TWI864040B - 診斷支援系統 - Google Patents
診斷支援系統 Download PDFInfo
- Publication number
- TWI864040B TWI864040B TW109122675A TW109122675A TWI864040B TW I864040 B TWI864040 B TW I864040B TW 109122675 A TW109122675 A TW 109122675A TW 109122675 A TW109122675 A TW 109122675A TW I864040 B TWI864040 B TW I864040B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- organ
- frame images
- mentioned
- images
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title description 19
- 210000000056 organ Anatomy 0.000 claims abstract description 142
- 238000004458 analytical method Methods 0.000 claims abstract description 94
- 238000001228 spectrum Methods 0.000 claims abstract description 90
- 238000012545 processing Methods 0.000 claims abstract description 60
- 230000000737 periodic effect Effects 0.000 claims abstract description 48
- 230000000694 effects Effects 0.000 claims abstract description 46
- 230000008859 change Effects 0.000 claims description 107
- 210000004072 lung Anatomy 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 52
- 230000009466 transformation Effects 0.000 claims description 36
- 210000004204 blood vessel Anatomy 0.000 claims description 17
- 230000011218 segmentation Effects 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 abstract 2
- 210000002216 heart Anatomy 0.000 description 143
- 230000017531 blood circulation Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 29
- 210000004165 myocardium Anatomy 0.000 description 27
- 230000004217 heart function Effects 0.000 description 25
- 238000002595 magnetic resonance imaging Methods 0.000 description 24
- 230000033001 locomotion Effects 0.000 description 20
- 210000000188 diaphragm Anatomy 0.000 description 16
- 238000002591 computed tomography Methods 0.000 description 14
- 238000012937 correction Methods 0.000 description 14
- 230000029058 respiratory gaseous exchange Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 12
- 230000000747 cardiac effect Effects 0.000 description 11
- 230000010349 pulsation Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000001575 pathological effect Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 230000000241 respiratory effect Effects 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- 230000002526 effect on cardiovascular system Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000005206 flow analysis Methods 0.000 description 5
- 230000002107 myocardial effect Effects 0.000 description 5
- 230000002861 ventricular Effects 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000000038 chest Anatomy 0.000 description 4
- 230000003205 diastolic effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003187 abdominal effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 244000309464 bull Species 0.000 description 3
- 238000013184 cardiac magnetic resonance imaging Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 230000009747 swallowing Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 210000000709 aorta Anatomy 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013481 data capture Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 210000001174 endocardium Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 210000001147 pulmonary artery Anatomy 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000003243 intestinal obstruction Diseases 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000000207 volumetry Methods 0.000 description 1
Abstract
本發明提供一種可顯示臟器之活動之診斷支援系統。本發明係解析人之臟器之圖像並顯示解析結果之診斷支援系統,且使電腦執行以下處理:取得複數個訊框圖像;算出對上述各訊框圖像間之臟器之狀態建立特徵之週期性變化;將對上述臟器之狀態建立特徵之週期性變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
Description
本發明係關於一種解析心臟之圖像,並顯示解析結果之技術。
近年來,心臟病死亡率處於增加傾向,有用且簡便之診斷技術之必要性提高。因MRI(Magnetic Resonance Imaging:磁共振成像)診斷技術取得急速之進步,可於短時間內進行涉及多方面之心臟之檢查,故於心臟區域之圖像診斷中,MRI之重要性增加。於「心臟MRI」中,進行「電影MRI」、「灌注」、「延遲造影」、「BB(Black Blood:黑血)」法等檢查。尤其,電影MRI與超音波檢查或SPECT(Single Photon Emission Computed Tomography:單光子發射電腦斷層攝影)檢查等比較,有如下特徵:無觀察範圍之限制,而可觀察任意之剖面,且再現性優異。因此,於多數醫療設施中,一般進行攝像。於電影MRI中,例如使用心電圖同步法,將左心室整體進行「約10切片/20相位」之資料收集。最近,可使用「Steady State(穩定狀態)法」,獲得血液與心肌之高對比度。又,於「心功能解析」中,MRI之心功能之評估即便與CT(Computed Tomography:電腦斷層攝影)或LVG(Left Ventriculography)(左心室造影)、SPECT比較,亦可獲得正確之值,必要性提高。
如此,心臟MRI於臨床上有用,尤其電影MRI於多數醫療設施中攝像,但較少使用軟體解析圖像。認為其理由在於,先前之心功能解析所使用之軟體為了擷取、或修正心肌之內外膜側之輪廓,需進行繁雜之操作。又,關於心肌內外膜側之輪廓軌跡,亦容易受到操作者個人之影響,故解析結果之再現性亦成為問題。再者,於心臟MRI普及,使用自複數個製造商提供之MRI裝置之醫療設施增加之情況下,因各公司中序列之名稱不同,故亦產生不容易處理資料之問題。
為解決此種問題,提供有如下之軟體:為了減輕繁雜之心肌輪廓之軌跡之勞力,而提高其精度,假設完成了意外之軌跡之情形時,亦可藉由自動進行內插處理,而減輕修正作業。藉由該軟體,於MRI心功能解析之觀察器中,並列顯示圖像,且進行輕彈操作,藉此可進行壓力較少之圖像觀察。
[先前技術文獻]
[非專利文獻]
[非專利文獻1]https://www.zio.co.jp/ziostation2/
然而,如非專利文獻1所記載之技術般,僅藉由並列顯示MRI圖像,醫師難以掌握病情。因此,期望顯示符合心臟之狀態之圖像。即,期望掌握被攝體即人體之心臟,並基於心臟之波形或頻率、或圖像之變化傾向,顯示表示實際活動之圖像。
本發明係鑑於此種情況而完成者,目的在於提供一種可顯示臟器之活動之診斷支援程式。更具體而言,目的在於:對欲計測之新對象之資料,將已取得之波形及相對於Hz之一致率或其他不一致率數值化,藉此算出輔助診斷之數值,進而藉由將該等數值圖像化,而產生輔助診斷之圖像。
(1)為達成上述目的,本案採取了如以下之方法。即,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;算出對上述各訊框圖像間之臟器之狀態建立特徵之週期性變化;將對上述臟器之狀態建立特徵之週期性變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
(2)又,本發明之一態樣之診斷支援程式之特徵在於進而包含以下處理:將人之臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像之變化;將上述各訊框圖像中之各塊區域之圖像之變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;及對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換。
(3)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;算出對上述各訊框圖像間之臟器之狀態建立特徵之週期性變化;以數位濾波器擷取與對上述圖像中之臟器之狀態建立特徵之週期性變化之頻率對應而變化之像素;及輸出包含以上述數位濾波器擷取出之像素的圖像。
(4)又,本發明之一態樣之診斷支援程式之特徵在於進而包含以下處理:將臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像之變化;及依每個上述塊區域,以數位濾波器擷取與上述圖像中之臟器之活動頻率對應而變化之像素。
(5)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;算出對上述各訊框圖像間之臟器之狀態建立特徵之週期性變化率;選定與對上述臟器之狀態建立特徵之週期性變化率對應之色彩;及對上述像素值之變化率標註上述選定之色彩且將上述圖像顯示於顯示器。
(6)又,本發明之一態樣之診斷支援程式之特徵在於進而包含以下處理:將臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像之變化率;及依每個上述塊區域,選定與上述像素值之變化率對應之色彩。
(7)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人體之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;針對上述取得之所有訊框圖像,定義解析範圍;使用沃羅諾伊分割之方法,將解析範圍分割成複數個區域;及對上述經分割之各區域,執行對於週期性變化進行之任一運算。
(8)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人體之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;針對上述取得之所有訊框圖像,定義解析範圍;將解析範圍分割成複數個區域;及針對上述經分割之各區域,基於週期性變化之指標,將上述各區域進行分類。
(9)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;於維持複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出對臟器之狀態建立特徵之週期性變化;將對上述臟器之狀態建立特徵之週期性變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
(10)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;於維持複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出對臟器之狀態建立特徵之週期性變化;以數位濾波器擷取與對上述圖像中之臟器之狀態建立特徵之週期性變化之頻率對應而變化之像素;及輸出包含以上述數位濾波器擷取出之像素的圖像。
(11)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;於維持複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出對臟器之狀態建立特徵之週期性變化;選定與對上述臟器之狀態建立特徵之週期性變化率對應之色彩;及對上述像素值之變化率標註上述選定之色彩且將上述圖像顯示於顯示器。
(12)又,本發明之一態樣之診斷支援程式之特徵在於,將複數個訊框圖像分類成複數個組群,於維持屬於各組群之複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出對臟器之狀態建立特徵之週期性變化。
(13)又,本發明之一態樣之診斷支援程式之特徵在於,不論是否為相鄰之訊框,皆於上述各訊框圖像間,於維持表示上述臟器之像素之相對位置關係之狀態下,計算上述各訊框圖像中之塊區域之圖像變化。
(14)又,本發明之一態樣之診斷支援程式之特徵在於進而包含如下之處理:於藉由X射線拍攝之訊框圖像中,將自特定區域之穿透率(transmittance)變化之穿透率返回至一定之形式。
(15)又,本發明之一態樣之診斷支援程式之特徵在於進而包含如下之處理:於藉由MRI拍攝之訊框圖像中,修正MRI之磁場不均一之區域之信號值,轉換為磁場均一之情形下獲得之圖像。
(16)又,本發明之一態樣之診斷支援程式之特徵在於,不論是否為相鄰之訊框,皆於上述各訊框圖像間,由上述臟器整體之變化之態樣算出變化率,且基於算出之變化率,計算上述特定塊區域之圖像之變化。
(17)又,本發明之一態樣之診斷支援程式之特徵在於,上述變化率根據上述臟器中之塊區域之位置而變化,或於上述臟器整體為恆定。
(18)又,本發明之一態樣之診斷支援程式之特徵在於包含以下處理:設定上述臟器之大小為最大時之最大外緣;設定上述臟器之大小為最小時之最小外緣;使用上述最大外緣及上述最小外緣,算出各圖像中之其他大小之臟器外緣之係數;及將與上述各圖像之臟器外緣之係數對應之波形及上述波形之控制點顯示於圖表上;且藉由使上述控制點之位置變動,而使各圖像之係數變化。
(19)又,本發明之一態樣之診斷支援程式之特徵在於,於上述圖表上,顯示上述臟器之圖像之像素平均值。
(20)又,本發明之一態樣之診斷支援程式之特徵在於,將上述臟器之圖像與上述圖表並排顯示。
(21)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;將上述各訊框圖像中之人之臟器之圖像分割成複數個塊區域;計算上述各訊框圖像中之塊區域之圖像變化;將上述各塊區域之變化值進行傅立葉轉換;及基於頻率成分之構成比,將各區域進行顏色區分。
(22)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出對臟器之狀態建立特徵之週期性變化;將對上述臟器之狀態建立特徵之週期性變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
(23)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出對臟器之狀態建立特徵之週期性變化;以數位濾波器擷取與對上述圖像中之臟器之狀態建立特徵之週期性變化之頻率對應而變化之像素;及輸出包含以上述數位濾波器擷取出之像素的圖像。
(24)又,本發明之一態樣之診斷支援程式之特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出對臟器之狀態建立特徵之週期性變化;選定與對上述臟器之狀態建立特徵之週期性變化率對應之色彩;及對上述像素值之變化率標註上述選定之色彩且將上述圖像顯示於顯示器。
根據本發明之一態樣,可掌握被攝體即人體之心臟,並基於心臟之波形或頻率、或圖像之變化傾向,顯示表示實際活動之圖像。
本發明者們著眼於先前未實用化將臟器(例如心臟之心肌)之活動方向可視化之技術之點,發現藉由不僅表現臟器之活動,亦表現臟器之活動之偏移或未活動之部位,可支援醫師之診斷,而達成本發明。即,先前,於心臟之圖像處理技術中,因無法順利應用濾波處理,故對心臟之圖像,施加提取目標頻率之濾波器,可觀察難以觀察者。藉此,可簡化先前於診斷需要熟練性者,且將動態圖像定性化並於顯示內容體現客觀性。於本說明書中,作為臟器,雖以心臟為例進行說明,但本發明並非限定於心臟,當然亦可應用於各種臟器、血管。
於本案發明中,將心肌之活動為恆定作為前提,可以與受試者以前之圖像之比較進行判斷,或以與成為解析對象之範圍及將心肌整體平均化者之比較進行判斷,或以與正常圖像之比較進行判斷,或以與年齡樣本之比較進行判斷。
首先,對本發明之基本概念進行說明。於本發明中,對於對人體中之臟器之狀態建立特徵之週期性變化,例如於心臟之剖面積、表面積及體積中以於一定之週期反復之方式捕捉之活動,於整體或某部分之範圍,將時間軸上一定之反復或一定之運動(常式)捕捉為波並計測。關於波之計測結果,使用(A)波之形態本身、或(B)波之間隔(頻率:Hz)。
於心臟之圖像中,可能存在以同時期相同之方式鏈結之波。例如若為心跳,則可為近似以下之概念。
(某粗略範圍之density(密度)變化之平均)≒(心跳)≒(心臟之變化)≒(心電圖)≒(心臟之表面積及體積之變化)
於本發明中,例如關於心臟,可以局部心室壁之變形(壁厚舒張、壁厚收縮)為焦點進行解析,且可捕捉收縮期之thickness(厚度)、舒張期之thickness(厚度)、壁運動(外膜及內膜),並週期性顯示。再者,於心臟中,可捕捉自「(2×後壁壁厚)/(左室舒張末期徑)」求出之「relative wall thickness(RWT)(相對壁厚)」、或自「(舒張末期容積-收縮末期容積)/(舒張末期容積)」求出之「射出率」,並週期性顯示。
於本發明中,使用該等之任一者之資料、或組合該等之資料,可擷取更高精度之圖像。此時,亦有多次進行相互計算之情況。此時,再次排除相對於結果之偽像(artifact),自新的資料擷取波形或成為最初之基準之資料波形、其他模態等之波形、周圍、複數次之波形進行擷取,而進行功能之擷取。此時,次數可為一次或複數次。
此處,於製作基礎資料時,藉由複數個模態(例如,某一定之density(密度)、由volumetry(容積分析)構成之變化量、心臟之活動等)、或心跳等之複數次波形測定,而相互補充彼此之成分擷取,提高精度。藉此,可基於偽像之減少、線(line)等某一定之預想而提高精度。
此處,所謂「density」譯成「密度」,但於圖像中,意指特定區域中之像素之「吸收值」。例如,於CT中,空氣用作「-1000」,骨骼用作「1000」,水用作「0」。
於本說明書中,區分使用「density(密度)」與「intensity(強度)」。「density(密度)」如上所述意指吸收值,於XP或XP動畫之原畫中,空氣之透過性較高,將透過性較高之部分為白色進行數值化,而將空氣顯示為「-1000」,將水顯示為「0」、將骨骼顯示為「1000」。另一方面,「intensity(強度)」係根據「density(密度)」相對變化者,例如,進行normalized(正規化)“轉換”為濃度之寬度、信號之程度而顯示者。即,「intensity(強度)」為圖像中明暗或強調度等相對值。直接處理XP圖像之吸收值之期間表示為「density(密度)」或「density(密度)之變化(Δdensity)」。且,為了便於進行圖像表現,將此進行如上所述之轉換,表示為「intensity(強度)」。例如,於0至255之256灰階進行彩色顯示之情形時成為「intensity(強度)」。此種用語之區別適用於XP或CT之情形。
另一方面,於MRI之情形時,即便欲將空氣決定為「-1000」,將水決定為「0」,將骨骼決定為「1000」,亦有因MRI之像素值、測定機械之種類、測定時人之身體狀況、體形、測定時間,而導致值大幅變化之情況,又,關於T1加權像等MRI信號之採用方法,亦因其設施、測定機械之種類而多樣化,並非一定。因此,於MRI之情形時,無法進行如XP或CT之情形之「density(密度)」定義。因此,於MRI中,自最初描繪之階段處理相對值,並自最初開始表現為「intensity(強度)」。且,該處理之信號亦為「intensity(強度)」。
藉由以上,可獲得主資料。對於上述主資料,針對欲計測之新對象,於上述主資料之波形、波之Hz之某一定之寬度、範圍擷取。例如,僅擷取心跳、或於作為血管擷取程度之構架之寬度、範圍擷取。另,關於該波形、Hz之寬度,使用其他功能中之波形要素、雜訊等artifact(偽像)、認為有其他調諧性之其他modality(模態)之波形、進行複數次之再現性等,相對地且基於統計綜合性地進行判斷。對此需要調整、經驗(亦可應用機械學習)。其理由在於,若擴大寬度、範圍則其他功能之要素開始加入,另一方面,若過窄則會遺漏功能本身之要素,故關於該值域需要進行調整。例如,若存在複數次之資料,則容易限定值域、Hz與測定一致寬度等。又,亦可推定彼此之成分擷取之軸、寛度、範圍及Hz之波動、寛度。即,藉由複數次重疊,將Hz之軸設定平均化,並藉由方差而計算軸、寬度、範圍、Hz之最佳值域(range)。此時擷取其他行動之Hz(雜訊),有若其波存在則對其不進入之程度亦進行相對計測之情形。
其次,對該欲計測之新對象之資料,藉由將原先捕捉之波形、相對於Hz之一致率或其他不一致率數值化,而算定輔助診斷之數值。例如,可排除脈搏計、聽診之雜音,且測定主疾病之波形吻合率,算定疾病波形之一致率,而應用於診斷輔助器。於本說明書中,對可使用像素值之調諧一致率之情形進行說明。
[關於調諧一致率]
於本說明書中,將圖像變化之傾向作為調諧一致率進行說明。例如,檢測心肌之區域,並分割成複數個塊區域,算出各訊框圖像中之塊區域之平均density(密度)(像素值x)。且,算出各訊框圖像中之塊區域之平均像素值相對於平均density(密度)(像素值x)之最小值至最大值之變化寬度(0%~100%)之比例(x’)。另一方面,使用與各訊框圖像之心肌之變化(y)相對於心肌之最小位置至最大位置之變化寬度(0%~100%)之比例(y’)的比值(x’/y’),僅擷取比值(x’/y’)落在預先決定之一定範圍內之塊區域。
此處,於y’=x’或y=ax(a為心肌之振幅之數值或density(密度)之數值之係數)之情形時完全一致。然而,並非僅完全一致之情形時為有意義之值,而應擷取具有某一定寬度之值。因此,於本發明之一態樣中,使用對數(log),如以下般決定一定之寬度。即,若以y=x之比例(%)計算,則調諧之完全一致為「log y’/x’=0」。再者,於擷取調諧一致率之範圍較窄(數式上較窄)之範圍之情形時,例如,於接近0之範圍內決定為「log y’/x’=-0.05~+0.05」,若為調諧一致率之範圍較寬(數式上較寬)之範圍,則例如於接近0之範圍內決定為「log y’/x’=-0.5~+0.5」。可以說該範圍越窄,且該範圍內一致之數值越高,則一致率越高。若對像素之每個像素(pixel)求出該比值並計數個數,則於健康之人之情形時,可獲得以完全一致之情形時為峰值之正規分佈。相對於此,於患有疾病之人之情形時,該比值之分佈崩潰。另,如上所述,使用對數決定寬度之方法僅為一例,本發明不限定於此。
即,本發明係進行“圖像擷取”作為(某粗略範圍之density(密度)變化之平均)≒(心跳)≒(心臟之變化)≒(心電圖)≒(心臟之表面積及體積之變化)者,且亦可應用使用對數之方法以外之方法。可藉由此種方法顯示頻率調諧性圖像。
於血管之情形時,呼應於一連串之心臟之收縮(y)產生之一連串之density(密度)之變化(x(心肌中之一波形))中,因於該原本之形式存在略微之時間延遲(相位之變化),故表示為y=a’(x-t)。於完全一致之情形時,因t=0,故y=x、或y=a’x。此處,於擷取調諧一致率之範圍較窄(數式上較窄)之範圍之情形時,例如,於接近0之範圍內決定為「log y’/x’=-0.05~+0.05」,若為調諧一致率之範圍較寬(數式上較寬)之範圍,則例如於接近0之範圍內決定為「log y’/x’=-0.5~+0.5」。可以說該範圍越窄,且該範圍內一致之數值越高,則一致率越高。
於其他血管之情形時,亦可排除上述「呼應於心臟之部分」,使用自肺門繪製之中樞側之density(密度)。末梢之血管之情形亦可同樣地處理。
再者,亦可對循環臟器應用本發明,例如,心臟之density(密度)之變化與流向肺門部~末梢肺野之血流之density(密度)之變化直接關聯,且一連串之心臟之density(密度)之變化或肺門部之density(密度)之變化經過一種轉換而直接傳播。其係認為自心臟之density(密度)之變化與肺門部之density(密度)之變化之關係獲得若干相位之差而產生。又,由於肺門部等之density(密度)之變化與流向肺野之血流之density(密度)之變化直接關聯,故亦可以原本之比例所反映者(y≒x之一致率之關係)表現調諧性。又,頸部血管系統中亦同樣,認為於附近之中樞之心臟血管繪製之density(密度)之變化直接關聯,或伴隨略微之相位而關聯。且,該density(密度)根據背景而變動,於傳播時傳遞density(密度)之變化情況,可作為調諧一致率考察。
此處,於1張圖像之變化量與1張圖像之變化率之各者中,若欲顯示為根據心臟之density(密度)將變化量設為1時之相對值(Standard Differential Signal Density/Intensity:標準差分信號密度/強度),則可針對以下各者分別進行變化量、變化率之描繪:(1)就每1張圖像之差異之圖像,對每1張設為1時之圖像(通常設想);(2)就每1張之差異之圖像,將density(密度)(變化量或變化率)相加而得之心跳設為1時之比例;進而,(3)將複數次攝影中各者之心跳之density(密度)總量設為1時之比例。
又,於MR等之3D(Dimension:維度)之情形時,心跳之intensity(強度)(MR之情形)或density(密度)(CT之情形)之合計值(此時為將其設為1時)、該intensity(強度)或density(密度)之差可換算成心跳(安靜時或負荷時)之「peak flow volume data(峰值流量容積資料)」,且對該值得出其intensity(強度)或density(密度)之比例,藉此可至少於MRI或CT等中計算「3D×time(時間)」之情形時,換算心臟之實測動作量、動作率。同樣地,亦可藉由輸入1次心輸出量,而提示將肺野之「flow(流量)」之「capillary phase(毛細血管相位)」之分佈換算成肺血流末梢量之分佈、容量的推定值。
即,(某粗略範圍之density(密度)變化之平均)≒(心跳)≒(心臟之變化)≒(心電圖)≒(心臟之表面積及體積之變化)成立,於僅提取10%或20%之1張之變化量之情形時,可藉由計算(所有張數)×(其時間之變化量)而算出推定值。
且,對該欲計測之新對象之資料,藉由將原先捕捉之波形、相對於Hz之一致率或其他不一致率圖像化,而計算輔助診斷之圖像。例如,將通常之吞嚥與患者之吞嚥之差異可視化,顯示至今為止進行之動作與當前進行之動作之偏差。例如,步行之方式、擺動之變化、偏差等。
將該擷取變化量可視化而描繪成圖像。此為以下說明之心功能解析、血管(血流)解析。且,將心肌之變化率可視化。此時,亦有如下之情形:再次排除相對於結果之偽像,自新的資料擷取波形或成為最初基準之資料波形、其他模態等之波形、周圍、複數次之波形進行擷取,而進行功能之擷取。排除偽像之方法稍後敘述。
又,即使是自上述所擷取者以外排除擷取出之變化成分者,亦有可能掌握特徵量。例如,於掌握腹部腸道之活動時,自腹部排除呼吸之影響與血管之影響,而謀求擷取腹部腸道之活動。
又,根據該擷取之變化率,對花費某一定之攝影時間之圖像(CT、MRI、特殊侖琴射線攝影、PET(Positron Emission Tomography:正子發射斷層攝影)/閃爍攝影等)施加修正,提供更明瞭且正確之圖像。例如,對上行大動脈心臟修正、心臟形態修正、支氣管之模糊之修正、胸廓周圍之評估、無法屏住呼吸之狀態下之攝影(亦有於拍攝患者時花費數分鐘之情形)有效。
以下,參照圖式對本發明之實施形態進行說明。圖1係顯示本實施形態之診斷支援系統之概略構成之圖。該診斷支援系統藉由使電腦執行診斷支援程式而發揮特定之功能。基本模組1由心功能解析部3、血流解析部5、其他血流解析部7、傅立葉解析部9、波形解析部10及視覺化/數值化部11構成。基本模組1經由輸入介面13自資料庫15取得圖像資料。於資料庫15儲存有例如DICOM(Digital Imaging and COmmunication in Medicine:醫學數位成像與通信)之圖像。自基本模組1輸出之圖像信號經由輸出介面17顯示於顯示器19。接著,對本實施形態之基本模組之功能進行說明。另,針對輸入圖像,並非限定於資料庫15,亦可經由輸入介面13自其他外部裝置輸入圖像,或藉由主導而輸入。
[動態部位檢測之精細化]
有肺野、胸廓、心臟等動態部位之對比度沿線(line)不一樣之情形。於該情形時,可藉由變更雜訊去除所使用之閾值,進行複數次檢測處理,而更正確地檢測動態部位之形狀。例如,於左肺中,橫膈膜之線(line)之對比度有隨著進入人體內部而減弱之傾向。又,亦有心尖部/心基部之活動較小,而於心臟中央部活動變大之情況。於此種情形時,可藉由改變雜訊去除所利用之閾值之設定,或對像素值乘以不同之係數,而檢測橫膈膜之左半部分之剩餘部分、或心臟之活動較大之部位或較小之部位。藉由重複複數次該處理,可檢測橫膈膜整體之形狀,或檢測心臟整體之形狀。如此,藉由本方法,除橫膈膜之位置外,針對胸廓或心臟、動態部位之形狀亦可將線或面之變化率或變化量數值化,可有助於新的診斷。
可將如此檢測出之橫膈膜或心臟之位置或形狀用於診斷。即,可將橫膈膜或心臟之座標圖表化,使用如上所述計算之曲線(態樣)、或直線而計算胸廓、橫膈膜或心臟之座標,又,將心跳或血管搏動、肺野之「density(密度)」等作為與週期對應之位置、座標而圖表化。此種方法亦可應用於與呼吸或心跳動連動之動態部位。
藉由此種方法,不僅限吸氣、呼氣及伸縮期或舒張期之Hz,橫膈膜或與呼吸連動之動態部位之頻率或心臟之動態部位之頻率(Hz)亦變化之情形時,可於與該變化相應之頻帶進行計測。且,於擷取BPF(band pass filter:帶通濾波器)之頻譜時,可於一定範圍內,根據呼吸或心臟各者之狀態而設置BBF;BPF之位置之軸於呼吸或心臟各者之「reconstructionphase(重構相位)」變動,並產生最佳狀態;且作成將以上情況組合而成之變動性BPF。藉此,即便如呼吸緩慢、或停止時(Hz=0)般,有呼吸之節奏之變動,或有心臟之暫時性顫動(極端之高頻率)或停止時(Hz=0),亦可提供與此相應之圖像。
又,可基於呼吸要素(包含呼氣或吸氣之全部或一部分之呼吸之要素)佔呼氣或吸氣之整體之比例,計算呼氣或吸氣之整體之頻率。同樣地,亦可基於心臟之動態要素(包含收縮期或舒張期之全部或一部分之心臟動態要素)佔心臟之收縮期或舒張期、或心臟之一次跳動、計測整體之跳動之比例,計算收縮期或舒張期、頻率要素或其他整體之頻率。另,於橫膈膜或心臟之檢測中,可實施複數次,並選擇信號或波形穩定者。藉由以上,可根據檢測出之橫膈膜或心臟之位置或形狀、或與呼吸連動之動態部位之位置或形狀,計算呼吸要素或心跳動要素之至少一個頻率,或計算顯現心跳之頻率。若可掌握橫膈膜或心臟、或動態部位之位置或形狀,則可掌握呼吸要素或心跳動要素之頻率或心跳。根據該方法,即便分隔波形之一部分,亦可追蹤之後之波形。因此,即便呼吸要素或心跳動要素之頻率於中途改變,亦可追蹤原先之呼吸要素或心跳動要素。又,雖有心臟之跳動等突然改變之情況,但針對心血管、關於心血管波形之臟器而言亦可同樣地應用。
[肺野檢測]
於本發明中,可謀求肺野檢測之精細化作為上述「動態部位檢測之精細化」之一態樣。於該處理中,於設定最大肺野與最小肺野之後,使用其值計算其他肺野。圖11係顯示本發明之肺野檢測方法之一例之圖。於該方法中,使用「B-spline(樣條)曲線」,表示「各圖像之係數」。圖11中,波形X表示「顯示肺野之各圖像L之係數」,自左向右方向為第1張圖像之係數、第2張圖像之係數...。若移動圖11中之控制點Y則「各圖像之係數」圓滑地變化。於本發明中,可如此直接編輯係數之圖表。圖11中,「灰色之折線Z」表示「各圖像之像素平均值」。若於最佳條件下進行拍攝,則肺野之大小之變化與像素平均值之變化一致。此處,亦可將該像素平均值以曲線擬合平滑化,直接作為「係數」使用。針對心臟、其他參與心血管之頻率之臟器而言亦可同樣地應用。
[心功能解析]
圖2係顯示心臟之概略構成之剖視圖。所謂「心功能」,一般而言係指「使血液於體內循環之左心室之泵功能」。於「缺血性心臟病」、尤其「心肌梗塞」中,於推定患者之預後方面,心功能解析較為重要。例如,若左室射出率(EF:Ejection Fraction)之值下降,則作為心臟之泵之輸出下降,無法對全身送出充足之血液。此外,作為心功能,有左室舒張末期容積(EDV:End-Diastolic Volume)、左室收縮末期容積(ESV:End-Systolic Volume)、1次輸出量(SV:Stroke Volume)、心輸出量(CO:Cardiac Output)、心係數(CI:Cardiac index)。作為心肌之局部評估,如與圖2A之軸線A正交之平面之剖面即圖2B及圖2C所示,使用顯示壁厚、壁運動、壁厚變化率等之「Bull’s eye map(靶心圖)」。該「Bull’s eye map(靶心圖)」係以將心尖部之剖面配置於圓之中央,向其外側以同心圓狀依序排列短軸斷層像,並將心基部之剖面配置於最外側之方式顯示之圖像。
於本實施形態中,使用「Bull’s eye map(靶心圖)」,且基於以下之指標解析心臟之活動週期。即,使用心臟區域內之某一定區域之density(密度)/intensity(強度),解析心臟之活動週期。又,亦可使用在X射線(其他CT、MRI等複數種模態)之透過性較高之部位測定之某一定之volume(容積) density(密度)/intensity(強度)所構成之範圍、自肺量圖等其他測定方法獲得之資料或外部輸入資訊。另,期望比較每一心跳之解析結果,並自複數個資料解析傾向,而提高資料之確信度。又,亦可特定心臟之緣,並基於該心臟之緣之變化,取得頻率。再者,亦可特定肺野之邊緣,自該邊緣之活動取得頻率。
[血管搏動解析]
於本實施形態中,基於以下之指標解析血管搏動。即,自心電圖或脈搏計等其他模態之計測結果、或肺輪廓特定心臟、肺門位置、主要血管,並使用各部位之density(密度)/intensity(強度)之變化解析血管搏動。又,可手動於圖像上繪製,解析對象部位之density(密度)/intensity(強度)之變化。且,亦可使用自心跳或血管搏動獲得之心跳要素。另,期望比較每一搏動之解析結果,並自複數個資料解析傾向,而提高資料之確信度。又,各部位之density(密度)/intensity(強度)之擷取可藉由實施複數次,或對一定範圍進行而提高精度。又,亦有輸入心血管搏動頻率或頻帶之方法。
[心臟區域之鑑定]
自資料庫(DICOM)擷取圖像,使用上述心功能解析結果,自動檢測心臟區域(尤其心肌)。其次,將心肌分為複數個塊區域,計算各塊區域之變化。此處,亦可根據攝影速度決定塊區域之大小。於攝影速度較慢之情形時,因難以於某訊框圖像之下一訊框圖像特定對應之部位,故擴大塊區域。另一方面,於攝影速度較快之情形時,因每單位時間之訊框圖像數較多,故即便塊區域較小亦可追蹤。又,亦可根據於心臟之活動週期中選擇哪一時序,而計算塊區域之大小。此處,有需修正心肌之區域之偏移之情形。此時,鑑定心臟之活動,又,掌握心臟之輪廓之相對位置,基於其活動進行相對評估。另,若塊區域過小,則有產生圖像之閃爍之情形。為了防止該情況,塊區域需具有一定之大小。
[塊區域之作成]
其次,對將心肌分為複數個塊區域之方法進行說明。圖2B及圖2C係顯示將心肌自心臟之中心以放射狀分割之方法之圖。心臟區域係應鑑定心臟之活動及血管之位置關係,掌握心臟之輪廓之相對位置,並基於其活動進行相對評估者。因此,於本案發明,於自動檢測心臟之輪廓之後,將心肌之區域分割成複數個塊區域,並將各塊區域所包含之圖像之變化之值(像素值)平均化。其結果,即便心臟之形態藉由時間之經過而變化,亦可追蹤關注之區域之經時變化。
另一方面,若不特定心臟區域地分割成塊區域,則因心臟之經時變化,導致關注區域自心臟區域偏離,成為無意義之圖像。又,亦有輸入心跳或頻帶之方法。另,該等方法亦可應用於三維立體圖像。藉由將3D之立體圖像之像素(pixel)設為一定,而可對3D進行區域分割之計算。另,基於此種相對位置之活動之相對評估可分別於相鄰之訊框圖像間進行,亦可如每2張、每3張般於每個整數倍進行。又,亦可將數張作為一組,並於每組進行處理。
圖7A係自正面顯示人體之左肺之模式圖,圖7B係自左側面顯示人體之左肺之模式圖。圖7A及圖7B皆表示吸氣,即吸入氣體之狀態之肺。圖8A係自正面顯示人體之左肺之模式圖,圖8B係自左側面顯示人體之左肺之模式圖。圖8A及圖8B皆表示呼氣,即呼出氣體之狀態之肺。如該等圖所示,於呼吸時,肺野之形態大幅變化,但橫膈膜側之肺野之變化率較大,而與橫膈膜相反之側之肺野之變化率較小。於本發明中,根據該變化率使肺野內之各區域之位置變化。藉此,可進行基於肺野區域內之各區域之相對位置關係之相對評估。另,可基於肺野之變化率(例如平均變化率),於肺野區域內以一定之變化率顯示相對位置關係,亦可根據距橫膈膜之距離於肺野區域內使變化率適應地變化。如此,藉由使用肺野區域之變動率,可顯示與呼吸週期同步之圖像。
圖9A係自正面顯示人體之左肺之模式圖,圖9B係自左側面顯示人體之左肺之模式圖。圖9A及圖9B皆表示吸氣,即吸入氣體之狀態之肺。圖10A係自正面顯示人體之左肺之模式圖,圖10B係自左側面顯示人體之左肺之模式圖。圖10A及圖10B皆表示呼氣,即呼出氣體之狀態之肺。例如如圖9A及圖9B所示,於吸氣之狀態下,於肺野區域內之某部位繪製標記P1。若標記P1為由二維座標決定之固定點,則即便於呼氣之狀態下座標亦不改變,故如圖10A及圖10B所示,標記P1存在於相同之位置。另一方面,於本發明中,如上所述,因以相對於肺野區域整體之相對位置關係進行評估,故於呼氣之狀態下,移動至標記P2之位置而非標記P1之位置。亦可使用此時之矢量,評估吸氣時繪製之點、與特定呼氣時之移動地之點。
於分割區域之情形時,可應用沃羅諾伊分割(泰森分割)。該沃羅諾伊分割如圖2D所示,為「對連結相鄰之母點間之直線繪製垂直二等分線,而分割各母點之最相鄰區域之方法」。藉由應用此種沃羅諾伊分割,可縮短計算時間。再者,於繪製連結相鄰之母點間之直線之情形時,可根據解析對象,進行加權。例如於分割肺之動脈之區域時,亦可於較粗之處提高加權,於較細之處降低加權。藉此,可減輕處理負擔,且進行與解析對象相應之分割。另,針對分割產生之複數個塊區域,亦可基於像素值之變化(週期性變化)等指標,進行分類之處理。
如此將區域分割成複數個塊區域之後,基於各塊區域、與心臟等動態部位之相對位置,計算各塊區域之圖像之變化。此處,除僅將作為像素(pixel)之mass(塊體)本身之範圍作為一個單位取得信號之差量外,亦可於小於mass(塊體)之範圍、或大於mass(塊體)且如包圍周圍之較大之範圍內,取得信號之差量。再者,亦可於橫膈膜附近等僅擴大上下方向之範圍,或於其他動態部位僅擴大左右方向之範圍,或使範圍之形狀變形,或使像素(pixel)之區域連結。又,期望於計算一個差量或複數個差量之後,配合整體之肺野或心臟之形態再次重新定義mass(塊體)之形態。例如,可於對圖像之第1張至第2張進行處理之後,進而於第2張圖像再次配合形式作成mass(塊體)之形態,並與第2張至第3張比較。
於以上之說明中,雖對考慮臟器之活動之「相對位置關係」進行了說明,但本發明並非限定於此,亦可於維持複數個訊框圖像內之「各像素之絕對位置關係」之狀態下進行圖像處理。所謂「各像素之絕對位置關係」係於在訊框圖像上定義二維座標軸時,具有基於該二維座標軸特定之座標之像素彼此之關係。即,成為將關注像素設為不變而進行像素處理之方法。維持「各像素之絕對位置關係」之狀態下之處理係以複數個訊框圖像為前提,但訊框圖像之張數並未特定。可將複數個訊框圖像分類成複數個組群,於各組群包含均等張數之訊框圖像,亦可於各組群包含不同張數之訊框圖像。
即,將複數個訊框圖像分類成複數個組群,且於維持屬於各組群之複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出臟器之像素值之變化、臟器之中心至外緣之距離之變化、或臟器之體積之變化。藉此,即便像素值略微變化亦可作為均等之像素值進行處理,可謀求資料量之削減、處理步驟之削減。
再者,可考慮並非相對位置關係,亦非絕對位置關係之位置關係。即,雖可於特定之訊框圖像內決定具有特定之座標之點P,並於其後之訊框圖像內決定具有與上述特定之點不同之座標之其他點Q,但於該情形時,矢量PQ之大小設為相對於臟器之活動較小者。再者,相對於點Q,於其後之訊框決定具有與點Q略微不同之座標之其他點R。藉由重複該操作,而於每張訊框圖像擷取相對於特定之點P具有略微之偏移之其他點,並應用本實施形態。具體而言,取得複數個訊框圖像,相對於特定之訊框圖像內之各像素,於其後之訊框圖像內擷取具有與上述各像素不同之座標之像素,並算出對臟器之狀態建立特徵之週期性變化。
且,將對臟器之狀態建立特徵之週期性變化進行傅立葉轉換,擷取傅立葉轉換後獲得之頻譜中包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜,並對自一定頻帶擷取之頻譜進行逆傅立葉轉換,輸出逆傅立葉轉換後之各圖像。又,亦可以數位濾波器擷取與對圖像中之臟器之狀態建立特徵之週期性變化之頻率對應而變化之像素,並輸出包含以數位濾波器擷取之像素之圖像。又,亦可選定與對臟器之狀態建立特徵之週期性變化率對應之色彩,對像素值之變化率標註上述選定之色彩並將圖像顯示於顯示器。藉此,可表現臟器之活動。
接著,排除偽像並內插圖像資料。即,若解析範圍內包含骨骼等則顯示為雜訊,故期望使用雜訊降低濾波器去除雜訊。於X射線圖像中,通例中,將空氣設為-1000,骨骼設為1000,故透過性較高之部分像素值較低,且顯示為黑色,透過性較低之部分像素值較高,且顯示為白色。例如,於以256灰階表示像素值之情形時,黑色為0白色為255。
於心臟區域內,存在血管或骨骼之位置難以透過X射線,故X射線圖像之像素值變高,X射線圖像變白。可以說其他之CT、MRI中亦同樣。此處,可自上述心功能解析之結果,基於每一次心跳之波形,使用同一相位之值內插資料,而排除偽像。又,於檢測出「座標不同」、「像素值極端變動」、「頻率或density(密度)異常變高」之情形時,亦可對其等進行截除,並對剩餘獲得之圖像例如使用最小平方法等鑑定連續且圓滑之波形,藉此可用於心臟之活動之Hz計算、心肌之區域之調節。又,於重疊圖像之情形時,有(1)將前後取得單張圖像之取得比較圖像保持其座標不變地重疊之情形、(2)以前後單張圖像為base(基準)取得後,將圖像相對地擴展並將其相對位置資訊與base(基準)重疊之方法。藉由如以上之方法,可修正心臟區域之形態,或修正塊區域之圖像之變化。
此處,針對時間軸之「reconstruction(重構)」進行說明。例如,於15 f/s之吸氣時間為2秒之情形時,可獲得30+1張圖像。於該情形時,每次僅重疊3張即可實施每10%之「reconstruction(重構)」。此時,例如,於0.1秒為10%,且其圖像僅取得0.07秒與0.12秒之照片之情形時,需要0.1秒之「reconstruction(重構)」。於該情形時,賦予10%前後之圖像之中間之值(兩者之平均)值進行「reconstruction(重構)」。又,可於時間軸上捕捉,並以其時間之比例改變係數。例如,存在時間軸之差,且無0.1秒之攝影之值,而有0.07秒與0.12秒之攝影時間時,可重新計算為「(其0.07秒之值)×2/5+(0.12秒之值)×3/5」而進行「reconstruction(重構)」。另,期望包含「Maximum Differential Intensity Projection(最大差分強度投影)」之0~100%,如10%至20%之「reconstruction(重構)」、或10%至40%之「reconstruction(重構)」等具有厚度地進行計算。如此,針對未拍攝之部分,亦可進行1次心跳比例之「reconstruction(重構)」。另,本發明對於心臟、血流及其他與該等連動之一連串活動亦可同樣地進行「reconstruction(重構)」。
[傅立葉解析]
基於如上所述解析之心臟之活動週期及血管搏動週期,對各塊區域之density(密度)/intensity(強度)之值、或其變化量,實施傅立葉解析。圖3A係顯示特定區塊之intensity(強度)變化、與對其進行傅立葉解析而得之結果之圖。圖3B係顯示選出接近心跳之頻率成分之傅立葉轉換結果、與將其進行傅立葉逆轉換而接近心跳之頻率成分之intensity(強度)變化之圖。例如,若將特定區塊之intensity(強度)變化進行傅立葉轉換(傅立葉解析),則獲得如圖3A所示之結果。且,若自圖3A所示之頻率成分,選出接近心跳之頻率成分,則獲得如相對於圖3B之紙面於右側顯示之結果。藉由將其進行傅立葉逆轉換,可如相對於圖3B之紙面於左側顯示般,獲得與心跳之變化調諧之intensity(強度)變化。
此處,於對包含頻率成分之頻譜進行傅立葉逆轉換時,亦可考慮自心跳或血流之density(密度)特定之頻率要素(心跳、心血管搏動頻率)、與頻譜之頻帶(亦可使用BPF)之兩者,或基於該等之任一要素進行傅立葉逆轉換。
另,於執行傅立葉轉換時,可使用AR法(Autoregressive Moving average model:自回歸移動平均模型)以可於短時間內進行計算。於AR法中,有於自回歸移動平均模型中使用尤爾沃克方程式(Yule-walker equiation)或卡爾曼濾波器之方法,可使用由此推導之尤爾沃克推定值(Yule-walker estimates)、PARCOR(Partial Correlation:偏相關)法、最小平方法補充計算。藉此,可更快地取得接近即時之圖像,或進行計算之輔助或偽像(artifact)之修正。藉由此種傅立葉解析,可選出各塊區域中之圖像之性質並顯示。
此處,可將各訊框圖像中之各塊區域之圖像之變化進行傅立葉轉換,擷取傅立葉轉換後獲得之頻譜中包含與心臟之活動週期對應之頻譜的一定頻帶內之頻譜。圖3C係顯示擷取傅立葉轉換後獲得之頻譜中之某一定頻帶之例之圖。合成波之頻譜之頻率f於與成為合成源之各頻率f1
(心跳成分)、f2
(病理性血流成分)之間,「1/f=1/f1
+1/f2
」之關係成立,於擷取頻譜時,可採用以下方法。
(1)擷取心跳之頻譜比例較高之部分。
(2)於與心跳/病理性血流對應之頻譜之峰值與其附近之複數個合成波之峰值之中間進行分隔而擷取頻譜。
(3)於與心跳/病理性血流對應之頻譜之峰值與其附近之複數個合成波之頻譜之波谷部分進行分隔而擷取頻譜。
(4)亦可自心跳成分(血流成分)擷取某一定之頻帶寬度所包含之頻譜。於該情形時,雖獲得複數個頻譜重疊而得之頻譜,但可藉由分離各成分,而復原各頻譜。
如上所述,於本發明中,擷取包含與心臟之活動週期對應之頻譜的一定頻帶內之頻譜,而非使用固定之BPF。再者,於本案發明中,亦可擷取傅立葉轉換後獲得之頻譜中包含與自訊框圖像獲得之心臟之活動以外之頻率(例如,各部位之density(密度)/intensity(強度)、心跳或自血管搏動獲得之心跳要素)、或由操作者自外部輸入之頻率對應之頻譜(例如頻譜模型)的一定頻帶內之頻譜。
此處,若合成波之頻譜之成分僅為2個成分(心跳、病理性血流),則為50%+50%,3個成分之情形時各分配1/3。因此,可根據心跳成分之頻譜為百分之幾,病理性血流成分之頻譜為百分之幾,頻譜之成分及其高度而某種程度地計算合成波之頻譜。可於其比例(%)較高處擷取頻譜。即,計算病理性血流成分/心跳成分與合成波成分之比例,計算並擷取病理性血流成分/心跳成分較高之頻譜值。另,於橫膈膜之鑑定等中,亦有自取得了心跳或心臟血管之頻率之data(資料),僅擷取與Hz(頻率)相對一定之部位,即Hz之變化較少之區域對應之頻譜或其重疊之情形。又,於決定頻譜之頻帶之情形時,亦有於Hz發生變化之range(值域)及其周圍區域決定頻譜之頻帶之情形。藉由以上,不僅與心臟之活動週期或血管搏動週期完全一致之情形,亦可擷取應考慮之頻譜,可有助於圖像診斷。
另,已知「心跳」或「呼吸」包含於特定之頻帶。因此,亦可使用呼吸之情形時為例如「0~0.5 Hz(呼吸數0~30次/分)」,循環器之情形時為例如「0.6~2.5(心跳/脈搏數36~150次/分)Hz」之濾波器,預先以該濾波器特定呼吸頻率或循環器之頻率。藉此,可顯示頻率調諧性圖像。其理由在於存在如下情形:於取得心臟之density(密度)變化時,拾取呼吸(肺)之density(密度)變化,或於取得肺之density(密度)變化時,拾取心臟之density(密度)變化。
[波形解析]
對心臟、血管、腦波、利用其他檢查辨識為一定之波形者進行波形解析。包含腳之活動等以一定之狀態重複之動作。又,重疊重複進行之動作之Hz而解析是否有相同之傾向。比較波形資料,算出2個資料之一致率。且,比較傅立葉解析後之資料。
[數位濾波器]
另,亦可取代上述之傅立葉解析,而使用數位濾波器。數位濾波器係為了調整信號之頻率成分,而基於擷取信號之頻率成分之數學演算法即「高速傅立葉轉換及逆高速傅立葉轉換」,進行時間區域與頻率區域之轉換者。藉此,可獲得與上述之傅立葉解析同樣之效果。
[視覺化/數值化]
將如上所述解析之結果視覺化及數值化。作為standard uptake(標準攝取),有時根據計測之心臟區域整體之density(密度)/intensity(強度)將平均值設為1而相對/對數地顯示值。又,由於僅採用血流之方向,故有時截取向特定方向之變化。藉此,可僅提取有意義之方法之資料。使用心臟區域之鑑定結果,追蹤解析範圍之變化而進行偽彩色化。即,按照與相位(phase)匹配之特定形式(最小、最大、平均、中央值),將各個人(被攝體)之解析結果應用於相對區域。又,使複數個解析結果變形為可比較之特定之形狀/相位(phase)。
再者,於作成「標準心臓」時,使用上述心臟之活動之解析結果,計算心臟(心肌)內之相對位置關係。另,「標準心臓」使用將複數個患者之心臟之外廓線(line)、density(密度)等綜合地平均化之線(line)而作成。另,該想法不限於心臟,可應用於肺(標準肺)或其他臟器(標準臟器)。例如,可按照年齡、性別、國別、疾病程度而作成「臟器模組」。
又,除如以上之心臟之像素值之變化外,亦可算出心臟之中心至心肌之距離(圖2B及圖2C所示之距離L)之變化並進行傅立葉解析,進而亦可算出心臟之體積之變化並進行傅立葉解析。
若可作成「標準心臓」,則如上所述,可將調諧性、一致率、不一致率數值化而提示(頻率調諧性圖像之顯示)。又,可顯示自正常狀態之偏離。根據本實施形態,藉由執行傅立葉解析,可發現新疾病之可能性,可實現與正常之自己之比較、與手及腳之比較、或與相反側之手及腳之比較。再者,可藉由調諧性之數值化掌握腳之活動方式、吞嚥等中何處失常。又,可判斷生病狀態之人經過一定時間後是否變化,且於變化之情形時,將變化前後進行比較。
[心臟之描繪]
於本說明書中,採用如下之方法:使用貝齊爾曲線及直線之組合,暫先描繪心臟之輪廓,且以提高吻合性之方式調整心臟。例如,若以4條貝齊爾曲線與1條直線表現心臟之輪廓,則藉由求出心臟之輪廓上之5個點與4個控制點,而可描繪心臟之輪廓。將點之位置錯開而描繪複數個心臟之輪廓,使用“輪廓內之density(密度)之合計值為最大”、“輪廓線之內側與外側之數個像素(pixel)之density(密度)合計之差量為最大”等條件評估吻合性,藉此可精度較高地檢測心臟之輪廓。另,亦可藉由古典之二值化進行之輪廓擷取而擷取接近外緣之點,且利用最小平方法等,調整貝齊爾曲線之控制點位置。另,以上之方法並非限定於心臟,亦可作為「臟器之檢測」而應用於其他臟器。又,不僅限平面之圖像,亦可應用於立體之圖像(3D圖像)。藉由定義曲面之方程式且設定其控制點,可將由複數個曲面包圍之對象物推定為臟器。
[使用傅立葉解析之心功能解析]
其次,對本實施形態之使用傅立葉解析之心功能解析進行說明。圖4係顯示本實施形態之心功能解析之概要之流程圖。基本模組1自資料庫15擷取DICOM之圖像(步驟S1)。此處,至少取得一次心跳內所包含之複數個訊框圖像。接著,於取得之各訊框圖像中,至少使用心肌之某一定區域之像素值之變化、例如密度(density(密度)/intensity(強度))之變化,特定出心臟之活動週期(步驟S2)。接著,檢測心臟(心肌)之區域(步驟S3),將檢測出之心肌分割成複數個塊區域(步驟S4)。此處,如上所述,使用沃羅諾伊分割(泰森分割),將心肌從心臟之中心以放射狀分割。然後,計算各訊框圖像中之各塊區域之像素值之變化(步驟S5)。此處,將各塊區域內之變化之值平均化,且表現為1個資料。
另,亦可某種程度模糊地顯示像素(pixel),以模糊之狀態顯示整體。尤其,於血管之情形,會於高信號值之間混存低信號之信號,但只要能僅粗略地掌握高信號值,整體上較為模糊亦無妨。例如,於血流之情形時,可僅選出閾值以上之信號。具體而言,於將下表之數字作為1像素(pixel)而取得正中間數值之情形時,若取得正中間數值所佔之比例,並於1像素(pixel)內平均化,則可在與相鄰之像素間平滑地表現。
[表1]
另,亦可對各塊區域內之變化之值利用截除進行雜訊去除。接著,對各塊區域之density(密度)/intensity(強度)之值、或其變化量,基於上述心臟之活動週期,實施傅立葉解析(步驟S6)。藉此,可選出各塊區域中之圖像之性質並顯示。
此處,可擷取傅立葉轉換後獲得之頻譜中包含與心臟之週期對應之頻譜的一定頻帶內之頻譜。此處,合成波之頻譜之頻率f於成為合成源之各頻率f1
、f2
之間,「1/f=1/f1
+1/f2
」之關係成立,於擷取頻譜時,可採用以下方法。
(1)擷取心臟之活動之頻譜比例較高之部分。
(2)於與心跳/血流對應之頻譜之峰值與其附近之複數個合成波之峰值之中間進行分隔而擷取頻譜。
(3)於與心跳/血流對應之頻譜之峰值與其附近之複數個合成波之頻譜之波谷部分進行分隔而擷取頻譜。
此處,若合成波之頻譜之成分僅為2個成分(心跳、血流),則為50%+50%,3個成分之情形時各分配1/3。因此,可根據心跳成分之頻譜為百分之幾,血流成分之頻譜為百分之幾,頻譜之成分及其高度而某種程度地計算合成波之頻譜。可於其比例(%)較高處擷取頻譜。即,計算血流成分/心跳成分與合成波成分之比例,計算並擷取血流成分/心跳成分較高之頻譜值。
其次,對藉由傅立葉解析獲得之結果,進行雜訊去除(步驟S7)。此處,可進行如上所述之截除、或偽像(artifact)之去除。將以上之步驟S5至步驟S7之動作進行1次以上,並判斷是否完成(步驟S8)。於未完成之情形時,轉移至步驟S5,於完成之情形時,將藉由傅立葉解析獲得之結果作為偽彩色圖像顯示於顯示器(步驟S9)。另,亦可顯示黑白圖像。如此,亦有藉由重複複數次循環而提高資料之確信度之情形。藉此,可顯示期望之動畫。又,亦可藉由修正顯示於顯示器之圖像而獲得期望之動畫。
另,除如以上之步驟S4、S5之心肌之分割處理外,亦可取代步驟S4、S5,算出心臟之中心至心肌之距離之變化並進行傅立葉解析。再者,亦可取代步驟S4、S5,算出心臟之體積之變化並進行傅立葉解析。
[使用數位濾波器之心功能解析]
其次,對本實施形態之使用數位濾波器之功能解析進行說明。圖5係顯示本實施形態之心功能解析之概要之流程圖。於步驟S1至步驟S5、與步驟S7至步驟S9,因與上述之「使用傅立葉解析之心功能解析」同樣,故省略說明。於圖5之步驟T1中,進行數位濾波器處理(步驟T1)。數位濾波器係為了調整信號之頻率成分,而基於擷取信號之頻率成分之數學演算法即「高速傅立葉轉換及逆高速傅立葉轉換」,進行時間區域與頻率區域之轉換者。藉此,可獲得與上述之傅立葉解析同樣之效果。
[使用調諧一致率之心功能解析]
其次,對本實施形態之使用調諧一致率之心功能解析進行說明。圖6係顯示本實施形態之心功能解析之概要之流程圖。於步驟S1至步驟S5、與步驟S7至步驟S9,因與上述之「使用傅立葉解析之心功能解析」同樣,故省略說明。於圖6之步驟R1中,進行調諧一致率之解析(步驟R1)。即,於檢測心臟(心肌)之區域(步驟S3),將心肌分割成複數個塊區域之後(步驟S4),算出各訊框圖像中之塊區域之平均density(密度)(像素值x),並算出各訊框圖像中之塊區域之平均像素值相對於平均density(密度)(像素值x)之最小值至最大值之變化寬度(0%~100%)之比例(x’)(步驟S5)。另一方面,算出與各訊框圖像之心臟之變化(y)相對於心臟之表面積(或體積)之最小至最大之變化寛度(0%~100%)之比例(y’)的比值(x’/y’)(步驟S5)。使用該等,可僅擷取比值(x’/y’)落在預先決定之一定範圍內之塊區域(步驟S6)。
此處,於y’=x’或y=ax(a為心臟之表面積或體積之振幅之數值或density(密度)之數值之係數)之情形時完全一致。然而,並非僅完全一致之情形時為有意義之值,而應擷取具有某一定寬度之值。因此,於本發明之一態樣中,使用對數(log),如以下般決定一定之寬度。即,若以y=x之比例(%)計算,則調諧之完全一致為「log y’/x’=0」。再者,於擷取調諧一致率之範圍較窄(數式上較窄)之範圍之情形時,例如,於接近0之範圍內決定為「log y’/x’=-0.05~+0.05」,若為調諧一致率之範圍較寬(數式上較寬)之範圍,則例如於接近0之範圍內決定為「log y’/x’=-0.5~+0.5」。可以說該範圍越窄,且該範圍內一致之數值越高,則一致率越高。若對像素之每個像素(pixel)求出該比值並計數個數,則於健康之人之心臟之情形時,可獲得以完全一致之情形時為峰值之正規分佈。相對於此,於患有疾病之人之情形時,該比值之分佈崩潰。另,如上所述,使用對數決定寬度之方法僅為一例,本發明不限定於此。即,本發明係進行“圖像擷取”作為(某粗略範圍之density(密度)變化之平均)≒(心跳)≒(心臟之變化)≒(心電圖)≒(心臟之表面積及體積之變化)者,且亦可應用使用對數之方法以外之方法。
另,於以3D考慮之情形時,可藉由以其他裝置測定心跳、心臟之表面積或體積、心輸出量、中樞之血流量,而根據其等之比例於各個區域測定「部分心臟之表面積」、「部分心臟之體積」、「血流比例」。作為該等定量測定,可於其他modality(模態)等測定心臟之表面積、心臟之體積、心輸出量、中樞側之血流之情形時,可自一訊框之分量或其比例、區域之變化量比例對推定功能量進行推定。即,於心功能解析之情形時,可自心臟之活動推定心臟之體積,於血流解析之情形時,可自心輸出量推定肺血流量,或推定自中樞側之血流量(比例)描繪之分支血管中之推定血流量(比例)。
又,如上所述,若可計算所有取得之database(資料庫)則可進行更高精度之判斷,但有執行電腦解析需要時間之情形。因此,亦可僅選出某一定之張數(phase)進行計算。例如,並非自取得之圖像之開頭,而於以後半部、即並非至最後之中間後方為中心之圖像自動取得(亦可手動取得)。藉此,於拍攝患者時,藉由除去初次產生之緊張狀態之攝影而容易擷取更穩定之圖像。又,並非直接計算取得之圖像(例如300張圖像),亦可以最初計測之心臟之位置等選擇「心臟之活動」之轉變,之後進行計算。藉此,於需重複動畫標識等之情形時,可進行如連續心跳之圖像標識。此亦可由圖像標識進行計算。另,於鑑定心臟(心肌)之區域時,即便於僅一部分以手動改變形式,或手動使圖表標識僅一部分變化之情形時,亦期望以雜訊降低及最小平方法修正圖表。
如以上所說明,根據本實施形態,可以X射線動畫裝置評估人體之圖像。若可取得數位資料,則可以現有設施裝置大致良好地計算,導入費用較低。例如,於使用Flat panel detector(平板探測器)之X射線動畫裝置中,可簡單地完成被攝體之檢查。又,於心功能解析中,可進行心肌梗塞之篩檢。例如,於使用Flat panel detector(平板探測器)之X射線動畫裝置中,藉由於進行CT前執行本實施形態之診斷支援程式,可排除無用之檢查。又,由於檢查較為簡便,故可於早期發現緊急性較高之疾病,而優先應對。另,於當前時點之攝影方法中,於CT、MRI等其他modality(模態)中,存在若干問題,但只要可將此解決,即可實現各區域之詳細診斷。
又,亦可應用於各種血管例如頸部血流狹小化之篩檢,又,亦可應用於大血管之血流評估或篩檢。再者,亦可應用於術前、術後之性狀之掌握。再者,可對心臟之活動週期及血流週期進行傅立葉解析,並於腹部之X射線圖像中,去除心臟之活動波形及血流之波形,藉此可觀察剩餘生物體運動之變異,例如腸道梗阻等。
另,最初取得之圖像於某種程度上為高精細之情形時,由於像素數較多,故亦有於計算時間上耗費時間之情況。於該情形時,亦可將圖像減小至一定像素(pixel)數後進行計算。例如,可藉由將「4000×4000」之像素(pixel)實際上設為「1028×1028」後進行計算而抑制計算時間。
又,先前,以手動調節欲判斷之對象圖像之對比度之寛度。或,採用基於一定之基準相對地描繪欲判斷之對象圖像之方法。然而,並非藉由辨識解析對象(例如肺野)之框架而嚴格地進行。藉由進行本發明之心臟區域之檢測及骨骼之density(密度)(除去某一定範圍之透過性較低處)之filtering(過濾),而將剩餘區域之內部之透過性之寛度嚴格地限定於辨識心臟區域之寛度。藉此,於檢測心臟區域時,判斷者例如醫師或技師等觀察時,更嚴格地進行容易判斷之透過性之調整。又,更嚴格地進行剛好適合coloring(著色)評估之透過性之調整。
又,於XP或CT中,為減少遭受輻射,使X射線透過配合身體之狀態而變化,且於拍攝時,有根據肺之活動改變穿透率之情形。又,即便於MRI,因磁場向特定之方向變化等,仍以某一定不均一之信號進行拍攝。對於其等,將自周圍之「back ground(背景)」之穿透率變化之穿透率返回至一定之形式之計算配合特定臟器之穿透率,或藉由將磁場之整體變化之不均一性均一地修正而將信號值施加某一定之修正,藉此可更精密地測定特定臟器之「density(密度)/intensity(強度)」之變化。又,自攝影條件下之數值變化,根據每個臟器之特性使穿透率數變化,更精密地修正特定臟器之「density(密度)/intensity(強度)」之變化,藉此可算出更正確之變化量。
於本發明中,有時計算intensity(強度)之平均值或變化等,但有對自侖琴射線或CT等獲得之資料(intensity(強度)),施加「伽馬修正(Gamma correction)」之情形,且有未正確反映density(密度)之情形。該伽馬修正係用以修正顯示於顯示器之圖像等之彩度或亮度之處理。通常,於電腦中,根據輸入之信號,於顯示器顯示圖像,但根據顯示器之特性,顯示之亮度或彩度不同。因此,為了修正其等之誤差,而使用伽馬修正。伽馬修正藉由調節輸入輸出至顯示器時之信號之相對關係與顏色之資料,而進行接近於自然之顯示。然而,伽馬修正後之圖像並非原本之圖像,故有於實施本發明之圖像處理時產生不佳情況之情形。因此,對伽馬修正後之圖像,施加「伽馬逆修正」,即與伽馬修正值對應之逆濾波器,藉此獲得伽馬修正前之圖像。藉此,可獲得伽馬修正前之圖像,並適當進行本發明之圖像處理。
又,於本發明不限於伽馬修正,有時將實施了其他圖像處理之圖像返回至原樣後而供處理。根據例如人體外之空間等攝影中density(密度)不變之區域之像素值變化,類推對該圖像進行之圖像處理,並將使其像素值變化為一定之函數應用於所有像素。藉此,可獲得接近原來之圖像之圖像,並可適當進行本發明之圖像處理。
又,於本發明中,可自重疊圖像復原單個圖像。先前以來,已知有「侖琴射線差量圖像技術」。於該技術中,重疊以診察等拍攝之相同患者之「過去與現在之侖琴射線圖像」,並強調過去至現在變化之部分,即設想為異常之部分。藉此,例如可於早期發現癌症。作為重疊之方法,於複數個圖像拍攝為「第1張、第2張、第3張、第4張…」時,有例如將「第1張、第2張、第3張」作為「第1張重疊圖像」,將「第2張、第3張、第4張」作為「第2張重疊圖像」,將「第3張、第4張、第5張」作為「第3張重疊圖像」之方法。此種重疊圖像係複數個圖像重疊之部分像素值較高,而未重疊之部分像素值較低。此種重疊圖像有臟器之輪廓模糊之情形,故期望將其復原為原來之各圖像。根據本發明,因可特定臟器之輪廓,故可自重疊圖像復原原來之初始圖像。
又,於本發明中,可將臟器中之各區域之頻率之不同圖像化。即,可於進行週期性活動之臟器中,將各區域各者之變化值進行傅立葉轉換,並進行基於頻率成分之構成比進行顏色區分等加權,且顯示每個區域之特徵。例如,可於各區域特定成為峰值之頻率成分,並將各區域進行顏色區分。又,於各區域中,亦可於特定之頻帶內特定各頻率成分所佔之比例,並根據該比例將各區域進行顏色區分。再者,於特定區域中,成為基準之頻率構成比為例如「10 Hz為50%,20 Hz為50%」之情形時,亦可將自該成為基準之頻率構成比之偏離率可視化。藉此,例如針對心臟,藉由將頻率之頻譜分佈進行顏色區分顯示,可一目了然地掌握是否進行正確之活動,或進行不正確之活動。
1:基本模組
3:心功能解析部
5:血流解析部
7:其他血流解析部
9:傅立葉解析部
10:波形解析部
11:視覺化/數值化部
13:輸入介面
15:資料庫
17:輸出介面
19:顯示器
21:左心室
22:左心房
23:右心室
24:右心房
25:大動脈
26:肺動脈
A:軸線
L:距離/圖像
P1:標記
P2:標記
R1:步驟
S1~S9:步驟
T1:步驟
X:波形
Y:控制點
Z:折線
圖1係顯示本實施形態之診斷支援系統之概略構成之圖。
圖2A係顯示心臟之剖視圖之圖。
圖2B係顯示心臟之剖視圖之圖。
圖2C係顯示心臟之剖視圖之圖。
圖2D係顯示沃羅諾伊(Voronoi)分割之一例之圖。
圖3A係顯示特定區塊之「intensity(強度)」變化、與對其進行傅立葉解析而得之結果之圖。
圖3B係顯示選出接近心跳之頻率成分之傅立葉轉換結果、與將其進行逆傅立葉轉換而接近心跳之頻率成分之「intensity(強度)」變化之圖。
圖3C係顯示擷取傅立葉轉換後獲得之頻譜中之某一定頻帶之例之圖。
圖4係顯示本實施形態之圖像處理之概要之流程圖。
圖5係顯示本實施形態之圖像處理之概要之流程圖。
圖6係顯示本實施形態之圖像處理之概要之流程圖。
圖7A係自正面顯示人體之左肺之模式圖。
圖7B係自左側面顯示人體之左肺之模式圖。
圖8A係自正面顯示人體之左肺之模式圖。
圖8B係自左側面顯示人體之左肺之模式圖。
圖9A係自正面顯示人體之左肺之模式圖。
圖9B係自左側面顯示人體之左肺之模式圖。
圖10A係自正面顯示人體之左肺之模式圖。
圖10B係自左側面顯示人體之左肺之模式圖。
圖11係顯示本發明之肺野檢測方法之一例之圖。
S1~S9:步驟
Claims (26)
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;基於上述各訊框圖像間之像素值,算出表示上述各訊框圖像間之臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;將上述各訊框圖像間之圖像之變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與表示上述臟器特有之週期性活動之波形之一部分、或上述臟器特有之頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
- 如請求項1之診斷支援系統,其進而包含以下處理:將人之臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像變化;上述進行傅立葉轉換之處理係將上述各訊框圖像中之上述各塊區域之圖像變化進行傅立葉轉換。
- 如請求項1之診斷支援系統,其進而包含以下處理:基於上述各訊框圖像間之像素值,算出表示上述各訊框圖像間之臟 器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率之變化率;選定與表示上述臟器特有之週期性活動之波形之一部分、或上述臟器特有之頻率之變化率對應之色彩;及對上述像素值之變化率標註上述選定之色彩且將上述圖像顯示於顯示器。
- 如請求項3之診斷支援系統,其進而包含以下處理:將臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像之變化率;選定與表示上述臟器特有之週期性活動之波形之一部分、或上述臟器特有之頻率之變化率對應之色彩之處理係就每個上述塊區域選定色彩。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;基於上述各訊框圖像間之像素值,算出表示上述各訊框圖像間之臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;以數位濾波器擷取與表示上述圖像中之臟器特有之週期性活動之波形之一部分、或上述圖像中之臟器特有之頻率對應而變化之像素;及輸出包含以上述數位濾波器擷取出之像素的圖像。
- 如請求項5之診斷支援系統,其進而包含以下處理:將臟器之圖像分割成複數個塊區域,計算上述各訊框圖像中之塊區域之圖像之變化;以數位濾波器擷取與表示上述圖像中之臟器特有之週期性活動之波形之一部分、或上述圖像中之臟器特有之頻率對應而變化之像素之處理係以數位濾波器就每個上述塊區域進行擷取。
- 如請求項2、4或6之診斷支援系統,其中上述塊區域係使用沃羅諾伊分割之方法形成。
- 如請求項2、4或6之診斷支援系統,其中不論是否為相鄰之訊框,皆於上述各訊框圖像間,於維持表示上述臟器之像素之相對位置關係之狀態下,計算上述各訊框圖像中之塊區域之圖像變化。
- 如請求項2、4或6之診斷支援系統,其中不論是否為相鄰之訊框,皆於上述各訊框圖像間,由上述臟器整體之變化之態樣算出變化率,且基於算出之變化率,計算上述特定塊區域之圖像之變化。
- 如請求項9之診斷支援系統,其中上述變化率根據上述臟器中之塊區域之位置而變化,或於上述臟器整體為恆定。
- 一種診斷支援系統,其特徵在於,其係解析人體之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;基於上述各訊框圖像間之像素值,算出表示上述各訊框圖像間之臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;針對上述取得之所有訊框圖像,定義解析範圍;將解析範圍分割成複數個區域;及針對上述經分割之各區域,基於表示週期性變化之波形之一部分或頻率之指標,將上述各區域進行分類。
- 如請求項1~6、11中任一項之診斷支援系統,其中於維持複數個訊框圖像內之各像素之絕對位置關係之狀態下,計算上述各訊框圖像之像素值之變化。
- 如請求項12之診斷支援系統,其中將複數個訊框圖像分類成複數個組群,於維持屬於各組群之複數個訊框圖像內之各像素之絕對位置關係之狀態下,算出對臟器之狀態建立特徵之週期性變化。
- 如請求項1至6、11中任一項之診斷支援系統,其進而包含如下之處理:於藉由X射線拍攝之訊框圖像中,將自特定區域之穿透率變化之穿透 率返回至一定之形式。
- 如請求項1至6、11中任一項之診斷支援系統,其進而包含如下之處理:於藉由MRI拍攝之訊框圖像中,修正MRI之磁場不均一之區域之信號值,轉換為磁場均一之情形下獲得之圖像。
- 如請求項11之診斷支援系統,其進而包含如下之處理:算出任一個訊框圖像與以任意之間隔選擇之其他訊框圖像之差量或比值;使用上述算出之差量或比值,將針對上述各訊框圖像而設定之解析範圍進行可視化。
- 如請求項11之診斷支援系統,其進而包含如下之處理:將上述各訊框圖像內之像素值作為相對值或對數值算出;將作為上述相對值或對數值顯示之任一個訊框圖像與作為上述相對值或對數值顯示且以任意之間隔選擇之其他訊框圖像之比值算出;將上述算出之比值進行可視化;且基於肺野之濃度變化或血管之位置關係,算出一個以上之訊框圖像之肺野區域之像素值。
- 如請求項11之診斷支援系統,其進而包含如下之處理:算出任一個訊框圖像與以任意之間隔選擇之其他訊框圖像之差量或比 值;使用上述算出之差量或比值,將針對上述各訊框圖像而設定之解析範圍進行可視化;且算出排除偽像之訊框圖像之像素值。
- 如請求項11之診斷支援系統,其進而包含如下之處理:將上述各訊框圖像內之像素值作為相對值或對數值算出;將作為上述相對值或對數值顯示之任一個訊框圖像與作為上述相對值或對數值顯示且以任意之間隔選擇之其他訊框圖像之比值算出;將上述算出之比值進行可視化;且算出排除偽像之訊框圖像之像素值。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;基於上述各訊框圖像間之像素值,算出對上述各訊框圖像間之臟器之狀態建立特徵之週期性變化;將上述各訊框圖像間之圖像之變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與臟器之活動頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;輸出上述逆傅立葉轉換後之各圖像;設定上述臟器之大小為最大時之最大外緣; 設定上述臟器之大小為最小時之最小外緣;使用上述最大外緣及上述最小外緣,算出各圖像中之其他大小之臟器外緣之係數;將與上述各圖像之臟器外緣之係數對應之波形及上述波形之控制點顯示於圖表上;及藉由使上述控制點之位置變動,而使各圖像之係數變化。
- 如請求項20之診斷支援系統,其中於上述圖表上,顯示上述臟器之圖像之像素平均值。
- 如請求項20或21之診斷支援系統,其中將上述臟器之圖像與上述圖表並排顯示。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;將上述各訊框圖像中之人之臟器之圖像分割成複數個塊區域;計算上述各訊框圖像中之塊區域之圖像變化;將上述各塊區域之變化值進行傅立葉轉換;及基於頻率成分之構成比,將各區域進行顏色區分。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理: 取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出表示臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;將上述各訊框圖像間之圖像之變化進行傅立葉轉換;擷取上述傅立葉轉換後獲得之頻譜中、包含與表示臟器特有之週期性活動之波形之一部分、或上述臟器特有之頻率對應之頻譜的一定頻帶內之頻譜;對自上述一定頻帶擷取出之頻譜進行逆傅立葉轉換;及輸出上述逆傅立葉轉換後之各圖像。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理:取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出表示臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;以數位濾波器擷取與表示上述圖像中之臟器特有之週期性活動之波形之一部分、或上述圖像中之臟器特有之頻率對應而變化之像素;及輸出包含以上述數位濾波器擷取出之像素的圖像。
- 一種診斷支援系統,其特徵在於,其係解析人之臟器之圖像並顯示解析結果者,且使電腦執行以下處理: 取得複數個訊框圖像;對於特定訊框圖像內之各像素,在其以後之訊框圖像內擷取具有與上述各像素不同之座標的像素,算出表示臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率;基於上述各訊框圖像間之臟器特有之週期性活動之波形之一部分、或上述各訊框圖像間之臟器特有之頻率,針對上述取得之所有訊框圖像,定義解析範圍;算出於上述解析範圍中,上述各訊框圖像間之變化率;選定與上述各訊框圖像間之變化率對應之色彩;及標註上述選定之色彩且將上述圖像顯示於顯示器。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019125444 | 2019-07-04 | ||
JP2019-125444 | 2019-07-04 | ||
JP2019-152401 | 2019-08-22 | ||
JP2019152401 | 2019-08-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202116253A TW202116253A (zh) | 2021-05-01 |
TWI864040B true TWI864040B (zh) | 2024-12-01 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040102695A1 (en) | 2002-11-25 | 2004-05-27 | Stergios Stergiopoulos | Method and device for correcting organ motion artifacts in MRI systems |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040102695A1 (en) | 2002-11-25 | 2004-05-27 | Stergios Stergiopoulos | Method and device for correcting organ motion artifacts in MRI systems |
Non-Patent Citations (1)
Title |
---|
網路文獻 ziosoft 確実な診断と正確な治療へ、速やかに導くために。 ziosoft 20180928 https://www.zio.co.jp/ziostation2/ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7310048B2 (ja) | 診断支援プログラム | |
JP7555911B2 (ja) | 肺気量ゲートx線撮像システム及び方法 | |
US20210233243A1 (en) | Diagnostic support program | |
US20250061576A1 (en) | Diagnostic support program | |
TWI828661B (zh) | 診斷支援系統 | |
TWI864040B (zh) | 診斷支援系統 | |
CN118401177A (zh) | 一种诊断支援程序 | |
JP7606652B2 (ja) | 診断支援プログラム | |
JP2020171475A (ja) | 動態画像解析装置、動態画像解析方法及びプログラム | |
WO2024214802A1 (ja) | 診断支援プログラムおよび診断支援システム | |
EA040692B1 (ru) | Программа поддержки диагностики | |
OA20419A (en) | Diagnostic support program |