[go: up one dir, main page]

TWI859922B - Temperature control assembly - Google Patents

Temperature control assembly Download PDF

Info

Publication number
TWI859922B
TWI859922B TW112121506A TW112121506A TWI859922B TW I859922 B TWI859922 B TW I859922B TW 112121506 A TW112121506 A TW 112121506A TW 112121506 A TW112121506 A TW 112121506A TW I859922 B TWI859922 B TW I859922B
Authority
TW
Taiwan
Prior art keywords
circuit
heating
temperature
control assembly
temperature control
Prior art date
Application number
TW112121506A
Other languages
Chinese (zh)
Other versions
TW202409557A (en
Inventor
宋振安
陳烱煒
劉政燻
Original Assignee
緯創資通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 緯創資通股份有限公司 filed Critical 緯創資通股份有限公司
Priority to TW112121506A priority Critical patent/TWI859922B/en
Publication of TW202409557A publication Critical patent/TW202409557A/en
Application granted granted Critical
Publication of TWI859922B publication Critical patent/TWI859922B/en

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Temperature (AREA)

Abstract

A temperature control assembly includes a plurality of heating units and a plurality of temperature sensors. The heating units are arranged in a ring shape, and the temperature sensors are respectively arranged on the heating units. Each heating unit includes a bearing hole and a heating body. The heating body surrounds the bearing hole and is used for heating, and each temperature sensor is used for sensing a temperature. The bearing hole is used for movably accommodating a test tube.

Description

溫度控制組件Temperature control components

本發明是關於一種加熱器,特別是一種溫度控制組件。The present invention relates to a heater, in particular to a temperature control component.

市場上應用PCR(聚合酶連鎖反應)或QPCR(定量聚合酶連鎖反應)原理的產品(如,基因檢測儀器)需要快速升降溫。現有檢測儀器同時可進行多個試管的樣品的檢測。在檢測過程中,檢測儀器利用旋轉方式使每一試管中的螢光試劑分別被光學感測器偵測,並且利用加熱器和風扇來控制溫度,藉以活化試管中的試劑反應。然而,現有檢測儀器是利用單一加熱器同時對多個試管加熱,以致無法有效達到均溫的效果。Products on the market that use the principles of PCR (polymerase chain reaction) or QPCR (quantitative polymerase chain reaction) (e.g., gene detection instruments) require rapid temperature rise and fall. Existing detection instruments can test samples in multiple test tubes at the same time. During the test process, the detection instrument uses a rotation method to allow the fluorescent reagent in each test tube to be detected by an optical sensor, and uses a heater and a fan to control the temperature to activate the reagent reaction in the test tube. However, existing detection instruments use a single heater to heat multiple test tubes at the same time, so that the temperature cannot be effectively uniformed.

在一些實施例中,一種溫度控制組件,其包括:複數加熱單元以及複數溫度感測器。複數加熱單元環狀配置,並且複數溫度感測器分別設置在此些加熱單元上。各加熱單元包括:一承載孔以及一發熱體。發熱體環繞承載孔。承載孔適用於可移除地設置一試管。In some embodiments, a temperature control assembly includes: a plurality of heating units and a plurality of temperature sensors. The plurality of heating units are arranged in a ring shape, and the plurality of temperature sensors are respectively arranged on the heating units. Each heating unit includes: a supporting hole and a heating body. The heating body surrounds the supporting hole. The supporting hole is suitable for removably arranging a test tube.

在一些實施例中,前述的溫度控制組件可更包括:一控制板,並且各加熱單元的發熱體與各溫度感測器個別電性連接控制板。於此,控制板用以根據各溫度感測器的運作結果驅動對應的發熱體。In some embodiments, the aforementioned temperature control assembly may further include: a control board, and the heating element of each heating unit and each temperature sensor are electrically connected to the control board. Here, the control board is used to drive the corresponding heating element according to the operating result of each temperature sensor.

在一些實施例中,前述各發熱體包括:一金屬基散熱板、一第一電路以及一第二電路。第一電路位於金屬基散熱板的一表面且環繞承載孔。第二電路位於金屬基散熱板的表面,與第一電路電隔離,且電性連接對應的溫度感測器。於此,第一電路透過電轉熱而發熱。In some embodiments, each of the aforementioned heat generating bodies includes: a metal-based heat sink, a first circuit, and a second circuit. The first circuit is located on a surface of the metal-based heat sink and surrounds the supporting hole. The second circuit is located on the surface of the metal-based heat sink, is electrically isolated from the first circuit, and is electrically connected to a corresponding temperature sensor. Here, the first circuit generates heat by converting electricity into heat.

在一些實施例中,前述的各發熱體可更包括:至少一導熱膠,且導熱膠將第一電路與第二電路黏貼於金屬基散熱板的表面。In some embodiments, each of the aforementioned heat generating bodies may further include: at least one thermally conductive adhesive, and the thermally conductive adhesive adheres the first circuit and the second circuit to the surface of the metal-based heat sink.

在一些實施例中,前述的各發熱體可更包括:一第三電路。此第三電路位於金屬基散熱板的另一表面,並透過至少一導體電性連接第一電路。其中,至少一導體可為導孔和導線其中至少一者。In some embodiments, each of the aforementioned heat generating bodies may further include: a third circuit. The third circuit is located on another surface of the metal-based heat sink and is electrically connected to the first circuit through at least one conductor. The at least one conductor may be at least one of a via and a wire.

在一些實施例中,前述的各發熱體可更包括:至少一導熱膠。於此,導熱膠將第一電路與第二電路黏貼於金屬基散熱板的表面,並且將第三電路黏貼於金屬基散熱板的另一表面。In some embodiments, each of the aforementioned heat generating bodies may further include: at least one thermally conductive adhesive, wherein the thermally conductive adhesive adheres the first circuit and the second circuit to the surface of the metal-based heat sink, and adheres the third circuit to another surface of the metal-based heat sink.

在一些實施例中,前述的溫度控制組件可更包括:複數第一連接器以及複數導線組。各第一連接器具有複數接點。複數導線組分別對應複數加熱單元且分別對應複數第一連接器。各導線組具有複數導線。於此,各導線組的複數導線的一端分別電性連接對應的加熱單元的第一電路與第二電路,並且另一端分別耦接對應的第一連接器的複數接點。In some embodiments, the aforementioned temperature control assembly may further include: a plurality of first connectors and a plurality of wire sets. Each first connector has a plurality of contacts. The plurality of wire sets correspond to a plurality of heating units and correspond to a plurality of first connectors. Each wire set has a plurality of wires. Here, one end of the plurality of wires of each wire set is electrically connected to the first circuit and the second circuit of the corresponding heating unit, and the other end is coupled to the plurality of contacts of the corresponding first connector.

在一些實施例中,前述的控制板可包括:複數第二連接器、一電路基板以及一控制電路。控制電路位於電路基板上,且電性連接各加熱單元與各溫度感測器。此些第二連接器位於電路基板上,且電性連接控制電路。於此,複數第二連接器分別與複數第一連接器匹配,並且各第二連接器可插拔地與對應的第一連接器對接。控制電路用以經由第二電路接收各溫度感測器的運作結果並根據各溫度感測器的運作結果供電給此溫度感測器所對應的加熱單元的第一電路。In some embodiments, the aforementioned control board may include: a plurality of second connectors, a circuit substrate, and a control circuit. The control circuit is located on the circuit substrate and electrically connects each heating unit and each temperature sensor. These second connectors are located on the circuit substrate and electrically connect the control circuit. Here, the plurality of second connectors are matched with the plurality of first connectors respectively, and each second connector is pluggable and docked with the corresponding first connector. The control circuit is used to receive the operating results of each temperature sensor through the second circuit and supply power to the first circuit of the heating unit corresponding to the temperature sensor according to the operating results of each temperature sensor.

在另一些實施例中,前述各發熱體包括:一隔熱固定件、一加熱塊以及一薄膜電熱片。薄膜電熱片夾設在隔熱固定件與加熱塊之間。於此,各溫度感測器位於對應的加熱單元的薄膜電熱片上,且承載孔貫穿對應的加熱單元的隔熱固定件、薄膜電熱片以及加熱塊。In other embodiments, each of the aforementioned heating elements includes: a heat-insulating fixture, a heating block, and a thin-film electric heater. The thin-film electric heater is sandwiched between the heat-insulating fixture and the heating block. Here, each temperature sensor is located on the thin-film electric heater of the corresponding heating unit, and the bearing hole penetrates the heat-insulating fixture, the thin-film electric heater, and the heating block of the corresponding heating unit.

在一些實施例中,前述的溫度控制組件可更包括:一絕緣隔熱基座。於此,複數加熱單元環繞且固定於絕緣隔熱基座上。在檢測儀器中,此絕緣隔熱基座可進一步固定在轉盤上。此時,轉軸的二端分別連接絕緣隔熱基座與轉動馬達。In some embodiments, the aforementioned temperature control assembly may further include: an insulating heat-insulating base. Here, a plurality of heating units surround and are fixed on the insulating heat-insulating base. In the detection instrument, the insulating heat-insulating base may be further fixed on a turntable. At this time, the two ends of the rotating shaft are respectively connected to the insulating heat-insulating base and the rotating motor.

在另一些實施例中,複數加熱單元亦可直接固定在轉盤上。In other embodiments, a plurality of heating units may also be directly fixed on the turntable.

在一些實施例中,前述的檢測儀器可更包括:一風扇組件,且此風扇組件位於溫度控制組件相對於轉盤的另一側。In some embodiments, the aforementioned detection instrument may further include: a fan assembly, and the fan assembly is located on the other side of the temperature control assembly relative to the turntable.

綜上,在任一實施例中,溫度控制組件適用於檢測儀器中,其能對多個試管各別獨立進行溫度監控,並且有效控制其溫度,以達到均溫。在一些實施例中,溫度控制組件採用降低質量的機構設計,其簡化結構,藉以降低整體成本。在一些實施例中,溫度控制組件使用鋁基板(即作為金屬基散熱板)製作加熱單元,藉以更進一步地降低整體成本。在一些實施例中,溫度控制組件的多個加熱單元個別獨立進行溫度監控,並且於需升溫時進行雙面加熱,藉以快速升溫至所需溫度。In summary, in any embodiment, the temperature control assembly is suitable for use in a detection instrument, which can independently monitor the temperature of multiple test tubes and effectively control their temperatures to achieve uniform temperature. In some embodiments, the temperature control assembly adopts a mechanism design that reduces mass, and simplifies the structure to reduce the overall cost. In some embodiments, the temperature control assembly uses an aluminum substrate (i.e., as a metal-based heat sink) to make a heating unit to further reduce the overall cost. In some embodiments, multiple heating units of the temperature control assembly independently monitor the temperature, and perform double-sided heating when the temperature needs to be increased, so as to quickly increase the temperature to the required temperature.

參照圖1及圖2,一種溫度控制組件10,其包括:複數加熱單元110以及複數溫度感測器120。每一加熱單元110可用以調節一試管(tube)20內的樣本的溫度。也就是說,此溫度控制組件10能同時監控多個試管20(含其內部的樣本)的溫度並有效控制多個試管20的溫度以達到均溫。1 and 2, a temperature control assembly 10 includes a plurality of heating units 110 and a plurality of temperature sensors 120. Each heating unit 110 can be used to adjust the temperature of a sample in a test tube 20. In other words, the temperature control assembly 10 can simultaneously monitor the temperature of a plurality of test tubes 20 (including the samples therein) and effectively control the temperature of the plurality of test tubes 20 to achieve a uniform temperature.

此些加熱單元110以環狀配置。換言之,此些加熱單元110的長軸呈放射狀。複數溫度感測器120分別設置在複數加熱單元上。於此,複數溫度感測器120一對一對應於複數加熱單元110,並且每一溫度感測器120設置在對應的加熱單元110上。在一些實施例中,各溫度感測器120可直接焊接在加熱單元110上。在一些實施例中,各溫度感測器120可為電阻溫度感測器(RTD Sensor)。The heating units 110 are arranged in a ring shape. In other words, the long axes of the heating units 110 are radial. The plurality of temperature sensors 120 are respectively disposed on the plurality of heating units. Here, the plurality of temperature sensors 120 correspond one-to-one to the plurality of heating units 110, and each temperature sensor 120 is disposed on the corresponding heating unit 110. In some embodiments, each temperature sensor 120 can be directly welded to the heating unit 110. In some embodiments, each temperature sensor 120 can be a resistance temperature sensor (RTD Sensor).

參照圖3及圖4,各加熱單元110包括一承載孔111以及一發熱體113。發熱體113環繞承載孔111。換言之,發熱體113為加熱單元110的主體,而承載孔111為開在主體(即發熱體113)上的一個孔洞。3 and 4 , each heating unit 110 includes a support hole 111 and a heating element 113. The heating element 113 surrounds the support hole 111. In other words, the heating element 113 is the main body of the heating unit 110, and the support hole 111 is a hole opened on the main body (ie, the heating element 113).

在使用時,承載孔111能可移除地設置一試管20,並且由發熱體113對設置在承載孔111上的試管20加熱,使試管20(含其內部的樣本)能達到所需的溫度。When in use, a test tube 20 can be removably disposed in the supporting hole 111 , and the heating element 113 heats the test tube 20 disposed on the supporting hole 111 , so that the test tube 20 (including the sample therein) can reach a desired temperature.

各溫度感測器120設置在對應的加熱單元110的發熱體113上並且鄰近於承載孔111。於使用時,溫度感測器120能進行溫度感測,以感測並得到周遭的溫度(即相當於得到試管20的溫度)。Each temperature sensor 120 is disposed on the heating element 113 of the corresponding heating unit 110 and is adjacent to the supporting hole 111. When in use, the temperature sensor 120 can perform temperature sensing to sense and obtain the surrounding temperature (that is, equivalent to obtaining the temperature of the test tube 20).

在一些實施例中,參照圖1至圖4,各加熱單元110可劃分為設置段110A、連接段110B與固定段110C。連接段110B與固定段110C連接設置段110A。換言之,設置段110A向外延伸出連接段110B與固定段110C。連接段110B是從設置段110A朝遠離溫度控制組件10的中心的方向延伸,以便於外部組件(即,控制板130)形成電性連接。固定段110C則用以將加熱單元110固定在其他組件上,以便於溫度控制組件10與外部組件組裝在一起。在一示範例中,此些加熱單元110設置呈環狀,並各加熱單元110的固定段110C鎖固在其他組件(如,絕緣隔熱基座170或轉盤)上。In some embodiments, referring to FIGS. 1 to 4 , each heating unit 110 may be divided into a setting section 110A, a connecting section 110B, and a fixing section 110C. The connecting section 110B and the fixing section 110C are connected to the setting section 110A. In other words, the setting section 110A extends outwardly from the connecting section 110B and the fixing section 110C. The connecting section 110B extends from the setting section 110A in a direction away from the center of the temperature control assembly 10 to facilitate electrical connection with an external assembly (i.e., the control board 130). The fixing section 110C is used to fix the heating unit 110 on other assemblies to facilitate assembly of the temperature control assembly 10 with the external assembly. In one example, the heating units 110 are arranged in a ring shape, and the fixed section 110C of each heating unit 110 is locked on other components (eg, the insulating and heat-insulating base 170 or the turntable).

承載孔111則位於設置段110A。在一示範例中,承載孔111可為貫孔,換言之,承載孔111是從設置段110A(即發熱體113的中段)的上表面113A貫穿設置段110A(即發熱體113的中段),而連通設置段110A(即發熱體113的中段)的下表面113B。The supporting hole 111 is located in the setting section 110A. In one example, the supporting hole 111 may be a through hole, that is, the supporting hole 111 penetrates the setting section 110A (i.e., the middle section of the heating element 113) from the upper surface 113A of the setting section 110A (i.e., the middle section of the heating element 113) and connects to the lower surface 113B of the setting section 110A (i.e., the middle section of the heating element 113).

在一些實施例中,溫度感測器120可位在設置段110A與連接段110B的連接處。In some embodiments, the temperature sensor 120 may be located at the connection between the setting section 110A and the connecting section 110B.

在一些實施例中,溫度控制組件10可更包括:一控制板130,並且各加熱單元110的發熱體113與各溫度感測器120個別電性連接控制板130。於使用時,控制板130會接收各溫度感測器120的運作結果並根據各溫度感測器120的運作結果驅動給對應的加熱單元110的發熱體113。具體而言,溫度感測器120感測到的溫度(即運作結果)會傳送給控制板130。因此,當樣品檢測程序執行到需要升溫的時間點時,控制板130能根據各溫度感測器120所感測的溫度供電給(驅動)對應的加熱單元110的發熱體113,使發熱體113透過轉電為熱而發熱,進而加熱試管20至所需的溫度。In some embodiments, the temperature control assembly 10 may further include: a control board 130, and the heating element 113 of each heating unit 110 and each temperature sensor 120 are electrically connected to the control board 130. When in use, the control board 130 receives the operating result of each temperature sensor 120 and drives the corresponding heating element 113 of the heating unit 110 according to the operating result of each temperature sensor 120. Specifically, the temperature sensed by the temperature sensor 120 (i.e., the operating result) is transmitted to the control board 130. Therefore, when the sample detection program is executed to the time point where the temperature needs to be increased, the control board 130 can supply power to (drive) the heating element 113 of the corresponding heating unit 110 according to the temperature sensed by each temperature sensor 120, so that the heating element 113 generates heat by converting electricity into heat, thereby heating the test tube 20 to the required temperature.

在一些實施例中,參照圖3至圖5,各發熱體113包括:一金屬基散熱板1131、一第一電路1132以及一第二電路1133。第一電路1132位於金屬基散熱板1131的一表面(即下表面113B)且環繞承載孔111。第二電路1133與第一電路1132同樣位於金屬基散熱板1131的下表面113B,且與第一電路1132電隔離。於此,當供電給第一電路1132時,第一電路1132能透過電轉熱而發熱。第二電路1133電性連接對應的溫度感測器120。具體來說,此加熱單元110所對應的溫度感測器120銲接在第二電路1133上,並且由第二電路1133電性連接控制板130。因此,溫度感測器120所感測到的溫度能經由第二電路1133傳送給控制板130。In some embodiments, referring to FIG. 3 to FIG. 5 , each heating body 113 includes: a metal-based heat sink 1131, a first circuit 1132, and a second circuit 1133. The first circuit 1132 is located on a surface (i.e., the lower surface 113B) of the metal-based heat sink 1131 and surrounds the supporting hole 111. The second circuit 1133 is also located on the lower surface 113B of the metal-based heat sink 1131 like the first circuit 1132, and is electrically isolated from the first circuit 1132. Here, when power is supplied to the first circuit 1132, the first circuit 1132 can generate heat through electrical heat conversion. The second circuit 1133 is electrically connected to the corresponding temperature sensor 120. Specifically, the temperature sensor 120 corresponding to the heating unit 110 is soldered to the second circuit 1133, and the second circuit 1133 is electrically connected to the control board 130. Therefore, the temperature sensed by the temperature sensor 120 can be transmitted to the control board 130 via the second circuit 1133.

在一些實施例中,各發熱體113可更包括:至少一導熱膠1135,且導熱膠1135將第一電路1132與第二電路1133黏貼於金屬基散熱板1131的下表面113B。In some embodiments, each heat generating body 113 may further include: at least one thermal conductive adhesive 1135, and the thermal conductive adhesive 1135 adheres the first circuit 1132 and the second circuit 1133 to the lower surface 113B of the metal-based heat sink 1131.

在一些實施例中,各發熱體113可更包括:一第三電路1134。此第三電路1134位於金屬基散熱板1131的另一表面(即上表面113A),並透過一個或多個導體161、162電性連接第一電路1132。其中,導體161、162可為導孔(圖未示)或導線(如圖5所示)。於此,當供電給發熱體113時,電力會供給至第一電路1132與第三電路1134,因此第一電路1132與第三電路1134能透過電轉熱而發熱,藉以進行雙面加熱。其中,導體161、162可均為導孔,或者均為導線。抑或是,配合實際需求,一部分的導體161、162採用導孔,而另一部分的導體161、162則採用導線。In some embodiments, each heating element 113 may further include: a third circuit 1134. The third circuit 1134 is located on the other surface (i.e., the upper surface 113A) of the metal-based heat sink 1131, and is electrically connected to the first circuit 1132 through one or more conductors 161, 162. The conductors 161, 162 may be vias (not shown) or wires (as shown in FIG. 5). Here, when power is supplied to the heating element 113, power is supplied to the first circuit 1132 and the third circuit 1134, so that the first circuit 1132 and the third circuit 1134 can generate heat through electrical heat conversion, thereby performing double-sided heating. The conductors 161, 162 may both be vias, or both be wires. Alternatively, according to actual needs, a portion of the conductors 161, 162 adopts guide holes, while another portion of the conductors 161, 162 adopts wires.

在一些實施例中,參照圖5,導體161可為內連接,如,為穿透金屬基散熱板1131的導線,換言之,此導線經由貫穿金屬基散熱板1131的貫孔160分別耦接(如,銲接)位在不同表面的上的第一電路1132與第三電路1134。在一些實施例中,導體161亦可是在貫穿金屬基散熱板1131的貫孔160內填充或塗布導電材料所形成的導孔。於此,貫孔160的二端的導電材料會分別與貫孔160周邊的第一電路1132與第三電路1134電性連接。In some embodiments, referring to FIG. 5 , the conductor 161 may be an internal connection, such as a wire penetrating the metal-based heat sink 1131. In other words, the wire is coupled (e.g., welded) to the first circuit 1132 and the third circuit 1134 located on different surfaces through the through hole 160 penetrating the metal-based heat sink 1131. In some embodiments, the conductor 161 may also be a conductive hole formed by filling or coating the through hole 160 penetrating the metal-based heat sink 1131 with a conductive material. Here, the conductive material at both ends of the through hole 160 is electrically connected to the first circuit 1132 and the third circuit 1134 around the through hole 160, respectively.

在一些實施例中,參照圖6至圖8,導體162可為外連接,即為位在金屬基散熱板1131的側壁上的導線。換言之,此導線是由金屬基散熱板1131的上表面113A沿著金屬基散熱板1131的側壁而延伸至金屬基散熱板1131的下表面113B,並且導線的二端分別耦接(如,銲接)位在不同表面的上的第一電路1132與第三電路1134。In some embodiments, referring to FIG. 6 to FIG. 8 , the conductor 162 may be an external connection, that is, a wire located on the side wall of the metal-based heat sink 1131. In other words, the wire extends from the upper surface 113A of the metal-based heat sink 1131 along the side wall of the metal-based heat sink 1131 to the lower surface 113B of the metal-based heat sink 1131, and the two ends of the wire are respectively coupled (e.g., welded) to the first circuit 1132 and the third circuit 1134 located on different surfaces.

在一些實施例中,參照圖9,各發熱體113可同時設置有內連接與外連接,即具有不同設置方式的多個導體161、162。In some embodiments, referring to FIG. 9 , each heat generating body 113 may be provided with both internal connections and external connections, that is, multiple conductors 161, 162 having different configurations.

在一些實施例中,各發熱體113可更包括:至少一導熱膠1135、1136。於此,導熱膠1135將第一電路1132與第二電路1133黏貼於金屬基散熱板1131的下表面113B,並且導熱膠1136將第三電路1134黏貼於金屬基散熱板1131的上表面113A。In some embodiments, each heat generating body 113 may further include at least one thermal conductive adhesive 1135, 1136. Here, the thermal conductive adhesive 1135 adheres the first circuit 1132 and the second circuit 1133 to the lower surface 113B of the metal-based heat sink 1131, and the thermal conductive adhesive 1136 adheres the third circuit 1134 to the upper surface 113A of the metal-based heat sink 1131.

在一些實施例中,各發熱體113可更包括:一第四電路1137。此第四電路1137位於金屬基散熱板1131的上表面113A,並且與第三電路1134電性隔離。於此,第四電路1137同樣透過至少一導體電性連接第三電路1134(圖未示)。其中,耦接第三電路1134與第四電路1137的導體可為導孔(圖未示)或導線(圖未示)。In some embodiments, each heating element 113 may further include: a fourth circuit 1137. The fourth circuit 1137 is located on the upper surface 113A of the metal-based heat sink 1131 and is electrically isolated from the third circuit 1134. Here, the fourth circuit 1137 is also electrically connected to the third circuit 1134 through at least one conductor (not shown). The conductor coupling the third circuit 1134 and the fourth circuit 1137 may be a via (not shown) or a wire (not shown).

在一些實施例中,導熱膠1136可將第三電路1134與第四電路1137黏貼於金屬基散熱板1131的上表面113A。In some embodiments, the thermal conductive adhesive 1136 can adhere the third circuit 1134 and the fourth circuit 1137 to the upper surface 113A of the metal-based heat sink 1131.

在一些實施例中,金屬基散熱板1131可為低合金化的Al-Mg-Si(鋁-鎂-矽)系高塑性合金板。第一電路1132與第二電路1133可為銅箔。第三電路1134與第四電路1137可為銅箔。In some embodiments, the metal-based heat sink 1131 may be a low-alloyed Al-Mg-Si (aluminum-magnesium-silicon) high-plasticity alloy plate. The first circuit 1132 and the second circuit 1133 may be copper foil. The third circuit 1134 and the fourth circuit 1137 may be copper foil.

在一些實施例中,參照圖1及圖2,控制板130可包括:一電路基板131以及一控制電路133。控制電路133位於電路基板131上,且控制電路133電性連接各加熱單元110與各溫度感測器120。於使用時,控制電路133能經由各加熱單元110的第二電路1133(與第四電路1137)接收各溫度感測器120所感測的溫度,並且根據各溫度感測器120所感測的溫度供電給此溫度感測器120所對應的加熱單元110的第一電路1132,以使發熱體113發熱。In some embodiments, referring to FIG. 1 and FIG. 2 , the control board 130 may include: a circuit substrate 131 and a control circuit 133. The control circuit 133 is located on the circuit substrate 131, and the control circuit 133 is electrically connected to each heating unit 110 and each temperature sensor 120. When in use, the control circuit 133 can receive the temperature sensed by each temperature sensor 120 through the second circuit 1133 (and the fourth circuit 1137) of each heating unit 110, and supply power to the first circuit 1132 of the heating unit 110 corresponding to the temperature sensor 120 according to the temperature sensed by each temperature sensor 120, so that the heating body 113 generates heat.

在一些實施例中,控制板130與各加熱單元110可透過對接的二連接器電性連接。於此些實施例中,參照圖1至圖5,溫度控制組件10可更包括:複數第一連接器140以及複數導線組150。複數第一連接器140分別對應複數加熱單元110。各第一連接器140具有複數接點140a。複數導線組150分別對應複數加熱單元110,並且分別對應複數第一連接器140。各導線組150具有複數導線151、152。於此,各導線組150的複數導線151、152的一端分別電性連接此導線組150所對應的加熱單元110的第一電路1132與第二電路1133,並且另一端分別耦接此導線組150所對應的第一連接器140的複數接點140a。In some embodiments, the control board 130 and each heating unit 110 can be electrically connected through two connected connectors. In these embodiments, referring to FIGS. 1 to 5 , the temperature control assembly 10 can further include: a plurality of first connectors 140 and a plurality of wire assemblies 150. The plurality of first connectors 140 respectively correspond to the plurality of heating units 110. Each first connector 140 has a plurality of contacts 140a. The plurality of wire assemblies 150 respectively correspond to the plurality of heating units 110 and respectively correspond to the plurality of first connectors 140. Each wire assembly 150 has a plurality of wires 151, 152. Here, one end of the plurality of wires 151, 152 of each wire set 150 is respectively electrically connected to the first circuit 1132 and the second circuit 1133 of the heating unit 110 corresponding to the wire set 150, and the other end is respectively coupled to the plurality of contacts 140a of the first connector 140 corresponding to the wire set 150.

具體而言,在各導線組150中,各導線151的一端耦接(如,銲接或貼合)對應的加熱單元110的第一電路1132,或者是耦接(如,銲接或貼合)對應的加熱單元110的第三電路1134並經由第三電路1134與導體161及/或162電性連接第一電路1132。各導線151的另一端則耦接(如,貼合)對應的第一連接器140的多個接點140a中之一者。各導線152的一端耦接(如,銲接或貼合)對應的加熱單元110的第二電路1133,或者是耦接(如,銲接或貼合)對應的加熱單元110的第四電路1137並經由第四電路1137與導體161及/或162電性連接第二電路1133。各導線152的另一端則耦接(如,貼合)對應的第一連接器140的多個接點140a中之另一者。Specifically, in each wire assembly 150, one end of each wire 151 is coupled (e.g., welded or bonded) to the first circuit 1132 of the corresponding heating unit 110, or is coupled (e.g., welded or bonded) to the third circuit 1134 of the corresponding heating unit 110 and electrically connected to the first circuit 1132 via the third circuit 1134 and the conductor 161 and/or 162. The other end of each wire 151 is coupled (e.g., bonded) to one of the multiple contacts 140a of the corresponding first connector 140. One end of each wire 152 is coupled (e.g., welded or bonded) to the second circuit 1133 of the corresponding heating unit 110, or is coupled (e.g., welded or bonded) to the fourth circuit 1137 of the corresponding heating unit 110 and electrically connected to the second circuit 1133 via the fourth circuit 1137 and the conductor 161 and/or 162. The other end of each wire 152 is coupled (e.g., bonded) to another one of the plurality of contacts 140a of the corresponding first connector 140.

在一些實施例中,參照圖1及圖2,控制板130可更包括:複數第二連接器135。此些第二連接器135位於電路基板131上,且電性連接控制電路133。於此,複數第二連接器135分別與複數第一連接器140匹配,並且各第二連接器135可插拔地與對應的第一連接器140對接。換言之,當第一連接器140插接在對應的第二連接器135上時,第一連接器140的複數接點140a分別與第二連接器135的複數接點一對一接觸,以致於第一連接器140的複數接點140a分別與第二連接器135的複數接點電性連接。圖1及圖2中第二連接器135以虛線繪製以便於表現第一連接器140插入其中。In some embodiments, referring to FIG. 1 and FIG. 2 , the control board 130 may further include: a plurality of second connectors 135. These second connectors 135 are located on the circuit substrate 131 and are electrically connected to the control circuit 133. Here, the plurality of second connectors 135 are matched with the plurality of first connectors 140, respectively, and each second connector 135 is pluggably connected to the corresponding first connector 140. In other words, when the first connector 140 is plugged into the corresponding second connector 135, the plurality of contacts 140a of the first connector 140 are in one-to-one contact with the plurality of contacts of the second connector 135, so that the plurality of contacts 140a of the first connector 140 are electrically connected with the plurality of contacts of the second connector 135, respectively. In FIG. 1 and FIG. 2 , the second connector 135 is drawn with dotted lines to facilitate the insertion of the first connector 140 therein.

因此,於使用時,控制電路133能經由各第二連接器135、第二連接器135對接的第一連接器140、連接第一連接器140的導線152與導線152所連接的第二電路1133接收各溫度感測器120所感測到的溫度。並且,控制電路133根據所接收到的溫度與預計溫度決定此溫度感測器120所對應的加熱單元110是否需進行加熱。當所接收到的溫度低於預計溫度時,控制電路133經由各第二連接器135、第二連接器135對接的第一連接器140與連接第一連接器140的導線151供電給此溫度感測器120所對應的加熱單元110的第一電路1132(即供電給發熱體113),以致使發熱體113發熱來升高此加熱單元110所承載的試管20的溫度。反之,控制電路133則停止供電給此溫度感測器120所對應的加熱單元110。Therefore, when in use, the control circuit 133 can receive the temperature sensed by each temperature sensor 120 through each second connector 135, the first connector 140 connected to the second connector 135, the wire 152 connected to the first connector 140, and the second circuit 1133 connected to the wire 152. In addition, the control circuit 133 determines whether the heating unit 110 corresponding to the temperature sensor 120 needs to be heated according to the received temperature and the expected temperature. When the received temperature is lower than the expected temperature, the control circuit 133 supplies power to the first circuit 1132 (i.e., supplies power to the heating element 113) of the heating unit 110 corresponding to the temperature sensor 120 via the second connectors 135, the first connector 140 connected to the second connector 135, and the wire 151 connected to the first connector 140, so that the heating element 113 generates heat to increase the temperature of the test tube 20 carried by the heating unit 110. Otherwise, the control circuit 133 stops supplying power to the heating unit 110 corresponding to the temperature sensor 120.

在一些實施例中,承載孔111貫穿金屬基散熱板1131。第一電路1132分布在設置段110A與連接段110B的下表面113B。第一電路1132可分為一環狀走線與二連接走線(以下稱第一連接走線)。在設置段110A上的第一電路1132為環狀走線,其沿著承載孔111的邊緣設置在承載孔111旁的金屬基散熱板1131的下表面113B上。在連接段110B上的第一電路1132為第一連接走線,其從環狀走線開始朝金屬基散熱板1131的邊緣延伸,並且經由連接段110B而延伸至金屬基散熱板1131的邊緣。即二第一連接走線的一端(以下稱第一端)耦接環狀走線,而另一端(以下稱第二端)可直接或藉由導線151連接至控制板130。第二電路1133分布在連接段110B的下表面113B。第二電路1133可為另外二連接走線(以下稱第二連接走線)。第二連接走線從設置段110A與連接段110B的連接處開始朝金屬基散熱板1131的邊緣延伸,並且經由連接段110B而延伸至金屬基散熱板1131的邊緣。在設置段110A與連接段110B的連接處,溫度感測器120銲接在第二連接走線的一端(以下稱第一端)上,即此二第二連接走線的第一端分別耦接溫度感測器120的二電極。在金屬基散熱板1131的邊緣,第二連接走線的另一端(以下稱第二端)可直接或藉由導線152連接至控制板130。其中,第二電路1133的二第二連接走線能分布在第一電路1132的二第一連接走線之間。In some embodiments, the bearing hole 111 penetrates the metal-based heat sink 1131. The first circuit 1132 is distributed on the lower surface 113B of the setting section 110A and the connecting section 110B. The first circuit 1132 can be divided into a ring-shaped routing and two connecting routings (hereinafter referred to as first connecting routings). The first circuit 1132 on the setting section 110A is a ring-shaped routing, which is arranged on the lower surface 113B of the metal-based heat sink 1131 beside the bearing hole 111 along the edge of the bearing hole 111. The first circuit 1132 on the connecting section 110B is a first connecting routing, which starts from the ring-shaped routing and extends toward the edge of the metal-based heat sink 1131, and extends to the edge of the metal-based heat sink 1131 through the connecting section 110B. That is, one end (hereinafter referred to as the first end) of the two first connection traces is coupled to the ring trace, and the other end (hereinafter referred to as the second end) can be directly or through the wire 151 connected to the control board 130. The second circuit 1133 is distributed on the lower surface 113B of the connecting section 110B. The second circuit 1133 can be another two connecting traces (hereinafter referred to as the second connecting traces). The second connecting traces extend from the connection between the setting section 110A and the connecting section 110B toward the edge of the metal-based heat sink 1131, and extend to the edge of the metal-based heat sink 1131 through the connecting section 110B. At the connection between the setting section 110A and the connection section 110B, the temperature sensor 120 is soldered to one end (hereinafter referred to as the first end) of the second connection trace, that is, the first ends of the two second connection traces are respectively coupled to the two electrodes of the temperature sensor 120. At the edge of the metal-based heat sink 1131, the other end (hereinafter referred to as the second end) of the second connection trace can be directly connected to the control board 130 or through the wire 152. Among them, the two second connection traces of the second circuit 1133 can be distributed between the two first connection traces of the first circuit 1132.

於此,第三電路1134分布在設置段110A與連接段110B的上表面113A,並且其結構與分布大致上相同於第一電路1132。連接金屬基散熱板1131的上表面113A與下表面113B的導體161及/或162將第三電路1134電性連接至第一電路1132。Here, the third circuit 1134 is distributed on the upper surface 113A of the setting section 110A and the connecting section 110B, and its structure and distribution are substantially the same as the first circuit 1132. The conductors 161 and/or 162 connecting the upper surface 113A and the lower surface 113B of the metal-based heat sink 1131 electrically connect the third circuit 1134 to the first circuit 1132.

在一示範例中,各導線組150可具有四導線151、152。其中,二導線151的一端分別銲接在第三電路1134的二第一連接走線的第二端,並且二導線151的另一端則分別接觸第一連接器140的二接點140a。二導線152的一端分別銲接在第四電路1137的二第一連接走線的第二端,並且二導線152的另一端則分別接觸第一連接器140的另外二接點140a。In one example, each wire set 150 may have four wires 151 and 152. One end of two wires 151 is respectively welded to the second end of two first connection traces of the third circuit 1134, and the other end of the two wires 151 is respectively in contact with two contacts 140a of the first connector 140. One end of two wires 152 is respectively welded to the second end of two first connection traces of the fourth circuit 1137, and the other end of the two wires 152 is respectively in contact with the other two contacts 140a of the first connector 140.

舉例來說,第一電路1132與第二電路1133可為形成在金屬基散熱板1131的下表面113B上的圖案化電路層。其中,此圖案化電路層可利用PCB(印刷電路板)製程形成在金屬基散熱板1131的下表面113B上。第三電路1134與第四電路1137可為形成在金屬基散熱板1131的上表面113A上的圖案化電路層。其中,此圖案化電路層可利用PCB(印刷電路板)製程形成在金屬基散熱板1131的上表面113A上。For example, the first circuit 1132 and the second circuit 1133 may be a patterned circuit layer formed on the lower surface 113B of the metal-based heat sink 1131. The patterned circuit layer may be formed on the lower surface 113B of the metal-based heat sink 1131 using a PCB (printed circuit board) process. The third circuit 1134 and the fourth circuit 1137 may be a patterned circuit layer formed on the upper surface 113A of the metal-based heat sink 1131. The patterned circuit layer may be formed on the upper surface 113A of the metal-based heat sink 1131 using a PCB (printed circuit board) process.

在一些實施例中,金屬基散熱板1131可具有良好的導熱性、電氣絕緣性能和機械加工性能。其中,金屬基散熱板1131可為鋁基板。鋁基板能夠承載更高的電流,其耐壓可達4500V,且其導熱係數大於2.0。第一電路1132與第二電路1133可為一圖案化鋁箔。第三電路1134與第四電路1137可為另一圖案化鋁箔。In some embodiments, the metal-based heat sink 1131 may have good thermal conductivity, electrical insulation and machinability. The metal-based heat sink 1131 may be an aluminum substrate. The aluminum substrate can carry a higher current, its withstand voltage can reach 4500V, and its thermal conductivity is greater than 2.0. The first circuit 1132 and the second circuit 1133 may be a patterned aluminum foil. The third circuit 1134 and the fourth circuit 1137 may be another patterned aluminum foil.

在一些實施例中,溫度控制組件10可更包括:一絕緣隔熱基座170。於此,複數加熱單元110沿著絕緣隔熱基座170的邊緣環繞絕緣隔熱基座170且固定於絕緣隔熱基座170上。舉例來說,各加熱單元110的固定段110C鎖固在絕緣隔熱基座170上。在一些實施例中,絕緣隔熱基座170可為電木隔熱材。In some embodiments, the temperature control assembly 10 may further include: an insulating heat-insulating base 170. Here, a plurality of heating units 110 surround the insulating heat-insulating base 170 along the edge of the insulating heat-insulating base 170 and are fixed on the insulating heat-insulating base 170. For example, the fixing section 110C of each heating unit 110 is locked on the insulating heat-insulating base 170. In some embodiments, the insulating heat-insulating base 170 may be a bakelite insulation material.

在一些實施例中,溫度控制組件10可透過將絕緣隔熱基座170固定於其他組件上,而與其他組件組裝成一儀器。In some embodiments, the temperature control assembly 10 can be assembled with other components into an instrument by fixing the insulating and heat-insulating base 170 to other components.

具體而言,一種檢測儀器,其包括前述任一實施例的溫度控制組件10、轉盤40、光學感測器50、轉動馬達70以及轉軸72。溫度控制組件10位於轉盤40與光學感測器50之間且藉由絕緣隔熱基座170固定在轉盤40上。光學感測器50位於溫度控制組件10相對於轉盤40的另一側,並且用以朝上對位在加熱單元110的承載孔111上的試管20進行偵測。轉動馬達70連接轉軸72的一端,並且用以轉動轉軸72。轉軸72的另一端耦接絕緣隔熱基座170,並且用以帶動轉盤40與溫度控制組件10進行轉動,以致使多個加熱單元110的承載孔111依序移動到光學感測器50上。Specifically, a detection instrument includes the temperature control assembly 10 of any of the above embodiments, a turntable 40, an optical sensor 50, a rotary motor 70, and a rotating shaft 72. The temperature control assembly 10 is located between the turntable 40 and the optical sensor 50 and is fixed on the turntable 40 by an insulating and heat-insulating base 170. The optical sensor 50 is located on the other side of the temperature control assembly 10 relative to the turntable 40, and is used to detect the test tube 20 located on the supporting hole 111 of the heating unit 110. The rotary motor 70 is connected to one end of the rotating shaft 72 and is used to rotate the rotating shaft 72. The other end of the rotating shaft 72 is coupled to the insulating and heat-insulating base 170 and is used to drive the turntable 40 and the temperature control assembly 10 to rotate, so that the supporting holes 111 of the plurality of heating units 110 are moved to the optical sensor 50 in sequence.

舉例來說,參照圖10及圖11,絕緣隔熱基座170和16組加熱單元110連接固定後,將16組加熱單元110的承載孔111分別對準轉盤40上的16個限位孔401,然後將絕緣隔熱基座170固定在轉盤40上。16組加熱單元110的第一連接器140一對一插接至控制板130的第二連接器135,並且將轉盤線42組裝連接轉盤40。然後,再將轉軸72的二端分別組裝連接絕緣隔熱基座170與組裝在機架80上的轉動馬達70。最後,再將組裝好的組件罩上機殼90。於使用時,試管20通過轉盤40上的限位孔401而插設在加熱單元110的承載孔111上,並且試管20的開口上能覆蓋固定蓋30。For example, referring to FIG. 10 and FIG. 11 , after the insulating heat-insulating base 170 and the 16 sets of heating units 110 are connected and fixed, the bearing holes 111 of the 16 sets of heating units 110 are aligned with the 16 limiting holes 401 on the turntable 40, and then the insulating heat-insulating base 170 is fixed on the turntable 40. The first connectors 140 of the 16 sets of heating units 110 are plugged into the second connectors 135 of the control board 130 one by one, and the turntable line 42 is assembled and connected to the turntable 40. Then, the two ends of the rotating shaft 72 are assembled and connected to the insulating heat-insulating base 170 and the rotating motor 70 assembled on the frame 80. Finally, the assembled components are covered with the housing 90. When in use, the test tube 20 is inserted into the supporting hole 111 of the heating unit 110 through the limiting hole 401 on the turntable 40 , and the opening of the test tube 20 can be covered by the fixing cover 30 .

在一些實施例中,檢測儀器可更包括:一風扇組件60,且此風扇組件60位於溫度控制組件10相對於轉盤40的另一側。在一些實施例中,風扇組件60可包括一個或多個風扇610以及風扇罩620。在此實施例中,風扇罩620位於風扇610與溫度控制組件10之間。風扇罩620是由靠近風扇610的一端往靠近溫度控制組件10的一端漸縮,藉以將風扇610吹出的風導向溫度控制組件10的中間區域。In some embodiments, the detection instrument may further include: a fan assembly 60, and the fan assembly 60 is located on the other side of the temperature control assembly 10 relative to the turntable 40. In some embodiments, the fan assembly 60 may include one or more fans 610 and a fan cover 620. In this embodiment, the fan cover 620 is located between the fan 610 and the temperature control assembly 10. The fan cover 620 is gradually narrowed from one end close to the fan 610 to one end close to the temperature control assembly 10, so as to guide the wind blown by the fan 610 to the middle area of the temperature control assembly 10.

在一些實施例中,參照圖12及圖13,俯視下,各加熱單元110的外型可呈現矩形。In some embodiments, referring to FIG. 12 and FIG. 13 , each heating unit 110 may be rectangular in shape when viewed from above.

在另一些實施例中,參照圖14及圖15,各發熱體113可包括:一隔熱固定件114、一加熱塊(Heating block)115以及一薄膜電熱片116。薄膜電熱片116夾設在隔熱固定件114與加熱塊115之間。參照圖14至圖16,各溫度感測器120位於對應的加熱單元110的薄膜電熱片116上,且承載孔111貫穿對應的加熱單元110的隔熱固定件114、薄膜電熱片116與加熱塊115。In other embodiments, referring to FIG. 14 and FIG. 15 , each heating body 113 may include: a heat insulating fixture 114, a heating block 115, and a thin film heating sheet 116. The thin film heating sheet 116 is sandwiched between the heat insulating fixture 114 and the heating block 115. Referring to FIG. 14 to FIG. 16 , each temperature sensor 120 is located on the thin film heating sheet 116 of the corresponding heating unit 110, and the supporting hole 111 penetrates the heat insulating fixture 114, the thin film heating sheet 116, and the heating block 115 of the corresponding heating unit 110.

在一些實施例中,參照圖14至圖16,各薄膜電熱片116可包括:一設置段1161以及一連接段1162。設置段1161夾設在隔熱固定件114與加熱塊115之間。連接段1162連接設置段1161,並且電性連接控制板130。於此,薄膜電熱片116可在控制板130的供電下發熱。各溫度感測器120位於對應的加熱單元110的設置段1161與連接段1162的連接處,且承載孔111貫穿隔熱固定件114、設置段1161以及加熱塊115。In some embodiments, referring to FIGS. 14 to 16 , each thin film heater 116 may include: a setting section 1161 and a connecting section 1162. The setting section 1161 is sandwiched between the heat insulating fixture 114 and the heating block 115. The connecting section 1162 connects the setting section 1161 and is electrically connected to the control board 130. Here, the thin film heater 116 can generate heat under the power supply of the control board 130. Each temperature sensor 120 is located at the connection between the setting section 1161 and the connecting section 1162 of the corresponding heating unit 110, and the bearing hole 111 passes through the heat insulating fixture 114, the setting section 1161 and the heating block 115.

舉例來說,隔熱固定件114與加熱塊115對位後,將薄膜電熱片116的設置段1161夾設其中,然後以螺絲將隔熱固定件114與加熱塊115鎖固在一起,而形成加熱單元110。For example, after the heat insulating fixture 114 and the heating block 115 are aligned, the setting section 1161 of the thin film heater 116 is sandwiched therebetween, and then the heat insulating fixture 114 and the heating block 115 are screwed together to form the heating unit 110.

在一些實施例中,連接段1162可直接耦接控制板130的控制電路133。舉例來說,連接段1162的一端銜接設置段1161,而連接段1162的另一端直接焊接控制電路133(圖未示)。In some embodiments, the connecting section 1162 can be directly coupled to the control circuit 133 of the control board 130. For example, one end of the connecting section 1162 is connected to the setting section 1161, and the other end of the connecting section 1162 is directly welded to the control circuit 133 (not shown).

在另一些實施例中,連接段1162亦可經由導線或導線與連接器的組合電性連接控制板130的控制電路133。In some other embodiments, the connecting section 1162 may also be electrically connected to the control circuit 133 of the control board 130 via a wire or a combination of a wire and a connector.

在一些實施例中,各薄膜電熱片116可為聚酰亞胺(PI)薄膜電熱片。In some embodiments, each thin film heater 116 may be a polyimide (PI) thin film heater.

在一些實施例中,參照圖17至圖19,在組裝成檢測儀器時,各加熱單元110可直接固定在轉盤40上。舉例來說,參照圖14至圖17,各加熱單元110的隔熱固定件114具有固定孔114a。因此,透過將螺絲穿過固定孔114a並鎖入轉盤40能將加熱單元110鎖固在轉盤40上。In some embodiments, referring to FIGS. 17 to 19 , when the detection instrument is assembled, each heating unit 110 can be directly fixed on the turntable 40. For example, referring to FIGS. 14 to 17 , the heat insulating fixing member 114 of each heating unit 110 has a fixing hole 114 a. Therefore, the heating unit 110 can be fixed on the turntable 40 by passing a screw through the fixing hole 114 a and locking it into the turntable 40.

在一些實施例中,參照圖17至圖19,風扇組件60亦可直接固定於轉盤40上。於此些實施例中,風扇組件60位於溫度控制組件10相對於轉盤40的另一側,並且固定在加熱單元110圍繞成的中空區域所裸露出的轉盤40上。換言之,溫度控制組件10的複數加熱單元110環繞風扇組件60。並且,轉軸72的另一端連接風扇組件60。In some embodiments, referring to FIGS. 17 to 19 , the fan assembly 60 may also be directly fixed on the turntable 40. In these embodiments, the fan assembly 60 is located on the other side of the temperature control assembly 10 relative to the turntable 40, and is fixed on the turntable 40 exposed by the hollow area surrounded by the heating unit 110. In other words, the plurality of heating units 110 of the temperature control assembly 10 surround the fan assembly 60. In addition, the other end of the rotating shaft 72 is connected to the fan assembly 60.

舉例來說,16組加熱單元110的承載孔111分別對準轉盤40的16個限位孔401後,將各加熱單元110的隔熱固定件114鎖固在轉盤40上。並且,將風扇610鎖固在16組加熱單元110圍繞成的中間區域處的轉盤40上。16組加熱單元110的第一連接器140分別與控制板130對應位置的第二連接器135對接。轉軸72的另一端組裝在風扇罩620的外側。然後,以風扇罩620罩住風扇610,然後固定在轉盤40上。For example, after the bearing holes 111 of the 16 heating units 110 are aligned with the 16 limiting holes 401 of the turntable 40, the heat insulation fixing member 114 of each heating unit 110 is locked on the turntable 40. In addition, the fan 610 is locked on the turntable 40 in the middle area surrounded by the 16 heating units 110. The first connectors 140 of the 16 heating units 110 are respectively connected to the second connectors 135 at the corresponding positions of the control board 130. The other end of the rotating shaft 72 is assembled on the outer side of the fan cover 620. Then, the fan 610 is covered with the fan cover 620 and then fixed on the turntable 40.

如此一來,檢測儀器可進行需調控樣品的溫度的檢測程序。In this way, the detection instrument can perform detection procedures that require the temperature of the sample to be controlled.

舉例來說,以PCR(聚合酶連鎖反應)的檢測儀器為例,PCR第一階段需要約94℃的處理溫度、PCR第二階段需要約60℃的處理溫度,並且PCR第三階段需要約72℃的處理溫度。在PCR第一階段,檢測儀器需對試管20加熱以升溫至94℃,並且將溫度維持在94℃。此時,控制板130的控制電路133供電給加熱單元110,使加熱單元110的發熱體113發熱以升溫至94℃,並且利用電腦程式PID控制(比例積分微分控制;Proportional-Integral and Derivative Control)根據各溫度感測器120所感測的溫度控制加熱單元110與風扇610的運作,使溫度維持在94℃。在PCR第二階段,控制板130的控制電路133停止供電給加熱單元110以關掉發熱體113,並且開啟風扇610,使風扇610藉由風扇罩620吹向加熱單元110,以降溫至約60℃。然後,控制板130的控制電路133利用電腦程式PID控制根據各溫度感測器120所感測的溫度控制加熱單元110與風扇610的運作,使溫度維持在約60℃。在PCR第三階段,控制板130的控制電路133再次供電給加熱單元110,使加熱單元110的發熱體113發熱以升溫至72℃,並且利用電腦程式PID控制根據各溫度感測器120所感測的溫度控制加熱單元110與風扇610的運作,使溫度維持在72℃。For example, in a PCR (polymerase chain reaction) detection instrument, the first stage of PCR requires a processing temperature of about 94° C., the second stage of PCR requires a processing temperature of about 60° C., and the third stage of PCR requires a processing temperature of about 72° C. In the first stage of PCR, the detection instrument needs to heat the test tube 20 to 94° C. and maintain the temperature at 94° C. At this time, the control circuit 133 of the control board 130 supplies power to the heating unit 110, so that the heating element 113 of the heating unit 110 generates heat to raise the temperature to 94°C, and uses the computer program PID control (Proportional-Integral and Derivative Control) to control the operation of the heating unit 110 and the fan 610 according to the temperature sensed by each temperature sensor 120, so that the temperature is maintained at 94°C. In the second stage of PCR, the control circuit 133 of the control board 130 stops supplying power to the heating unit 110 to turn off the heating element 113, and turns on the fan 610, so that the fan 610 blows toward the heating unit 110 through the fan cover 620 to cool down to about 60°C. Then, the control circuit 133 of the control board 130 uses the computer program PID control to control the operation of the heating unit 110 and the fan 610 according to the temperature sensed by each temperature sensor 120, so that the temperature is maintained at about 60°C. In the third stage of PCR, the control circuit 133 of the control board 130 supplies power to the heating unit 110 again, so that the heating element 113 of the heating unit 110 generates heat to raise the temperature to 72°C, and uses the computer program PID control to control the operation of the heating unit 110 and the fan 610 according to the temperature sensed by each temperature sensor 120, so that the temperature is maintained at 72°C.

綜上,在任一實施例中,溫度控制組件10適用於檢測儀器中,其能對多個試管20各別獨立進行溫度監控,並且有效控制其溫度,以達到均溫。在一些實施例中,溫度控制組件10採用降低質量的機構設計,其簡化結構,藉以降低硬體及裝配成本。在一些實施例中,溫度控制組件10使用鋁基板(即作為金屬基散熱板1131)製作加熱單元110,藉以更進一步地降低整體成本。在一些實施例中,溫度控制組件10的多個加熱單元110個別獨立進行溫度監控,並且於需升溫時進行雙面加熱,藉以快速升溫至所需溫度。In summary, in any embodiment, the temperature control assembly 10 is suitable for use in a detection instrument, which can independently monitor the temperature of multiple test tubes 20 and effectively control their temperatures to achieve uniform temperature. In some embodiments, the temperature control assembly 10 adopts a mechanism design that reduces mass, and its simplified structure reduces hardware and assembly costs. In some embodiments, the temperature control assembly 10 uses an aluminum substrate (i.e., as a metal-based heat sink 1131) to make the heating unit 110, thereby further reducing the overall cost. In some embodiments, the multiple heating units 110 of the temperature control assembly 10 independently monitor the temperature, and perform double-sided heating when the temperature needs to be increased, so as to quickly increase the temperature to the required temperature.

10:溫度控制組件 110:加熱單元 110A:設置段 110B:連接段 110C:固定段 111:承載孔 113:發熱體 113A:上表面 113B:下表面 1131:金屬基散熱板 1132:第一電路 1133:第二電路 1134:第三電路 1135:導熱膠 1136:導熱膠 1137:第四電路 114:隔熱固定件 114a:固定孔 115:加熱塊 116:薄膜電熱片 1161:設置段 1162:連接段 120:溫度感測器 130:控制板 131:電路基板 133:控制電路 135:第二連接器 140:第一連接器 140a:接點 150:導線組 151:導線 152:導線 160:貫孔 161:導體 162:導體 170:絕緣隔熱基座 20:試管 30:固定蓋 40:轉盤 42:轉盤線 401:限位孔 50:光學感測器 60:風扇組件 610:風扇 620:風扇罩 70:轉動馬達 72:轉軸 80:機架 90:機殼 10: Temperature control assembly 110: Heating unit 110A: Setting section 110B: Connecting section 110C: Fixing section 111: Carrying hole 113: Heating element 113A: Upper surface 113B: Lower surface 1131: Metal-based heat sink 1132: First circuit 1133: Second circuit 1134: Third circuit 1135: Thermal conductive adhesive 1136: Thermal conductive adhesive 1137: Fourth circuit 114: Thermal insulation fixing piece 114a: Fixing hole 115: Heating block 116: Thin film heater 1161: Setting section 1162: Connecting section 120: Temperature sensor 130: Control panel 131: Circuit board 133: Control circuit 135: Second connector 140: First connector 140a: Contact 150: Wire assembly 151: Wire 152: Wire 160: Through hole 161: Conductor 162: Conductor 170: Insulation and heat insulation base 20: Test tube 30: Fixed cover 40: Turntable 42: Turntable wire 401: Limiting hole 50: Optical sensor 60: Fan assembly 610: Fan 620: Fan cover 70: Rotating motor 72: Rotating shaft 80: Rack 90: Casing

圖1為一實施例的溫度控制組件的示意圖。 圖2為圖1的溫度控制組件的爆炸圖。 圖3為在一視角下圖1的一組加熱單元與溫度感測器的第一示範例的示意圖。 圖4為在圖3相反視角下同一組加熱單元與溫度感測器的示意圖。 圖5為圖3的加熱單元在延長軸的切線下的截面示意圖。 圖6為在一視角下圖1的一組加熱單元與溫度感測器的第二示範例的示意圖。 圖7為在圖6相反視角下同一組加熱單元與溫度感測器的示意圖。 圖8為圖6的加熱單元在延長軸的切線下的截面示意圖。 圖9為加熱單元的第三示範例的截面示意圖。 圖10為一實施例的檢測儀器的爆炸圖。 圖11為圖10的局部分大圖。 圖12為在一視角下圖1的一組加熱單元與溫度感測器的第三示範例的示意圖。 圖13為在圖12相反視角下同一組加熱單元與溫度感測器的示意圖。 圖14為一組加熱單元與溫度感測器的第四示範例的示意圖。 圖15為圖14的一組加熱單元與溫度感測器的爆炸圖。 圖16為圖14的薄膜電熱片的放大圖。 圖17為另一實施例的檢測儀器的局部示意圖。 圖18為圖17的局部的反向後的爆炸圖。 圖19為另一實施例的檢測儀器的爆炸圖。 FIG. 1 is a schematic diagram of a temperature control assembly of an embodiment. FIG. 2 is an exploded view of the temperature control assembly of FIG. 1. FIG. 3 is a schematic diagram of a first exemplary embodiment of a set of heating units and a temperature sensor of FIG. 1 at a viewing angle. FIG. 4 is a schematic diagram of the same set of heating units and a temperature sensor at an opposite viewing angle of FIG. 3. FIG. 5 is a schematic diagram of a cross section of the heating unit of FIG. 3 at a tangent to an extension axis. FIG. 6 is a schematic diagram of a second exemplary embodiment of a set of heating units and a temperature sensor of FIG. 1 at a viewing angle. FIG. 7 is a schematic diagram of the same set of heating units and a temperature sensor at an opposite viewing angle of FIG. 6. FIG. 8 is a schematic diagram of a cross section of the heating unit of FIG. 6 at a tangent to an extension axis. FIG. 9 is a schematic diagram of a cross section of a third exemplary embodiment of a heating unit. FIG. 10 is an exploded view of a detection instrument of an embodiment. FIG. 11 is a partial enlarged view of FIG. 10 . FIG. 12 is a schematic diagram of a third exemplary embodiment of a set of heating units and a temperature sensor in FIG. 1 at a certain viewing angle. FIG. 13 is a schematic diagram of the same set of heating units and a temperature sensor at the opposite viewing angle of FIG. 12 . FIG. 14 is a schematic diagram of a fourth exemplary embodiment of a set of heating units and a temperature sensor. FIG. 15 is an exploded view of a set of heating units and a temperature sensor in FIG. 14 . FIG. 16 is an enlarged view of the thin film heater in FIG. 14 . FIG. 17 is a partial schematic diagram of a detection instrument in another embodiment. FIG. 18 is a partially reversed exploded view of FIG. 17 . FIG. 19 is an exploded view of a detection instrument in another embodiment.

10:溫度控制組件 10: Temperature control components

110:加熱單元 110: Heating unit

111:承載孔 111: Loading hole

113:發熱體 113: Fever body

120:溫度感測器 120: Temperature sensor

130:控制板 130: Control panel

131:電路基板 131: Circuit board

133:控制電路 133: Control circuit

135:第二連接器 135: Second connector

140:第一連接器 140: First connector

170:絕緣隔熱基座 170: Insulation and heat insulation base

Claims (20)

一種溫度控制組件,包括:複數加熱單元,環狀配置,各該加熱單元包括:一承載孔,適用於可移除地設置一試管;以及一發熱體,環繞該承載孔;以及複數溫度感測器,分別設置在該複數加熱單元上。 A temperature control assembly includes: a plurality of heating units, arranged in a ring shape, each of the heating units including: a supporting hole, suitable for removably setting a test tube; and a heating body, surrounding the supporting hole; and a plurality of temperature sensors, respectively set on the plurality of heating units. 如請求項1所述的溫度控制組件,更包括:一控制板,電性連接各該加熱單元的該發熱體與各該溫度感測器,用以根據各該溫度感測器的運作結果驅動對應的該發熱體。 The temperature control assembly as described in claim 1 further includes: a control board electrically connecting the heating element of each heating unit and each temperature sensor, and used to drive the corresponding heating element according to the operating result of each temperature sensor. 如請求項1所述的溫度控制組件,其中各該加熱單元的該發熱體包括:一金屬基散熱板;一第一電路,位於該金屬基散熱板的一表面且環繞該承載孔;以及一第二電路,位於該金屬基散熱板的該表面,與該第一電路電隔離,且電性連接對應的該溫度感測器。 The temperature control assembly as described in claim 1, wherein the heat generating body of each heating unit comprises: a metal-based heat sink; a first circuit located on a surface of the metal-based heat sink and surrounding the supporting hole; and a second circuit located on the surface of the metal-based heat sink, electrically isolated from the first circuit, and electrically connected to the corresponding temperature sensor. 如請求項3所述的溫度控制組件,其中各該發熱體更包括:至少一導熱膠,將該第一電路與該第二電路黏貼於該金屬基散熱板的該表面。 The temperature control assembly as described in claim 3, wherein each of the heat generating bodies further comprises: at least one thermally conductive adhesive, which adheres the first circuit and the second circuit to the surface of the metal-based heat sink. 如請求項3所述的溫度控制組件,其中各該發熱體更包括:一第三電路,位於該金屬基散熱板的另一表面,並透過至少一導體電 性連接該第一電路。 The temperature control assembly as described in claim 3, wherein each of the heat generating bodies further comprises: a third circuit located on another surface of the metal-based heat sink and electrically connected to the first circuit through at least one conductor. 如請求項5所述的溫度控制組件,其中各該發熱體更包括:至少一導熱膠,以將該第一電路與該第二電路黏貼於該金屬基散熱板的該表面並將該第三電路黏貼於該金屬基散熱板的該另一表面。 The temperature control assembly as described in claim 5, wherein each of the heat generating bodies further comprises: at least one thermally conductive adhesive to adhere the first circuit and the second circuit to the surface of the metal-based heat sink and adhere the third circuit to the other surface of the metal-based heat sink. 如請求項3所述的溫度控制組件,更包括:複數第一連接器,各該第一連接器具有複數接點;以及複數導線組,分別對應該複數加熱單元且分別對應該複數第一連接器,其中各該導線組具有複數導線,各該導線組的該複數導線的一端分別電性連接對應的該加熱單元的該第一電路與該第二電路,以及各該導線組的該複數導線的另一端分別耦接對應的該第一連接器的該複數接點。 The temperature control assembly as described in claim 3 further includes: a plurality of first connectors, each of which has a plurality of contacts; and a plurality of wire sets, which respectively correspond to the plurality of heating units and respectively correspond to the plurality of first connectors, wherein each of the wire sets has a plurality of wires, one end of the plurality of wires of each of the wire sets respectively electrically connects the first circuit and the second circuit of the corresponding heating unit, and the other end of the plurality of wires of each of the wire sets respectively couples the plurality of contacts of the corresponding first connector. 如請求項7所述的溫度控制組件,更包括:一控制板,包括:一電路基板;一控制電路,位於該電路基板上,用以經由各該加熱單元的該第二電路接收各該溫度感測器所感測的一溫度並根據各該溫度感測器所感測的該溫度供電給對應的該加熱單元的該第一電路;以及複數第二連接器,位於該電路基板上,電性連接該控制電路,分別與該複數第一連接器匹配,各該第二連接器可插拔地與對應的該第一連接器對接。 The temperature control assembly as described in claim 7 further comprises: a control board, comprising: a circuit substrate; a control circuit located on the circuit substrate, for receiving a temperature sensed by each temperature sensor through the second circuit of each heating unit and supplying power to the first circuit of the corresponding heating unit according to the temperature sensed by each temperature sensor; and a plurality of second connectors located on the circuit substrate, electrically connected to the control circuit, respectively matched with the plurality of first connectors, and each second connector is pluggable and docked with the corresponding first connector. 如請求項1所述的溫度控制組件,其中各該發熱體包括:一隔熱固定件; 一加熱塊;以及一薄膜電熱片,夾設在該隔熱固定件與該加熱塊之間;其中,該溫度感測器位於對應的該加熱單元的該薄膜電熱片上,且該承載孔貫穿對應的該加熱單元的該隔熱固定件、該薄膜電熱片以及該加熱塊。 The temperature control assembly as described in claim 1, wherein each of the heating elements comprises: a heat-insulating fixture; a heating block; and a thin-film electric heater sandwiched between the heat-insulating fixture and the heating block; wherein the temperature sensor is located on the thin-film electric heater of the corresponding heating unit, and the supporting hole penetrates the heat-insulating fixture, the thin-film electric heater and the heating block of the corresponding heating unit. 如請求項1所述的溫度控制組件,更包括:一絕緣隔熱基座,其中該複數加熱單元環繞且固定於該絕緣隔熱基座上。 The temperature control assembly as described in claim 1 further includes: an insulating heat-insulating base, wherein the plurality of heating units surround and are fixed on the insulating heat-insulating base. 一種溫度控制組件,包括:複數加熱單元,環狀配置,各該加熱單元包括:一承載孔,適用於可移除地設置一試管;以及一發熱體,環繞該承載孔;以及複數溫度感測器,分別對應該複數加熱單元,其中各該溫度感測器設置在對應的該加熱單元的該發熱體上並且相對於該發熱體的邊緣鄰近於該承載孔。 A temperature control assembly includes: a plurality of heating units, arranged in a ring shape, each of the heating units including: a supporting hole, suitable for removably setting a test tube; and a heating body, surrounding the supporting hole; and a plurality of temperature sensors, respectively corresponding to the plurality of heating units, wherein each of the temperature sensors is arranged on the heating body of the corresponding heating unit and adjacent to the supporting hole relative to the edge of the heating body. 如請求項11所述的溫度控制組件,更包括:一控制板,電性連接各該加熱單元的該發熱體與各該溫度感測器,用以根據各該溫度感測器的運作結果驅動對應的該發熱體。 The temperature control assembly as described in claim 11 further includes: a control board electrically connecting the heating element of each heating unit and each temperature sensor, so as to drive the corresponding heating element according to the operating result of each temperature sensor. 如請求項11所述的溫度控制組件,其中各該加熱單元的該發熱體包括:一金屬基散熱板;一第一電路,位於該金屬基散熱板的一表面且環繞該承載孔;以及 一第二電路,位於該金屬基散熱板的該表面,與該第一電路電隔離,且電性連接對應的該溫度感測器。 The temperature control assembly as described in claim 11, wherein the heat generating body of each heating unit comprises: a metal-based heat sink; a first circuit located on a surface of the metal-based heat sink and surrounding the supporting hole; and a second circuit located on the surface of the metal-based heat sink, electrically isolated from the first circuit, and electrically connected to the corresponding temperature sensor. 如請求項13所述的溫度控制組件,其中各該發熱體更包括:至少一導熱膠,將該第一電路與該第二電路黏貼於該金屬基散熱板的該表面。 The temperature control assembly as described in claim 13, wherein each of the heat generating bodies further comprises: at least one thermally conductive adhesive, which adheres the first circuit and the second circuit to the surface of the metal-based heat sink. 如請求項13所述的溫度控制組件,其中各該發熱體更包括:一第三電路,位於該金屬基散熱板的另一表面,並透過至少一導體電性連接該第一電路。 The temperature control assembly as described in claim 13, wherein each of the heat generating bodies further comprises: a third circuit located on another surface of the metal-based heat sink and electrically connected to the first circuit through at least one conductor. 如請求項15所述的溫度控制組件,其中各該發熱體更包括:至少一導熱膠,以將該第一電路與該第二電路黏貼於該金屬基散熱板的該表面並將該第三電路黏貼於該金屬基散熱板的該另一表面。 The temperature control assembly as described in claim 15, wherein each of the heat generating bodies further comprises: at least one thermally conductive adhesive to adhere the first circuit and the second circuit to the surface of the metal-based heat sink and adhere the third circuit to the other surface of the metal-based heat sink. 如請求項13所述的溫度控制組件,更包括:複數第一連接器,各該第一連接器具有複數接點;以及複數導線組,分別對應該複數加熱單元且分別對應該複數第一連接器,其中各該導線組具有複數導線,各該導線組的該複數導線的一端分別電性連接對應的該加熱單元的該第一電路與該第二電路,以及各該導線組的該複數導線的另一端分別耦接對應的該第一連接器的該複數接點。 The temperature control assembly as described in claim 13 further includes: a plurality of first connectors, each of which has a plurality of contacts; and a plurality of wire sets, which respectively correspond to the plurality of heating units and respectively correspond to the plurality of first connectors, wherein each of the wire sets has a plurality of wires, one end of the plurality of wires of each of the wire sets respectively electrically connects the first circuit and the second circuit of the corresponding heating unit, and the other end of the plurality of wires of each of the wire sets respectively couples the plurality of contacts of the corresponding first connector. 如請求項17所述的溫度控制組件,更包括:一控制板,包括: 一電路基板;一控制電路,位於該電路基板上,用以經由各該加熱單元的該第二電路接收各該溫度感測器所感測的一溫度並根據各該溫度感測器所感測的該溫度供電給對應的該加熱單元的該第一電路;以及複數第二連接器,位於該電路基板上,電性連接該控制電路,分別與該複數第一連接器匹配,各該第二連接器可插拔地與對應的該第一連接器對接。 The temperature control assembly as described in claim 17 further includes: a control board, including: a circuit substrate; a control circuit, located on the circuit substrate, for receiving a temperature sensed by each temperature sensor through the second circuit of each heating unit and supplying power to the corresponding first circuit of the heating unit according to the temperature sensed by each temperature sensor; and a plurality of second connectors, located on the circuit substrate, electrically connected to the control circuit, respectively matched with the plurality of first connectors, and each second connector is pluggable and docked with the corresponding first connector. 如請求項11所述的溫度控制組件,其中各該發熱體包括:一隔熱固定件;一加熱塊;以及一薄膜電熱片,夾設在該隔熱固定件與該加熱塊之間;其中,該溫度感測器位於對應的該加熱單元的該薄膜電熱片上,且該承載孔貫穿對應的該加熱單元的該隔熱固定件、該薄膜電熱片以及該加熱塊。 The temperature control assembly as described in claim 11, wherein each of the heating elements comprises: a heat-insulating fixture; a heating block; and a thin-film electric heater sandwiched between the heat-insulating fixture and the heating block; wherein the temperature sensor is located on the thin-film electric heater of the corresponding heating unit, and the supporting hole penetrates the heat-insulating fixture, the thin-film electric heater and the heating block of the corresponding heating unit. 如請求項11所述的溫度控制組件,更包括:一絕緣隔熱基座,其中該複數加熱單元環繞且固定於該絕緣隔熱基座上。 The temperature control assembly as described in claim 11 further includes: an insulating heat-insulating base, wherein the plurality of heating units surround and are fixed on the insulating heat-insulating base.
TW112121506A 2022-08-19 2022-08-19 Temperature control assembly TWI859922B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112121506A TWI859922B (en) 2022-08-19 2022-08-19 Temperature control assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112121506A TWI859922B (en) 2022-08-19 2022-08-19 Temperature control assembly

Publications (2)

Publication Number Publication Date
TW202409557A TW202409557A (en) 2024-03-01
TWI859922B true TWI859922B (en) 2024-10-21

Family

ID=91228311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112121506A TWI859922B (en) 2022-08-19 2022-08-19 Temperature control assembly

Country Status (1)

Country Link
TW (1) TWI859922B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795547A (en) * 1993-09-10 1998-08-18 Roche Diagnostic Systems, Inc. Thermal cycler
US20070292309A1 (en) * 2006-06-15 2007-12-20 Logan Instruments Corp. Pharmaceutical product release rate testing device
CN203298502U (en) * 2013-06-04 2013-11-20 苏州市金翔钛设备有限公司 Constant-temperature heater
TW201726908A (en) * 2015-10-01 2017-08-01 柏克萊燈光有限公司 Multi-slot plate incubator
TW201836442A (en) * 2017-02-20 2018-10-01 美商瑪森科技公司 Temperature control using temperature control element coupled to faraday shield

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795547A (en) * 1993-09-10 1998-08-18 Roche Diagnostic Systems, Inc. Thermal cycler
US20070292309A1 (en) * 2006-06-15 2007-12-20 Logan Instruments Corp. Pharmaceutical product release rate testing device
CN203298502U (en) * 2013-06-04 2013-11-20 苏州市金翔钛设备有限公司 Constant-temperature heater
TW201726908A (en) * 2015-10-01 2017-08-01 柏克萊燈光有限公司 Multi-slot plate incubator
TW201836442A (en) * 2017-02-20 2018-10-01 美商瑪森科技公司 Temperature control using temperature control element coupled to faraday shield

Also Published As

Publication number Publication date
TW202409557A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US4777434A (en) Microelectronic burn-in system
US6781056B1 (en) Heater for temperature control integrated in circuit board and method of manufacture
TWI454718B (en) Integrated unit for electrical/reliability testing with improved thermal control
WO2005084328A2 (en) Burn-in testing apparatus and method
TWI819755B (en) Testing instrument and temperature control assembly thereof
CN102216791B (en) Base member for probe unit and probe unit
EP3939703A2 (en) Independently temperature controllable block for pcr
TWI859922B (en) Temperature control assembly
TWM613564U (en) Heat source simulation structure
WO2017023053A1 (en) Stage module of cryogenic, high magnetic field testing device
US8115139B2 (en) Heatable infrared sensor and infrared thermometer comprising such an infrared sensor
JP5197505B2 (en) Temperature sensor for wafer chuck
US6720784B2 (en) Device for testing electronic devices
JP4602181B2 (en) Socket for semiconductor inspection
JP2008286666A (en) Probe card
KR101540654B1 (en) Pattern structure of heater on stainless plate
WO2022209903A1 (en) Led chuck
CN214413067U (en) Heat source simulation structure
JPH07321168A (en) Probe card
TW202340694A (en) Heat dissipation test system for electronic device
JP3824943B2 (en) IC socket module
JP4959844B2 (en) X-ray inspection heating device
CN113607866B (en) Device for controlling temperature of chromatographic column and method for manufacturing the same
US20250048499A1 (en) Heating assemply
JP7286583B2 (en) Thermocouple terminal block, temperature measurement device and environmental test device