TWI859667B - Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof - Google Patents
Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof Download PDFInfo
- Publication number
- TWI859667B TWI859667B TW111148271A TW111148271A TWI859667B TW I859667 B TWI859667 B TW I859667B TW 111148271 A TW111148271 A TW 111148271A TW 111148271 A TW111148271 A TW 111148271A TW I859667 B TWI859667 B TW I859667B
- Authority
- TW
- Taiwan
- Prior art keywords
- model
- interpretation
- analysis
- data
- module
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 262
- 238000004458 analytical method Methods 0.000 claims abstract description 131
- 230000000694 effects Effects 0.000 claims abstract description 46
- 230000010354 integration Effects 0.000 claims abstract description 41
- 238000012800 visualization Methods 0.000 claims description 22
- 238000012935 Averaging Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 11
- 238000010248 power generation Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 230000000007 visual effect Effects 0.000 description 8
- 230000015654 memory Effects 0.000 description 7
- 230000008451 emotion Effects 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Images
Landscapes
- Stored Programmes (AREA)
- Machine Translation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明係關於解釋模型之技術,尤指一種能整合多個解釋方法之智慧化多元解釋通用模型之系統、方法及其電腦可讀媒介。 The present invention relates to the technology of interpretation model, and in particular to a system, method and computer-readable medium of an intelligent multi-interpretation universal model capable of integrating multiple interpretation methods.
於機器學習上,通常須要構建用以處理資料之模型,於模型進行資料處理前,應先收集用以訓練該模型之資料,透過輸入所收集之資料對模型進行訓練,以透過經訓練之模型進行資料處理。 In machine learning, it is usually necessary to build a model for processing data. Before the model processes data, data for training the model should be collected first. The model is trained by inputting the collected data, and the trained model is used to process data.
近年來,受益於網路的便利性與電腦運算能力的提升,收集資料與訓練機器學習之模型不再是資料科學家及人工智慧(AI)專家才能做的事,機器學習相關的應用也越來越常見。大多數的模型在解決預測性問題時,皆在關注準確度指標,亦即,所應用之模型通常著重於準確度之提升。高準確度之模型往往也代表著高複雜度,是以,人們將愈難以理解其決策之模式。惟,若欲將模型用於具備影響力之應用時,例如應用於醫療診斷或自動保險理賠,就必須了解模型如何運作,以確保模型之可信任度。目前雖已有許多解釋方法可以模擬並解釋模 型行為,但由於模型之類型差異且所應用之主題亦有不同,因此,要選擇適合於模型以及主題之解釋方法仍需具備相關知識。 In recent years, thanks to the convenience of the Internet and the improvement of computer computing power, collecting data and training machine learning models are no longer just the work of data scientists and artificial intelligence (AI) experts, and machine learning-related applications are becoming more and more common. Most models focus on accuracy indicators when solving predictive problems, that is, the models applied usually focus on improving accuracy. Models with high accuracy often also represent high complexity, so it will be more difficult for people to understand their decision-making patterns. However, if you want to use the model for influential applications, such as medical diagnosis or automatic insurance claims, you must understand how the model works to ensure the trustworthiness of the model. Although there are many explanatory methods that can simulate and explain model behavior, due to the differences in model types and the different topics to which they are applied, it is still necessary to have relevant knowledge to choose an explanatory method that is suitable for the model and topic.
鑑於上述問題,如何提供一種智慧解釋模型的方法,特別是可減少使用者因背景知識不足導致的分析困難,以及可基於不同型態的模型以及避免非單一應用情境之限制,讓使用者對於模型決策毫無頭緒時,能提供幫助以解釋模型行為,此將成為目前本技術領域人員急欲追求之目標。 In view of the above problems, how to provide a method to intelligently explain the model, especially to reduce the analysis difficulties caused by the lack of background knowledge of users, and to be based on different types of models and avoid the limitation of non-single application scenarios, so that users can provide help to explain the model behavior when they have no idea about the model decision, will become the goal that people in this technical field are eager to pursue.
為解決上述現有技術之問題,本發明係揭露一種智慧化多元解釋通用模型之系統,係包括:模型與資料類型分析模組,係用以分析欲解釋之模型檔及訓練模型所用之分析資料,以分別得到對應該模型檔及該分析資料之模型類型及資料類型;模型解釋方法套用模組,係連接該模型與資料類型分析模組,用於依據該模型類型及該資料類型進行查詢,以找出相對應之至少一個解釋方法,進而透過該至少一個解釋方法解析該模型檔及該分析資料,以獲得至少一個解釋結果;以及解釋效果統整模組,係用於統整該至少一個解釋結果,以得到模型解釋結果。 To solve the above problems of the prior art, the present invention discloses a system of intelligent multi-dimensional interpretation universal model, which includes: a model and data type analysis module, which is used to analyze the model file to be interpreted and the analysis data used to train the model, so as to obtain the model type and data type corresponding to the model file and the analysis data respectively; a model interpretation method application module, which is connected to the model and data type analysis module, and is used to query according to the model type and the data type to find at least one corresponding interpretation method, and then parse the model file and the analysis data through the at least one interpretation method to obtain at least one interpretation result; and an interpretation effect integration module, which is used to integrate the at least one interpretation result to obtain the model interpretation result.
於一實施例中,該模型與資料類型分析模組復包括用以判斷該模型檔的該模型類型之模型檔分析單元及用以判別該分析資料的該資料類型之資料類型分析單元。 In one embodiment, the model and data type analysis module comprises a model file analysis unit for determining the model type of the model file and a data type analysis unit for determining the data type of the analysis data.
於另一實施例中,該模型解釋方法套用模組復包括用於儲存多個解釋方法之可解釋方法資料庫、用以依據該模型類型及該資料類型自該可解釋方法資料庫中查詢以得到該至少一個解釋方法之查詢方法單元、用以確認執行 模型分析之可運算資源之資源控制器、以及用以分別依據各該解釋方法分析該模型檔及該分析資料以獲得各該解釋結果之至少一執行方法單元。 In another embodiment, the model interpretation method application module includes an interpretable method database for storing multiple interpretation methods, a query method unit for querying the interpretable method database to obtain the at least one interpretation method according to the model type and the data type, a resource controller for confirming the computational resources for executing model analysis, and at least one execution method unit for analyzing the model file and the analysis data according to each interpretation method to obtain each interpretation result.
於另一實施例中,各該解釋結果係各自包含多個特徵及多個特徵權重。 In another embodiment, each of the interpretation results includes multiple features and multiple feature weights.
於另一實施例中,該解釋效果統整模組復包括用於將具有相同特徵之特徵權重進行平均以得到平均值之權重總和單元、用以儲存該平均值之暫存器、以及用於依據該平均值對該多個特徵進行排列之權重排序單元。 In another embodiment, the interpretation effect integration module further includes a weight summing unit for averaging the feature weights of the same feature to obtain an average value, a register for storing the average value, and a weight sorting unit for arranging the multiple features according to the average value.
於另一實施例中,該智慧化多元解釋通用模型之系統復包括提供使用者介面以供使用者輸入該模型檔及該分析資料之使用者介面模組。 In another embodiment, the intelligent multivariate interpretation general model system further includes a user interface module that provides a user interface for the user to input the model file and the analysis data.
於另一實施例中,該智慧化多元解釋通用模型之系統復包括用以依該模型解釋結果進行視覺化顯示之視覺化模組。 In another embodiment, the intelligent multi-dimensional interpretation system of the universal model further includes a visualization module for visually displaying the interpretation results of the model.
於又一實施例中,該解釋效果統整模組係採用平均後排序、加權平均後排序或投票方式,以進行該至少一個解釋結果之統整。 In another embodiment, the explanation effect integration module uses averaging and sorting, weighted averaging and sorting, or voting to integrate the at least one explanation result.
本發明復揭露一種智慧化多元解釋通用模型之方法,係由電腦設備執行該方法,該方法包括以下步驟:令模型與資料類型分析模組分析欲解釋之模型檔及訓練模型所用之分析資料,以分別得到對應該模型檔及該分析資料之模型類型及資料類型;令模型解釋方法套用模組依據該模型類型及該資料類型進行查詢,以找出相對應之至少一個解釋方法;令該模型解釋方法套用模組透過該至少一個解釋方法解析該模型檔及該分析資料,以獲得至少一個解釋結果;以及令解釋效果統整模組統整該至少一個解釋結果,以得到模型解釋結果。 The present invention further discloses a method for intelligent multivariate interpretation of a universal model, which is executed by a computer device and includes the following steps: a model and data type analysis module is used to analyze a model file to be interpreted and analysis data used for training the model to obtain a model type and a data type corresponding to the model file and the analysis data, respectively; a model interpretation method application module is used to query according to the model type and the data type to find at least one corresponding interpretation method; the model interpretation method application module is used to parse the model file and the analysis data through the at least one interpretation method to obtain at least one interpretation result; and an interpretation effect integration module is used to integrate the at least one interpretation result to obtain a model interpretation result.
於一實施例中,該令模型與資料類型分析模組分析欲分析之模型檔及訓練模型所用之分析資料之步驟係包括:透過模型檔分析單元判斷該模型檔的該模型類型;以及透過資料類型分析單元判別該分析資料的該資料類型。 In one embodiment, the step of having the model and data type analysis module analyze the model file to be analyzed and the analysis data used to train the model includes: determining the model type of the model file through the model file analysis unit; and determining the data type of the analysis data through the data type analysis unit.
於另一實施例中,該令模型解釋方法套用模組找出相對應之至少一個解釋方法及獲得至少一個解釋結果之步驟係包括:由查詢方法單元依據該模型類型及該資料類型,自儲存有多個解釋方法之可解釋方法資料庫中查詢,以得到該至少一個解釋方法;令資源控制器確認執行模型分析之可運算資源;以及令多個執行方法單元分別依據各該解釋方法,分析該模型檔及該分析資料,以獲得各該解釋結果。 In another embodiment, the step of causing the model interpretation method application module to find at least one corresponding interpretation method and obtain at least one interpretation result includes: the query method unit searches from an interpretable method database storing multiple interpretation methods according to the model type and the data type to obtain the at least one interpretation method; causing the resource controller to confirm the computational resources for executing the model analysis; and causing multiple execution method units to analyze the model file and the analysis data according to each interpretation method to obtain each interpretation result.
於另一實施例中,各該解釋結果係各自包含多個特徵及多個特徵權重。 In another embodiment, each of the interpretation results includes multiple features and multiple feature weights.
於另一實施例中,該令解釋效果統整模組統整該至少一個解釋結果之步驟係包括:令權重總和單元將具有相同特徵之特徵權重進行平均以得到平均值;將該平均值儲存於暫存器中;以及令權重排序單元依據該平均值對該多個特徵進行排列。 In another embodiment, the step of allowing the interpretation effect integration module to integrate the at least one interpretation result includes: allowing the weight summing unit to average the feature weights of the same feature to obtain an average value; storing the average value in a register; and allowing the weight sorting unit to arrange the multiple features according to the average value.
於另一實施例中,該模型檔及該分析資料係使用者透過使用者介面模組提供之使用者介面所輸入者。 In another embodiment, the model file and the analysis data are input by the user through a user interface provided by the user interface module.
於另一實施例中,該模型解釋結果係透過視覺化模組進行視覺化顯示。 In another embodiment, the model interpretation result is visualized through a visualization module.
於又一實施例中,該解釋效果統整模組係採用平均後排序、加權平均後排序或投票方式,以進行該至少一個解釋結果之統整。 In another embodiment, the explanation effect integration module uses averaging and sorting, weighted averaging and sorting, or voting to integrate the at least one explanation result.
本發明復揭露一種電腦可讀媒介,應用於計算裝置或電腦中,係儲存有指令,以執行前述之智慧化多元解釋通用模型之方法。 The present invention further discloses a computer-readable medium, which is applied to a computing device or a computer and stores instructions for executing the aforementioned intelligent multi-interpretation general model method.
綜上,本發明之智慧化多元解釋通用模型之系統及其方法,係透過模型與資料類型分析模組分析模型檔及分析資料,以得到對應模型檔及分析資料之模型類型及資料類型,使模型方法套用模組利用所查詢出之多個解釋方法解析該模型檔及該分析資料,而獲得對應之至少一個解釋結果,進而由解釋效果統整模組對至少一個解釋結果進行統整,以產生模型解釋結果並顯示給使用者參考,如此不僅能達到幫助使用者解釋模型行為之目的,更能達到提升便利性以及節省時間之功效;再者,本發明可自動套用最適合模型之解釋方法,藉以降低解讀難度;另外,本發明復提供視覺化效果,更可達到供使用者更容易理解模型決策方法之目的。 In summary, the intelligent multi-dimensional interpretation general model system and method of the present invention analyzes the model file and the analysis data through the model and data type analysis module to obtain the model type and data type corresponding to the model file and the analysis data, so that the model method application module uses the multiple interpretation methods found to analyze the model file and the analysis data to obtain at least one corresponding interpretation result, and then the interpretation effect integration module integrates at least one interpretation result to generate a model interpretation result and display it to the user for reference, so as to not only help the user to interpret the model behavior, but also improve convenience and save time; furthermore, the present invention can automatically apply the interpretation method that is most suitable for the model to reduce the difficulty of interpretation; in addition, the present invention provides a visualization effect, which can achieve the purpose of making it easier for users to understand the model decision method.
1:模型與資料類型分析模組 1: Model and data type analysis module
11:模型檔分析單元 11: Model file analysis unit
12:資料類型分析單元 12: Data type analysis unit
2:模型解釋方法套用模組 2: Model interpretation method application module
21:可解釋方法資料庫 21: Database of interpretable methods
22:查詢方法單元 22: Query method unit
23:資源控制器 23: Resource Controller
24:執行方法單元 24: Execution method unit
3:解釋效果統整模組 3: Explain the effect integration module
31:權重總和單元 31: Total weight unit
32:暫存器 32: Register
33:權重排序單元 33: Weight sorting unit
4:使用者介面模組 4: User interface module
41:使用者介面 41: User Interface
5:視覺化模組 5: Visualization module
S510~S540:步驟 S510~S540: Steps
S600~S650:步驟 S600~S650: Steps
710-750:流程 710-750: Process
圖1係本發明之智慧型多元解釋通用模型之系統的示意架構圖。 Figure 1 is a schematic diagram of the system architecture of the intelligent multi-interpretation general model of the present invention.
圖2係本發明之模型與資料類型分析模組的內部架構圖。 Figure 2 is a diagram showing the internal structure of the model and data type analysis module of the present invention.
圖3係本發明之模型解釋方法套用模組的內部架構圖。 Figure 3 is an internal structure diagram of the model interpretation method application module of the present invention.
圖4係本發明之解釋效果統整模組的內部架構圖。 Figure 4 is a diagram showing the internal structure of the explanation effect integration module of the present invention.
圖5係本發明之智慧化多元解釋通用模型之方法的步驟圖。 Figure 5 is a step diagram of the method of the intelligent multi-interpretation general model of the present invention.
圖6係本發明之智慧化多元解釋通用模型之方法另一實施例的步驟圖。 Figure 6 is a step diagram of another embodiment of the method of the intelligent multi-dimensional interpretation general model of the present invention.
圖7係本發明之智慧化多元解釋通用模型之方法於具體實施的流程圖。 Figure 7 is a flowchart of the specific implementation of the method of intelligent multi-dimensional interpretation of the general model of the present invention.
圖8係本發明之模型解釋結果以視覺化呈現的長條圖。 Figure 8 is a bar graph showing the model explanation results of the present invention in a visual manner.
圖9係本發明之文字情緒的視覺化顯示圖。 Figure 9 is a visual display of the text emotion of the present invention.
以下藉由特定的具體實施形態說明本發明之技術內容,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之優點與功效。然本發明亦可藉由其他不同的具體實施形態加以施行或應用。 The following describes the technical content of the present invention through a specific concrete implementation form. People familiar with this technology can easily understand the advantages and effects of the present invention from the content disclosed in this manual. However, the present invention can also be implemented or applied through other different specific implementation forms.
圖1為本發明之智慧型多元解釋通用模型之系統的示意架構圖。如圖所示,本發明之智慧型多元解釋通用模型之系統係包括模型與資料類型分析模組1、模型解釋方法套用模組2以及解釋效果統整模組3,據此,利用模型與資料類型分析模組1判斷輸入之模型檔及分析資料的模型類型和資料類型,使模型解釋方法套用模組2據之查詢出用於解釋模型檔及分析資料之至少一個解釋方法,之後,再以該至少一個解釋方法對模型檔及分析資料進行解析而獲得至少一個解釋結果,經解釋效果統整模組3統整後,最後可得到模型解釋結果,以提供給使用者參考。
FIG1 is a schematic diagram of the system of the intelligent multivariate interpretation general model of the present invention. As shown in the figure, the system of the intelligent multivariate interpretation general model of the present invention includes a model and data
有關本發明之智慧化多元解釋通用模型之系統的具體說明,詳述如下。 The specific description of the intelligent multi-interpretation general model system of the present invention is described as follows.
模型與資料類型分析模組1係於接收到欲解釋之模型檔及訓練模型所用之分析資料時,依據所接收之模型檔及分析資料進行分析,以分別得到對應該模型檔及該分析資料之模型類型及資料類型,亦即,模型與資料類型分析模組1依據模型檔案格式與內部參數及資料副檔名和內容,以判斷出模型類型及資料類型。於具體實施時,分析資料可為用以訓練模型之模型訓練資料(例如表格
格式資料、字串資料或圖形資料等),其與模型檔可預存於系統內部,或由使用者從外部輸入。
When receiving the model file to be interpreted and the analysis data used for training the model, the model and data
於一具體實施例中,如圖2所示,為本發明之模型與資料類型分析模組的內部架構圖,其中,模型與資料類型分析模組1係包括模型檔分析單元11以及資料類型分析單元12。詳言之,模型與資料類型分析模組1透過模型檔分析單元11及資料類型分析單元12分別判斷模型檔的模型類型及分析資料的資料類型,亦即,使用者於輸入模型檔與分析資料後,由模型分析單元11自動判斷模型檔之模型類型(或模型格式)與內部參數,以及由資料分析單元12自動判別資料類型(或資料格式),再將分析後的模型類型及資料類型輸出至模型解釋方法套用模組2,以供模型解釋方法套用模組2尋找適用的解釋方法。是以,本發明之模型與資料類型分析模組1可自動判斷資料類型與模型類型,據以達到自動讀取各類型模型與資料之功效。
In a specific embodiment, as shown in FIG2 , it is an internal structure diagram of the model and data type analysis module of the present invention, wherein the model and data
於另一實施例中,如圖2所示,本發明之智慧化多元解釋通用模型之系統復包括具有至少一使用者介面41之使用者介面模組4,以供使用者透過使用者介面41輸入欲進行分析之模型檔及分析資料,於使用者介面模組4接收到使用者輸入之模型檔及分析資料時,復將模型檔及分析資料提供給模型與資料類型分析模組1進行模型類型及資料類型之判斷。
In another embodiment, as shown in FIG. 2 , the intelligent multi-explanation universal model system of the present invention further includes a user interface module 4 having at least one
請再參考圖1,模型解釋方法套用模組2係與模型與資料類型分析模組1訊號連接,用以接收欲進行分析之模型檔的模型類型及分析資料的資料類型,進而依據該模型類型及該資料類型進行查詢。經查詢後,其結果若僅找到單一解釋方法,即利用所找到的該單一解釋方法分析模型類型及該資料類型;另
外,若查詢結果找出對應模型類型及資料類型之多個解釋方法,則利用多個解釋方法分析模型類型及該資料類型,以獲得多個解釋結果。
Please refer to Figure 1 again. The model interpretation
於一具體實施例中,如圖3所示,為本發明之模型解釋方法套用模組的內部架構圖,本發明之模型解釋方法套用模組2係包括可解釋方法資料庫21、查詢方法單元22、資源控制器23以及至少一執行方法單元24,其中,模型解釋方法套用模組2之可解釋方法資料庫21係儲存可用以解釋、分析模型類型及資料類型之多個解釋方法,於查詢方法單元22自可解釋方法資料庫21中進行查詢時,依據模型類型及資料類型查找對應之解釋方法;於其他實施例中,本發明之智慧化多元解釋通用模型之系統可依需求而於模型解釋方法套用模組2外部設置用於儲存模型解釋方法之資料庫,也就是資料庫獨立於系統外,以供模型解釋方法套用模組2自資料庫中查詢所需之解釋方法。
In a specific embodiment, as shown in FIG. 3 , it is an internal structure diagram of the model interpretation method application module of the present invention. The model interpretation
再者,一個模型通常會存在一個對應模型之模型類型及資料類型的解釋方法,然而隨著模型之應用情境不同,使得單一模型可能存在多個可用以分析、解釋模型之解釋方法,是以,查詢方法單元22可依據模型類型及資料類型自可解釋方法資料庫21中進行查詢時,藉以得到對應該模型類型及該資料類型之至少一個解釋方法,且於依據所得到之至少一個解釋方法進行模型與資料分析之前,透過資源控制器23確認系統中具有多少可用以進行分析之運算資源,以決定啟動執行方法單元24之數量,其中,資源控制器23使用Docker容器(Docker container)來同時啟動多個執行方法單元24,藉由所啟動之執行方法單元24對單一個或多個解釋方法進行模型檔及分析資料之解析,以獲得至少一個解釋結果,亦即當有多個解釋方法時,將會得到多個解釋結果。於一具體實施例中,模型解釋方法包括由樹狀表達(Tree-based)模型提供之可解釋模型特徵之間影響力的
SHAP(SHapley Additive exPlanations)以及局部可理解的模型無關解釋法(Local Interpretable Model-Agnostic Explanations,LIME)。
Furthermore, a model usually has an explanation method corresponding to the model type and data type of the model. However, as the application scenarios of the model are different, a single model may have multiple explanation methods that can be used to analyze and explain the model. Therefore, the
詳言之,於僅存在單一解釋方法時,資源控制器23啟動一執行方法單元24依據該單一解釋方法執行對模型檔及分析資料之分析,據以得到對應該單一解釋方法之單一解釋結果;若於查詢到多個解釋方法時,資源控制器23會先確認系統中可啟動用以解析模型檔及分析資料之執行方法單元24的運算資源狀態,於系統之運算資源不足時,則可僅啟動一執行方法單元24,依序透過各解釋方法解析模型檔及分析資料,藉以得到多個解釋結果;另外,於系統之運算資源充足時,依據解釋方法之數量,啟動一個或多個執行方法單元24,亦即,若找到3個解釋方法,則可依需求而僅啟動1個或3個執行方法單元24,且於啟動多個執行方法單元24時,復可同時利用各執行方法單元24對應各解釋方法,以分別進行模型檔及分析資料之分析,即以一執行方法單元對一解釋方法的方式對模型檔及分析資料進行分析,據之得到多個解釋結果。
Specifically, when there is only a single interpretation method, the
易言之,本發明之模型解釋方法套用模組2透過查詢方法單元22依據模型與資料類型分析模組1所分析出來之模型類型與資料類型,以自可解釋方法資料庫21中查詢可用以分析模型之解釋方法,且自動依據模型演算法採用對應之解釋方法進行分析,再透過資源控制器23確認目前系統之運算資源可啟動執行方法單元24之數量,以將經執行方法單元24執行後所得之模型解釋結果輸出至解釋效果統整模組3。因此,模型解釋方法套用模組2可自動挑選出用於分析模型之解釋方法且據之進行模型解析,據此,使用者即可不必花費過多之心力於了解各種模型解釋方法,因而可達到自動套用最適合模型解釋方法之功效。
In other words, the model interpretation
於一具體實施例中,各該解釋結果係各自包括對應之多個特徵及多個特徵權重,舉例而言,以模型預測太陽能之發電量之應用情境為例,其中,特徵即為用以判斷太陽能之發電量的溫度、濕度或時間等相關因素。 In a specific embodiment, each of the interpretation results includes corresponding multiple features and multiple feature weights. For example, taking the application scenario of the model predicting the power generation of solar energy as an example, the features are related factors such as temperature, humidity or time used to judge the power generation of solar energy.
請再參考圖1,解釋效果統整模組3係與模型解釋方法套用模組2訊號連接,用以接收模型解釋方法套用模組2所分析出之至少一個解釋結果,經統整該至少一個解釋結果後可得到模型解釋結果。具體而言,由模型解釋方法套用模組2所產生之解釋結果可為模型解釋向量,亦即,解釋效果統整模組3透過接收一或多個模型解釋向量,以整合成一個最終向量作為模型解釋結果。
Please refer to Figure 1 again. The explanation
於一實施例中,解釋效果統整模組3係採用平均後排序、加權平均後排序或投票方式,以進行該至少一個解釋結果之統整,其中,平均後排序係指將各解釋結果中具有相同特徵之特徵權重取平均,以依平均值之大小依序排列;加權平均後排序則係平均後排序中對各特徵權重加入加權值後,再計算其加權後之平均值,以進行排列;另外,投票方式係統計各特徵於各解釋方式中特徵權重之值位出現於最高者之次數。以上述模型預測太陽能之發電量之例而言,假設於第一解釋方式下,於特徵為時間時,其特徵權重出現最高(或最重要)數值之次數為2次,於特徵為溫度時,其特徵權重出現最高數值之次數為1次,濕度為0次,則以投票方式之排序結果為時間、溫度以及濕度。
In one embodiment, the explanation
於一具體實施例中,如圖4所示,為本發明之解釋效果統整模組的內部架構圖,本發明之解釋效果統整模組3係包括權重總和單元31、暫存器32以及權重排序單元33,其中,解釋效果統整模組3利用權重總和單元31將具有相同特徵之特徵權重進行平均,以得到平均值,且將所得到之平均值儲存於暫存器,
進而由權重排序單元33依據儲存於暫存器32中之各特徵對應之平均值對各特徵進行排列,以產生特徵之排序結果。
In a specific embodiment, as shown in FIG4 , it is an internal structure diagram of the explanation effect integration module of the present invention. The explanation
於另一實施例中,如圖4所示,本發明之智慧化多元解釋通用模型之系統復包括用以依據模型解釋結果進行視覺化顯示之視覺化模組5,其中,視覺化顯示具體而言,可利用包括例如長條圖、圓餅圖或其他可供使用者了解之方式來呈現模型解釋結果,提供使用者觀看視覺化模組5所呈現之顯示效果,以便理解模型解釋結果之情況。
In another embodiment, as shown in FIG. 4 , the intelligent multi-explanatory universal model system of the present invention further includes a
據此,本發明之解釋效果統整模組3透過權重總和單元31接收一或多組特徵權重,且將相同特徵之特徵權重計算平均後暫存於暫存器32,使權重排序單元33接收各特徵之權重後,按大小排序,最後,透過視覺化模組5依據特徵權重大小與資料類型呈現最適合之顯示畫面。易言之,解釋效果統整模組3能自動整合多種解釋方法而得到模型解釋結果,且交由視覺化模組5依據資料類型呈現最佳的圖表,據之達到自動呈現各類型模型結果之功效。
Accordingly, the interpretation
綜上,本發明之智慧化多元解釋通用模型之系統可供使用者透過使用者介面41輸入模型檔和分析資料至模型與資料類型分析模組1,藉以判斷該模型檔與該分析資料之模型類型與資料類型,且將所得到之結果(即模型類型及資料類型)輸出到模型解釋方法套用模組2,使模型解釋方法套用模組2依據模型類型與資料類型自方法庫內進行查詢並找到對應之解釋方法後,執行對應之解釋方法以獲得一或多個解釋結果,接著,將一或多個解釋結果輸出至解釋效果統整模組3,使解釋效果統整模組3可統整一或多個解釋結果,以分析得到一個統整適之模型解釋結果,透過視覺化模組5將所接收到之模型解釋結果,自動輸出視覺化顯示結果而呈現於顯示螢幕上,以供使用者查看模型解釋結果。
In summary, the intelligent multivariate interpretation general model system of the present invention allows the user to input the model file and analysis data to the model and data
圖5為本發明之智慧化多元解釋通用模型之方法的步驟圖。如圖所示,本發明之智慧化多元解釋通用模型之方法包括如下步驟。 Figure 5 is a step diagram of the method of the intelligent multi-dimensional interpretation general model of the present invention. As shown in the figure, the method of the intelligent multi-dimensional interpretation general model of the present invention includes the following steps.
於步驟S510中,判斷模型類型及資料類型。於本發明中,透過設置模型與資料類型分析模組,將所接收到之模型檔及分析資料進行分析,以據之分別得到模型類型及資料類型。 In step S510, the model type and data type are determined. In the present invention, by setting up a model and data type analysis module, the received model file and analysis data are analyzed to obtain the model type and data type respectively.
於一實施例中,模型與資料類型分析模組係包括用以判斷模型檔的模型類型之模型檔分析單元及用以判別分析資料的資料類型之資料類型分析單元,據此,模型與資料類型分析模組透過模型檔分析單元判斷模型檔之模型類型,以及透過資料類型分析單元判斷分析資料之資料類型。 In one embodiment, the model and data type analysis module includes a model file analysis unit for determining the model type of the model file and a data type analysis unit for determining the data type of the analysis data. Accordingly, the model and data type analysis module determines the model type of the model file through the model file analysis unit and determines the data type of the analysis data through the data type analysis unit.
於步驟S520中,找出對應之解釋方法。本發明係可透過設置模型解釋方法套用模組,以依據模型類型及資料類型進行查詢,找出對應之一或多個解釋方法。 In step S520, the corresponding explanation method is found. The present invention can query based on the model type and data type to find one or more corresponding explanation methods by setting up a model explanation method application module.
於步驟S530中,利用一或多個解釋方法進行分析,以得到對應解釋結果。於本步驟中,本發明於查詢出對應模型類型及資料類型之至少一個解釋方法後,使模型解釋方法套用模組利用該些解釋方法解析模型檔及分析資料,以獲得至少一個解釋結果。 In step S530, one or more interpretation methods are used for analysis to obtain corresponding interpretation results. In this step, after searching for at least one interpretation method corresponding to the model type and data type, the present invention enables the model interpretation method application module to use these interpretation methods to parse the model file and analyze the data to obtain at least one interpretation result.
於一實施例中,經分析所獲得之各解釋結果係分別包括多個特徵及多個特徵權重。 In one embodiment, each interpretation result obtained through analysis includes multiple features and multiple feature weights.
於一實施例中,模型解釋方法套用模組係包括可解釋方法資料庫、查詢方法單元、資源控制器以及至少一執行方法單元,其中,可解釋方法資料庫儲存多個解釋方法,以供查詢方法單元依據模型類型及資料類型進行查詢,藉以得到對應之一或多個解釋方法,於其他實施中,本發明亦可依需求將可解釋方法 資料庫設置於模型解釋方法套用模組外部,即獨立設置而非置於模型解釋方法套用模組內。另外,模型解釋方法套用模組透過資源控制器確認運算資源,以決定啟動執行方法單元之數量,亦即,依據解釋方法之數量,可透過一或多個執行方法單元分別利用各解釋方法來分析模型檔及分析資料,以據之獲得對應之一或多個解釋結果。 In one embodiment, the model interpretation method application module includes an interpretable method database, a query method unit, a resource controller, and at least one execution method unit, wherein the interpretable method database stores a plurality of interpretation methods for the query method unit to query according to the model type and the data type to obtain one or more corresponding interpretation methods. In other embodiments, the present invention can also set the interpretable method database outside the model interpretation method application module according to the needs, that is, independently set rather than set in the model interpretation method application module. In addition, the model interpretation method application module confirms the computing resources through the resource controller to determine the number of execution method units to start. That is, according to the number of interpretation methods, one or more execution method units can use each interpretation method to analyze the model file and the analysis data to obtain one or more corresponding interpretation results.
於步驟S540中,統整一或多個解釋結果以得到模型解釋結果。本發明設置解釋效果統整模組以統整一或多個解釋結果,以據之得到模型解釋結果。於一實施例中,解釋效果統整模組採用平均後排序、加權平均後排序或投票方式來進行多個解釋結果之統整。 In step S540, one or more interpretation results are integrated to obtain a model interpretation result. The present invention sets an interpretation effect integration module to integrate one or more interpretation results to obtain a model interpretation result. In one embodiment, the interpretation effect integration module uses averaging and sorting, weighted averaging and sorting, or voting to integrate multiple interpretation results.
於一實施例中,解釋效果統整模組包括權重總和單元、暫存器以及權重排序單元,具體來說,權重總和單元將具有相同特徵之特徵權重進行平均,以得到平均值,且將平均值儲存於暫存器中,之後令權重排序單元讀取暫存器中之平均值,以依據平均值對多個特徵進行排列。 In one embodiment, the explanation effect integration module includes a weight summing unit, a register, and a weight sorting unit. Specifically, the weight summing unit averages the feature weights of the same feature to obtain an average value, and stores the average value in the register. Then, the weight sorting unit reads the average value in the register to arrange multiple features according to the average value.
圖6為本發明之智慧化多元解釋通用模型之方法另一實施例的步驟圖。如圖所示,本實施例之步驟S610至步驟S640與第一實施例之步驟S510至步驟S540相同,不再贅述,其不同之處在於本實施例中復包括步驟S600之提供使用者介面以及步驟S650之提供視覺化顯示,詳述如下。 FIG6 is a step diagram of another embodiment of the method of the intelligent multi-interpretation universal model of the present invention. As shown in the figure, steps S610 to S640 of this embodiment are the same as steps S510 to S540 of the first embodiment, and will not be repeated. The difference is that this embodiment further includes step S600 of providing a user interface and step S650 of providing a visual display, which are described in detail below.
於步驟S600中,提供使用者介面。亦即,本發明復包括設置使用者介面模組並提供使用者介面給使用者,令使用者能透過使用者介面輸入欲解釋之模型的模型檔及分析資料。 In step S600, a user interface is provided. That is, the present invention further includes setting up a user interface module and providing the user interface to the user, so that the user can input the model file and analysis data of the model to be explained through the user interface.
步驟S650中,提供視覺化顯示。本發明復包括設置視覺化模組,用以依據該模型解釋結果提供視覺化顯示。據此,透過本發明之智慧化多元解釋 通用模型之方法進行模型解析,且於解析完成後,以易於理解之視覺化顯示提供給使用者觀看,即能讓使用者輕鬆了解模型解釋結果。 In step S650, a visual display is provided. The present invention further includes setting a visual module to provide a visual display based on the model interpretation result. Accordingly, the model is analyzed by the method of the intelligent multi-interpretation general model of the present invention, and after the analysis is completed, an easy-to-understand visual display is provided to the user for viewing, so that the user can easily understand the model interpretation result.
圖7為本發明之智慧化多元解釋通用模型之方法於具體實施的流程圖。如圖所示,於流程710中,輸入模型檔與分析資料。本流程係說明提供使用者透過例如網頁之使用者介面,讓使用者輸入欲進行解釋模型之模型檔與用以訓練該模型之分析資料,且據之得到模型類型以及資料類型。
FIG7 is a flowchart of the specific implementation of the method of the intelligent multivariate interpretation general model of the present invention. As shown in the figure, in
於流程720中,確認匹配的模型可解釋方法。簡言之,本流程係依據模型類型與資料類型判斷匹配模型檔之解釋方法,其中,根據找出的解釋方法數量,有不同處理方式,若解釋方法僅有一種,則進入流程730,若解釋方法有多種,則進入流程740。
In
於流程730中,利用一執行方法單元執行該可解釋方法以輸出解釋結果。若可解釋方法只有一種,即直接執行該可解釋方法,以輸出對應之解釋結果,亦即,利用可解釋方法解析模型檔與分析資料,以輸出模型重要特徵權重。
In
於流程740中,利用多個執行方法單元執行該些可解釋方法以輸出多個解釋結果。若可解釋方法有多種,則該些解釋方法可分別由不同執行方法單元進行解析,進而得到多個解釋結果。
In
在進入流程750之前,會先進行解釋結果之統整,其中,因為流程730為單一解釋結果,則無需統整,另外,若為流程740,需先透過解釋效果統整模組來統整多組模型特徵權重,進而得到最終模型特徵權重,以作為模型解釋結果。
Before entering
於流程750中,視覺化模組產生符合目標類型的結果。本流程即使模型之特徵權重與資料類型經由視覺化模組呈現於使用者介面上,以供使用者參閱。
In
此外,本發明還揭示一種電腦可讀媒介,係應用於具有處理器(例如,CPU、GPU等)及/或記憶體的計算裝置或電腦中,且儲存有指令,並可利用此計算裝置或電腦透過處理器及/或記憶體執行此電腦可讀媒介,以於執行此電腦可讀媒介時執行上述之方法及各步驟。 In addition, the present invention also discloses a computer-readable medium, which is applied to a computing device or computer having a processor (e.g., CPU, GPU, etc.) and/or a memory, and stores instructions, and the computing device or computer can execute the computer-readable medium through the processor and/or memory to execute the above-mentioned method and each step when executing the computer-readable medium.
本發明的模組、單元、裝置等包括微處理器及記憶體,而演算法、資料、程式等係儲存記憶體或晶片內,微處理器可從記憶體載入資料或演算法或程式進行資料分析或計算等處理,在此不予贅述。易言之,本發明之智慧化多元解釋通用模型之系統及其方法可於電子設備上執行,例如一般電腦、平板或是伺服器,在收到資料後執行資料分析與運算,故智慧化多元解釋通用模型之系統及其方法所進行程序,可透過軟體設計並架構在具有處理器、記憶體等元件之電子設備上,以於各類電子設備上運行;另外,亦可將智慧化多元解釋通用模型之系統及其方法之各模組或單元分別以獨立元件組成,例如設計為計算器、記憶體、儲存器或是具有處理單元的韌體,皆可成為實現本發明之組件,亦可選擇以軟體程式、硬體或韌體架構等組合呈現。 The modules, units, devices, etc. of the present invention include a microprocessor and a memory, and algorithms, data, programs, etc. are stored in the memory or chip. The microprocessor can load data or algorithms or programs from the memory to perform data analysis or calculation, etc., which will not be elaborated here. In other words, the intelligent multi-interpretation general model system and method of the present invention can be executed on electronic devices, such as general computers, tablets or servers, and perform data analysis and calculations after receiving data. Therefore, the program performed by the intelligent multi-interpretation general model system and method can be designed and constructed on electronic devices with components such as processors and memories through software to run on various types of electronic devices; in addition, each module or unit of the intelligent multi-interpretation general model system and method can be composed of independent components, such as calculators, memories, storages or firmware with processing units, which can all become components for realizing the present invention, and can also be presented in the form of software programs, hardware or firmware architectures.
以下利用本發明之智慧化多元解釋通用模型之系統、方法及其電腦可讀媒介用以預測太陽能板的發電量之模型,以提供太陽能板保養維護的訊息之應用主題作為示例,說明本發明之實際應用,詳述如下。 The following uses the system, method and computer-readable medium of the intelligent multi-dimensional interpretation general model of the present invention to predict the power generation of solar panels, and takes the application theme of providing information on solar panel maintenance as an example to illustrate the practical application of the present invention, as detailed below.
太陽能板發電效率與太陽光之角度、太陽能板是否髒污或遮陰等因素有關,以往採用人工的方式檢查太陽能板之發電效率,是以,人力成本負擔 很重。近年來,由於人工智慧(Artificial Intelligence,AI)蓬勃發展,對於發電效率之檢查可透過收集大量感測裝置所產生之感測資料,以訓練出預測發電量之模型,據此,僅須透過每天檢查實際發電量與預期發電量之差異來協助判斷太陽能板是否需要維護,藉此有效降低人員之負擔。然而,藉由預測發電量之模型雖能提供那一塊太陽能板發生異常,但維護人員仍無法立即確定異常之原因,且存在一定的誤報率,若能使模型在提供太陽能板之維護的決策下,還能提供對該模型之解釋,則更能夠節省維護人員之時間與精力,據此,結合本發明之系統與方法,以下以具體說明太陽能發電預測之流程步驟。 The power generation efficiency of solar panels is related to factors such as the angle of sunlight and whether the solar panels are dirty or shaded. In the past, the power generation efficiency of solar panels was checked manually, so the labor cost was very heavy. In recent years, due to the rapid development of artificial intelligence (AI), the power generation efficiency can be checked by collecting a large amount of sensor data generated by sensing devices to train a model for predicting power generation. Based on this, it is only necessary to check the difference between actual power generation and expected power generation every day to help determine whether the solar panels need maintenance, thereby effectively reducing the burden on personnel. However, although the power generation prediction model can provide information about which solar panel has an abnormality, maintenance personnel still cannot immediately determine the cause of the abnormality, and there is a certain false alarm rate. If the model can provide an explanation of the model while providing decisions on the maintenance of solar panels, it will be able to save maintenance personnel's time and energy. Based on this, combined with the system and method of the present invention, the following specifically describes the process steps of solar power generation prediction.
假設A公司所擁有之太陽能板與相關感測器資料如表1所示,其中,資料包含對應時間、溫度、濕度以及發電量之數據資料,透過各資料以時間、溫度、濕度作為特徵,發電量當成標籤,以決策樹演算法訓練一個發電量預測模型。A公司目前可以透過AI準確預測當日發電量,且A公司希冀能夠更進一步了解模型是利用什麼因子作為判斷發電量之依據。 Assume that the solar panels and related sensor data owned by Company A are shown in Table 1, where the data includes data corresponding to time, temperature, humidity, and power generation. Through each data, time, temperature, and humidity are used as features, and power generation is used as a label to train a power generation prediction model using a decision tree algorithm. Company A can currently accurately predict the power generation of the day through AI, and Company A hopes to further understand what factors the model uses as the basis for judging power generation.
本實施例中之發電量預測之模型為採用極限梯度提升(eXtreme Gradient Boosting,xgboost)演算法訓練而成,其模型檔被儲存成Mlflow格式,Mlflow為一種開源機器學習平台,其能管理及建立所需之模型,以解決現今缺乏模型標準格式之問題。xgboost等決策樹基底之演算法可輸出模型訓練時各特徵的權重,如表2所示,透過演算法計算出來模型之特徵的重要性排序為溫度>時間 >濕度。上述說明僅為其中一種機器學習演算法及模型檔格式,熟習機器學習者可以用其他模型演算法表示。 The power generation prediction model in this embodiment is trained using the eXtreme Gradient Boosting (xgboost) algorithm, and its model file is stored in Mlflow format. Mlflow is an open source machine learning platform that can manage and build the required models to solve the problem of the lack of a standard model format. Decision tree-based algorithms such as xgboost can output the weights of each feature during model training. As shown in Table 2, the importance of the features of the model calculated by the algorithm is ranked as temperature>time >humidity. The above description is only one of the machine learning algorithms and model file formats. Those who are familiar with machine learning can use other model algorithms to represent.
透過本發明之智慧化多元解釋通用模型之系統及其方法,提供使用者透過網頁等使用者介面輸入模型檔及分析資料,其中,分析資料可為用以訓練模型之訓練資料,接著,利用模型與資料類型分析模組分析所輸入之模型檔及分析資料以得到對應的模型類型及資料類型。具體而言,模型檔分析單元透過分析輸入之模型檔的附檔名及檔案中之參數,判別發電量預測之模型為xgboost模型,進而使資料類型分析單元透過訓練資料之副檔名及其內容判別資料類型為執行表格型資料。 Through the intelligent multi-dimensional interpretation general model system and method of the present invention, users are provided with the ability to input model files and analysis data through a user interface such as a web page, wherein the analysis data can be training data for training the model, and then the model and data type analysis module is used to analyze the input model file and analysis data to obtain the corresponding model type and data type. Specifically, the model file analysis unit determines that the model for power generation prediction is the xgboost model by analyzing the file extension of the input model file and the parameters in the file, and then the data type analysis unit determines that the data type is execution table data through the file extension and content of the training data.
再者,為了確認模型與資料類型適合採用那些可解釋性方法,以下以數值型資料為例說明,但不以此為限,例如同樣的作法亦可套用於圖片、文字等其他類型資料。具體而言,將xgboost判斷出來的結果,即xgboost及表格型資料,輸入模型解釋方法套用模組中。透過預先建立之可解釋方法資料庫中的各種解釋方法及對應資料類型之表格,即可讓模型解釋方法套用模組自可解釋方法資料庫中查詢到可匹配xgboost演算法之模型的可解釋性方法,其中,可解釋性方法可包括可解釋模型特徵之間影響力的SHAP((SHapley Additive exPlanations))以及演算法本身之特徵重要性,據此判斷出所需要執行之方法數為2。此後,模型解釋方法套用模組可自動檢查目前運算環境之資源使用情況,且 利用docker或其他同等平行運算的作法,加速執行效率,進而得到表2及表3之結果。 Furthermore, in order to confirm which interpretability methods are suitable for the model and data type, the following uses numerical data as an example, but it is not limited to this. For example, the same approach can also be applied to other types of data such as pictures and text. Specifically, the results judged by xgboost, that is, xgboost and tabular data, are input into the model interpretation method application module. Through the various interpretation methods and corresponding data type tables in the pre-established interpretable method database, the model interpretation method application module can query the interpretability method of the model that can match the xgboost algorithm from the interpretable method database. Among them, the interpretability method can include SHAP (SHapley Additive exPlanations) that can explain the influence between model features and the feature importance of the algorithm itself. Based on this, it is determined that the number of methods required to be executed is 2. After that, the model interpretation method application module can automatically check the resource usage of the current computing environment, and use docker or other equivalent parallel computing methods to accelerate the execution efficiency, thereby obtaining the results in Tables 2 and 3.
從表2及表3中可發現兩種解釋方法所得到的特徵重要性(即特徵權重)可能會不同,於表2中係溫度>時間>濕度,於表3中則為時間>溫度>濕度。為避免使用者因之產生困惑及提高解釋性可靠度,是以,本發明設計了一種模型可解釋結果統整方法,其中,模型可解釋結果統整方法不限於平均或其他類似的加權方法,本實施例以平均為例。目前方法數為2,根據公式:Important i =,可計算出時間之特徵於統整後之權重為(0.35+0.4)/2=0.375,溫度之特徵於統整後之權重為(0.6+0.1)/2=0.35,以及濕度之特徵於統整後之權重為(0.05-0.05)/2=0。將前述之計算結果自大至小排序後得到統整後的模型解釋為時間>溫度>濕度。 From Table 2 and Table 3, it can be found that the feature importance (i.e., feature weight) obtained by the two interpretation methods may be different. In Table 2, it is temperature>time>humidity, and in Table 3, it is time>temperature>humidity. In order to avoid confusion for users and improve the reliability of interpretation, the present invention designs a method for integrating the results of model interpretation, wherein the method for integrating the results of model interpretation is not limited to average or other similar weighting methods. This embodiment takes average as an example. The current number of methods is 2, according to the formula: Important i = , we can calculate that the weight of the time characteristic after integration is (0.35+0.4)/2=0.375, the weight of the temperature characteristic after integration is (0.6+0.1)/2=0.35, and the weight of the humidity characteristic after integration is (0.05-0.05)/2=0. After sorting the above calculation results from large to small, the integrated model is interpreted as time>temperature>humidity.
圖8為本發明之模型解釋結果以視覺化呈現的長條圖。如圖所示,即呈現前述實施例中,時間之特徵權重為0.375、溫度之特徵權重為0.35以及濕度之特徵權重為0的長條圖,由於本實施例的資料類型為數值型,對於數值型之資料類型而言,視覺化模組選擇以長條圖之方式呈現整合後之結果,藉此讓使用者對於哪一個特徵最為重要能一目了然。於本實施例中,視覺化模組可利用資料庫或其他規則式的做法定義好各種資料類型所對應的視覺化方式,而不僅限於此實施例之長條圖。 FIG8 is a bar graph of the model interpretation result of the present invention in a visual presentation. As shown in the figure, a bar graph is presented in which the feature weight of time is 0.375, the feature weight of temperature is 0.35, and the feature weight of humidity is 0 in the aforementioned embodiment. Since the data type of this embodiment is numerical, for the numerical data type, the visualization module chooses to present the integrated result in the form of a bar graph, so that the user can see at a glance which feature is the most important. In this embodiment, the visualization module can use a database or other regular methods to define the visualization method corresponding to various data types, and is not limited to the bar graph of this embodiment.
另外,圖9為本發明之文字情緒的視覺化顯示圖。如圖所示,本發明再以分析字串中之文字情緒的模型透過視覺化顯示為例,具體而言,以模型分析字串「What is on the table? When I got home I saw my cat on the table, and my frog on the floor.」中各文字之文字情緒,其中,若文字位置落在圖左邊者,其文字情緒為愈生氣,反之,文字位置落在圖右邊者,則表示文字情緒為愈不生氣。 In addition, FIG. 9 is a visualization diagram of the text emotion of the present invention. As shown in the figure, the present invention uses a model for analyzing the text emotion in a string through visualization as an example. Specifically, the model analyzes the text emotion of each word in the string "What is on the table? When I got home I saw my cat on the table, and my frog on the floor." Among them, if the text position falls on the left side of the figure, the text emotion is getting more angry, and conversely, if the text position falls on the right side of the figure, it means that the text emotion is getting less angry.
綜上,本發明之智慧化多元解釋通用模型之系統、方法及其電腦可讀媒介,係透過使用者介面讓使用者輸入模型檔及分析資料,使模型與資料類型分析模組依據模型檔及分析資料判斷對應之模型類型及資料類型,於模型解釋方法套用模組接收到模型類型及資料類型時,先查詢出對應之一或多個解釋方法,再依所查詢到之一或多個解釋方法進行解析,以獲得一或多個解釋結果,經解釋效果統整模組統整後,產生最終的模型解釋結果,最後,令視覺化模組提供對應之顯示結果呈現給使用者,使用者即可輕易理解模型解釋結果。由上可知,本發明能不受限於輸入之格式而對資料進行分析,且能統整多種結果以找出最終的模型解釋結果,是以,本發明不受應用情境影響,可通用性地對模型進行分析、解釋,以供使用者能理解所使用之模型的模型解釋結果,反觀傳統作法,若欲為影像辨識,則要採用適用影像之模型可解釋性呈現方式,對於數值分類模型,又須以另一種方式呈現,造成使用者於理解上之困難,其次,本發明能依據不同模型演算法智慧化採用對應之解釋方法分析模型,且本發明能整合多種分析方法結果,藉以推薦最適合的分析結果。 In summary, the system, method and computer-readable medium of the intelligent multi-dimensional interpretation universal model of the present invention allow users to input model files and analysis data through a user interface, so that the model and data type analysis module determines the corresponding model type and data type based on the model file and the analysis data. When the model interpretation method application module receives the model type and data type, it first searches for one or more corresponding interpretation methods, and then analyzes the one or more interpretation methods found to obtain one or more interpretation results. After being integrated by the interpretation effect integration module, the final model interpretation result is generated. Finally, the visualization module provides the corresponding display result to the user, and the user can easily understand the model interpretation result. As can be seen from the above, the present invention can analyze data without being limited by the input format, and can integrate multiple results to find the final model explanation result. Therefore, the present invention is not affected by the application scenario, and can universally analyze and explain the model so that users can understand the model explanation result of the model used. In contrast, in traditional methods, if image recognition is desired, a model interpretability presentation method suitable for the image must be adopted, and for numerical classification models, another method must be presented, causing difficulty for users in understanding. Secondly, the present invention can intelligently adopt corresponding explanation methods to analyze the model according to different model algorithms, and the present invention can integrate the results of multiple analysis methods to recommend the most suitable analysis result.
因此,本發明可減少使用者因背景知識不足導致的分析困難,與過去技術在分析不同型態的模型時需要撰寫程式且只能針對單一應用情境不同,亦即,本發明透過使用者介面,提供使用者僅須點擊並輸入模型資訊,即可 依據模型類型與應用主題以智慧化方式選擇適合之解釋方法套用,據以達到提升便利性及節省時間之功效。是以,於使用者對於模型決策毫無頭緒時,本發明可幫助使用者解釋模型行為,易言之,本發明提出一種嶄新的方法來自動分析解釋模型並採用適合的視覺化呈現結果,以降低分析模型決策的難度,以及減少使用者摸索與嘗試的時間。 Therefore, the present invention can reduce the analysis difficulties caused by insufficient background knowledge of users. It is different from the previous technology that requires writing programs when analyzing different types of models and can only be used for a single application scenario. That is, the present invention provides users with a user interface that only needs to click and enter model information, and then according to the model type and application theme, a suitable interpretation method can be selected in an intelligent way to achieve the effect of improving convenience and saving time. Therefore, when users have no idea about model decisions, the present invention can help users explain model behavior. In other words, the present invention proposes a brand-new method to automatically analyze and explain models and use appropriate visualization to present results, so as to reduce the difficulty of analyzing model decisions and reduce the time users spend on exploration and trial.
另外,本發明復可自動套用最適合模型之解釋方法,以降低解讀結果之難度,不同於過去技術只採用一種可解釋方法,本發明能自動套用最適合模型解釋方法並整合多種方法,以得到經解釋之結果,且推薦較可靠的可解釋性給使用者參考。 In addition, the present invention can automatically apply the most suitable model interpretation method to reduce the difficulty of interpreting the results. Unlike the previous technology that only uses one interpretable method, the present invention can automatically apply the most suitable model interpretation method and integrate multiple methods to obtain interpreted results, and recommend more reliable interpretability for users to refer to.
又,本發明還依據資料型態之不同而採取對應之視覺化效果呈現模型解釋結果,相較於習知方法,本發明還可達到讓使用者更容易了解模型的決策方法之目的,以及自動呈現各類型模型解釋結果之功效。 In addition, the present invention also presents the model interpretation results using corresponding visualization effects according to different data types. Compared with the learning method, the present invention can also achieve the purpose of making it easier for users to understand the model's decision-making method, and automatically present various types of model interpretation results.
上述實施例僅為例示性說明,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與改變。因此,本發明之權利保護範圍係由本發明所附之申請專利範圍所定義,只要不影響本發明之效果及實施目的,應涵蓋於此公開技術內容中。 The above embodiments are only illustrative and not intended to limit the present invention. Anyone familiar with this technology may modify and change the above embodiments without violating the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application attached to the present invention. As long as it does not affect the effect and implementation purpose of the present invention, it should be covered by this public technical content.
1:模型與資料類型分析模組 1: Model and data type analysis module
2:模型解釋方法套用模組 2: Model interpretation method application module
3:解釋效果統整模組 3: Explain the effect integration module
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148271A TWI859667B (en) | 2022-12-15 | 2022-12-15 | Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148271A TWI859667B (en) | 2022-12-15 | 2022-12-15 | Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202427278A TW202427278A (en) | 2024-07-01 |
TWI859667B true TWI859667B (en) | 2024-10-21 |
Family
ID=92928867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111148271A TWI859667B (en) | 2022-12-15 | 2022-12-15 | Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI859667B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150235143A1 (en) * | 2003-12-30 | 2015-08-20 | Kantrack Llc | Transfer Learning For Predictive Model Development |
TW201822098A (en) * | 2016-12-05 | 2018-06-16 | 財團法人資訊工業策進會 | Computer device and method for predicting market demand of commodities |
WO2021167998A1 (en) * | 2020-02-17 | 2021-08-26 | DataRobot, Inc. | Automated data analytics methods for non-tabular data, and related systems and apparatus |
TWI764971B (en) * | 2016-12-30 | 2022-05-21 | 美商英特爾公司 | The internet of things |
-
2022
- 2022-12-15 TW TW111148271A patent/TWI859667B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150235143A1 (en) * | 2003-12-30 | 2015-08-20 | Kantrack Llc | Transfer Learning For Predictive Model Development |
TW201822098A (en) * | 2016-12-05 | 2018-06-16 | 財團法人資訊工業策進會 | Computer device and method for predicting market demand of commodities |
TWI764971B (en) * | 2016-12-30 | 2022-05-21 | 美商英特爾公司 | The internet of things |
WO2021167998A1 (en) * | 2020-02-17 | 2021-08-26 | DataRobot, Inc. | Automated data analytics methods for non-tabular data, and related systems and apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW202427278A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Işık et al. | Renewable energy, climate policy uncertainty, industrial production, domestic exports/re-exports, and CO2 emissions in the USA: a SVAR approach | |
US20090105984A1 (en) | Methods and Apparatus for Dynamic Data Transformation for Visualization | |
US11373022B2 (en) | Designing a structural product | |
CN116308935A (en) | Learning early warning method and device based on multi-feature modeling and multi-level evaluation | |
CN111914567A (en) | Artificial intelligence discrimination model interpretation method, device, equipment and storage medium | |
Tian | Application and analysis of artificial intelligence graphic element algorithm in digital media art design | |
Bai et al. | Depth feature fusion based surface defect region identification method for steel plate manufacturing | |
CN113792146B (en) | Text classification method, device, electronic device and medium based on artificial intelligence | |
CN113468288B (en) | Text courseware content extraction method based on artificial intelligence and related equipment | |
Jinnuo et al. | Implementation of artificial intelligence image emotion detection mechanism based on python architecture for industry 4.0 | |
CN113112185B (en) | Teacher expressive force evaluation method and device and electronic equipment | |
TWI859667B (en) | Intelligent system for pluralistic interpretation general model, method and computer readable medium thereof | |
CN119229066A (en) | A method and system for generating digital publications with knowledge graphs integrated with XR | |
CN117540136B (en) | Abnormal signal detection method, device, equipment and storage medium | |
Shafiabadi et al. | An accurate model to predict the performance of graphical processors using data mining and regression theory | |
CN116340864B (en) | Model drift detection method, device, equipment and storage medium thereof | |
JP2009129279A (en) | Machine learning apparatus and machine learning method | |
Guo | [Retracted] Financial Market Sentiment Prediction Technology and Application Based on Deep Learning Model | |
CN117709715A (en) | Tunnel engineering construction risk assessment method, system, terminal and medium | |
US12141663B2 (en) | Double-barreled question predictor and correction | |
CN115658021A (en) | Method and device for determining dynamic model, storage medium and electronic equipment | |
CN117764536B (en) | An innovation and entrepreneurship project auxiliary management system based on artificial intelligence | |
CN112581070A (en) | Juvenile learning career and career positioning evaluation device and method | |
US20240320131A1 (en) | Automated generation of software tests | |
CN119046123B (en) | Benchmark test generation method, device and equipment for distributed system modeling |