TWI860923B - Model reconstruction method and system - Google Patents
Model reconstruction method and system Download PDFInfo
- Publication number
- TWI860923B TWI860923B TW112151066A TW112151066A TWI860923B TW I860923 B TWI860923 B TW I860923B TW 112151066 A TW112151066 A TW 112151066A TW 112151066 A TW112151066 A TW 112151066A TW I860923 B TWI860923 B TW I860923B
- Authority
- TW
- Taiwan
- Prior art keywords
- training
- model
- demand
- evaluated
- result
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種模型重建系統包含一處理單元,其執行以下操作:根據多個訓練資料集、多個測試資料集及多個訓練組合獲得一目標需求預測模型及所對應的多個待更新需求預測結果;根據一第一級距排列方式及該等待更新需求預測結果獲得一第一級距排列結果;根據該等測試資料集及一第二級距排列方式,利用一待比對需求預測模型獲得一第二級距排列結果;根據該第一級距排列結果及該第二級距排列結果分別獲得一第一指標值及一第二指標值;及根據該第一指標值及該第二指標值判定是否以該目標需求預測模型取代該待比對需求預測模型。A model reconstruction system includes a processing unit, which performs the following operations: obtaining a target demand forecasting model and corresponding multiple demand forecasting results to be updated based on multiple training data sets, multiple test data sets and multiple training combinations; obtaining a first-level arrangement result based on a first-level arrangement method and the demand forecasting results to be updated; obtaining a second-level arrangement result using a demand forecasting model to be compared based on the test data sets and a second-level arrangement method; obtaining a first indicator value and a second indicator value based on the first-level arrangement result and the second-level arrangement result respectively; and determining whether to replace the demand forecasting model to be compared with the target demand forecasting model based on the first indicator value and the second indicator value.
Description
本發明是有關於一種重建方法及系統,特別是指一種模型重建方法及系統。The present invention relates to a reconstruction method and system, and more particularly to a model reconstruction method and system.
對於已在線上部署的機器學習模型,當模型因現實情況改變而效度明顯下降時,就需要對已部署的模型進行優化。然而,若是以改變訓練資料或是選用其他機器學習演算法重新構建新模型,可能會造成新模型的預測結果與舊模型的預測結果差異較大,無法以統一的標準來衡量,因而無法比較兩個模型的效度孰優孰劣。For machine learning models that have been deployed online, when the model's validity has dropped significantly due to changes in the real situation, the deployed model needs to be optimized. However, if a new model is rebuilt by changing the training data or using a different machine learning algorithm, the prediction results of the new model may be very different from those of the old model, and cannot be measured by a unified standard, so it is impossible to compare the validity of the two models.
因此,如何改善現有的模型優化方式,以統一的標準衡量新舊模型的優劣已成為相關技術領域所欲解決的議題之一。Therefore, how to improve the existing model optimization methods and measure the pros and cons of new and old models with a unified standard has become one of the issues that the relevant technical fields want to solve.
因此,本發明之目的,即在提供一種模型重建方法及系統,其能克服現有技術至少一個缺點。Therefore, an object of the present invention is to provide a model reconstruction method and system, which can overcome at least one disadvantage of the prior art.
於是,本發明所提供的一種模型重建方法,適用於優化一需求預測模型。該需求預測模型是用於根據相關於一待分析客戶與一金融機構之互動的待分析互動紀錄資料,獲得一需求預測結果。該需求預測結果包含一指示出該待分析客戶可能購買一金融產品的機率值。該模型重建方法藉由儲存有多筆對應多個客戶的客戶行為資料集,及多個訓練組合的一電腦系統來執行。每一客戶行為資料集包含多筆相關於所對應之客戶在多個不同時間區間與該金融機構之互動的互動紀錄資料,與指示出所對應之客戶在該等時間區間內是否購買該金融產品的多個購買結果。每一訓練組合包含所對應的一機器學習演算法及一模型參數組。該模型重建方法包含以下步驟:(A)根據一第一取用規則自該等客戶行為資料集選取多筆訓練資料集,並根據一第二取用規則自該等客戶行為資料集選取多筆測試資料集,其中每一訓練資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動訓練資料與一購買訓練結果,每一測試資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動測試資料與一購買測試結果;(B)根據該等訓練資料集、該等測試資料集及該等訓練組合獲得一目標需求預測模型;(C)對於每一測試資料集,根據該測試資料集利用該目標需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的待更新需求預測結果;(D)根據一對應有多個第一分群級距閾值的第一級距排列方式將步驟(C)所獲得的所有待更新需求預測結果進行分群以獲得一第一級距排列結果;(E)對於每一測試資料集,根據該測試資料集利用一待比對需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的當前需求預測結果;(F)根據一對應有多個第二分群級距閾值的第二級距排列方式將步驟(E)所獲得的所有當前需求預測結果進行分群以獲得一第二級距排列結果;(G)根據該第一級距排列結果及該第二級距排列結果分別獲得一對應於該目標需求預測模型的第一指標值及一對應於該待比對需求預測模型的第二指標值;(H)判定該第一指標值是否大於該第二指標值;及(I)當判定出該第一指標值大於該第二指標值時,以該目標需求預測模型取代該待比對需求預測模型。Therefore, a model reconstruction method provided by the present invention is applicable to optimizing a demand forecasting model. The demand forecasting model is used to obtain a demand forecasting result based on the interaction record data to be analyzed related to the interaction between a customer to be analyzed and a financial institution. The demand forecasting result includes a probability value indicating that the customer to be analyzed may purchase a financial product. The model reconstruction method is executed by a computer system that stores multiple customer behavior data sets corresponding to multiple customers and multiple training combinations. Each customer behavior data set includes multiple interaction record data related to the corresponding customer's interaction with the financial institution in multiple different time periods, and multiple purchase results indicating whether the corresponding customer purchased the financial product within the time period. Each training set includes a corresponding machine learning algorithm and a model parameter set. The model reconstruction method includes the following steps: (A) selecting multiple training data sets from the customer behavior data sets according to a first access rule, and selecting multiple test data sets from the customer behavior data sets according to a second access rule, wherein each training data set includes at least one interactive training data and one purchase training result selected from the interactive record data and the purchase results of the corresponding customer, and each test data set includes at least one interactive training data and one purchase training result selected from the interactive record data and the purchase results of the corresponding customer. and at least one interactive test data and a purchase test result selected from the purchase results; (B) obtaining a target demand prediction model based on the training data sets, the test data sets and the training combinations; (C) for each test data set, obtaining a to-be-updated demand prediction result including a probability value of the corresponding customer possibly purchasing the financial product based on the test data set using the target demand prediction model; (D) obtaining a to-be-updated demand prediction result based on a first set of first grouping level threshold values corresponding to the ... (E) for each test data set, a current demand forecast result including a probability value of the corresponding customer to purchase the financial product is obtained based on the test data set using a demand forecast model to be compared; (F) all current demand forecast results obtained in step (E) are grouped according to a second grouping class threshold value corresponding to a plurality of second grouping class threshold values. (G) obtaining a first indicator value corresponding to the target demand forecast model and a second indicator value corresponding to the demand forecast model to be compared according to the first-level arrangement result and the second-level arrangement result; (H) determining whether the first indicator value is greater than the second indicator value; and (I) when it is determined that the first indicator value is greater than the second indicator value, replacing the demand forecast model to be compared with the target demand forecast model.
於是,本發明所提供的一種模型重建系統,適用於優化一需求預測模型。該需求預測模型是用於根據相關於一待分析客戶與一金融機構之互動的待分析互動紀錄資料,獲得一需求預測結果。該需求預測結果包含一指示出該待分析客戶可能購買一金融產品的機率值。該模型重建系統包含一儲存單元及一處理單元。Therefore, the present invention provides a model reconstruction system, which is suitable for optimizing a demand forecasting model. The demand forecasting model is used to obtain a demand forecasting result based on the interaction record data to be analyzed related to the interaction between a customer to be analyzed and a financial institution. The demand forecasting result includes a probability value indicating that the customer to be analyzed may purchase a financial product. The model reconstruction system includes a storage unit and a processing unit.
該儲存單元儲存有多筆對應多個客戶的客戶行為資料集,及多個訓練組合。每一客戶行為資料集包含多筆相關於所對應之客戶在多個不同時間區間與該金融機構之互動的互動紀錄資料,與指示出所對應之客戶在該等時間區間內是否購買該金融產品的多個購買結果。每一訓練組合包含所對應的一機器學習演算法及一模型參數組。The storage unit stores a plurality of customer behavior data sets corresponding to a plurality of customers, and a plurality of training combinations. Each customer behavior data set includes a plurality of interaction record data related to the corresponding customer's interaction with the financial institution in a plurality of different time periods, and a plurality of purchase results indicating whether the corresponding customer purchased the financial product in the time periods. Each training combination includes a corresponding machine learning algorithm and a model parameter set.
該處理單元訊號連接該儲存單元,用於根據一第一取用規則自該等客戶行為資料集選取多筆訓練資料集,並根據一第二取用規則自該等客戶行為資料集選取多筆測試資料集。其中每一訓練資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動訓練資料與一購買訓練結果,每一測試資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動測試資料與一購買測試結果。根據該等訓練資料集、該等測試資料集及該等訓練組合獲得一目標需求預測模型。對於每一測試資料集,根據該測試資料集利用該目標需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的待更新需求預測結果。根據一對應有多個第一分群級距閾值的第一級距排列方式將所獲得的所有待更新需求預測結果進行分群以獲得一第一級距排列結果。對於每一測試資料集,根據該測試資料集利用一待比對需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的當前需求預測結果。根據一對應有多個第二分群級距閾值的第二級距排列方式所獲得的所有當前需求預測結果進行分群以獲得一第二級距排列結果。根據該第一級距排列結果及該第二級距排列結果分別獲得一對應於該目標需求預測模型的第一指標值及一對應於該待比對需求預測模型的第二指標值。判定該第一指標值是否大於該第二指標值。當判定出該第一指標值大於該第二指標值時,以該目標需求預測模型取代該待比對需求預測模型。The processing unit signal is connected to the storage unit, and is used to select multiple training data sets from the customer behavior data sets according to a first access rule, and select multiple test data sets from the customer behavior data sets according to a second access rule. Each training data set includes at least one interactive training data and one purchase training result selected from the interactive record data and the purchase results of the corresponding customer, and each test data set includes at least one interactive test data and one purchase test result selected from the interactive record data and the purchase results of the corresponding customer. A target demand forecasting model is obtained based on the training data sets, the test data sets and the training combinations. For each test data set, a to-be-updated demand forecasting result including a probability value of a corresponding customer who may purchase the financial product is obtained based on the test data set using the target demand forecasting model. All the to-be-updated demand forecasting results obtained are grouped according to a first-level interval arrangement method corresponding to a plurality of first grouping level thresholds to obtain a first-level interval arrangement result. For each test data set, a to-be-compared demand forecasting model is used to obtain a current demand forecasting result including a probability value of a corresponding customer who may purchase the financial product based on the test data set. All current demand forecast results obtained by a second level arrangement method corresponding to a plurality of second grouping level thresholds are grouped to obtain a second level arrangement result. A first index value corresponding to the target demand forecast model and a second index value corresponding to the demand forecast model to be compared are obtained according to the first level arrangement result and the second level arrangement result. It is determined whether the first index value is greater than the second index value. When it is determined that the first index value is greater than the second index value, the target demand forecast model replaces the demand forecast model to be compared.
本發明之功效在於:藉由採用具有相同的級距標準的分群方式將該目標需求預測模型的所有待更新需求預測結果進行分群獲得該第一級距排列結果,並將該待比對需求預測模型的所有當前需求預測結果進行分群獲得該第二級距排列結果,使得該第一級距排列結果及該第二級距排列結果中的各機率值能被相同的級距標準劃分和排序,即便不同需求預測模型產生出來的需求預測結果的機率值分佈範圍因外在因素的變化有大幅提升或下降,仍能以共同的評價標準來評判不同需求預測模型之間的優劣。The effect of the present invention is that all the demand forecast results to be updated of the target demand forecast model are grouped by adopting a grouping method with the same level standard to obtain the first level arrangement result, and all the current demand forecast results of the demand forecast model to be compared are grouped to obtain the second level arrangement result, so that each probability value in the first level arrangement result and the second level arrangement result can be divided and sorted by the same level standard. Even if the probability value distribution range of the demand forecast results generated by different demand forecast models is greatly increased or decreased due to changes in external factors, the advantages and disadvantages of different demand forecast models can still be judged by a common evaluation standard.
在本發明被詳細描述之前,應當注意在以下的説明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that similar elements are represented by the same reference numerals in the following description.
參閲圖1,本發明實施例的一種模型重建系統1,適用於優化一需求預測模型。該需求預測模型是用於根據相關於一待分析客戶與一金融機構之互動的待分析互動紀錄資料,獲得一需求預測結果,該需求預測結果包含一指示出該待分析客戶可能購買一金融產品(例如但不限於基金、保單、外幣)的機率值。在本實施例中,該需求預測模型是用來預測在一指定時間間隔N後每一待分析客戶可能購買該金融產品的機率值。每一待分析互動紀錄資料例如但不限於包括所對應的待分析客戶在該金融機構進行交易行為的次數、頻率與每次交易的金額,以及瀏覽該金融機構的網路頁面的頻率與每次瀏覽頁面的時長等。該模型重建系統1包含一儲存單元11,及一訊號連接該儲存單元11的處理單元12。Referring to FIG. 1 , a model reconstruction system 1 of an embodiment of the present invention is suitable for optimizing a demand prediction model. The demand prediction model is used to obtain a demand prediction result based on the interaction record data to be analyzed related to the interaction between a customer to be analyzed and a financial institution, and the demand prediction result includes a probability value indicating that the customer to be analyzed may purchase a financial product (such as but not limited to a fund, insurance policy, foreign currency). In this embodiment, the demand prediction model is used to predict the probability value of each customer to be analyzed to purchase the financial product after a specified time interval N. Each interactive record data to be analyzed includes, for example but not limited to, the number, frequency, and amount of each transaction of the corresponding customer to be analyzed in the financial institution, as well as the frequency of browsing the financial institution's web pages and the duration of each page browsing, etc. The model reconstruction system 1 includes a
該儲存單元11儲存有多筆對應多個客戶的客戶行為資料集,及多個訓練組合。每一客戶行為資料集包含多筆相關於所對應之客戶在多個不同時間區間(例如,每一個月)與該金融機構之互動的互動紀錄資料,與指示出所對應之客戶在該等時間區間內是否購買該金融產品的多個購買結果。每一訓練組合包含所對應的一機器學習演算法(例如但不限於XGBoost、LightGBM、CatBoost等演算法)及一模型參數組。The
參閲圖1及圖2,示例性地説明該實施例的該處理單元12如何執行一模型重建程序。該模型重建程序包含以下步驟201~210。1 and 2 , it is exemplarily explained how the
首先,在步驟201中,該處理單元12判定當前時間T是否到達一預定的更新時間。該更新時間例如為每月的月底,以使該處理單元12每月都執行一次該模型重建程序,以達到定時自動重建模型的效果。當該處理單元12判定出該當前時間T到達該更新時間時,流程進行步驟202;否則,流程回到步驟201。First, in
在步驟202中,該處理單元12根據一第一取用規則自該等客戶行為資料集選取多筆訓練資料集,並根據一第二取用規則自該等客戶行為資料集選取多筆測試資料集。其中,每一訓練資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動訓練資料與一購買訓練結果;每一測試資料集包含自所對應之客戶的該等互動紀錄資料及該等購買結果選取出的至少一互動測試資料與一購買測試結果。In
舉例來説,若該需求預測模型是用來預測在1個月後(即,N=1)後每一待分析客戶可能購買該金融產品的機率值,並將一預定的資料取用視窗大小(window-size)K設定為3個月(即,K=3),將該第一取用規則例如設定為取用一第一時間區間為[T-N-K,T-N)內的客戶行為資料集作爲該等訓練資料集,將該第二取用規則例如設定為取用一第二時間區間為[T-1,T)內的客戶行為資料集作爲該等測試資料集:假設該當前時間T為11月底(即T=11),那麼每一訓練資料集是以7~10月(不包含10月)的所有互動紀錄資料作為該至少一互動訓練資料並以10月的購買結果作為該購買訓練結果,每一測試資料集是以10月的互動紀錄資料作為該至少一互動測試資料並以11月的購買結果作為該購買測試結果。For example, if the demand forecasting model is used to predict the probability value of each analyzed customer purchasing the financial product one month later (i.e., N=1), and a predetermined data acquisition window size (window-size) K is set to 3 months (i.e., K=3), the first acquisition rule is set to, for example, acquire a customer behavior data set within a first time interval of [T-N-K, T-N) as the training data set, and the second acquisition rule is set to, for example, acquire a customer behavior data set within a second time interval of [T-N-K, T-N) as the training data set. The customer behavior data sets within the time interval [T-1,T) are used as the test data sets: assuming that the current time T is the end of November (i.e., T=11), then each training data set uses all interaction record data from July to October (excluding October) as the at least one interaction training data and the purchase result in October as the purchase training result, and each test data set uses the interaction record data in October as the at least one interaction test data and the purchase result in November as the purchase test result.
在步驟203中,該處理單元12根據該等訓練資料集、該等測試資料集及該等訓練組合獲得一目標需求預測模型。更具體地説,步驟203包含以下子步驟301~307(參閱圖3)。In
在子步驟301中,該處理單元12將該等訓練組合作爲多個待評價訓練組合,並將一訓練計數值設定為一,且將一訓練總數設定為M(M>1)。更具體地說,該訓練總數代表對於該等訓練組合共會進行M輪進行訓練,該訓練計數值用於代表當次訓練是第幾輪訓練。In
在子步驟302中,對於每一待評價訓練組合,該處理單元12自該等訓練資料集選取出i筆待訓練資料集,並利用該待評價訓練組合,根據該等i筆待訓練資料集進行訓練,以獲得一對應於該待評價訓練組合的待評價需求預測模型。i為該訓練計數值與該訓練總數的比值乘上該等訓練資料集的總數。舉例來說,假設共有100筆訓練資料集,並設定該訓練總數為5(即,M=5):當進行第一輪訓練時(即,訓練計數值=1),i=20(即,
),該處理單元12自該等訓練資料集選取出20筆待訓練資料集;當進行第二輪訓練時(即,訓練計數值=2),i=40(即,
),該處理單元12自該等訓練資料集選取出40筆待訓練資料集;以此類推。
In
在子步驟303中,對於每一待評價需求預測模型,該處理單元12根據該等測試資料集對該待評價需求預測模型進行測試以獲得一待評價指標值。更具體地說,對於每一測試資料集,該處理單元12根據該測試資料集利用該待評價需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的待評價需求預測結果;接著該處理單元12將所獲得的所有待評價需求預測結果的機率值由高到低進行排序,以獲得一待評價排序後總預測結果;最後,該處理單元12獲得位列於該待評價排序後總預測結果一目標百分比內的客戶中實際購買該金融產品的人數的比例以作爲該待評價指標值。舉例來說,假設該待評價排序後總預測結果中含有100名客戶的100筆待評價需求預測結果,該目標百分比為30%,則該待評價指標值即為該100筆該待評價需求預測結果中機率值前30%高的30名客戶中實際購買該金融產品的人數的比例,若這30名客戶中共有27人實際購買了該金融產品,則該待評價指標值為0.9。In
在子步驟304中,根據該等待評價指標值,該處理單元12自該等待評價需求預測模型中選取出j個候選需求預測模型。j為該等待評價需求預測模型的總數的1/M。舉例來說,假設已設定該訓練總數為5(即,M=5),若本輪總共獲得50個待評價需求預測模型,則該處理單元12從中選取10(即,j=
)個候選需求預測模型。選取方式例如為選取其中對應有前10高的待評價指標值的待評價需求預測模型作為該等候選需求預測模型。
In
值得一提的是,由於每輪僅選取出數量爲當輪待評價需求預測模型的總數的1/M的候選需求預測模型,因此往後的每一輪都會比前一輪選取出更少的候選需求預測模型;此外,由於在進行模型訓練時並非一次使用所有的訓練資料集進行訓練,而是每輪僅採用部分的訓練資料集作為該等待訓練資料集,並逐漸增加該等待訓練資料集的數量,藉由將此種待訓練資料集的選取方式與前述的候選需求預測模型選取方式兩者並行,有助於減少模型篩選的時間,使其小於通常採用的以完整的訓練資料對所有候選模型進行訓練的方式所耗費的時間。It is worth mentioning that, since each round only selects 1/M of the total number of demand forecast models to be evaluated in that round as candidate demand forecast models, each subsequent round will select fewer candidate demand forecast models than the previous round; in addition, since not all training data sets are used for training at once during model training, but only part of the training data sets are used as the waiting training data sets in each round, and the number of the waiting training data sets is gradually increased, by combining this method of selecting the waiting training data sets with the aforementioned method of selecting candidate demand forecast models, it helps to reduce the time for model screening and make it less than the time spent on the commonly used method of training all candidate models with complete training data.
在子步驟305中,該處理單元12判定該訓練計數值是否等於M。若該處理單元12判定出該訓練計數值不等於M時,流程進行子步驟306;若該處理單元12判定出該訓練計數值等於M時,流程進行子步驟307。In
在子步驟306中,該處理單元12將該等j個候選需求預測模型所對應的訓練組合作爲j個待評價訓練組合,並將該訓練計數值加一,且流程回到子步驟302,以進行下一輪訓練。In
在子步驟307中,該處理單元12自該等j個候選需求預測模型中選取對應有最高待評價指標值的候選預測模型作爲該目標需求預測模型。In
接著,在步驟204中,對於每一測試資料集,該處理單元12根據該測試資料集利用該目標需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的待更新需求預測結果。Next, in
在步驟205中,該處理單元12根據一對應有多個第一分群級距閾值的第一級距排列方式將所獲得的所有待更新需求預測結果進行分群以獲得一第一級距排列結果。更具體地説,步驟205包含以下子步驟401~404(參閱圖4)。In
在子步驟401中,該處理單元12將所獲得的所有待更新需求預測結果的機率值由高到低進行排序,以獲得一待更新排序後總預測結果。In
在子步驟402中,該處理單元12根據該等測試資料集之購買結果及多個欲分群準確率,將該待更新排序後總預測結果分成多個分群。每一分群中之待更新需求預測結果符合所對應之購買結果的比例等於該等欲分群準確率之其中一者。舉例來說,假設該待更新排序後總預測結果含有10名客戶(客戶#1~#10)的10筆待更新需求預測結果(如下表1所示),並預定了三個欲分群準確率,分別為80%、50%及30%:客戶#1~#5被分至對應於欲分群準確率80%的分群,客戶#6~#7被分至對應於欲分群準確率50%的分群,客戶#8~#10被分至對應於欲分群準確率30%的分群。
表1
在子步驟403中,對於每一分群,該處理單元12將該分群中對應有排序最後的待更新需求預測結果作為該分群的第一分群級距閾值。延續前述表1之例,0.85為對應於欲分群準確率80%的分群的第一分群級距閾值,0.75為對應於欲分群準確率50%的分群的第一分群級距閾值,0.64為對應於欲分群準確率80%的分群的第一分群級距閾值。In
在子步驟404中,該處理單元12根據該等第一分群級距閾值將所獲得的所有待更新需求預測結果進行分群以獲得該第一級距排列結果。該第一級距排列結果包含該等分群。更具體地,對於每一第一分群級距閾值,該處理單元12是將大於等於該第一分群級距閾值且不屬於另一分群的所有待更新需求預測結果加入該第一分群級距閾值所對應的分群。值得注意的是,子步驟404的再次分群與子步驟402的分群的差異為,子步驟404是對於未排序的所有待更新需求預測結果進行分群,而子步驟402則是對於排序後的該待更新排序後總預測結果進行分群。延續前述表一之例,該第一級距排列結果例如為下表2所示:
表2
之後,在步驟206中,對於每一測試資料集,該處理單元12根據該測試資料集利用一待比對需求預測模型獲得一包含所對應之客戶可能購買該金融產品的機率值的當前需求預測結果。該待比對需求預測模型即為當前已部署在線上需要被優化的需求預測模型。Then, in
在步驟207中,該處理單元12根據一對應有多個第二分群級距閾值的第二級距排列方式將所獲得的所有當前需求預測結果進行分群以獲得一第二級距排列結果。值得說明的是,該等第二分群級距閾值是該待比對需求預測模型在之前被挑選為目標需求預測模型時所獲得的第一分群級距閾值。獲得該第二級距排列結果的細節與子步驟404大致相同,在此不多做贅述。In
在步驟208中,該處理單元12根據該第一級距排列結果及該第二級距排列結果分別獲得一對應於該目標需求預測模型的第一指標值及一對應於該待比對需求預測模型的第二指標值。在本實施例中,該第一指標值為位列於該第一級距排列結果該目標百分比內的客戶中實際購買該金融產品的人數的比例,該第二指標值為位列於該第二級距排列結果該目標百分比內的客戶中實際購買該金融產品的人數的比例。此處計算該第一指標值及該第二指標值的方式與子步驟303中計算待評價指標值的方式大致相同,不同之處在於子步驟303的排序方式是將對應有越高機率值的需求預測結果排在越前面,而此處則是將對應有越高欲分群準確率的需求預測結果排在越前面。舉例來說,若該目標百分比為30%,延續前述表2之例,排在前3名(前30%)的客戶依次為客戶#5、客戶#3、客戶#2,並且這三人實際皆購買了該金融產品,則該第一指標值為1。In
在步驟209中,該處理單元12判定該第一指標值是否大於該第二指標值。當該處理單元12判定出該第一指標值大於該第二指標值時,流程進行步驟210;否則,流程回到步驟201。In
在步驟210中,該處理單元12以該目標需求預測模型取代該待比對需求預測模型。In
綜上所述,藉由採用具有相同的級距標準的分群方式將該目標需求預測模型的所有待更新需求預測結果進行分群獲得該第一級距排列結果,並將該待比對需求預測模型的所有當前需求預測結果進行分群獲得該第二級距排列結果,使得該第一級距排列結果及該第二級距排列結果中的各機率值能被相同的級距標準劃分和排序。即便不同需求預測模型產生出來的需求預測結果的機率值分佈範圍因外在因素的變化有大幅提升或下降,仍能以共同的評價標準來評判不同需求預測模型之間的優劣。其次,本案中採用的模型訓練方式是藉由在每輪模型訓練中逐步減少候選模型數量並增加模型的訓練資料量的方式來進行,能夠比以往的模型訓練方式節省更多時間,從而更有效地篩選訓練組合以得到該目標需求預測模型。此外,定時對模型進行重建并重新部署上線也能使在線上的模型總是維持著最好的效度,減少模型效度因現實情況改變而受到的影響。因此,確實能達成本發明之目的。In summary, by adopting a grouping method with the same level standard to group all the demand forecast results to be updated of the target demand forecast model to obtain the first level ranking result, and grouping all the current demand forecast results of the demand forecast model to be compared to obtain the second level ranking result, the probability values in the first level ranking result and the second level ranking result can be divided and sorted by the same level standard. Even if the probability value distribution range of the demand forecast results generated by different demand forecast models is greatly increased or decreased due to changes in external factors, the advantages and disadvantages of different demand forecast models can still be judged by a common evaluation standard. Secondly, the model training method adopted in this case is to gradually reduce the number of candidate models and increase the amount of model training data in each round of model training, which can save more time than previous model training methods, thereby more effectively screening the training combination to obtain the target demand prediction model. In addition, regular reconstruction and redeployment of the model can also enable the online model to always maintain the best validity and reduce the impact of model validity due to changes in actual conditions. Therefore, the purpose of this invention can indeed be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only an example of the implementation of the present invention, and it should not be used to limit the scope of the implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.
1:模型重建系統
11:儲存單元
12:處理單元
201~210:步驟
301~307:子步驟
401~404:子步驟1: Model reconstruction system
11: Storage unit
12: Processing
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,示例性地說明本發明實施例的一種模型重建系統; 圖2是一流程圖,示例性地説明該實施例的一處理單元如何執行一模型重建程序; 圖3是一流程圖,示例性地説明該實施例的該處理單元如何獲得一目標需求預測模型;及 圖4是一流程圖,示例性地説明該實施例的該處理單元如何獲得一第一級距排列結果。 Other features and functions of the present invention will be clearly presented in the implementation method with reference to the drawings, wherein: FIG. 1 is a block diagram, exemplarily illustrating a model reconstruction system of an embodiment of the present invention; FIG. 2 is a flow chart, exemplarily illustrating how a processing unit of the embodiment executes a model reconstruction procedure; FIG. 3 is a flow chart, exemplarily illustrating how the processing unit of the embodiment obtains a target demand prediction model; and FIG. 4 is a flow chart, exemplarily illustrating how the processing unit of the embodiment obtains a first-order interval arrangement result.
1:模型重建系統 1: Model reconstruction system
11:儲存單元 11: Storage unit
12:處理單元 12: Processing unit
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112151066A TWI860923B (en) | 2023-12-27 | 2023-12-27 | Model reconstruction method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112151066A TWI860923B (en) | 2023-12-27 | 2023-12-27 | Model reconstruction method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI860923B true TWI860923B (en) | 2024-11-01 |
Family
ID=94379759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112151066A TWI860923B (en) | 2023-12-27 | 2023-12-27 | Model reconstruction method and system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI860923B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109716346A (en) * | 2016-07-18 | 2019-05-03 | 河谷生物组学有限责任公司 | Distributed machines learning system, device and method |
CN111095308A (en) * | 2017-05-14 | 2020-05-01 | 数字推理系统有限公司 | System and method for quickly building, managing and sharing machine learning models |
CN114463691A (en) * | 2020-11-10 | 2022-05-10 | 阿里巴巴集团控股有限公司 | Model training method, device and system and pedestrian re-identification method |
CN115841342A (en) * | 2022-11-22 | 2023-03-24 | 蔚来汽车科技(安徽)有限公司 | Demand forecasting method and system, and storage medium |
TW202333080A (en) * | 2022-02-09 | 2023-08-16 | 美商應用材料股份有限公司 | Machine learning model generation and updating for manufacturing equipment |
CN117033995A (en) * | 2022-08-26 | 2023-11-10 | 腾讯科技(深圳)有限公司 | Training method, device, equipment, medium and product of prediction model |
TWM654142U (en) * | 2023-12-27 | 2024-04-11 | 中國信託商業銀行股份有限公司 | Model Reconstruction System |
-
2023
- 2023-12-27 TW TW112151066A patent/TWI860923B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109716346A (en) * | 2016-07-18 | 2019-05-03 | 河谷生物组学有限责任公司 | Distributed machines learning system, device and method |
CN111095308A (en) * | 2017-05-14 | 2020-05-01 | 数字推理系统有限公司 | System and method for quickly building, managing and sharing machine learning models |
CN114463691A (en) * | 2020-11-10 | 2022-05-10 | 阿里巴巴集团控股有限公司 | Model training method, device and system and pedestrian re-identification method |
TW202333080A (en) * | 2022-02-09 | 2023-08-16 | 美商應用材料股份有限公司 | Machine learning model generation and updating for manufacturing equipment |
CN117033995A (en) * | 2022-08-26 | 2023-11-10 | 腾讯科技(深圳)有限公司 | Training method, device, equipment, medium and product of prediction model |
CN115841342A (en) * | 2022-11-22 | 2023-03-24 | 蔚来汽车科技(安徽)有限公司 | Demand forecasting method and system, and storage medium |
TWM654142U (en) * | 2023-12-27 | 2024-04-11 | 中國信託商業銀行股份有限公司 | Model Reconstruction System |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112053234B (en) | Enterprise credit rating method based on macroscopic region economic index and microscopic factor | |
CN108256802B (en) | Crowd search algorithm-based multi-supplier order distribution cloud processing method | |
CN112308623A (en) | High-quality client loss prediction method and device based on supervised learning and storage medium | |
CN111144941A (en) | Merchant score generation method, device, equipment and readable storage medium | |
WO2020024456A1 (en) | Quantitative transaction prediction method, device and equipment | |
CN112700324A (en) | User loan default prediction method based on combination of Catboost and restricted Boltzmann machine | |
CN113450004A (en) | Power credit report generation method and device, electronic equipment and readable storage medium | |
TWM654142U (en) | Model Reconstruction System | |
CN113065969A (en) | Enterprise scoring model construction method, enterprise scoring method, medium and electronic device | |
CN115391561A (en) | Method and device for processing graph network data set, electronic equipment, program and medium | |
CN114912739A (en) | Construction and application method of environment and transformer substation operation and maintenance cost correlation model | |
CN107742131A (en) | Financial asset sorting technique and device | |
CN116862078A (en) | Method, system, device and medium for predicting overdue of battery-change package user | |
CN111507824A (en) | Wind control model mold-entering variable minimum entropy box separation method | |
CN111626855A (en) | Bond credit interest difference prediction method and system | |
CN113379200B (en) | Method and device for determining geological disaster susceptibility evaluation | |
TWI860923B (en) | Model reconstruction method and system | |
CN118134652A (en) | Asset configuration scheme generation method and device, electronic equipment and medium | |
CN117273919A (en) | Internet credit assessment method for individual households and small micro-enterprise e-commerce merchants | |
CN118735315A (en) | Innovation capability evaluation method and innovation capability scoring model generation method | |
CN115984007A (en) | Enterprise credit risk monitoring method and device, storage medium and electronic equipment | |
CN116645014A (en) | Provider supply data model construction method based on artificial intelligence | |
CN109685555A (en) | Merchant screening method and device, electronic equipment and storage medium | |
CN115481694A (en) | Data enhancement method, device, equipment and storage medium for training sample set | |
CN114862092A (en) | Evaluation method and device based on neural network |