒存在環境下使其反應之方法等。其中,在製備成本考量下,較佳可使用水玻璃法。 The silica particles used in the abrasive composition of the present embodiment can be listed as colloidal silica, wet silica (precipitated silica, gel silica, etc.), high temperature molded silica (fumed silica), etc., and colloidal silica is particularly preferred. There are several methods for preparing colloidal silica, including: a water glass method in which alkaline metal silicates such as sodium silicate react with inorganic acids, or a method in which alkoxysilanes such as tetraethylsiloxane are decomposed by acid or alkali hydrolysis, or a method in which metal silicon and water are reacted in an alkaline catalyst environment. Among them, the water glass method is preferably used in consideration of preparation cost.
二氧化矽粒子包含平均粒徑為10~60nm之小粒徑二氧化矽粒子,以及平均粒徑為70~200nm之大粒徑二氧化矽粒子;其中相對於小粒徑二氧化矽粒子及大粒徑二氧化矽粒子之總質量,小粒徑二氧化矽粒子之佔比(=小粒徑二氧化矽粒子之質量/(小粒徑二氧化矽粒子之質量+大粒徑二氧化矽粒子之質量)×100)係介於50~95質量%之範圍。這般小粒徑二氧化矽粒子之佔比,較佳為介於55~90質量%之範圍,更佳為介於60~85質量%之範圍。 The silica particles include small-sized silica particles with an average particle size of 10-60 nm and large-sized silica particles with an average particle size of 70-200 nm; wherein the proportion of the small-sized silica particles relative to the total mass of the small-sized silica particles and the large-sized silica particles (=mass of the small-sized silica particles/(mass of the small-sized silica particles+mass of the large-sized silica particles)×100) is in the range of 50-95 mass %. The proportion of such small-sized silica particles is preferably in the range of 55-90 mass %, and more preferably in the range of 60-85 mass %.
再者,小粒徑二氧化矽粒子之平均粒徑,較佳為介於15~55nm之範圍;另一方面,大粒徑二氧化矽粒子之平均粒徑,較佳為介於75~150nm之範圍。 Furthermore, the average particle size of small-sized silica particles is preferably in the range of 15 to 55 nm; on the other hand, the average particle size of large-sized silica particles is preferably in the range of 75 to 150 nm.
再者,含小粒徑二氧化矽粒子、大粒徑二氧化矽粒子、及其他二氧化矽粒子之總二氧化矽粒子的平均粒徑,可介於10~150nm之範圍。較佳為介於20~120nm之範圍。在此,藉由使總二氧化矽粒子之平均粒徑為10nm以上,可期待抑制研磨加工時產生「托架噪音」之效果。 Furthermore, the average particle size of the total silica particles including small-sized silica particles, large-sized silica particles, and other silica particles may be in the range of 10 to 150 nm. Preferably, it is in the range of 20 to 120 nm. Here, by making the average particle size of the total silica particles greater than 10 nm, it is expected to have the effect of suppressing the "bracket noise" generated during the grinding process.
再者,藉由使總二氧化矽粒子之平均粒徑為150nm以下,可期待研磨加工時「研磨速度」之提升。在此,上述各二氧化矽粒子之平均粒徑,係根據穿透式電子顯微鏡(TEM)之觀察結果進行分析並計算得出。另,小粒徑二氧化矽粒子及大粒徑二氧化矽粒子之總質量,佔總二氧化矽粒子之總質量之佔比可為80質量%以上,尤佳為90質量%以上。 Furthermore, by making the average particle size of the total silica particles less than 150nm, it is expected that the "polishing speed" during the polishing process will be improved. Here, the average particle size of each silica particle mentioned above is analyzed and calculated based on the observation results of a transmission electron microscope (TEM). In addition, the total mass of small-sized silica particles and large-sized silica particles can account for more than 80% by mass of the total mass of the total silica particles, preferably more than 90% by mass.
此外,研磨劑組合物中的總二氧化矽粒子濃度,較佳為介於5~50質量%之範圍,尤佳為介於10~40質量%之範圍。藉由使總二氧化矽粒子濃度為5質量%以上,可獲得二氧化矽粒子的研磨效果,尤其是優異的表面質感。另一方面,藉由使總二氧化矽粒子濃度為50質量%以下,除了在成本面有利,亦可藉由搭配二氧化矽粒子以外之研磨材料或其他複合劑,使其不易產生凝集或膠化等問題。 In addition, the total silica particle concentration in the abrasive composition is preferably in the range of 5-50 mass %, and more preferably in the range of 10-40 mass %. By making the total silica particle concentration above 5 mass %, the polishing effect of the silica particles, especially the excellent surface texture, can be obtained. On the other hand, by making the total silica particle concentration below 50 mass %, in addition to being cost-effective, it can also be used with abrasive materials other than silica particles or other composite agents to prevent problems such as agglomeration or gelation.
1.2 水溶性高分子化合物 1.2 Water-soluble polymer compounds
本實施方式之研磨劑組合物中的水溶性高分子化合物,係使用含有以不飽和醯胺為結構單元之聚合物或共聚物。 The water-soluble polymer compound in the abrasive composition of this embodiment is a polymer or copolymer containing unsaturated amide as a structural unit.
意即,較佳為可使用含有衍生自(甲基)丙烯醯胺及/或N-取 代(甲基)丙烯醯胺的結構單元之聚合物或共聚物。再者,較佳為可含有衍生自(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺的結構單元之聚合物,以及包含衍生自(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺的結構單元及衍生自含羧基之乙烯單體的結構單元之共聚物。上述當中,本說明書中定義「(甲基)丙烯醯胺」係表示丙烯醯胺及/或甲基丙烯醯胺(以下亦同)。 That is, it is preferred to use a polymer or copolymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide. Furthermore, it is preferred to use a polymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide, and a copolymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide and a structural unit derived from a carboxyl group-containing vinyl monomer. Among the above, "(meth)acrylamide" is defined in this specification to mean acrylamide and/or methacrylamide (the same applies hereinafter).
此外,N-取代(甲基)丙烯醯胺係為以下表示的化合物 In addition, N-substituted (meth)acrylamide is a compound represented by the following
通式(1):CH2=C(R1)-CONR2(R3) General formula (1): CH 2 =C(R 1 )-CONR 2 (R 3 )
(R1表示氫原子或甲基、R2表示氫原子或碳數為1~4之直鏈狀或分岐鏈狀之烷基、R3表示碳數為1~4之直鏈狀或分岐鏈狀之烷基。) ( R1 represents a hydrogen atom or a methyl group, R2 represents a hydrogen atom or a linear or branched chain alkyl group having 1 to 4 carbon atoms, and R3 represents a linear or branched chain alkyl group having 1 to 4 carbon atoms.)
另,上述通式(1)中,以R2或R3所示碳數為1~4之直鏈狀或分岐鏈狀之烷基的實例包括:甲基、乙基、N-丙基、i-丙基、N-丁基、i-丁基、s-丁基、t-丁基等。另一方面,N-取代(甲基)丙烯醯胺之實例包括:N,N-二甲基(甲基)丙烯醯胺、N-甲基(甲基)丙烯醯胺、N-乙基(甲基)丙烯醯胺、N-N-丙基(甲基)丙烯醯胺、N-i-丙基(甲基)丙烯醯胺、N-N-丁基(甲基)丙烯醯胺、N-i-丁基(甲基)丙烯醯胺、N-s-丁基(甲基)丙烯醯胺、及N-t-丁基(甲基)丙烯醯胺。 In the above general formula (1), examples of the linear or branched alkyl group having 1 to 4 carbon atoms represented by R2 or R3 include methyl, ethyl, N-propyl, i-propyl, N-butyl, i-butyl, s-butyl, t-butyl, etc. On the other hand, examples of N-substituted (meth)acrylamide include N,N-dimethyl (meth)acrylamide, N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, NN-propyl (meth)acrylamide, Ni-propyl (meth)acrylamide, NN-butyl (meth)acrylamide, Ni-butyl (meth)acrylamide, Ns-butyl (meth)acrylamide, and Nt-butyl (meth)acrylamide.
若水溶性高分子化合物為共聚物,(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺之使用比例,相對於構成該共聚物之乙烯單體的總莫耳數,較佳為介於5~99莫耳%之範圍。再者,該情況下,使(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺之使用比例介於10~98莫耳%之範圍者尤佳。 If the water-soluble polymer compound is a copolymer, the usage ratio of (meth)acrylamide and/or N-substituted (meth)acrylamide is preferably in the range of 5 to 99 mol% relative to the total molar number of vinyl monomers constituting the copolymer. Furthermore, in this case, it is particularly preferred to make the usage ratio of (meth)acrylamide and/or N-substituted (meth)acrylamide in the range of 10 to 98 mol%.
另一方面,含羧基之乙烯單體,實例包括:(甲基)丙烯酸、巴豆酸、(甲基)烯丙基羧酸等單羧酸;伊康酸、順丁烯二酸、反丁烯二酸等 二羧酸;或諸此各種有機酸之鈉鹽、鉀鹽等鹼金屬鹽、銨鹽等。尤其較佳為使用(甲基)丙烯酸或伊康酸。在此,上述當中,本說明書中定義(甲基)丙烯酸係表示丙烯酸及/甲基丙烯酸(以下亦同)。 On the other hand, examples of carboxyl-containing vinyl monomers include: monocarboxylic acids such as (meth)acrylic acid, crotonic acid, and (meth)allyl carboxylic acid; dicarboxylic acids such as itaconic acid, succinic acid, and fumaric acid; or alkaline metal salts such as sodium salts and potassium salts of these various organic acids, ammonium salts, etc. It is particularly preferred to use (meth)acrylic acid or itaconic acid. Here, in the above, (meth)acrylic acid is defined in this specification as acrylic acid and/or methacrylic acid (the same applies hereinafter).
相對於乙烯單體之總莫耳數,含羧基之乙烯單體的使用比例,較佳為介於1~95莫耳%之範圍。再者,該情況下,含羧基之乙烯單體的使用比例,尤佳為介於2~90莫耳%之範圍。 The usage ratio of the carboxyl group-containing vinyl monomer is preferably in the range of 1 to 95 mol% relative to the total molar number of the vinyl monomer. Furthermore, in this case, the usage ratio of the carboxyl group-containing vinyl monomer is more preferably in the range of 2 to 90 mol%.
構成(甲基)丙烯醯胺、N-取代(甲基)丙烯醯胺及含羧基之乙烯單體以外之共聚物的乙烯單體,可列舉傳統眾所周知之各種化合物。例如,陰離子性乙烯單體之實例包括:乙烯磺酸、苯乙烯磺酸、2-丙烯醯胺-2-甲基丙磺酸等有機磺酸;或諸此各種有機酸之鈉鹽、鉀鹽等鹼金屬鹽、銨鹽等。 The vinyl monomers constituting the copolymers other than (meth)acrylamide, N-substituted (meth)acrylamide and carboxyl-containing vinyl monomers include various conventionally known compounds. For example, examples of anionic vinyl monomers include organic sulfonic acids such as ethylene sulfonic acid, styrene sulfonic acid, and 2-acrylamide-2-methylpropanesulfonic acid; or alkaline metal salts such as sodium salts and potassium salts of these organic acids, ammonium salts, etc.
另一方面,陽離子性乙烯單體之實例包括:二甲基胺乙基(甲基)丙烯酸酯、二乙基胺乙基(甲基)丙烯酸酯、二甲基胺丙基(甲基)丙烯醯胺、二乙基胺丙基(甲基)丙烯醯胺等具備三級胺之乙烯單體或諸等之鹽酸、硫酸、醋酸等無機酸或有機酸之鹽類、或含有該三級胺之乙烯單體與氯甲烷、氯甲苯、二甲碸、環氧氯丙烷等四級化劑反應所得含四級銨鹽之乙烯單體等。 On the other hand, examples of cationic vinyl monomers include: vinyl monomers containing tertiary amines such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or salts of inorganic or organic acids such as hydrochloric acid, sulfuric acid, and acetic acid, or vinyl monomers containing quaternary ammonium salts obtained by reacting vinyl monomers containing the tertiary amines with quaternary reagents such as methyl chloride, chlorotoluene, dimethyl sulfide, and epichlorohydrin, etc.
此外,陰離子性乙烯單體之實例包括:含羧基之乙烯單體或陰離子性乙烯單體之烷酯(烷基碳數為1~8者)、丙烯腈、苯乙烯、二乙烯苯、醋酸乙烯、甲基乙烯基醚、N-乙烯吡咯啶酮等。 In addition, examples of anionic vinyl monomers include: carboxyl-containing vinyl monomers or alkyl esters of anionic vinyl monomers (alkyl carbon number is 1 to 8), acrylonitrile, styrene, divinylbenzene, vinyl acetate, methyl vinyl ether, N-vinylpyrrolidone, etc.
另,將(甲基)丙烯醯胺及/或N-取代(甲基)丙烯醯胺、含羧基之乙烯單體進行共聚反應,及進一步依需將上述以外之乙烯單體進行共 聚反應,以製備含羧基之聚丙烯醯胺的方法,可使用傳統眾所周知之方法進行製備。舉例,將上述各種單體及水投入規定的反應容器,添加自由基聚合起始劑,並以規定轉數一邊攪拌一邊加溫,即有可能獲得所需的含羧基之聚丙烯醯胺。 In addition, the method of preparing carboxyl-containing polyacrylamide by copolymerizing (meth)acrylamide and/or N-substituted (meth)acrylamide, vinyl monomers containing carboxyl groups, and further copolymerizing vinyl monomers other than the above-mentioned monomers as needed, can be prepared by conventional well-known methods. For example, the above-mentioned monomers and water are put into a specified reaction container, a free radical polymerization initiator is added, and the mixture is stirred and heated at a specified speed, so that the desired carboxyl-containing polyacrylamide can be obtained.
作為自由基聚合起始劑,可使用過硫酸鉀、過硫酸銨等過硫酸鹽、或諸此與亞硫酸氫鈉等還原劑組合而成的氧化還原類聚合起始劑等一般自由基聚合起始劑。此外,亦可使用偶氮類起始劑作為自由基聚合起始劑。諸此自由基聚合起始劑之用量,可佔乙烯單體總重量和之0.05~2重量%左右。 As a free radical polymerization initiator, a general free radical polymerization initiator such as a persulfate such as potassium persulfate or ammonium persulfate, or a redox polymerization initiator formed by combining these with a reducing agent such as sodium bisulfite can be used. In addition, an azo initiator can also be used as a free radical polymerization initiator. The amount of these free radical polymerization initiators can account for about 0.05 to 2% by weight of the total weight of the ethylene monomer.
水溶性高分子化合物之重量平均分子量,一般為1,000以上且10,000,000以下,較佳為5,000以上且5,000,000以下,更佳為10,000以上且3,000,000以下。在此,本說明書中所述之重量平均分子量,係藉由GPC(凝膠滲透層析術)經標準聚丙烯酸換算進行測量之際的數值。 The weight average molecular weight of a water-soluble polymer compound is generally 1,000 to 10,000,000, preferably 5,000 to 5,000,000, and more preferably 10,000 to 3,000,000. The weight average molecular weight described in this specification is the value measured by GPC (gel permeation chromatography) and converted to standard polyacrylic acid.
水溶性高分子化合物之含量,較佳為0.0001質量%以上且1.0質量%以下之範圍,尤佳為0.01質量%以上且0.8質量%以下之範圍。藉由使水溶性高分子化合物之含量達0.0001質量%以上,可期抑制研磨加工時之托架噪音。另一方面,藉由使水溶性高分子化合物之含量為1.0質量%以下,可避免水溶液高黏度化導致流動性下降,並提升作業性。 The content of the water-soluble polymer compound is preferably in the range of 0.0001 mass % or more and 1.0 mass % or less, and more preferably in the range of 0.01 mass % or more and 0.8 mass % or less. By making the content of the water-soluble polymer compound reach 0.0001 mass % or more, the bracket noise during the grinding process can be suppressed. On the other hand, by making the content of the water-soluble polymer compound less than 1.0 mass %, the high viscosity of the aqueous solution can be avoided to reduce the fluidity and improve the workability.
1.3 其他添加劑 1.3 Other additives
本實施方式之研磨劑組合物,為調整pH值,可進一步含有無機酸及/或其鹽類、有機酸及/或其鹽類、及鹼基性化合物當中之至少一種。此外,較佳為使用螯合物作為有機酸及/或其鹽類。 The abrasive composition of this embodiment may further contain at least one of an inorganic acid and/or its salt, an organic acid and/or its salt, and an alkaline compound to adjust the pH value. In addition, it is preferred to use a chelate as the organic acid and/or its salt.
更具體說明,作為無機酸之實例,可列舉:硝酸、硫酸、鹽酸、磷酸、膦酸、次膦酸、焦磷酸、及三聚酸等,亦可使用該等之鹽類。例如,作為鹽類,較佳為使用鈉鹽、鉀鹽、及銨鹽等。 More specifically, examples of inorganic acids include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, and trimer acid, and their salts can also be used. For example, as salts, sodium salts, potassium salts, and ammonium salts are preferably used.
作為有機酸之實例,可列舉:蟻酸、醋酸、及丙酸等單羧酸;蘋果酸、丙二酸、順丁烯二酸、及酒石酸等二羧酸;檸檬酸等三羧酸;甘胺酸等胺基羧酸;乙二胺四醋酸等聚胺基羧酸類化合物等,亦可使用該等之鹽類。例如,作為鹽類,較佳為使用鈉鹽、鉀鹽、及銨鹽等。 Examples of organic acids include monocarboxylic acids such as tartaric acid, acetic acid, and propionic acid; dicarboxylic acids such as tartaric acid, malonic acid, citric acid, and tricarboxylic acids; aminocarboxylic acids such as glycine; polyaminocarboxylic acid compounds such as ethylenediaminetetraacetic acid, etc., and their salts can also be used. For example, as salts, sodium salts, potassium salts, and ammonium salts are preferably used.
作為鹼基性化合物之實例,可列舉:氫氧化鈉及氫氧化鉀等鹼金屬氫氧化物、氫氧化鈣及氫氧化鎂等鹼土族金屬氫氧化物、氨水、及有機胺類等。 Examples of alkaline compounds include: alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, ammonia water, and organic amines.
再者,本實施方式之研磨劑組合物中,無機酸及/或其鹽類、有機酸及/或其鹽類、及鹼基性化合物之含量,較佳為介於0.05~4質量%之範圍,尤佳為介於0.1~3質量%之範圍,更佳為介於0.2~2質量%之範圍。 Furthermore, in the polishing agent composition of the present embodiment, the content of inorganic acid and/or its salt, organic acid and/or its salt, and alkaline compound is preferably in the range of 0.05-4 mass %, more preferably in the range of 0.1-3 mass %, and even more preferably in the range of 0.2-2 mass %.
有機酸及/或其鹽類,較佳為使用前述般的螯合物,例如可列舉:二羧酸、三羧酸、胺基羧酸、及聚胺基羧酸類化合物等。再者,聚胺基羧酸類化合物之具體範例,可列舉如:乙二胺四醋酸、二伸乙三胺五醋酸、三伸乙四胺六醋酸、氮基三醋酸等、及該等之銨鹽、胺鹽、鈉鹽、及鉀鹽等。 Organic acids and/or their salts are preferably chelates as mentioned above, for example: dicarboxylic acids, tricarboxylic acids, aminocarboxylic acids, and polyaminocarboxylic acid compounds. Furthermore, specific examples of polyaminocarboxylic acid compounds include: ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, nitrilotriacetic acid, and their ammonium salts, amine salts, sodium salts, and potassium salts.
若使用螯合物作為有機酸及/或其鹽類,可進一步提升研磨速度,且具備抑制研磨加工過程中托架噪音產生之效果。 If chelates are used as organic acids and/or their salts, the polishing speed can be further increased and the bracket noise generated during the polishing process can be suppressed.
本實施方式之研磨劑組合物中,較佳為將pH值(25℃)調整至介於7~11之範圍者。已知,一旦調整pH值(25℃)至介於7~11之範 圍,二氧化矽粒子之電荷將傾向於往負電荷增加。因此,作用於二氧化矽粒子間之電斥力增加,並且藉由有效地作用在每個二氧化矽粒子上,研磨材粒子被均勻地分散。 In the abrasive composition of the present embodiment, it is preferred to adjust the pH value (25°C) to a range between 7 and 11. It is known that once the pH value (25°C) is adjusted to a range between 7 and 11, the charge of the silica particles will tend to increase toward the negative charge. Therefore, the electric repulsion acting on the silica particles increases, and by effectively acting on each silica particle, the abrasive particles are evenly dispersed.
與此相對,當pH值(25℃)未滿7,特別是介於5~6附近時,二氧化矽粒子間的電荷失衡,易導致二氧化矽粒子的凝集或膠化等現象。此外,pH值(25℃)一旦超過11,二氧化矽粒子表面將慢慢溶解,恐怕難以發揮作為研磨劑組合物之作用效果。 In contrast, when the pH value (25°C) is less than 7, especially when it is around 5-6, the charge imbalance between the silica particles is likely to cause agglomeration or gelation of the silica particles. In addition, once the pH value (25°C) exceeds 11, the surface of the silica particles will slowly dissolve, and it may be difficult to exert the effect of being an abrasive composition.
2.研磨方法 2. Grinding method
運用本實施方式之研磨劑組合物,對以鉭酸鋰單晶材料或鈮酸鋰單晶材料構成之基板實施研磨加工時,可適當選擇各種傳統眾所周知之研磨手法。例如,將規定量之研磨劑組合物投入設置於研磨機中的供應容器。之後,從供應容器通過供應噴嘴及供應管,將該研磨劑組合物滴入貼附於研磨機平板上的研磨墊,並將被研磨物(鉭酸鋰單晶材料等)之研磨面推向研磨墊面,以規定之轉速旋轉平板,將被研磨物之表面進行研磨。 When the abrasive composition of this embodiment is used to perform polishing on a substrate made of lithium tantalum single crystal material or lithium niobate single crystal material, various conventional and well-known polishing methods can be appropriately selected. For example, a specified amount of the abrasive composition is put into a supply container set in a grinder. Afterwards, the abrasive composition is dripped from the supply container through a supply nozzle and a supply pipe onto a polishing pad attached to a plate of the grinder, and the polishing surface of the object to be polished (lithium tantalum single crystal material, etc.) is pushed toward the polishing pad surface, and the plate is rotated at a specified rotation speed to polish the surface of the object to be polished.
在此,作為研磨墊,可從傳統以來眾所周知的不織布、發泡聚氨酯、多孔樹脂、及非多孔樹脂等材質製成之研磨墊中選擇適當者使用。再者,為促進研磨劑組合物供應至研磨墊上的供應量,或使研磨墊上停留一定量該研磨劑組合物,研磨墊表面亦可為採用格狀、同心圓狀、或螺旋狀等溝槽加工之研磨墊。 Here, as the polishing pad, an appropriate one can be selected from the conventionally known non-woven fabric, foamed polyurethane, porous resin, and non-porous resin polishing pads. Furthermore, in order to increase the amount of the abrasive composition supplied to the polishing pad, or to allow a certain amount of the abrasive composition to remain on the polishing pad, the surface of the polishing pad can also be a polishing pad processed with grid, concentric, or spiral grooves.
【實施例】 [Implementation Example]
以下依據實施例對本發明進行具體說明,惟本發明並不限於該等實施例。此外,本發明除以下實施例之外,發明所屬技術領域中具有 通常知識者,亦可在不脫離本發明之技術範圍內實施各種變更、改良。 The present invention is described in detail below based on the embodiments, but the present invention is not limited to the embodiments. In addition, in addition to the following embodiments, those with general knowledge in the technical field to which the present invention belongs can also implement various changes and improvements without departing from the technical scope of the present invention.
(水溶性高分子化合物之合成) (Synthesis of water-soluble polymer compounds)
以如下所示方法,合成各實施例及比較例所使用之水溶性高分子化合物(合成例1~合成例4)。另,下述合成例當中,除非另有說明,否則「份」及「%」係表示「質量份」或「質量%」。 The water-soluble polymer compounds used in the examples and comparative examples (Synthesis Example 1 to Synthesis Example 4) were synthesized by the following method. In addition, in the following synthesis examples, unless otherwise specified, "parts" and "%" represent "parts by mass" or "mass %".
(合成例1) (Synthesis Example 1)
於具備溫度計、回流冷卻管及氮氣導入管之四口燒瓶中,投入丙烯醯胺100質量份(相對於乙烯單體之總莫耳和為95莫耳%,以下亦同)、丙烯酸5.3質量份(5莫耳%)、異丙醇5.3質量份、及離子交換水400質量份,再導入氮氣去除反應系統內的氧氣。之後,將反應系統內的溫度調整至40℃,一邊持續攪拌,一邊投入過硫酸銨0.3質量份及亞硫酸鈉0.2質量份作為聚合起始劑。透過反應系統內的發熱確認聚合反應開始,當反應系統內的液溫達90℃後,以該溫度保溫2小時。聚合反應結束後,於反應系統內投入48%氫氧化鈉水溶液5.5質量份及離子交換水11質量份,即獲得pH值(25℃)為7.5、聚合物濃度為20%的含羧基之聚丙烯醯胺水溶液,亦即合成例1之水溶性高分子化合物。所得合成例1之水溶性高分子化合物之組成,為丙烯醯胺/丙烯酸=95/5(莫耳%),而重量平均分子量為900,000。 In a four-necked flask equipped with a thermometer, a reflux cooling tube and a nitrogen inlet tube, 100 parts by mass of acrylamide (95 mol% relative to the total molar sum of ethylene monomers, the same applies below), 5.3 parts by mass of acrylic acid (5 mol%), 5.3 parts by mass of isopropanol, and 400 parts by mass of ion exchange water were added, and nitrogen was introduced to remove oxygen in the reaction system. After that, the temperature in the reaction system was adjusted to 40°C, and while stirring continuously, 0.3 parts by mass of ammonium persulfate and 0.2 parts by mass of sodium sulfite were added as polymerization initiators. The start of the polymerization reaction was confirmed by the heat in the reaction system. When the liquid temperature in the reaction system reached 90°C, it was kept at this temperature for 2 hours. After the polymerization reaction is completed, 5.5 parts by mass of 48% sodium hydroxide aqueous solution and 11 parts by mass of ion exchange water are added to the reaction system to obtain a carboxyl-containing polyacrylamide aqueous solution with a pH value (25°C) of 7.5 and a polymer concentration of 20%, which is the water-soluble polymer compound of Synthesis Example 1. The composition of the obtained water-soluble polymer compound of Synthesis Example 1 is acrylamide/acrylic acid = 95/5 (molar %), and the weight average molecular weight is 900,000.
(合成例2) (Synthesis Example 2)
於具備溫度計、回流冷卻管及氮氣導入管之四口燒瓶中,投入丙烯醯胺100質量份(相對於乙烯單體之總莫耳和為95莫耳%)、甲基丙烯酸6.3質量份(5莫耳%)、丙醇5.3質量份及離子交換水400質量份,再導入氮氣去除反應系統內的氧氣。之後,將反應系統內的溫度調整至40℃,一邊持續攪 拌,一邊投入過硫酸銨0.3質量份及亞硫酸氫鈉0.2質量份作為聚合起始劑。透過反應系統內的發熱確認聚合反應開始,當反應系統內的液溫達90℃後,以該溫度保溫2小時。聚合反應結束後,投入48%氫氧化鈉水溶液5.5質量份及離子交換水11質量份,即獲得pH值(25℃)為7.5、聚合物濃度為20%的含羧基之聚丙烯醯胺水溶液,亦即合成例2之水溶性高分子化合物。所得合成例2之水溶性高分子化合物之組成,為丙烯醯胺/甲基丙烯酸=95/5(莫耳%),而重量平均分子量為1,400,000。 In a four-necked flask equipped with a thermometer, a reflux cooling tube and a nitrogen inlet tube, 100 parts by mass of acrylamide (95 mol% relative to the total molar sum of ethylene monomers), 6.3 parts by mass of methacrylic acid (5 mol%), 5.3 parts by mass of propanol and 400 parts by mass of ion exchange water were added, and nitrogen was introduced to remove the oxygen in the reaction system. After that, the temperature in the reaction system was adjusted to 40°C, and while stirring continuously, 0.3 parts by mass of ammonium persulfate and 0.2 parts by mass of sodium hydrogen sulfite were added as polymerization initiators. The start of the polymerization reaction was confirmed by the heat in the reaction system. When the liquid temperature in the reaction system reached 90°C, it was kept at this temperature for 2 hours. After the polymerization reaction is completed, 5.5 parts by mass of 48% sodium hydroxide aqueous solution and 11 parts by mass of ion exchange water are added to obtain a carboxyl-containing polyacrylamide aqueous solution with a pH value (25°C) of 7.5 and a polymer concentration of 20%, which is the water-soluble polymer compound of Synthesis Example 2. The composition of the obtained water-soluble polymer compound of Synthesis Example 2 is acrylamide/methacrylic acid = 95/5 (molar %), and the weight average molecular weight is 1,400,000.
(合成例3) (Synthesis Example 3)
在上述合成例1中,將丙烯醯胺變更為t-丁基丙烯醯胺,並將單體比例調整為t-丁基丙烯醯胺/丙烯酸=14/86(莫耳%)後進行合成,獲得含羧基之聚丙烯醯胺水溶液,亦即合成例3之水溶性高分子化合物。所得合成例3之水溶性高分子化合物之組成,為t-丁基丙烯醯胺/丙烯酸=14/86(莫耳%),而重量平均分子量為13,000。 In the above-mentioned Synthesis Example 1, acrylamide is changed to t-butylacrylamide, and the monomer ratio is adjusted to t-butylacrylamide/acrylic acid = 14/86 (mol%), and then synthesis is performed to obtain a carboxyl-containing polyacrylamide aqueous solution, that is, the water-soluble polymer compound of Synthesis Example 3. The composition of the obtained water-soluble polymer compound of Synthesis Example 3 is t-butylacrylamide/acrylic acid = 14/86 (mol%), and the weight average molecular weight is 13,000.
(合成例4) (Synthesis Example 4)
在上述合成例1中,將丙烯醯胺變更為丙烯酸,進行丙烯酸之單獨聚合,獲得合成例4之水溶性高分子化合物。所得合成例4之水溶性高分子化合物為丙烯酸單獨聚合物,其重量平均分子量為12,000。 In the above-mentioned Synthesis Example 1, acrylamide is replaced with acrylic acid, and acrylic acid is polymerized alone to obtain the water-soluble polymer compound of Synthesis Example 4. The water-soluble polymer compound of Synthesis Example 4 obtained is a single polymer of acrylic acid, and its weight average molecular weight is 12,000.
分別使用被合成的上述合成例1~4之水溶性高分子化合物,搭配以下表1或表2之混合比率,以如下所示方法,調製實施例1~21及比較例1~8之研磨劑組合物。另,比較例1及比較例4,為不含合成例1~4之水溶性高分子化合物的研磨劑組合物。 The water-soluble polymer compounds synthesized in the above-mentioned Synthesis Examples 1 to 4 are used respectively, with the mixing ratios in Table 1 or Table 2 below, and the polishing agent compositions of Examples 1 to 21 and Comparative Examples 1 to 8 are prepared in the following manner. In addition, Comparative Examples 1 and 4 are polishing agent compositions that do not contain the water-soluble polymer compounds of Synthesis Examples 1 to 4.
(實施例1) (Implementation Example 1)
將市售之鹼性膠質氧化矽A(平均粒徑20nm、固體含量濃度50質量%),與鹼性膠質氧化矽B(平均粒徑100nm、固體含量濃度50質量%)以7:3之質量比混合,使固體含量為300g,再將此加入上述於合成例1中被合成之水溶性高分子化合物2g。接著為調整研磨劑組合物之pH值(25℃)至8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得實施例1之研磨劑組合物1kg。 Commercially available alkaline colloidal silica A (average particle size 20nm, solid content concentration 50% by mass) and alkaline colloidal silica B (average particle size 100nm, solid content concentration 50% by mass) were mixed at a mass ratio of 7:3 to make a solid content of 300g, and then 2g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added. Then, in order to adjust the pH value (25°C) of the abrasive composition to 8.5, 400g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added, and then stirred to obtain 1kg of the abrasive composition of Example 1.
(實施例2) (Example 2)
在上述實施例1中,藉由將磷酸變更為丙二酸,獲得實施例2之研磨劑組合物1kg。 In the above-mentioned Example 1, by changing phosphoric acid to malonic acid, 1 kg of the abrasive composition of Example 2 was obtained.
(實施例3) (Implementation Example 3)
在上述實施例1中,藉由將磷酸變更為檸檬酸,獲得實施例3之研磨劑組合物1kg。 In the above-mentioned Example 1, by changing phosphoric acid to citric acid, 1 kg of the abrasive composition of Example 3 was obtained.
(實施例4) (Implementation Example 4)
在上述實施例1中,藉由將合成例1中被合成之水溶性高分子化合物,變更為合成例2中被合成之水溶性高分子化合物,獲得實施例4之研磨劑組合物1kg。 In the above-mentioned Example 1, by changing the water-soluble polymer compound synthesized in Synthesis Example 1 to the water-soluble polymer compound synthesized in Synthesis Example 2, 1 kg of the abrasive composition of Example 4 was obtained.
(實施例5) (Example 5)
在上述實施例4中,藉由將磷酸變更為丙二酸,獲得實施例5之研磨劑組合物1kg。 In the above-mentioned Example 4, by changing phosphoric acid to malonic acid, 1 kg of the abrasive composition of Example 5 was obtained.
(實施例6) (Implementation Example 6)
在上述實施例4中,藉由將磷酸變更為檸檬酸,獲得實施例6之研磨劑組合物1kg。 In the above-mentioned Example 4, by changing phosphoric acid to citric acid, 1 kg of the abrasive composition of Example 6 was obtained.
(實施例7) (Implementation Example 7)
在上述實施例1中,藉由將合成例1中被合成之水溶性高分子化合物,變更為合成例3中被合成之水溶性高分子化合物,獲得實施例7之研磨劑組合物1kg。 In the above-mentioned Example 1, by changing the water-soluble polymer compound synthesized in Synthesis Example 1 to the water-soluble polymer compound synthesized in Synthesis Example 3, 1 kg of the abrasive composition of Example 7 was obtained.
(實施例8) (Implementation Example 8)
在上述實施例7中,藉由將磷酸變更為丙二酸,獲得實施例8之研磨劑組合物1kg。 In the above-mentioned Example 7, by changing phosphoric acid to malonic acid, 1 kg of the abrasive composition of Example 8 was obtained.
(實施例9) (Implementation Example 9)
在上述實施例7中,藉由將磷酸變更為檸檬酸,獲得實施例9之研磨劑組合物1kg。 In the above-mentioned Example 7, by changing phosphoric acid to citric acid, 1 kg of the abrasive composition of Example 9 was obtained.
(實施例10) (Example 10)
將市售之鹼性膠質氧化矽C(平均粒徑40nm、固體含量濃度50質量%),與鹼性膠質氧化矽B(平均粒徑100nm、固體含量濃度50質量%)以8:2之質量比混合,使固體含量為300g,再將此加入上述於合成例1中被合成之水溶性高分子化合物2g。接著為調整研磨劑組合物之pH值(25℃)至8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得實施例10之研磨劑組合物1kg。 Commercially available alkaline colloidal silica C (average particle size 40nm, solid content concentration 50% by mass) and alkaline colloidal silica B (average particle size 100nm, solid content concentration 50% by mass) were mixed at a mass ratio of 8:2 to make the solid content 300g, and then 2g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added. Then, in order to adjust the pH value (25°C) of the abrasive composition to 8.5, 400g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added, and then stirred to obtain 1kg of the abrasive composition of Example 10.
(實施例11) (Implementation Example 11)
將市售之鹼性膠質氧化矽D(平均粒徑30nm、固體含量濃度50質量%),與鹼性膠質氧化矽E(平均粒徑80nm、固體含量濃度50質量%)以7:3之質量比混合,使固體含量為300g,再將此加入上述於合成例1中被合成之水溶性高分子化合物0.2g。接著為調整研磨劑組合物之pH值(25℃)至 8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得實施例11之研磨劑組合物1kg。 Commercially available alkaline colloidal silica D (average particle size 30nm, solid content concentration 50% by mass) and alkaline colloidal silica E (average particle size 80nm, solid content concentration 50% by mass) were mixed at a mass ratio of 7:3 to make a solid content of 300g, and then 0.2g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added. Then, in order to adjust the pH value (25°C) of the abrasive composition to 8.5, 400g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added, and then by stirring, 1kg of the abrasive composition of Example 11 was obtained.
(實施例12) (Example 12)
將市售之鹼性膠質氧化矽D(平均粒徑30nm、固體含量濃度50質量%),與鹼性膠質氧化矽E(平均粒徑80nm、固體含量濃度50質量%)以9:1之質量比混合,使固體含量為300g,再將此加入上述於合成例1中被合成之水溶性高分子化合物0.2g。接著為調整研磨劑組合物之pH值(25℃)至8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得實施例12之研磨劑組合物1kg。 Commercially available alkaline colloidal silica D (average particle size 30nm, solid content concentration 50% by mass) and alkaline colloidal silica E (average particle size 80nm, solid content concentration 50% by mass) were mixed at a mass ratio of 9:1 to make the solid content 300g, and then 0.2g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added. Then, in order to adjust the pH value (25°C) of the abrasive composition to 8.5, 400g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added, and then stirred to obtain 1kg of the abrasive composition of Example 12.
(實施例13~21) (Examples 13 to 21)
實施例13之調製方法同於實施例1,實施例14之調製方法同於實施例2,實施例15之調製方法同於實施例3,實施例16之調製方法同於實施例4,實施例17之調製方法同於實施例5,實施例18之調製方法同於實施例6,實施例19之調製方法同於實施例7,實施例20之調製方法同於實施例8,實施例21之調製方法同於實施例9,分別獲得研磨劑組合物1kg。 The preparation method of Example 13 is the same as that of Example 1, the preparation method of Example 14 is the same as that of Example 2, the preparation method of Example 15 is the same as that of Example 3, the preparation method of Example 16 is the same as that of Example 4, the preparation method of Example 17 is the same as that of Example 5, the preparation method of Example 18 is the same as that of Example 6, the preparation method of Example 19 is the same as that of Example 7, the preparation method of Example 20 is the same as that of Example 8, and the preparation method of Example 21 is the same as that of Example 9, and 1 kg of abrasive composition is obtained respectively.
(比較例1) (Comparison Example 1)
在上述實施例1中,除了不添加合成例1中被合成之水溶性高分子化合物以外,其餘調製方法同於實施例1,獲得比較例1之研磨劑組合物1kg。 In the above-mentioned Example 1, except that the water-soluble polymer compound synthesized in Synthesis Example 1 is not added, the rest of the preparation method is the same as Example 1, and 1 kg of the abrasive composition of Comparative Example 1 is obtained.
(比較例2) (Comparison Example 2)
在上述實施例1中,除了將合成例1中被合成之水溶性高分子化合物,變更為合成例4中被合成之水溶性高分子化合物以外,其餘調製方法同於實施例1,獲得比較例2之研磨劑組合物1kg。 In the above-mentioned Example 1, except that the water-soluble polymer compound synthesized in Synthesis Example 1 is changed to the water-soluble polymer compound synthesized in Synthesis Example 4, the rest of the preparation method is the same as that of Example 1, and 1 kg of the abrasive composition of Comparative Example 2 is obtained.
(比較例3) (Comparison Example 3)
將固體含量為300g之市售鹼性膠質氧化矽A(平均粒徑20nm、固體含量濃度50質量%),加入上述於合成例1中被合成之水溶性高分子化合物0.2g。接著為調整研磨劑組合物之pH值(25℃)至8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得比較例3之研磨劑組合物1kg。 0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added to 300 g of commercially available alkaline colloidal silica A (average particle size 20 nm, solid content concentration 50% by mass) with a solid content. Then, in order to adjust the pH value (25°C) of the abrasive composition to 8.5, 400 g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added, and then stirred to obtain 1 kg of the abrasive composition of Comparative Example 3.
(比較例4) (Comparison Example 4)
將固體含量為300g之市售鹼性膠質氧化矽B(平均粒徑100nm、固體含量濃度50質量%),加入上述於合成例1中被合成之水溶性高分子化合物0.2g。接著為調整研磨劑組合物之pH值(25℃)至8.5,再加入已添加所需量之磷酸的酸性水溶液400g,再藉由攪拌,獲得比較例4之研磨劑組合物1kg。 0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added to 300 g of commercially available alkaline colloidal silica B (average particle size 100 nm, solid content concentration 50% by mass) with a solid content. Then, 400 g of an acidic aqueous solution to which the required amount of phosphoric acid had been added was added to adjust the pH value (25°C) of the abrasive composition to 8.5, and then 1 kg of the abrasive composition of Comparative Example 4 was obtained by stirring.
(比較例5~8) (Compare Examples 5~8)
比較例5之調製方法同於比較例1,比較例6之調製方法同於比較例2,比較例7之調製方法同於比較例3,比較例8之調製方法同於比較例4,分別獲得研磨劑組合物1kg。 The preparation method of Comparative Example 5 is the same as that of Comparative Example 1, the preparation method of Comparative Example 6 is the same as that of Comparative Example 2, the preparation method of Comparative Example 7 is the same as that of Comparative Example 3, and the preparation method of Comparative Example 8 is the same as that of Comparative Example 4, and 1 kg of abrasive composition is obtained respectively.
(膠質氧化矽之粒徑) (Colloidal silica particle size)
膠質氧化矽之粒徑(Heywood直徑),係使用穿透式電子顯微鏡(TEM)(日本電子株式會社製造,穿透式電子顯微鏡JEM2000FX(200kV))拍攝倍率為10萬倍視野之照片,再將該照片藉由分析軟體(山技精密有限公司製造,Mac-View版本4.0)進行分析,並測量其Heywood直徑(投影面積圓當量直徑)。膠質氧化矽之平均粒徑,係以前述之方法分析約2000個膠質氧化矽之粒徑,將自小粒徑開始之累積粒徑分佈(累積體積基準)為50%時所 對應之粒徑,使用上述分析軟體(山技精密有限公司製造,Mac-View版本4.0)所計算出之平均粒徑(D50)。 The particle size (Heywood diameter) of colloidal silica was measured by taking a photograph of the field of view at a magnification of 100,000 times using a transmission electron microscope (TEM) (manufactured by JEOL Ltd., transmission electron microscope JEM2000FX (200 kV)). The photograph was then analyzed using analysis software (manufactured by Sanji Precision Co., Ltd., Mac-View version 4.0) to measure its Heywood diameter (projected area circle equivalent diameter). The average particle size of colloidal silica is calculated by analyzing the particle sizes of about 2,000 colloidal silica particles using the aforementioned method, and using the above-mentioned analysis software (manufactured by Sanji Precision Co., Ltd., Mac-View version 4.0) to calculate the average particle size (D50) corresponding to the particle size when the cumulative particle size distribution (cumulative volume basis) starting from the smallest particle size is 50%.
(研磨試驗)將上述所得實施例1~21及比較例1~8各1kg之研磨劑組合物,分別導入設置於雙面研磨機(SpeedFam有限公司製造之6B-5P-II;拋光研磨平板直徑:422mm)的研磨劑供應容器後,使用該研磨機,對以鉭酸鋰單晶材料、或鈮酸鋰單晶材料構成之基板(直徑:76mm、厚度0.3mm)表面實施5小時拋光研磨。 (Polishing test) 1 kg of each of the abrasive compositions of Examples 1 to 21 and Comparative Examples 1 to 8 obtained above were introduced into the abrasive supply container installed in a double-sided grinder (6B-5P-II manufactured by SpeedFam Co., Ltd.; polishing plate diameter: 422 mm), and then the surface of a substrate (diameter: 76 mm, thickness 0.3 mm) made of lithium tantalum single crystal material or lithium niobate single crystal material was polished for 5 hours using the grinder.
拋光研磨時,平板之旋轉速度(旋轉數)設定為55rpm,研磨壓力為300g/cm2。研磨劑組合物係使用管泵,以200ml/min之供應速度,在供應至貼附於平板的研磨布上之同時,並使溢出的研磨劑組合物返回容器,透過此般循環供應方式被重複使用。 During polishing, the rotation speed (rotation number) of the plate was set to 55 rpm, and the polishing pressure was 300 g/cm 2 . The abrasive composition was supplied to the polishing cloth attached to the plate using a tube pump at a supply rate of 200 ml/min, and the overflowed abrasive composition was returned to the container, and was reused through this circulation supply method.
於是,如上述將基板表面實施拋光研磨,研磨時間每經過一小時,即以測微計(三豐(Mitutoyo)公司製造,測量精度:1μm)測量基板厚度,並由此求得每小時的研磨速度(μm/hr)。表1列出實施例1~12及比較例1~4中鉭酸鋰單晶材料基板之研磨試驗結果。表2列出實施例13~21及比較例5~8中鈮酸鋰單晶基板之研磨試驗結果。 Therefore, the substrate surface was polished as described above. After each hour of polishing, the substrate thickness was measured with a micrometer (manufactured by Mitutoyo, with a measurement accuracy of 1 μm) to obtain the polishing rate per hour (μm/hr). Table 1 lists the polishing test results of lithium tantalum single crystal substrates in Examples 1 to 12 and Comparative Examples 1 to 4. Table 2 lists the polishing test results of lithium niobate single crystal substrates in Examples 13 to 21 and Comparative Examples 5 to 8.
【表1】
【表2】
(托架噪音之判定) (Determination of bracket noise)
根據以下標準評價從研磨剛開始到研磨結束為止的過程中,從研磨試驗機上正在旋轉的平板與托架(carrier)週邊發生的聲音,以判定是否發生托架噪音。 According to the following standards, evaluate the sound from the rotating plate and carrier on the grinding test machine from the beginning to the end of grinding to determine whether the carrier noise occurs.
○:判定有一般研磨時的滑動聲。 ○: It is judged that there is a sliding sound during normal grinding.
△:判定非滑動聲,而是「吱吱」般摩擦聲。 △: It is judged to be not a sliding sound, but a "squeaking" friction sound.
×:判定有「喀喀」般強烈摩擦聲。 ×: There is a strong "clicking" friction sound.
(基板平坦性之評價) (Evaluation of substrate flatness)
以測微計測量基板中心點及位於圓周上的4點,共計5點之厚度,計算基板之平均厚度。再透過以下基準將基板平均厚度與各點厚度之厚度差實施分類,以評價平坦性。 Use a micrometer to measure the thickness of the substrate at the center point and 4 points on the circumference, a total of 5 points, and calculate the average thickness of the substrate. Then classify the thickness difference between the average thickness of the substrate and the thickness of each point according to the following criteria to evaluate the flatness.
○:基板平均厚度與各點厚度之差未滿1%。 ○: The difference between the average thickness of the substrate and the thickness at each point is less than 1%.
△:基板平均厚度與各點厚度之差介於1~1.5%之範圍。 △: The difference between the average thickness of the substrate and the thickness at each point is in the range of 1~1.5%.
×:基板平均厚度與各點厚度之差達1.5%以上。 ×: The difference between the average thickness of the substrate and the thickness at each point is more than 1.5%.
(研磨速度之評價) (Evaluation of grinding speed)
基板為鉭酸鋰單晶基板之情況下,以不使用水溶性高分子化合物的比較例1之數值作為基準,基板為鈮酸單晶基板之情況下,以不使用水溶性高分子化合物的比較例5之數值作為基準,分別實施評價。 When the substrate is a lithium tantalum single crystal substrate, the value of Comparative Example 1 without using a water-soluble polymer compound is used as a benchmark. When the substrate is a niobium oxide single crystal substrate, the value of Comparative Example 5 without using a water-soluble polymer compound is used as a benchmark. Evaluations are performed separately.
○:研磨速度大於比較例1(或比較例5)(=研磨速度提升)。 ○: The polishing speed is greater than that of Comparative Example 1 (or Comparative Example 5) (= polishing speed is increased).
△:研磨速度同於比較例1(或比較例5)。 △: The grinding speed is the same as that of Comparative Example 1 (or Comparative Example 5).
×:研磨速度小於比較例1(或比較例5)(=研磨速度下降)。 ×: The polishing speed is lower than that of Comparative Example 1 (or Comparative Example 5) (= polishing speed decreases).
(結論) (Conclusion)
由表1結果可明顯看出本發明在鉭酸鋰單晶基板之研磨過程的效果。從實施例1、4、7與比較例1、2之對比看來,藉由添加含有以不飽和醯胺為結構單元之聚合物或共聚物,確實提升平坦性,且抑制住托架噪音。具體而言,相對於比較例1之平坦性評價為「△」且比較例2之平坦性評價為「×」,實施例1、4、7之平坦性評價皆為「○」;而托架噪音之評價方面,相對於比較例1為「×」、比較例2為「△」,實施例1、4、7之托架噪音評價皆為「○」。此外,與比較例1之研磨速度為28.6μm/hr相對,實施例1、4、7之研磨速度各為33.8μm/hr、35.1μm/hr、及30.2μm/hr,有觀察到研磨速度之提升。 The results in Table 1 clearly show the effect of the present invention in the polishing process of lithium tantalum single crystal substrates. From the comparison between Examples 1, 4, and 7 and Comparative Examples 1 and 2, it can be seen that by adding a polymer or copolymer containing unsaturated amide as a structural unit, the flatness is indeed improved and the bracket noise is suppressed. Specifically, compared with the flatness evaluation of Comparative Example 1 being "△" and the flatness evaluation of Comparative Example 2 being "×", the flatness evaluation of Examples 1, 4, and 7 is all "○"; and in terms of the evaluation of bracket noise, compared with the evaluation of Comparative Example 1 being "×" and Comparative Example 2 being "△", the bracket noise evaluation of Examples 1, 4, and 7 is all "○". In addition, compared with the polishing speed of 28.6μm/hr in Comparative Example 1, the polishing speeds of Examples 1, 4, and 7 were 33.8μm/hr, 35.1μm/hr, and 30.2μm/hr, respectively, and an increase in polishing speed was observed.
從實施例1與比較例3、4之對比看來,藉由小粒徑二氧化矽粒子與大粒徑二氧化矽粒子之組合使用,與單獨使用小粒徑二氧化矽粒子或單獨使用大粒徑二氧化矽粒子之情況相較,觀察到研磨速度提升、平坦性提升,且托架噪音易受到抑制之結果。具體而言,與比較例3、4之研磨速度各為10.5μm/hr及17.4μm/hr相對,實施例1之研磨速度為33.8μm/hr。接著與比較例3之平坦性評價為「×」、托架噪音評價為「△」相對,實施例1之平坦性及托架噪音評價為「○」。 From the comparison between Example 1 and Comparative Examples 3 and 4, it can be seen that the combination of small-sized silica particles and large-sized silica particles can improve the polishing speed, improve the flatness, and suppress the bracket noise compared with the case of using small-sized silica particles or large-sized silica particles alone. Specifically, the polishing speed of Example 1 is 33.8μm/hr, compared with the polishing speeds of Comparative Examples 3 and 4, which are 10.5μm/hr and 17.4μm/hr respectively. Then, compared with the flatness evaluation of "×" and the bracket noise evaluation of "△" in Comparative Example 3, the flatness and bracket noise evaluation of Example 1 are "○".
實施例2、3相對於實施例1,係將使用的酸從無機酸變更為具螯合性之有機酸的結果,而就該結果得知,研磨速度亦較實施例1有顯著提升。同樣地,在實施例5、6與實施例4的對比、及實施例8、9與實施例7的對比方面亦有相同趨勢。具體而言,與實施例1之研磨速度為33.8μm/hr相對,實施例2之研磨速度為36.5μm/hr、實施例3之研磨速度為35.8μm/hr,皆觀察到研磨速度提升之結果。同樣地,與實施例4之研磨速度為35.1μm/hr 相對,實施例5之研磨速度為39.2μm/hr、實施例6之研磨速度為37.3μm/hr;再者,與實施例7之研磨速度為30.2μm/hr相對,實施例8之研磨速度為32.5μm/hr、實施例9之研磨速度為31.3μm/hr。可見,透過具螯合性之有機酸的使用,觀察到研磨速度提升之結果。 Compared with Example 1, Examples 2 and 3 are the result of changing the acid used from an inorganic acid to an organic acid with chelating properties, and from the results, it can be seen that the polishing rate is also significantly improved compared with Example 1. Similarly, the comparison between Examples 5 and 6 and Example 4, and the comparison between Examples 8 and 9 and Example 7 also have the same trend. Specifically, compared with the polishing rate of Example 1 being 33.8 μm/hr, the polishing rate of Example 2 is 36.5 μm/hr, and the polishing rate of Example 3 is 35.8 μm/hr, and the result of improved polishing rate is observed. Similarly, compared with the polishing speed of 35.1 μm/hr in Example 4, the polishing speed of Example 5 is 39.2 μm/hr, and the polishing speed of Example 6 is 37.3 μm/hr; furthermore, compared with the polishing speed of 30.2 μm/hr in Example 7, the polishing speed of Example 8 is 32.5 μm/hr, and the polishing speed of Example 9 is 31.3 μm/hr. It can be seen that the use of a chelating organic acid can improve the polishing speed.
實施例10~12係相對於實施例1,在小粒徑二氧化矽粒子與大粒徑二氧化矽粒子之平均粒徑、及小粒徑二氧化矽粒子與大粒徑二氧化矽粒子之比例產生變化等方面之結果。如表1所示,只要是滿足本發明所規定之各種必要條件的研磨劑組合物,皆於研磨速度、平坦性、及托架噪音等方面獲得良好評價。 Examples 10 to 12 are the results of Example 1 in terms of the average particle size of small-sized silica particles and large-sized silica particles, and the ratio of small-sized silica particles to large-sized silica particles. As shown in Table 1, as long as the abrasive composition meets the various necessary conditions specified in the present invention, it will receive good evaluations in terms of polishing speed, flatness, and bracket noise.
由表2結果亦可明顯看出本發明在鈮酸鋰單晶基板之研磨過程的效果。從實施例13、16、19與比較例5、6之對比看來,藉由添加含有以不飽和醯胺為結構單元之聚合物或共聚物,確實提升平坦性,且抑制住托架噪音。具體而言,與比較例5之平坦性評價為「△」及比較例6之平坦性評價為「×」相對,實施例13、16、19皆為「○」,托架噪音之評價方面亦觀察到與比較例5為「×」、比較例6為「△」相對,實施例13、16、19皆為「○」。此外,與比較例5之研磨速度為58.5μm/hr相對,實施例13、16、19之研磨速度各為66.5μm/hr、69.8μm/hr、及59.0μm/hr,觀察到研磨速度提升之結果。 The results in Table 2 also clearly show the effect of the present invention in the polishing process of lithium niobate single crystal substrates. From the comparison between Examples 13, 16, and 19 and Comparative Examples 5 and 6, it can be seen that by adding a polymer or copolymer containing unsaturated amide as a structural unit, the flatness is indeed improved and the bracket noise is suppressed. Specifically, compared with the flatness evaluation of Comparative Example 5 being "△" and the flatness evaluation of Comparative Example 6 being "×", Examples 13, 16, and 19 are all "○". It is also observed that in terms of the evaluation of bracket noise, compared with the "×" of Comparative Example 5 and the "△" of Comparative Example 6, Examples 13, 16, and 19 are all "○". In addition, compared with the polishing speed of 58.5μm/hr in Comparative Example 5, the polishing speeds of Examples 13, 16, and 19 were 66.5μm/hr, 69.8μm/hr, and 59.0μm/hr, respectively, and the result of improved polishing speed was observed.
從實施例13與比較例7、8之對比看來,藉由小粒徑二氧化矽粒子與大粒徑二氧化矽粒子之組合使用,與單獨使用小粒徑二氧化矽粒子或單獨使用大粒徑二氧化矽粒子之情況相較,觀察到研磨速度提升、平坦性提升,且托架噪音亦受到抑制之結果。 具體而言,與比較例7,8之研磨速度各為17.8μm/hr、32.7μm/hr相對,實施例13之研磨速度為66.5μm/hr。接著與比較例7之平坦性評價為「×」、托架噪音評價為「△」相對,實施例13之平坦性及托架噪音評價為「○」。 From the comparison between Example 13 and Comparative Examples 7 and 8, it can be seen that the combination of small-sized silica particles and large-sized silica particles improves the polishing speed, improves the flatness, and suppresses the bracket noise compared with the case where small-sized silica particles or large-sized silica particles are used alone. Specifically, the polishing speed of Example 13 is 66.5μm/hr, compared with the polishing speeds of Comparative Examples 7 and 8, which are 17.8μm/hr and 32.7μm/hr, respectively. Then, compared with the flatness evaluation of "×" and the bracket noise evaluation of "△" in Comparative Example 7, the flatness and bracket noise evaluation of Example 13 are "○".
實施例14、15相對於實施例13,係將使用的酸從無機酸變更為具螯合性之有機酸的結果,而就該結果得知,研磨速度亦較實施例13有顯著提升。同樣地,在實施例17、18與實施例16的對比,及實施例20、21與實施例19的對比方面亦有相同趨勢。具體而言,與實施例13之研磨速度為66.5μm/hr相對,實施例14之研磨速度為70.0μm/hr、實施例15之研磨速度為68.7μm/hr,觀察到研磨速度提升之結果。同樣地,與實施例16之研磨速度為69.8μm/hr相對,實施例17之研磨速度為74.2μm/hr、實施例18之研磨速度為72.1μm/hr;再者,與實施例19之研磨速度為59.0μm/hr相對,實施例20之研磨速度為62.1μm/hr、實施例21之研磨速度為60.8μm/hr,觀察到研磨速度提升之結果。 Compared with Example 13, Examples 14 and 15 are the result of changing the acid used from an inorganic acid to an organic acid with chelating properties, and from the results, it can be seen that the polishing rate is also significantly improved compared with Example 13. Similarly, the comparison between Examples 17 and 18 and Example 16, and the comparison between Examples 20 and 21 and Example 19 also have the same trend. Specifically, compared with the polishing rate of 66.5 μm/hr in Example 13, the polishing rate of Example 14 is 70.0 μm/hr, and the polishing rate of Example 15 is 68.7 μm/hr, and the result of improved polishing rate is observed. Similarly, compared with the polishing speed of 69.8 μm/hr in Example 16, the polishing speed of Example 17 is 74.2 μm/hr, and the polishing speed of Example 18 is 72.1 μm/hr; further, compared with the polishing speed of 59.0 μm/hr in Example 19, the polishing speed of Example 20 is 62.1 μm/hr, and the polishing speed of Example 21 is 60.8 μm/hr, and the result of the improvement of the polishing speed is observed.
綜上所述,在實施鉭酸鋰單晶基板或鈮酸鋰單晶基板之研磨時,藉由使用包含平均粒徑互異之兩種二氧化矽粒子、及含有以不飽和醯胺為結構單元之聚合物或共聚物之研磨劑組合物,可實現提升基板之平坦性、提升研磨速度,並進一步抑制托架噪音之效果。 In summary, when polishing a lithium tantalum single crystal substrate or a lithium niobate single crystal substrate, by using an abrasive composition comprising two types of silicon dioxide particles with different average particle sizes and a polymer or copolymer containing unsaturated amide as a structural unit, the flatness of the substrate can be improved, the polishing speed can be increased, and the bracket noise can be further suppressed.
【產業上之可用性】【Industry Usability】
本發明之研磨劑組合物,可用於鉭酸鋰單晶材料、鈮酸鋰單晶材料之研磨。 The abrasive composition of the present invention can be used for polishing lithium tantalum single crystal materials and lithium niobate single crystal materials.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-053679 | 2020-03-25 | ||
JP2020053679A JP7384726B2 (en) | 2020-03-25 | 2020-03-25 | Abrasive composition |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202142642A TW202142642A (en) | 2021-11-16 |
TWI867165B true TWI867165B (en) | 2024-12-21 |
Family
ID=77809156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110106517A TWI867165B (en) | 2020-03-25 | 2021-02-24 | Abrasive composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7384726B2 (en) |
CN (1) | CN113444455B (en) |
TW (1) | TWI867165B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201704438A (en) * | 2015-02-23 | 2017-02-01 | 福吉米股份有限公司 | Composition for polishing, polishing method and method for producing hard-brittle material substrate |
JP2017218514A (en) * | 2016-06-08 | 2017-12-14 | 山口精研工業株式会社 | Polishing agent composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4156175B2 (en) | 2000-05-31 | 2008-09-24 | 山口精研工業株式会社 | Precision polishing composition for lithium tantalate / lithium niobate single crystal materials |
JP2003188121A (en) | 2001-12-18 | 2003-07-04 | Kao Corp | Polishing liquid composition for oxide single crystal substrate and polishing method using the same |
JP5822356B2 (en) * | 2012-04-17 | 2015-11-24 | 花王株式会社 | Polishing liquid composition for silicon wafer |
JP6436018B2 (en) | 2015-08-28 | 2018-12-12 | 住友金属鉱山株式会社 | Polishing slurry for oxide single crystal substrate and method for producing the same |
JP2019016417A (en) | 2017-07-04 | 2019-01-31 | 山口精研工業株式会社 | Polishing agent composition for magnetic disk substrate |
JP2019172902A (en) | 2018-03-29 | 2019-10-10 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method |
-
2020
- 2020-03-25 JP JP2020053679A patent/JP7384726B2/en active Active
-
2021
- 2021-02-24 TW TW110106517A patent/TWI867165B/en active
- 2021-03-22 CN CN202110303581.6A patent/CN113444455B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201704438A (en) * | 2015-02-23 | 2017-02-01 | 福吉米股份有限公司 | Composition for polishing, polishing method and method for producing hard-brittle material substrate |
JP2017218514A (en) * | 2016-06-08 | 2017-12-14 | 山口精研工業株式会社 | Polishing agent composition |
Also Published As
Publication number | Publication date |
---|---|
JP2021153160A (en) | 2021-09-30 |
JP7384726B2 (en) | 2023-11-21 |
TW202142642A (en) | 2021-11-16 |
CN113444455A (en) | 2021-09-28 |
CN113444455B (en) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8900335B2 (en) | CMP polishing slurry and method of polishing substrate | |
JP5110058B2 (en) | CMP abrasive and polishing method | |
CN107075347A (en) | Composition for polishing | |
JP6706149B2 (en) | Abrasive composition | |
JP2004155913A (en) | Polishing abrasive grains, method for producing the same, and abrasive | |
CN114958302B (en) | Efficient grinding fluid and preparation method and application thereof | |
TWI867165B (en) | Abrasive composition | |
KR20210068486A (en) | Composition for polishing gallium oxide substrates | |
JP6373069B2 (en) | Precision abrasive composition | |
TWI861359B (en) | Abrasive composition | |
TWI867166B (en) | Abrasive composition | |
TWI820284B (en) | Polishing composition for magnetic disk substrate | |
JP7691251B2 (en) | Abrasive composition for magnetic disk substrates and method for polishing magnetic disk substrates | |
JP5605367B2 (en) | Dispersant and abrasive for silica particles or ceria particles | |
JP4604727B2 (en) | Additive for CMP abrasives | |
JP2004186350A (en) | Polishing composition for cmp process | |
TW202227568A (en) | Polishing agent composition for fluorophosphate glasses, and polishing method using polishing agent composition for fluorophosphate glasses | |
WO2025115883A1 (en) | Polishing composition | |
TW202500711A (en) | Ethylene polymer, its production method, polishing liquid and vinyl monomer | |
TW202336060A (en) | Additives for chemical mechanical polishing and manufacturing methods thereof, and polishing fluid compositions | |
WO2025094907A1 (en) | Additive for cmp, and cmp composition containing same | |
JPH11279539A (en) | Composition for polishing |