[go: up one dir, main page]

TWI859325B - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
TWI859325B
TWI859325B TW109131017A TW109131017A TWI859325B TW I859325 B TWI859325 B TW I859325B TW 109131017 A TW109131017 A TW 109131017A TW 109131017 A TW109131017 A TW 109131017A TW I859325 B TWI859325 B TW I859325B
Authority
TW
Taiwan
Prior art keywords
unit
mass
storage battery
lead storage
compound
Prior art date
Application number
TW109131017A
Other languages
English (en)
Other versions
TW202118131A (zh
Inventor
溝口泰紀
辻中彬人
Original Assignee
日商傑士湯淺國際股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商傑士湯淺國際股份有限公司 filed Critical 日商傑士湯淺國際股份有限公司
Publication of TW202118131A publication Critical patent/TW202118131A/zh
Application granted granted Critical
Publication of TWI859325B publication Critical patent/TWI859325B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

鉛蓄電池包括正極板、負極板及電解液。所述正極板包含正極集電體及正極電極材料。所述負極板包含負極集電體及負極電極材料。所述正極集電體包含含有Ca及Sn的鉛合金。所述正極集電體中的Ca的含量為0.2質量%以下,且Sn的含量為0.5質量%以上。所述負極電極材料包含第一有機防縮劑(木質素化合物除外),所述第一有機防縮劑含有選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種。

Description

鉛蓄電池
本發明是有關於一種鉛蓄電池。
除了車載用、產業用之外,鉛蓄電池亦於各種用途中使用。鉛蓄電池包括負極板、正極板及電解液。負極板包含集電體及負極電極材料。於負極電極材料中添加有機防縮劑。作為有機防縮劑,除了木質素磺酸鹽(sodium lignin sulfonate)等天然來源的有機防縮劑以外,亦利用合成有機防縮劑。作為合成有機防縮劑,例如可列舉雙酚的縮合物。
專利文獻1中記載有一種鉛蓄電池,其是包括正極、負極及電解液的鉛蓄電池,負極具有負極材及負極集電體,負極材包含雙酚系樹脂及負極活性物質,負極集電體具有耳部,耳部形成有Sn或Sn合金的表面層。
專利文獻2中記載有一種液式鉛蓄電池,包括:以海綿狀鉛為主成分的負極活性物質、以二氧化鉛為主成分的正極活性物質、以及含有硫酸且流動自如的電解液,所述液式鉛蓄電池的特徵在於,負極活性物質含有:碳;選自由纖維素醚、聚羧酸及該些的鹽所組成的群組中的至少一種物質;以及包含具有磺酸基的雙酚系縮合物的水溶性高分子,正極活性物質含有銻。
專利文獻3中記載有一種液式鉛蓄電池,包括:以海綿狀鉛為主成分的負極活性物質、以二氧化鉛為主成分的正極活性物質、以及含有硫酸且流動自如的電解液,所述液式鉛蓄電池的特徵在於,負極活性物質在完成化學轉化的狀態下,每100質量%的海綿狀鉛中含有:0.5質量%以上且2.5質量%以下的碳黑、包含具有磺酸基作為取代基的雙酚系縮合物的水溶性高分子、以及由聚丙烯酸、聚甲基丙烯酸、及聚馬來酸及該些的鹽所組成的群組中的至少一種聚羧酸化合物,且電解液在完成化學轉化的狀態下,碳黑濃度為3質量ppm以下。
專利文獻4中記載有一種控制閥式鉛蓄電池,其是包括正極板、負極板及電解液的控制閥式鉛蓄電池,負極板具有負極集電體及負極電極材料,負極電極材料的密度大於2.6 g/cm3 ,負極電極材料含有有機防縮劑,有機防縮劑中的硫元素的含量大於600 μmol/g。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2017-79166號公報 [專利文獻2]國際公開第2013/150754號 [專利文獻3]日本專利特開2013-161606號公報 [專利文獻4]日本專利特開2018-18742號公報
[發明所欲解決之課題] 若進行充放電循環,則有機防縮劑自負極電極材料中徐徐溶出,負極電極材料的比表面積下降,低溫高速率(high-rate,HR)放電性能下降。另外,若藉由充放電循環而正極集電體的腐蝕加劇,正極板的反應面積下降,則亦會因相向的負極板的反應面積下降,而使低溫HR放電性能下降。此種低溫HR放電性能的下降在高溫環境下的充放電循環後特別顯著。 [解決課題之手段]
本發明的一方面是有關於一種鉛蓄電池,包括:正極板、負極板及電解液, 所述正極板包含正極集電體及正極電極材料, 所述負極板包含負極集電體及負極電極材料, 所述正極集電體包含含有Ca及Sn的鉛合金, 所述正極集電體中的Ca的含量為0.2質量%以下,且Sn的含量為0.5質量%以上, 所述負極電極材料包含第一有機防縮劑(木質素(lignin)化合物除外),所述第一有機防縮劑包含選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種。 [發明的效果]
可抑制充放電循環後鉛蓄電池的低溫HR放電性能的下降。
本發明的一方面的鉛蓄電池包括:正極板、負極板及電解液。正極板包含正極集電體及正極電極材料。負極板包含負極集電體及負極電極材料。正極集電體包含含有Ca及Sn的鉛合金。正極集電體中的Ca的含量為0.2質量%以下,且Sn的含量為0.5質量%以上。負極電極材料包含第一有機防縮劑(木質素化合物除外),所述第一有機防縮劑包含選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種。
第一有機防縮劑是具有選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種的除木質素化合物以外的有機防縮劑。第一有機防縮劑是合成有機防縮劑。鉛蓄電池中使用的合成有機防縮劑通常是有機縮合物(以下簡稱為縮合物)。縮合物是指利用縮合反應可獲得的合成物。木質素化合物由於是天然素材,因此自作為合成物的縮合物(合成有機防縮劑)中排除。
一般而言,若反覆進行鉛蓄電池的充放電,則有機防縮劑自負極電極材料中徐徐溶出,負極電極材料的比表面積下降,低溫HR放電性能下降。另外,若反覆進行鉛蓄電池的充放電,則正極集電體的腐蝕加劇,正極板的反應面積下降。若正極板的反應面積下降,則相向的負極板的反應面積亦下降,藉此亦會使低溫HR放電性能下降。特別是在高溫環境下的充放電循環中,此種低溫HR放電性能的下降變得顯著。
第一有機防縮劑與天然來源的木質素化合物、及雙酚A化合物的縮合物不同,分子內容易形成具有平面結構的部分。因此,第一有機防縮劑對負極電極材料中所含的鉛及硫酸鉛的吸附性高。因此,即便在高溫環境下進行充放電,亦可藉由抑制有機防縮劑的溶出來抑制負極電極材料的比表面積的下降。與此相對,木質素化合物具有複雜的三維網眼結構。另外,雙酚A化合物的縮合物具有連結雙酚A化合物的兩個苯環的亞甲基自苯環的表面飛出的結構。因此,與第一有機防縮劑相比,木質素化合物及雙酚A化合物的縮合物對負極電極材料中所含的鉛及硫酸鉛的吸附性差。
另外,若使用第一有機防縮劑,則與木質素化合物及雙酚A化合物的縮合物的情況相比,充電時的負極板的過電壓減少,藉此定電壓充電時的正極板的過電壓增加。若正極板的過電壓增加,則正極集電體的腐蝕容易加劇,正極板的有效反應面積減少。若正極板的有效反應面積減少,則相向的負極板的有效反應面積亦減少。因此,難以充分發揮第一有機防縮劑所產生的抑制負極電極材料的比表面積下降的效果。
本發明的一方面的鉛蓄電池中,控制正極集電體中的Ca及Sn的含量,同時在負極電極材料中使用第一有機防縮劑。藉由控制正極集電體中的Ca及Sn的含量,正極集電體的腐蝕得到抑制,且正極板及負極板的有效反應面積的減少得到抑制。因此,充分發揮第一有機防縮劑所產生的抑制負極電極材料的比表面積下降的效果。該些結果可有效果地抑制充放電循環後的低溫HR放電性能的下降。
本說明書中,充放電循環後的鉛蓄電池的低溫HR放電性能是指在規定條件下對滿充電狀態的鉛蓄電池反覆充放電後的低溫HR放電性能。更具體而言,在60℃±0.5℃的水槽內配置滿充電狀態的鉛蓄電池,以25 A放電4分鐘,繼而將電流的上限設為25 A,以2.47 V/單元(cell)充電10分鐘。以該放電及充電的循環為一個循環,反覆960個循環後,測定低溫HR放電性能。
再者,本說明書中,液式的鉛蓄電池的滿充電狀態藉由日本工業標準(Japanese Industrial Standards,JIS)D 5301:2006的定義來規定。更具體而言,將如下狀態設為滿充電狀態,即,在25℃±2℃的水槽中,以作為額定容量(Ah)而記載的數值的0.2倍的電流(A),將鉛蓄電池充電至每隔15分鐘測定的充電中的端子電壓或溫度換算為20℃的電解液密度連續三次以三位有效數字顯示一定值的狀態。另外,於控制閥式的鉛蓄電池的情況下,所謂滿充電狀態是指如下狀態,即,於25℃±2℃的氣槽中,以作為額定容量(Ah)而記載的數值的0.2倍的電流(A),對鉛蓄電池進行2.23 V/單元的定電流定電壓充電,於定電壓充電時的充電電流(A)成為作為額定容量而記載的數值的0.005倍的時刻結束充電的狀態。再者,作為額定容量而記載的數值是將單位設為Ah的數值。基於作為額定容量而記載的數值所設定的電流的單位設為A。
滿充電狀態的鉛蓄電池是指對已進行化學轉化的鉛蓄電池進行了滿充電的鉛蓄電池。鉛蓄電池的滿充電若為化學轉化後,則可於化學轉化後即刻進行,亦可於自化學轉化起經過時間後進行。例如,亦可於化學轉化後對使用中(較佳為使用初期)的鉛蓄電池進行滿充電。所謂使用初期的電池,是指使用開始後未經過太長時間,幾乎沒有劣化的電池。
本說明書中,木質素化合物包含木質素及木質素衍生物。木質素衍生物包含具有木質素樣三維結構的化合物。作為木質素衍生物,例如可列舉選自由改質木質素、木質素磺酸、改質木質素磺酸及該些的鹽(鹼金屬鹽(鈉鹽等)、鎂鹽、鈣鹽等)所組成的群組中的至少一種。
鉛蓄電池可為控制閥式(密閉式)鉛蓄電池及液式(排氣式)鉛蓄電池中的任一種。
以下,對本發明的實施形態的鉛蓄電池及負極板,按照主要的構成元件進行說明,但本發明並不限定於以下的實施形態。
[鉛蓄電池] (負極板) 負極板包括負極集電體及負極電極材料。負極電極材料是負極板中除負極集電體以外的部分。再者,於負極板有時貼附有墊、黏貼紙(pasting paper)等構件。由於此種構件(貼附構件)與負極板一體使用,因此包含於負極板中。另外,於負極板包含貼附構件的情況下,負極電極材料是負極板中除負極集電體及貼附構件以外的部分。其中,於在隔離件貼附有貼附構件(墊、黏貼紙等)的情況下,貼附構件的厚度包含於隔離件的厚度中。
負極集電體可藉由鉛(Pb)或鉛合金的鑄造而形成,亦可對鉛片材或鉛合金片材進行加工而形成。作為加工方法,例如可列舉延展加工或衝壓(punching)加工。若使用柵格狀的集電體作為負極集電體,則容易擔載負極電極材料,因此較佳。
負極集電體中使用的鉛合金可為Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金中的任一種。該些鉛或鉛合金可更包含選自由Ba、Ag、Al、Bi、As、Se、Cu等所組成的群組中的至少一種作為添加元素。負極集電體亦可包括表面層。負極集電體的表面層與內側的層的組成可不同。表面層可形成於負極集電體的一部分。表面層亦可形成於負極集電體的耳部。耳部的表面層亦可含有Sn或Sn合金。
負極電極材料包含第一有機防縮劑。負極電極材料通常更包含藉由氧化還原反應而表現出容量的負極活性物質(鉛或硫酸鉛)。負極電極材料可包含選自由其他有機防縮劑(以下有時稱為第二有機防縮劑)、碳質材料、及其他添加劑所組成的群組中的至少一種。作為添加劑,可列舉硫酸鋇、纖維(樹脂纖維等)等,但並不限定於該些。再者,充電狀態的負極活性物質為海綿狀鉛,未化學轉化的負極板通常是使用鉛粉來製作。
(有機防縮劑) 負極電極材料包含有機防縮劑。所謂有機防縮劑,是指如下化合物中的有機化合物,所述化合物具有在反覆進行鉛蓄電池的充放電時抑制作為負極活性物質的鉛的收縮的功能。如上所述,負極電極材料包含有機防縮劑中的第一有機防縮劑作為必需成分,根據需要,亦可更包含第二有機防縮劑。第二有機防縮劑是指除第一有機防縮劑以外的有機防縮劑。有機防縮劑例如可使用藉由公知的方法而合成的有機防縮劑,亦可使用市售品。
作為各有機防縮劑,例如可列舉有機縮合物(以下簡稱為縮合物)。縮合物是合成物,一般亦稱為合成有機防縮劑。縮合物可包含芳香族化合物的單元(以下亦稱為芳香族化合物單元)。芳香族化合物單元是指源自納入縮合物中的芳香族化合物的單元。即,芳香族化合物單元是芳香族化合物的殘基。縮合物可包含一種芳香族化合物的單元,亦可包含兩種以上。 再者,有機防縮劑中亦包含所述木質素化合物。
作為縮合物,例如可列舉芳香族化合物的利用醛化合物所得的縮合物。此種縮合物可藉由使芳香族化合物與醛化合物反應來合成。此處,藉由在亞硫酸鹽的存在下進行芳香族化合物與醛化合物的反應,或者使用含有硫元素的芳香族化合物(例如雙酚S)作為芳香族化合物,可獲得含有硫元素的縮合物。例如,藉由調節亞硫酸鹽的量及含有硫元素的芳香族化合物的量的至少一者,可調節縮合物中的硫元素含量。於使用其他原料的情況下,亦可依據該方法。為了獲得縮合物而縮合的芳香族化合物可為一種,亦可為兩種以上。再者,醛化合物可為醛(例如甲醛),亦可為醛的縮合物(或聚合物)等。作為醛縮合物(或聚合物),可列舉多聚甲醛(paraformaldehyde)、三噁烷、四甲醛(tetraoxymethylene)等。醛化合物可單獨使用一種,亦可併用兩種以上。就與芳香族化合物的反應性高的觀點而言,較佳為甲醛。
芳香族化合物可具有含硫基。即,縮合物可為分子內包含多個芳香環及作為含硫基的硫元素的有機高分子。含硫基可直接鍵結於芳香族化合物所具有的芳香環,例如亦可作為具有含硫基的烷基鏈而鍵結於芳香環。含硫基中,較佳為呈穩定形態的磺酸基或磺醯基。磺酸基可以酸型存在,亦可如Na鹽般以鹽型存在。
含硫基是負的極性強的官能基。此種官能基在電解液中與水分子或氫離子、硫酸氫離子形成穩定的鍵,因此有官能基偏向存在於縮合物的表面的傾向。偏向存在於表面的此種官能基帶有負的電荷,因此在縮合物的締合體間發生靜電排斥。藉此,縮合物的膠體粒子的締合或凝聚受到限制,膠體粒徑容易變小。結果,認為負極電極材料的細孔徑小,且負極電極材料的比電阻容易減少。因此,於使用具有含硫基的縮合物的情況下,可確保更高的防縮效果,容易獲得優異的低溫HR放電性能及充電接受性。
作為芳香族化合物所具有的芳香環,可列舉苯環、萘環等。於芳香族化合物具有多個芳香環的情況下,多個芳香環可直接鍵結或藉由連結基(例如伸烷基(包含亞烷基(alkylidene group))、碸基)等連結。作為此種結構,例如可列舉雙芳烴結構(聯苯、雙苯基烷烴、雙苯基碸等)。
作為芳香族化合物,例如可列舉具有所述芳香環及官能基(羥基、胺基等)的化合物。官能基可與芳香環直接鍵結,亦可以具有官能基的烷基鏈的形式鍵結。再者,羥基亦包含羥基的鹽(-OMe)。胺基亦包含胺基的鹽(與陰離子的鹽)。作為Me,可列舉鹼金屬(Li、K、Na等)、週期表第二族金屬(Ca、Mg等)等。芳香族化合物亦可於芳香環中具有除含硫基及所述官能基以外的取代基(例如烷基、烷氧基)。
作為芳香族化合物單元的基礎的芳香族化合物可為選自由雙芳烴化合物及單環式芳香族化合物所組成的群組中的至少一種。
作為雙芳烴化合物,可列舉具有羥基的雙芳烴化合物(雙酚化合物、羥基聯苯化合物等)、具有胺基的雙芳烴化合物(具有胺基的雙芳基烷烴化合物、具有胺基的雙芳基碸化合物、具有胺基的聯苯化合物等)。其中,較佳為具有羥基的雙芳烴化合物(特別是雙酚化合物)。
作為雙酚化合物,較佳為雙酚A、雙酚S、雙酚F等。例如,雙酚化合物可包含選自由雙酚A及雙酚S所組成的群組中的至少一種。藉由使用雙酚A或雙酚S,對負極電極材料容易獲得更高的防縮效果。
雙酚化合物只要具有雙酚骨架即可,雙酚骨架亦可具有取代基。即,雙酚A只要具有雙酚A骨架即可,其骨架亦可具有取代基。雙酚S只要具有雙酚S骨架即可,其骨架亦可具有取代基。
作為單環式芳香族化合物,較佳為羥基單芳烴化合物、具有胺基的單環式芳香族化合物(胺基單芳烴化合物)等。其中較佳為羥基單芳烴化合物。
作為羥基單芳烴化合物,可列舉羥基萘化合物、酚化合物等。例如,較佳為使用作為酚化合物的苯酚磺酸化合物(苯酚磺酸或其取代物等)。再者,如上所述,酚性羥基中亦包含酚性羥基的鹽(-OMe)。
作為胺基單芳烴化合物,可列舉胺基萘化合物、苯胺化合物(胺基苯磺酸、烷基胺基苯磺酸等)。
除木質素化合物以外的有機防縮劑的硫元素含量例如可為2000 μmol/g以上,亦可為3000 μmol/g以上。若使用具有此種硫元素含量的有機防縮劑,則有機防縮劑的膠體粒徑容易變小,容易確保循環後的高的低溫HR放電性能。
有機防縮劑中的硫元素含量為X μmol/g是指每1 g有機防縮劑中所含的硫元素的含量為X μmol。
除木質素化合物以外的有機防縮劑的硫元素含量的上限並無特別限制,例如只要為9000 μmol/g以下即可,可為8000 μmol/g以下,亦可為7000 μmol/g以下。
再者,除木質素化合物以外的有機防縮劑中亦包含硫元素含量未滿2000 μmol/g的有機防縮劑。此種有機防縮劑的硫元素含量可為300 μmol/g以上。
除木質素化合物以外的有機防縮劑的硫元素含量例如可為2000 μmol/g以上(或3000 μmol/g以上)且9000 μmol/g以下、2000 μmol/g以上(或3000 μmol/g以上)且8000 μmol/g以下、2000 μmol/g以上(或3000 μmol/g以上)且7000 μmol/g以下、300 μmol/g以上且9000 μmol/g以下(或8000 μmol/g以下)、或者300 μmol/g以上且7000 μmol/g以下(或未滿2000 μmol/g)。
除木質素化合物以外的有機防縮劑的重量平均分子量(Mw)例如較佳為7000以上。有機防縮劑的Mw例如為100,000以下,亦可為20,000以下。
木質素化合物的硫元素含量例如未滿2000 μmol/g,亦可為1000 μmol/g以下或800 μmol/g以下。木質素化合物的硫元素含量的下限並無特別限制,例如為400 μmol/g以上。
木質素化合物的Mw例如未滿7000。木質素化合物的Mw例如為3000以上。
再者,本說明書中,有機防縮劑的Mw是藉由凝膠滲透層析法(Gel Permeation Chromatography,GPC)而求出。求出Mw時使用的標準物質設為聚苯乙烯磺酸鈉。 使用下述裝置,於下述條件下測定Mw。 GPC裝置:增層(build-up)GPC系統SD-8022/DP-8020/AS-8020/CO-8020/UV-8020(東曹(股)製造) 管柱:TSKgel G4000SWXL,G2000SWXL(7.8 mm I.D.×30 cm)(東曹(股)製造) 檢測器:UV檢測器,λ=210 nm 洗滌液:濃度1 mol/L的NaCl水溶液:乙腈(體積比=7:3)的混合溶液 流速:1 mL/min. 濃度:10 mg/mL 注入量:10 μL 標準物質:聚苯乙烯磺酸Na(Mw=275,000、35,000、12,500、7,500、5,200、1,680)
有機防縮劑中,第一有機防縮劑是包含所述芳香族化合物的單元中選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種的有機防縮劑(例如縮合物)。單環式芳香族化合物中,較佳為具有羥基(特別是酚性羥基)的單環式化合物(羥基單芳烴化合物等)。在具有酚性羥基的單環式芳香族化合物的利用醛化合物所得的縮合物中,主要成為相對於酚性羥基以鄰位及對位的至少一者(特別是鄰位)縮合的狀態。另一方面,在具有胺基的單環式化合物的利用醛化合物所得的縮合物中,成為經由胺基而縮合的狀態。因此,認為於使用具有酚性羥基的單環式化合物的情況下,與使用具有胺基的單環式化合物的情況相比,有機防縮劑分子中的芳香環彼此的扭曲少,更容易取得平面結構,藉此容易作用於鉛及硫酸鉛。另外,酚性羥基與胺基等情況相比,第一有機防縮劑容易帶負電,因此容易獲得對鉛的高吸附性。
單環式芳香族化合物的單元中,較佳為使用包含苯酚磺酸化合物的單元的第一有機防縮劑。此種第一有機防縮劑具有酚性羥基與磺酸基。酚性羥基及磺酸基均為負的極性強,與金屬的親和性亦高。除此之外,藉由苯酚磺酸,縮合物容易取得平面結構。藉此,含有苯酚磺酸化合物的單元的縮合物對鉛及硫酸鉛具有更高的吸附性。因此,若使用此種縮合物,則可更有效果地抑制縮合物自負極電極材料的溶出。
第一有機防縮劑可包含單環式芳香族化合物的單元(以下有時稱為第一單元)及其他芳香族化合物的單元(以下有時稱為第二單元)。作為第二單元,例如可列舉雙芳烴化合物的單元。作為第二單元,例如可列舉選自由雙酚S化合物的單元及雙酚A化合物的單元所組成的群組中的至少一種。在包含第二單元的有機防縮劑中,一般而言芳香環在π電子間相互作用,容易成為剛性。但是,在第一有機防縮劑中,因第一單元,第二單元的π電子間相互作用受到阻礙,因此可提高分子的柔軟性。另外,有機防縮劑中通常含有大量具有負的極性的官能基。認為在第一有機防縮劑中,藉由分子的柔軟性提高,第一有機防縮劑中所含的具有負的極性的官能基容易偏向存在於分子表面。藉此,可進一步抑制第一有機防縮劑自負極電極材料中的溶出,因此可進一步抑制充放電循環後的低溫HR放電性能的下降。
於第一有機防縮劑包含第一單元及第二單元的情況下,第一單元在該些單元的總量中所佔的莫耳比率例如為10莫耳%以上,可為20莫耳%以上,亦可為40莫耳%以上或50莫耳%以上。於莫耳比率為此種範圍的情況下,第一防縮劑更容易取得平面結構。藉此,自負極電極材料的溶出減少,因此可獲得充放電循環後的高的低溫HR放電性能。第一單元的莫耳比率例如為90莫耳%以下,亦可為80莫耳%以下。於第一單元的莫耳比率為此種範圍的情況下,縮合物更容易帶負電。藉此,自負極電極材料的溶出減少,因此可確保充放電循環後的高的低溫HR放電性能。
第一單元的莫耳比率可為10莫耳%以上(或20莫耳%以上)且90莫耳%以下、10莫耳%以上(或20莫耳%以上)且80莫耳%以下、40莫耳%以上(或50莫耳%以上)且90莫耳%以下、或者40莫耳%以上(或50莫耳%以上)且80莫耳%以下。
第二單元較佳為至少為雙酚S化合物的單元。第一有機防縮劑可包含雙酚S化合物的單元與雙酚A化合物的單元作為第二單元。雙酚S骨架具有利用磺醯基連結兩個苯環的結構。雙酚A骨架具有利用二亞甲基連結兩個苯環的結構。與二亞甲基相比,磺醯基自苯環平面的飛出小。因此,若與雙酚A化合物的單元的情況相比,則雙酚S化合物的單元中,第一有機防縮劑更容易取得平面結構。另外,藉由磺醯基的存在,與雙酚A化合物的單元的情況相比,雙酚S化合物的單元中,第一有機防縮劑容易帶負電。藉此,若使用至少具有雙酚S化合物的單元的第一有機防縮劑作為第二單元,則第一有機防縮劑對鉛的吸附性進一步提高。
另外,作為第一有機防縮劑,亦可使用至少包含雙酚S化合物的單元的有機防縮劑(縮合物)。如上所述,雙酚S化合物藉由磺醯基的存在,而使第一有機防縮劑容易帶負電。藉此,若使用至少具有雙酚S化合物的單元的第一有機防縮劑,則可進一步提高第一有機防縮劑對鉛的吸附性。另外,作為第一有機防縮劑,亦可使用包含雙酚S化合物的單元及雙酚A化合物的單元的物質(縮合物)。相較於僅有雙酚S的縮合物,具有該些單元的第一有機防縮劑的膠體粒徑變小,可獲得更高的防縮效果。
於第一有機防縮劑包含雙酚S化合物的單元及雙酚A化合物的單元的情況下,雙酚S化合物的單元在該些單元的總量中所佔的莫耳比率例如為10莫耳%以上,亦可為20莫耳%以上。就容易確保雙酚S化合物所得的高吸附性的觀點而言,雙酚S化合物的單元的莫耳比率較佳為40莫耳%以上,亦可為50莫耳%以上。就更容易生成微細的膠體粒子的觀點而言,雙酚S化合物的單元的莫耳比率例如為90莫耳%以下,亦可為80莫耳%以下。
於第一有機防縮劑包含雙酚S化合物的單元及雙酚A化合物的單元的情況下,雙酚S化合物的單元在該些單元的總量中所佔的莫耳比率可為10莫耳%以上(或20莫耳%以上)且90莫耳%以下、40莫耳%以上(或50莫耳%以上)且90莫耳%以下、10莫耳%以上(或20莫耳%以上)且80莫耳%以下、或者40莫耳%以上(或50莫耳%以上)且80莫耳%以下。
第一有機防縮劑的硫元素含量及Mw可分別自所述範圍中選擇。
第一有機防縮劑可單獨使用一種,亦可組合使用兩種以上。
所述有機防縮劑中,作為第二有機防縮劑,例如可列舉木質素化合物、雙酚A化合物的利用醛化合物所得的縮合物。 第二有機防縮劑可單獨使用一種,亦可組合使用兩種以上。
木質素化合物的硫元素含量例如未滿2000 μmol/g,亦可為1000 μmol/g以下或800 μmol/g以下。木質素化合物的硫元素含量的下限並無特別限制,例如為400 μmol/g以上。
木質素化合物的Mw例如未滿7000。木質素化合物的Mw例如為3000以上。
於併用第一有機防縮劑及第二有機防縮劑的情況下,第一有機防縮劑與第二有機防縮劑的質量比可任意選擇。即便於併用第二有機防縮劑的情況下,亦可根據第一有機防縮劑的質量比來獲得充放電循環後的低溫HR放電性能的降低抑制效果。就確保充放電循環後的更高的低溫HR放電性能的觀點而言,第一有機防縮劑於有機防縮劑整體(即第一有機防縮劑與第二有機防縮劑的總量)中所佔的比率較佳為50質量%以上,可為80質量%以上,亦可為90質量%以上或95質量%以上。
負極電極材料中所含的有機防縮劑的含量例如為0.01質量%以上,亦可為0.05質量%以上。有機防縮劑的含量例如為1.0質量%以下,亦可為0.5質量%以下。
負極電極材料中所含的機防縮劑的含量可為0.01質量%以上且1.0質量%以下、0.05質量%以上且1.0質量%以下、0.01質量%以上且0.5質量%以下、或0.05質量%以上且0.5質量%以下。
(硫酸鋇) 負極電極材料可包含硫酸鋇。若使用第一有機防縮劑,則藉由鉛的表面由第一有機防縮劑覆蓋,充電接受性有下降的傾向。藉由負極電極材料中使用硫酸鋇,可降低充電接受性的下降。
負極電極材料中的硫酸鋇的含量例如為0.05質量%以上,亦可為0.1質量%以上或0.5質量%以上。就在充放電循環後確保更高的低溫HR放電性能的觀點而言,較佳為將硫酸鋇的含量設為0.6質量%以上,更佳為設為0.8質量%以上。於硫酸鋇的含量為此種範圍的情況下,放電時硫酸鋇作為晶核起作用,生成大量微細且容易反應的硫酸鉛。藉此,放電反應在負極板整體變得更均勻,從而抑制負極電極材料的收縮,維持大的比表面積。另外,由於大量第一有機防縮劑在充放電循環後殘留於負極電極材料中,因此負極電極材料的表面因第一有機防縮劑而穩定化,維持大的比表面積。據此認為,可確保充放電循環後的更高的低溫HR放電性能。
另外,於第一有機防縮劑包含第一單元的情況下,與木質素化合物或雙酚A的縮合物相比,放電時生成的硫酸鉛的晶體容易變大,藉此有充電接受性略微變低的傾向。因此,於使用包含第一單元的第一有機防縮劑的情況下,就使硫酸鉛微細化、確保更高的充電接受性的觀點而言,較佳為將硫酸鋇的含量設為0.6質量%以上,更佳為設為0.8質量%以上。
負極電極材料中的硫酸鋇的含量為5質量%以下,亦可為3質量%以下。
負極電極材料中的硫酸鋇的含量可為0.05質量%以上(或0.1質量%以上)且5質量%以下、0.05質量%以上(或0.1質量%以上)且3質量%以下、0.5質量%以上(或0.6質量%以上)且5質量%以下、0.5質量%以上(或0.6質量%以上)且3質量%以下、或者0.8質量%以上且5質量%以下(或3質量%以下)。
(碳質材料) 負極電極材料可包含碳質材料。作為碳質材料,可使用碳黑、石墨、硬碳、軟碳等。作為碳黑,可例示乙炔黑、爐黑、燈黑等。爐黑亦包括科琴黑(Ketjen black)(商品名)。石墨只要為包含石墨型晶體結構的碳質材料即可,可為人造石墨及天然石墨的任一種。碳質材料可單獨使用一種,亦可組合兩種以上。
負極電極材料中的碳質材料的含量例如較佳為0.05質量%以上,亦可為0.10質量%以上。碳質材料的含量例如為5質量%以下,亦可為3質量%以下。
負極電極材料中的碳質材料的含量例如可為0.05質量%以上且5質量%以下、0.05質量%以上且3質量%以下、0.10質量%以上且5質量%以下、或0.10質量%以上且3質量%以下。
(負極電極材料的構成成分的分析) 以下,對負極電極材料或其構成成分的分析方法進行說明。負極電極材料的構成成分的分析設定為對滿充電狀態的鉛蓄電池的負極板進行。在構成成分的分析之前,將化學轉化後的鉛蓄電池滿充電後拆解,獲取分析對象的負極板。 將所獲取的負極板水洗,自負極板除去硫酸成分。水洗進行至將pH試紙壓抵於已水洗的負極板表面,確認到試紙的顏色不變化為止。其中,進行水洗的時間設為2小時以內。已水洗的負極板於減壓環境下,在60±5℃下乾燥6小時左右。乾燥後,於在負極板包含貼附構件的情況下,藉由剝離而自負極板除去貼附構件。接著,藉由自負極板分離負極電極材料而獲得試樣(以下稱為試樣A)。試樣A根據需要進行粉碎,供於分析。
(1)有機防縮劑的分析 (1-1)負極電極材料中的有機防縮劑的定性分析 將已粉碎的試樣A浸漬於1 mol/L的氫氧化鈉(NaOH)水溶液中,提取有機防縮劑。若提取物中包含多種有機防縮劑,則接下來,自提取物中分離各有機防縮劑。對於包含各有機防縮劑的分離物,分別藉由過濾來去除不溶成分,將所得的溶液脫鹽後加以濃縮、乾燥。脫鹽使用脫鹽柱來進行,或藉由使溶液通過離子交換膜來進行,或者藉由將溶液放入透析管並浸於蒸餾水中來進行。藉由將其乾燥而獲得有機防縮劑的粉末試樣(以下稱為試樣B)。
組合使用由以下所獲得的資訊,確定有機防縮劑種類:使用以所述方式獲得的有機防縮劑的試樣B而測定的紅外分光光譜;利用蒸餾水等來稀釋試樣B,藉由紫外可見吸光度計而測定的紫外可見吸收光譜;或者藉由利用重水等規定的溶劑溶解試樣B而獲得的溶液的核磁共振(nuclear magnetic resonance,NMR)光譜等。
再者,於所述提取物包含多種有機防縮劑的情況下,該些的分離以如下方式進行。
首先,藉由紅外分光、NMR及氣相層析-質譜法(gas chromatography-mass spectrometry,GC-MS)的至少一者來測定所述提取物,藉此判斷是否包含多種有機防縮劑。繼而,藉由所述提取物的GPC分析來測定分子量分佈,若多種有機防縮劑可根據分子量來分離,則基於分子量的不同,藉由管柱層析法來分離有機防縮劑。
若官能基的種類及官能基的量的至少一者不同,則有機防縮劑的溶解度不同。於難以基於分子量的不同來分離有機防縮劑的情況下,利用此種溶解度的不同,藉由沈澱分離法來分離其中一種有機防縮劑。例如,於包含兩種有機防縮劑的情況下,於使所述提取物溶解於NaOH水溶液而得的混合物中滴加硫酸水溶液,藉由調節混合物的pH,使其中一種有機防縮劑凝聚、分離。於難以藉由凝聚進行分離的情況下,利用官能基的種類及量的至少一者的不同,藉由離子交換層析法或親和層析法(affinity chromatography)來分離有機防縮劑。自使分離物再次溶解於NaOH水溶液而得者,如上所述,藉由過濾來去除不溶成分。另外,將分離出其中一種有機防縮劑後的剩餘溶液濃縮。所獲得的濃縮物包含另一種有機防縮劑,如上所述藉由過濾而自該濃縮物去除不溶成分。
(1-2)負極電極材料中有機防縮劑的含量的定量 與所述(1-1)同樣地,獲得對於包含有機防縮劑的分離物,分別藉由過濾而去除不溶成分後的溶液。對所得的各溶液,測定紫外可見吸收光譜。使用各有機防縮劑的特徵性峰值的強度及預先製作的標準曲線,求出負極電極材料中的各有機防縮劑的含量。
再者,於獲取有機防縮劑的含量未知的鉛蓄電池來測定有機防縮劑的含量時,由於無法嚴格確定有機防縮劑的結構式,因此標準曲線有時無法使用同一有機防縮劑。於該情況下,使用紫外可見吸收光譜、紅外分光光譜及NMR光譜等顯示出與自該電池的負極提取的有機防縮劑類似的形狀且可另外獲取的有機高分子來製作標準曲線,藉此使用紫外可見吸收光譜來測定有機防縮劑的含量。
(1-3)有機防縮劑中的硫元素的含量 與所述(1-1)同樣地,獲得有機防縮劑的試樣B後,利用氧燃燒燒瓶法將0.1 g的有機防縮劑中的硫元素轉換為硫酸。此時,藉由使試樣B在裝有吸附液的燒瓶內燃燒,獲得硫酸根離子溶入至吸附液的溶出液。接著,以釷試劑(thorin)為指示劑,利用過氯酸鋇來滴定溶出液,藉此求出0.1 g的有機防縮劑中的硫元素的含量(C0)。接著,將C0乘以10倍,算出每1 g有機防縮劑中的硫元素的含量(μmol/g)。
(1-4)有機防縮劑的構成單元的莫耳比的算出 首先,將與所述(1-1)同樣地分離的有機防縮劑(測定對象的有機防縮劑)的試樣B溶解於氫氧化鈉的重水溶液(pH10~13)中,製備測定用樣品,使用該測定用樣品,測定1 H-NMR。根據1 H-NMR光譜的峰值來鑑定有機防縮劑中所含的單元。於該1 H-NMR光譜中,求出源自各單元的峰值的峰值強度之比(第一比)。
其次,合成包含與鑑定的結構相同的單元,且各單元的莫耳分率已知的有機防縮劑(參照用有機防縮劑)。測定參照用有機防縮劑的1 H-NMR光譜。於該1 H-NMR光譜中,求出源自各單元的峰值的峰值強度之比(第二比)。
使用參照用有機防縮劑製作鉛蓄電池,使其處於滿充電狀態。自取出自滿充電狀態的鉛蓄電池中的負極板,與所述同樣地採集試樣A。使用該試樣A,與所述(1-1)同樣地獲得試樣B。將所得的試樣B溶解於氫氧化鈉的重水溶液(pH10~13)中,製備測定用樣品,使用該測定用樣品,測定1 H-NMR。於該1 H-NMR光譜中,求出源自各單元的峰值的峰值強度之比(第三比)。
第三比有時與表示實際的莫耳分率的第二比偏離。因此,為了校正,求出第二比及第三比與所述已知的莫耳分率之間的關係。該關係表示各單元的實際的莫耳分率與自鉛蓄電池中取出時有機防縮劑的各單元的峰值的峰值強度比之間的關係。藉由將第一比套用於該關係中,可根據第一比求出測定對象的有機防縮劑的各單元的莫耳分率。然後,算出各個單元的莫耳分率在各單元的莫耳分率的合計中所佔的比率(莫耳%),作為所述各單元的莫耳比率。
例如,於第一有機防縮劑為苯酚磺酸及雙酚S的利用甲醛所得的縮合物的情況下,在1 H-NMR光譜中,源自雙酚S單元的峰值(Pbs )出現在6.5 ppm以上且6.6 ppm以下的範圍,源自苯酚磺酸單元的峰值(Pps )出現在大於6.6 ppm以上且7.0 ppm以下的範圍。根據雙酚S單元及苯酚磺酸單元的莫耳分率已知的第一有機防縮劑的1 H-NMR,求出峰值Pbs 的峰值強度Ibs 與峰值Pps 的峰值強度Ips 之比(第二比及第三比)。繼而,求出第二比及第三比與已知的莫耳分率之間的關係。藉由將莫耳分率未知的第一有機防縮劑的1 H-NMR中的峰值Pbs 的峰值強度Ibs 與峰值Pps 的峰值強度Ips 之比(第一比)套用於該關係中,求出該第一有機防縮劑的雙酚S單元的莫耳分率mbs 及苯酚磺酸單元的莫耳分率mps 。然後,算出苯酚磺酸單元的莫耳分率mps 在莫耳分率mbs 與莫耳分率mps 的合計中所佔的比率(莫耳%),作為苯酚磺酸單元的莫耳比率。
(2)碳質材料與硫酸鋇的定量 相對於10 g的已粉碎的試樣A,加入20質量%濃度的硝酸50 ml,加熱約20分鐘,使鉛成分作為硝酸鉛溶解。接著,過濾包含硝酸鉛的溶液,將碳質材料、硫酸鋇等固體成分過濾分離。
使所得的固體成分分散於水中而製成分散液後,使用篩子自分散液中除去碳質材料及硫酸鋇以外的成分(例如增強材料)。接著,使用預先測定了質量的膜濾器對分散液實施抽吸過濾,將膜濾器與過濾分離出的試樣一起利用110℃±5℃的乾燥器乾燥。所得的試樣為碳質材料與硫酸鋇的混合試樣(以下稱為試樣C)。自乾燥後的試樣C與膜濾器的合計質量中減去膜濾器的質量,測定試樣C的質量(Mm )。然後,將乾燥後的試樣C與膜濾器一起放入坩堝中,以700℃以上進行灼熱灰化。剩餘的殘渣為氧化鋇。將氧化鋇的質量轉換為硫酸鋇的質量,求出硫酸鋇的質量(MB )。自質量Mm 減去質量MB 來算出碳質材料的質量。
(其他) 負極板可藉由以下方式來形成:將負極糊劑塗佈或填充於負極集電體,藉由熟化及乾燥來製作未化學轉化的負極板,然後,將未化學轉化的負極板化學轉化。負極糊劑是藉由於鉛粉、有機防縮劑及根據需要的各種添加劑中加入水及硫酸進行混煉而製作。熟化時,較佳為於高於室溫的高溫且高濕度下使未化學轉化的負極板熟化。
化學轉化可藉由在使包含未化學轉化的負極板的極板群組浸漬於鉛蓄電池的電池槽內的含硫酸的電解液中的狀態下,對極板群組進行充電來進行。其中,化學轉化亦可於鉛蓄電池或極板群組的組裝前進行。藉由化學轉化而生成海綿狀鉛。
(正極板) 鉛蓄電池的正極板通常包含正極集電體及正極電極材料。正極電極材料保持於正極集電體。鉛蓄電池的正極板可分類為糊劑式、包層式等。可使用糊劑式及包層式中的任一種正極板。
糊劑式正極板中,正極電極材料是正極板中除正極集電體以外的部分。於正極板有時貼附有墊、黏貼紙等構件。由於此種構件(貼附構件)與正極板一體使用,因此包含於正極板中。另外,於正極板包含貼附構件(墊、黏貼紙等)的情況下,正極電極材料於糊劑式正極板中是正極板中除正極集電體及貼附構件以外的部分。
正極集電體可藉由鉛合金的鑄造而形成,亦可對鉛片材或鉛合金片材進行加工而形成。作為加工方法,例如可列舉延展加工或衝壓(punching)加工。若使用柵格狀的集電體作為正極集電體,則容易擔載正極電極材料,因此較佳。
正極集電體包含含有Ca及Sn的鉛合金。藉由控制正極集電體中的Ca及Sn的含量,可抑制充放電循環所引起的正極集電體的腐蝕,有效發揮第一有機防縮劑的效果。作為用於正極集電體的鉛合金,例如可列舉Pb-Ca-Sn系合金。
正極集電體中的Ca的含量為0.2質量%以下。若Ca的含量超過0.2質量%,則在Pb合金的晶界大量析出富Ca相,藉此晶界腐蝕變得顯著,因此循環後的低溫HR放電性能顯著下降。就確保正極集電體的更高的腐蝕抑制效果的觀點而言,Ca的含量較佳為0.14質量%以下或0.12質量%以下。於Ca的含量為此種範圍的情況下,可獲得充放電循環後的更高的低溫HR放電性能。Ca的含量例如為0.01質量%以上,亦可為0.03質量%以上或0.04質量%以上。
正極集電體中的Ca的含量可為0.01質量%以上(或0.03質量%以上)且0.2質量%以下、0.01質量%以上(或0.03質量%以上)且0.14質量%以下、0.01質量%以上(或0.03質量%以上)且0.12質量%以下、0.04質量%以上且0.2質量%以下(或0.14質量%以下)、或者0.04質量%以上且0.12質量%以下。
正極集電體中的Sn的含量為0.5質量%以上。Sn的含量未滿0.5質量%時,晶界腐蝕容易加劇,因此循環後的低溫HR放電性能顯著下降。就確保正極集電體的更高的腐蝕抑制效果的觀點而言,Sn的含量較佳為0.8質量%以上或1.0質量%以上。Sn的含量例如為5質量%以下,亦可為3質量%以下。
正極集電體中的Sn的含量可為0.5質量%以上且5質量%以下(或3質量%以下)、0.8質量%以上且5質量%以下(或3質量%以下)、或者1.0質量%以上且5質量%以下(或3質量%以下)。
正極集電體中所含的Ca及Sn的定量例如可依據JIS H2105中記載的鉛分離感應耦合電漿發光光譜法進行分析。於對自鉛蓄電池中取出的正極板的正極集電體中所含的元素含量進行分析的情況下,首先對正極板施加振動,使正極電極材料自正極集電體脫落後,使用陶瓷刀除去正極集電體的周圍殘留的正極電極材料,採集具有金屬光澤的部分的一部分作為試樣。利用酒石酸及稀硝酸分解所採集的試樣,獲得水溶液。向水溶液中加入鹽酸使氯化鉛沈澱,進行過濾並採集濾液。使用感應耦合電漿(Inductively Coupled Plasma,ICP)發光分光分析裝置(例如島津製作所(股)製造的ICPS-8000),藉由標準曲線法來分析濾液中的Ca濃度及Sn濃度,換算為正極集電體的每質量的Ca含量及Sn含量。
正極集電體亦可包括表面層。正極集電體的表面層與內側的層的組成可不同。表面層可形成於正極集電體的一部分。表面層亦可僅在正極集電體的柵格部分、僅在耳部分、或僅在框架部分形成。
正極板所含的正極電極材料包含藉由氧化還原反應而表現出容量的正極活性物質(二氧化鉛或硫酸鉛)。根據需要,正極電極材料亦可包含其他添加劑。
未化學轉化的糊劑式正極板是藉由將正極糊劑填充於正極集電體,進行熟化、乾燥而獲得。正極糊劑是藉由將鉛粉、添加劑、水及硫酸混煉而製備。
藉由將未化學轉化的正極板化學轉化而獲得正極板。化學轉化可藉由在使包含未化學轉化的正極板的極板群組浸漬於鉛蓄電池的電池槽內的含硫酸的電解液中的狀態下,對極板群組進行充電來進行。其中,化學轉化亦可於鉛蓄電池或極板群組的組裝前進行。
(隔離件) 在負極板與正極板之間可配置隔離件。作為隔離件,例如可使用選自不織布及微多孔膜中的至少一種。介於負極板與正極板之間的隔離件的厚度只要根據極間距離來選擇即可。隔離件的張數只要根據極間數來選擇即可。
不織布是將纖維纏繞而不進行編織而成的墊,以纖維為主體。不織布中,例如不織布的60質量%以上由纖維形成。作為纖維,可使用玻璃纖維、聚合物纖維(聚烯烴纖維、丙烯酸纖維、聚酯纖維(聚對苯二甲酸乙二酯纖維等)等)、紙漿纖維等。其中,較佳為玻璃纖維。不織布亦可包含纖維以外的成分(例如耐酸性的無機粉體、作為黏結劑的聚合物)。
另一方面,微多孔膜是以纖維成分以外為主體的多孔性片材,例如可藉由將包含造孔劑(聚合物粉末及油的至少一者等)的組成物擠出成型為片狀後,除去造孔劑而形成細孔來獲得。微多孔膜較佳為包含具有耐酸性的材料,較佳為以聚合物成分為主體來構成。作為聚合物成分,較佳為聚烯烴(聚乙烯、聚丙烯等)。
隔離件例如可僅由不織布構成,亦可僅由微多孔膜構成。另外,隔離件根據需要亦可為不織布與微多孔膜的積層物、貼合有不同種類或相同種類的原材料的物質、或者在不同種類或相同種類的原材料中使凹凸嚙合的物質等。
隔離件可為片狀,亦可形成為袋狀。可以在正極板與負極板之間夾持一張片狀的隔離件的方式配置。另外,亦可以利用彎折狀態的一張片狀的隔離件來夾持極板的方式配置。於該情況下,可使彎折的片狀的隔離件所夾持的正極板與彎折的片狀的隔離件所夾持的負極板重疊,亦可利用彎折的片狀的隔離件來夾持正極板及負極板中的其中一者,並與另一極板重疊。另外,亦可將片狀的隔離件彎折為蛇腹狀,將正極板及負極板夾入至蛇腹狀的隔離件,使隔離件介於該些之間。於使用彎折為蛇腹狀的隔離件的情況下,可以彎折部沿著鉛蓄電池的水平方向的方式(例如,以彎折部與水平方向平行的方式)配置隔離件,亦可以沿著鉛垂方向的方式(例如,以彎折部與鉛垂方向平行的方式)配置隔離件。彎折為蛇腹狀的隔離件中,在隔離件的兩個主面側交替地形成凹部。於正極板及負極板各自的上部通常形成有耳部,因此於以彎折部沿著鉛蓄電池的水平方向的方式配置隔離件的情況下,僅在隔離件的其中一個主面側的凹部配置正極板及負極板(即,成為兩層的隔離件介於鄰接的正極板與負極板之間的狀態)。於以彎折部沿著鉛蓄電池的鉛垂方向的方式配置隔離件的情況下,可在其中一個主面側的凹部收容正極板,在另一個主面側的凹部收容負極板(即,可設為隔離件單層地介於鄰接的正極板與負極板之間的狀態)。於使用袋狀的隔離件的情況下,袋狀的隔離件可收容正極板,亦可收容負極板。
再者,本說明書中,於極板中,以設有耳部的一側為上側、以與耳部相反的一側為下側來確定上下方向。極板的上下方向可與鉛蓄電池的鉛垂方向的上下方向相同,亦可不同。即,鉛蓄電池可為立式及臥式的任一種。
(電解液) 電解液是含硫酸的水溶液,根據需要亦可凝膠化。電解液根據需要亦可包含選自由陽離子(例如金屬陽離子)及陰離子(例如除硫酸根陰離子以外的陰離子(磷酸根離子等))所組成的群組中的至少一種。作為金屬陽離子,例如可列舉選自由鈉離子、鋰離子、鎂離子及鋁離子所組成的群組中的至少一種。
滿充電狀態的鉛蓄電池的電解液在20℃下的比重例如為1.20以上,亦可為1.25以上。電解液在20℃下的比重為1.35以下,較佳為1.32以下。
滿充電狀態的鉛蓄電池的電解液在20℃下的比重亦可為1.20以上且1.35以下、1.20以上且1.32以下、1.25以上且1.35以下、或1.25以上且1.32以下。
鉛蓄電池可藉由以下製造方法而獲得,所述製造方法包括藉由將正極板、負極板及電解液收容於電池槽來組裝鉛蓄電池的步驟。於鉛蓄電池的組裝步驟中,隔離件通常以介於正極板與負極板之間的方式配置。在將正極板、負極板及電解液收容於電池槽的步驟之後,鉛蓄電池的組裝步驟根據需要亦可包括將正極板及負極板的至少一者化學轉化的步驟。正極板、負極板、電解液及隔離件分別在收容於電池槽之前準備。
圖1示出本發明的一實施形態的鉛蓄電池的一例的外觀。 鉛蓄電池1具備收容極板群組11及電解液(未圖示)的電池槽12。電池槽12內,藉由隔壁13而分隔出多個單元室14。於各單元室14各收納有一個極板群組11。電池槽12的開口部由具備負極端子16及正極端子17的蓋15關閉。蓋15針對每個單元室設置有液口栓18。於補水時,取下液口栓18來補給補水液。液口栓18亦可具有將單元室14內產生的氣體排出至電池外的功能。
極板群組11藉由將各有多張的負極板2及正極板3隔著隔離件4積層而構成。此處,示出收容負極板2的袋狀的隔離件4,但隔離件的形態並無特別限定。位於電池槽12的其中一個端部的單元室14中,將並聯連接多個負極板2的負極架部6連接於貫通連接體8,將並聯連接多個正極板3的正極架部5連接於正極柱7。正極柱7連接於蓋15的外部的正極端子17。位於電池槽12的另一個端部的單元室14中,在負極架部6連接負極柱9,在正極架部5連接貫通連接體8。負極柱9與蓋15的外部的負極端子16連接。各個貫通連接體8穿過設置於隔壁13的貫通孔,將鄰接的單元室14的極板群組11彼此串聯連接。
正極架部5藉由將各正極板3的上部所設置的耳部彼此以澆鑄帶(cast on strap)方式或燃燒(burning)方式焊接而形成。負極架部6亦按照正極架部5的情況,藉由將各負極板2的上部所設置的耳部彼此焊接而形成。
再者,鉛蓄電池的蓋15為單層結構(單蓋),但不限於圖示例的情況。蓋15例如亦可具有包括中蓋及外蓋(或上蓋)的兩層結構。具有兩層結構的蓋亦可在中蓋與外蓋之間具備回流結構,所述回流結構用於使電解液自設置於中蓋的回流口返回至電池內(中蓋的內側)。
以下匯總記載本發明的一方面的鉛蓄電池。
(1)一種鉛蓄電池,包括:正極板、負極板及電解液, 所述正極板包含正極集電體及正極電極材料, 所述負極板包含負極集電體及負極電極材料, 所述正極集電體包含含有Ca及Sn的鉛合金, 所述正極集電體中的Ca的含量為0.2質量%以下,且Sn的含量為0.5質量%以上, 所述負極電極材料包含第一有機防縮劑(木質素化合物除外),所述第一有機防縮劑包含選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種。
(2)於所述(1)中,所述正極集電體中的Ca的含量可為0.14質量%以下或0.12質量%以下。
(3)於所述(1)或(2)中,所述正極集電體中的Ca的含量可為0.01質量%以上、0.03質量%以上或0.04質量%以上。
(4)於所述(1)~(3)中任一項中,所述正極集電體中的Sn的含量可為0.8質量%以上或1.0質量%以上。
(5)於所述(1)~(4)中任一項中,所述正極集電體中的Sn的含量可為5質量%以下或3質量%以下。
(6)於所述(1)~(5)中任一項中,所述負極電極材料可更含有硫酸鋇。
(7)於所述(6)中,所述負極電極材料中的所述硫酸鋇的含量可為0.05質量%以上、0.1質量%以上、0.5質量%以上、0.6質量%以上或0.8質量%以上。
(8)於所述(6)或(7)中,所述負極電極材料中的所述硫酸鋇的含量可為5質量%以下或3質量%以下。
(9)於所述(1)~(8)中任一項中,所述第一有機防縮劑可包含所述單環式芳香族化合物的單元(第一單元)及其他芳香族化合物的單元(第二單元)。
(10)於所述(9)中,所述第二單元可至少包含雙芳烴化合物的單元,所述雙芳烴化合物的單元可為選自由雙酚S化合物的單元及雙酚A化合物的單元所組成的群組中的至少一種。
(11)於所述(10)中,所述雙芳烴化合物的單元可至少包含雙酚S化合物的單元。
(12)於所述(1)~(11)中任一項中,所述單環式芳香族化合物的單元可至少包含苯酚磺酸的單元。
(13)於所述(11)~(13)中任一項中,所述第一單元在所述第一單元及所述第二單元的總量中所佔的莫耳比率可為10莫耳%以上、20莫耳%以上、40莫耳%以上或50莫耳%以上。
(14)於所述(11)~(13)中任一項中,所述第一單元在所述第一單元及所述第二單元的總量中所佔的莫耳比率可為90莫耳%以下或80莫耳%以下。
(15)於所述(1)~(8)中任一項中,所述第一有機防縮劑可包含所述雙酚S化合物的單元及雙酚A化合物的單元。
(16)於所述(15)中,所述第一有機防縮劑中,所述雙酚S化合物的單元在所述雙酚S化合物的單元及所述雙酚A化合物的單元的總量中所佔的莫耳比率可為40莫耳%以上。
(17)於所述(15)或(16)中,所述雙酚S化合物的單元在所述雙酚S化合物的單元及所述雙酚A化合物的單元的總量中所佔的莫耳比率可為10莫耳%以上、20莫耳%以上、40莫耳%以上或50莫耳%以上。
(18)於所述(15)~(17)中任一項中,所述雙酚S化合物的單元在所述雙酚S化合物的單元及所述雙酚A化合物的單元的總量中所佔的莫耳比率可為90莫耳%以下或80莫耳%以下。
(19)於所述(1)~(18)中任一項中,所述第一有機防縮劑的硫元素含量可為300 μmol/g以上、2000 μmol/g以上或3000 μmol/g以上。
(20)於所述(1)~(19)中任一項中,所述第一有機防縮劑的硫元素含量可為8000 μmol/g以下或7000 μmol/g以下。
(21)於所述(1)~(18)中任一項中,所述第一有機防縮劑的硫元素含量可未滿2000 μmol/g。
(22)於所述(21)中,所述第一有機防縮劑的硫元素含量可為300 μmol/g以上。
(23)於所述(1)~(22)中任一項中,所述有機防縮劑的重量平均分子量(Mw)可為7000以上。
(24)於所述(1)~(23)中任一項中,所述有機防縮劑的重量平均分子量(Mw)可為100,000以下或20,000以下。
(25)於所述(1)~(24)中任一項中,所述負極電極材料中所含的有機防縮劑的含量(所述第一有機防縮劑與除所述第一有機防縮劑以外的有機防縮劑(第二有機防縮劑)的含量的合計)可為0.01質量%以上或0.05質量%以上。
(26)於所述(1)~(25)中任一項中,所述負極電極材料中所含的有機防縮劑的含量(所述第一有機防縮劑與除所述第一有機防縮劑以外的有機防縮劑(第二有機防縮劑)的含量的合計)可為1.0質量%以下或0.5質量%以下。
(27)於所述(1)~(26)中任一項中,所述負極電極材料可更包含碳質材料。
(28)於所述(27)中,所述負極電極材料中的所述碳質材料的含量可為0.05質量%以上或0.10質量%以上。
(29)於所述(27)或(28)中,所述負極電極材料中的所述碳質材料的含量可為5質量%以下或3質量%以下。
(30)於所述(1)~(29)中任一項中,滿充電狀態的所述鉛蓄電池的電解液在20℃下的比重可為1.20以上或1.25以上。
(31)於所述(1)~(30)中任一項中,滿充電狀態的所述鉛蓄電池的電解液在20℃下的比重可為1.35以下或1.32以下。
[實施例] 以下,基於實施例及比較例來具體地說明本發明,但本發明並不限定於以下實施例。
《鉛蓄電池A1-1~鉛蓄電池A3-12、鉛蓄電池R1-1~鉛蓄電池R3-2及鉛蓄電池B1-1~鉛蓄電池B2》 (1)鉛蓄電池的製作 (a)負極板的製作 將鉛粉、水、稀硫酸、碳黑、有機防縮劑、視需要的硫酸鋇混合,獲得負極糊劑。此時,以均按照所述順序求出的負極電極材料中的有機防縮劑的含量及碳黑的含量分別為0.10質量%、0.30質量%的方式將各成分混合。另外,與其他成分一起混合硫酸鋇,以使按照所述順序求出的硫酸鋇含量為表1所示的值。將負極糊劑填充至作為負極集電體的Pb-Ca-Sn系合金製的延展柵格的網眼部,進行熟化、乾燥,獲得未化學轉化的負極板。
作為有機防縮劑,使用表1所示的縮合物。表1所示的縮合物如下所示。再者,各有機防縮劑中單體的莫耳比相當於按照所述順序求出的單元的莫耳比率。 a1:雙酚S與苯酚磺酸(=2:8(莫耳比))的甲醛縮合物(硫元素含量:4000 μmol/g,Mw:8000) a2:雙酚A與苯酚磺酸(=2:8(莫耳比))的甲醛縮合物(硫元素含量:4000 μmol/g,Mw:8000) a3:在亞硫酸鈉的存在下使雙酚S、雙酚A(=4:6(莫耳比))與甲醛縮合而成的縮合物(硫元素含量:5000 μmol/g,Mw:9000) b1:木質素磺酸鈉(硫元素含量:600 μmol/g,Mw:5500) b2:在亞硫酸鈉的存在下使雙酚A與甲醛縮合而成的縮合物(硫元素含量:3000 μmol/g,Mw:9000)
(b)正極板的製作 將作為原料的鉛粉與硫酸水溶液混合,獲得正極糊劑。將正極糊劑填充至作為正極集電體的鉛合金柵格的網眼部,進行熟化乾燥,獲得未化學轉化的正極板。再者,作為正極集電體,使用按照所述順序求出的Ca含量及Sn含量為表1所示的值的Pb-Ca-Sn合金製的延展柵格。
(c)鉛蓄電池的製作 將未化學轉化的負極板收容於由聚乙烯製的微多孔膜形成的袋狀隔離件中,由5張未化學轉化的負極板及4張未化學轉化的正極板形成極板群組。 將極板群組插入至電池槽內,注入電解液,在電池槽內實施化學轉化,製作鉛電池的額定電壓為12 V、額定容量為30 Ah(5小時率)的液式的鉛蓄電池E1~鉛蓄電池E3及鉛蓄電池R1~鉛蓄電池R5。作為電解液,使用化學轉化後的比重為1.28(20℃)的硫酸水溶液。再者,藉由所述化學轉化,鉛蓄電池成為滿充電狀態。
(2)評價 (2-1)初始性能 (a)低溫HR放電性能 將所製作的鉛蓄電池以放電電流150 A在-15℃±0.3℃下放電至端子電壓達到1 V/單元,求出此時的放電時間(放電持續時間)(s)。將鉛蓄電池B1-3的放電持續時間設為100時的比率(%)作為低溫HR放電性能的指標。
(b)充電接受性 使用所製作的鉛蓄電池,測定第10秒的電量。具體而言,將鉛蓄電池以7.2 A放電30分鐘。繼而,將電流的上限設為100 A,以2.4 V/單元對鉛蓄電池進行定電流定電壓充電,測定此時的10秒鐘的累計電量(第10秒的電量)。所有作業均於25℃±0.3℃的水槽中進行。
(2-2)充放電循環後的低溫HR放電性能 將所製作的鉛蓄電池以25 A放電4分鐘。繼而,將電流的上限設為25A,以2.47 V/單元將鉛蓄電池充電10分鐘。以該放電及充電的循環為一個循環,反覆960個循環。所有作業均於60℃±0.5℃的水槽中進行。
反覆進行所述放電及充電的循環後,按照所述(2-1)(a)的順序求出放電持續時間。將鉛蓄電池B1-2的放電持續時間設為100時的比率(%)作為低溫HR放電性能的指標。 將結果示於表1中。
[表1]
電池 有機防縮劑 硫酸Ba含量 [質量%] 正極集電體 初始性能 充放電循環後
Ca含量 [質量%] Sn含量 [質量%] 低溫HR放電性能 [%] 充電接受性能 [%] 低溫HR放電性能 [%]
Al-12 al 0 0.075 2.0 126 88 116
Al-11 0.6 135 96 133
Al-1 0.8 137 102 142
Al-2 1.0 139 103 146
Al-3 1.5 141 105 150
Al-4 3.0 140 106 150
Al-5 0.8 0.04 136 101 142
Al-6 0.12 137 102 140
Al-7 0.075 1.0 137 101 138
Al-8 3.0 138 102 141
Al-9 0.18 2.0 138 102 118
Al-10 0.075 0.5 135 100 122
Rl-1 0.23 2.0 138 102 99
Rl-2 0.075 0.2 134 100 99
A2-1 a2 0.8 0.075 2.0 112 101 132
A2-2 3.0 115 105 145
A3-12 a3 0 0.075 2.0 103 93 110
A3-11 0.6 108 101 120
A3-1 0.8 109 103 125
A3-2 1.0 110 104 128
A3-3 1.5 111 105 131
A3-4 3.0 111 105 130
A3-5 0.8 0.04 110 100 126
A3-6 0.12 111 101 121
A3-7 0.075 1.0 110 101 120
A3-8 3.0 110 102 124
A3-9 0.18 2.0 110 100 108
A3-10 0.075 0.5 107 101 110
R3-1 0.23 2.0 109 100 97
R3-2 0.075 0.2 107 100 98
Bl-1 b1 0 0.075 2.0 98 91 96
Bl-2 0.6 100 100 100
Bl-3 0.8 101 101 101
Bl-4 1.0 101 102 103
Bl-5 1.5 102 103 104
Bl-6 3.0 102 104 103
Bl-7 0.8 0.04 101 101 102
Bl-8 0.12 102 100 100
Bl-9 0.075 1.0 101 102 100
Bl-10 3.0 102 101 102
Bl-11 0.18 2.0 102 101 97
Bl-12 0.075 0.5 99 102 99
Bl-13 0.23 2.0 102 102 90
Bl-14 0.075 0.2 99 101 95
B2 b2 0.8 0.075 2.0 105 103 119
如表1所示,於使用第一有機防縮劑a1~第一有機防縮劑a3的鉛蓄電池中,與使用木質素磺酸鈉或雙酚A的縮合物的鉛蓄電池相比,充放電循環後的低溫HR放電性能顯著提高。於使用木質素磺酸鈉的鉛蓄電池中,即便變更正極集電體中的Ca含量、Sn含量或硫酸鋇的含量,充放電循環後的低溫HR放電性能的變化亦為4%以下。與此相對,於使用第一有機防縮劑的鉛蓄電池中,充放電循環後的低溫HR放電性能大幅提高8%~50%。
另外,與正極集電體中的Ca含量超過0.2質量%的情況相比,於0.2質量%以下的情況下,循環後的低溫HR放電性能顯著提高。同樣,與正極集電體中的Sn含量未滿0.5質量%的情況相比較,於0.5質量%以上的情況下,循環後的低溫HR放電性能亦顯著提高。另外,此種提高效果於使用木質素磺酸鈉的情況下無法獲得,可謂是第一有機防縮劑特有的效果。
於使用木質素磺酸鈉的情況下,即便硫酸鋇的含量自0.6質量%增加至0.8質量%,充電接受性及充放電循環後的低溫HR放電性能亦幾乎不變。但是,於使用第一有機防縮劑的情況下,若硫酸鋇的含量自0.6質量%變為0.8質量%,則充電接受性及充放電循環後的低溫HR放電性能大幅增加。因此,就確保更高的充電接受性及充放電循環後的低溫HR放電性能的觀點而言,硫酸鋇的含量較佳為0.8質量%以上。 [產業上之可利用性]
本發明的一方面的負極板及鉛蓄電池可適用於控制閥式及液式的鉛蓄電池。鉛蓄電池例如可較佳地用作汽車或摩托車等的啟動用電源、自然能量的儲存裝置及電動車輛(堆高機(forklift)等)等產業用蓄電裝置的電源。再者,該些用途僅為例示,並不限定於該些用途。
1:鉛蓄電池 2:負極板 3:正極板 4:隔離件 5:正極架部 6:負極架部 7:正極柱 8:貫通連接體 9:負極柱 11:極板群組 12:電池槽 13:隔壁 14:單元室 15:蓋 16:負極端子 17:正極端子 18:液口栓
圖1是表示本發明的一方面的鉛蓄電池的外觀及內部結構的、將一部分切出切口的分解立體圖。
1:鉛蓄電池
2:負極板
3:正極板
4:隔離件
5:正極架部
6:負極架部
7:正極柱
8:貫通連接體
9:負極柱
11:極板群組
12:電池槽
13:隔壁
14:單元室
15:蓋
16:負極端子
17:正極端子
18:液口栓

Claims (23)

  1. 一種鉛蓄電池,包括:正極板、負極板及電解液,所述正極板包含正極集電體及正極電極材料,所述負極板包含負極集電體及負極電極材料,所述正極集電體包含含有Ca及Sn的鉛合金,所述正極集電體中的Ca的含量為0.2質量%以下,且Sn的含量為0.5質量%以上,所述負極電極材料包含第一有機防縮劑(木質素化合物除外),所述第一有機防縮劑包含選自由單環式芳香族化合物的單元及雙酚S化合物的單元所組成的群組中的至少一種。
  2. 如請求項1所述的鉛蓄電池,其中所述正極集電體中的Ca的含量為0.14質量%以下。
  3. 如請求項1所述的鉛蓄電池,其中所述正極集電體中的Ca的含量為0.12質量%以下。
  4. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述正極集電體中的Sn的含量為0.8質量%以上。
  5. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述正極集電體中的Sn的含量為1.0質量%以上。
  6. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述負極電極材料更含有硫酸鋇。
  7. 如請求項6所述的鉛蓄電池,其中所述負極電極材料中的所述硫酸鋇的含量為0.6質量%以上。
  8. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑包含所述單環式芳香族化合物的單元,且所述單環式芳香族化合物的單元至少包含苯酚磺酸的單元。
  9. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑包含所述單環式芳香族化合物的單元及雙芳烴化合物的單元,且所述雙芳烴化合物的單元是選自由雙酚S化合物的單元及雙酚A化合物的單元所組成的群組中的至少一種。
  10. 如請求項9所述的鉛蓄電池,其中所述雙芳烴化合物的單元至少包含雙酚S化合物的單元。
  11. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑包含所述雙酚S化合物的單元及雙酚A化合物的單元。
  12. 如請求項11所述的鉛蓄電池,其中於所述第一有機防縮劑中,所述雙酚S化合物的單元在所述雙酚S化合物的單元及所述雙酚A化合物的單元的總量中所佔的莫耳比率為40莫耳%以上。
  13. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述正極集電體中的Ca的含量為0.01質量%以上。
  14. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述正極集電體中的Sn的含量為5質量%以下。
  15. 如請求項6所述的鉛蓄電池,其中所述負極電極材料中的所述硫酸鋇的含量為0.05質量%以上且5質量%以下。
  16. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑包含第一單元及第二單元,所述第一單元為所述單環式芳香族化合物的單元,所述第二單元為其他芳香族化合物的單元。
  17. 如請求項16所述的鉛蓄電池,其中所述第一單元在所述第一單元及所述第二單元的總量中所佔的莫耳比率為10莫耳%以上且90莫耳%以下。
  18. 如請求項11所述的鉛蓄電池,其中所述雙酚S化合物的單元在所述雙酚S化合物的單元及所述雙酚A化合物的單元的總量中所佔的莫耳比率為10莫耳%以上且90莫耳%以下。
  19. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑的硫元素含量為300μmol/g以上且8000μmol/g以下。
  20. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述第一有機防縮劑的硫元素含量為300μmol/g以上且未滿2000μmol/g。
  21. 如請求項1至請求項3中任一項所述的鉛蓄電池,其中所述有機防縮劑的重量平均分子量(Mw)為7000以上且20,000以下。
  22. 如請求項1至請求項3中任一項所述的鉛蓄電 池,其中所述負極電極材料更包含碳質材料。
  23. 如請求項22所述的鉛蓄電池,其中所述負極電極材料中的所述碳質材料的含量為0.05質量%以上且5質量%以下。
TW109131017A 2019-09-27 2020-09-10 鉛蓄電池 TWI859325B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178093 2019-09-27
JP2019-178093 2019-09-27

Publications (2)

Publication Number Publication Date
TW202118131A TW202118131A (zh) 2021-05-01
TWI859325B true TWI859325B (zh) 2024-10-21

Family

ID=75166982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131017A TWI859325B (zh) 2019-09-27 2020-09-10 鉛蓄電池

Country Status (5)

Country Link
US (1) US11894560B2 (zh)
JP (1) JP7622635B2 (zh)
CN (1) CN114514632A (zh)
TW (1) TWI859325B (zh)
WO (1) WO2021060325A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201537814A (zh) * 2014-03-28 2015-10-01 Shin Kobe Electric Machinery 鉛蓄電池及鉛蓄電池用之電極集電體
US20170092934A1 (en) * 2014-05-26 2017-03-30 Gs Yuasa International Ltd. Lead-acid battery
JP2017155111A (ja) * 2016-03-01 2017-09-07 日立化成株式会社 フェノール系樹脂、電極、鉛蓄電池及びこれらの製造方法、並びに、樹脂組成物
CN107615535A (zh) * 2015-05-29 2018-01-19 株式会社杰士汤浅国际 铅蓄电池和铅蓄电池的制造方法
TW201835147A (zh) * 2016-12-20 2018-10-01 日商迪愛生股份有限公司 電池用包裝材料用接著劑、電池用包裝材料、電池用容器及電池
WO2018199123A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 鉛蓄電池

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69115078T2 (de) * 1990-02-15 1996-05-09 Japan Storage Battery Co Ltd Geschlossene Bleisäurebatterie.
JPH10302783A (ja) 1997-04-25 1998-11-13 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池及びその製造法
JP3091167B2 (ja) 1997-07-16 2000-09-25 古河電池株式会社 鉛蓄電池
JP2000021413A (ja) 1998-07-06 2000-01-21 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用正極格子体
JP4422829B2 (ja) 1998-09-18 2010-02-24 パナソニック株式会社 鉛蓄電池
KR100311945B1 (ko) 1998-09-18 2001-11-03 모리시타 요이찌 납 축전지
US6649306B2 (en) * 2000-01-19 2003-11-18 Rsr Technologies, Inc. Alloy for thin positive grid for lead acid batteries and method for manufacture of grid
JP4891474B2 (ja) 2000-10-20 2012-03-07 株式会社Gsユアサ 鉛蓄電池
JP4590813B2 (ja) 2002-05-21 2010-12-01 パナソニック株式会社 鉛蓄電池用セパレータおよびそれを用いた鉛蓄電池
JP4325153B2 (ja) * 2002-07-19 2009-09-02 パナソニック株式会社 制御弁式鉛蓄電池
JP4400028B2 (ja) 2002-08-08 2010-01-20 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池の製造方法
JP2004281197A (ja) 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd 鉛蓄電池
DE602005023126D1 (de) * 2004-04-28 2010-10-07 Panasonic Corp Bleiakkumulator
TWI333290B (en) * 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
JP4799560B2 (ja) 2005-09-27 2011-10-26 古河電池株式会社 鉛蓄電池及び鉛蓄電池の製造方法
AR064292A1 (es) * 2006-12-12 2009-03-25 Commw Scient Ind Res Org Dispositivo mejorado para almacenamiento de energia
AR067238A1 (es) * 2007-03-20 2009-10-07 Commw Scient Ind Res Org Dispositivos optimizados para el almacenamiento de energia
US8404382B2 (en) * 2008-04-08 2013-03-26 Trojan Battery Company Flooded lead-acid battery and method of making the same
JP5884528B2 (ja) 2012-02-03 2016-03-15 株式会社Gsユアサ 液式鉛蓄電池
CN104221189B (zh) 2012-02-14 2017-02-22 新神户电机株式会社 铅蓄电池用正极板和该极板的制造方法以及使用该正极板的铅蓄电池
JP6066119B2 (ja) 2012-04-06 2017-01-25 株式会社Gsユアサ 液式鉛蓄電池
US10084209B2 (en) * 2013-10-15 2018-09-25 Gs Yuasa International Ltd. Valve regulated lead-acid battery
JP6354855B2 (ja) 2014-12-05 2018-07-11 日立化成株式会社 電極、鉛蓄電池及びこれらの製造方法
JP6597641B2 (ja) * 2015-01-08 2019-10-30 株式会社Gsユアサ 鉛蓄電池用正極格子および鉛蓄電池
JP6468163B2 (ja) 2015-10-21 2019-02-13 日立化成株式会社 鉛蓄電池
WO2017110594A1 (ja) 2015-12-25 2017-06-29 株式会社Gsユアサ 鉛蓄電池
JP6589633B2 (ja) * 2015-12-25 2019-10-16 株式会社Gsユアサ 鉛蓄電池
CN108780874B (zh) * 2016-03-15 2021-04-13 株式会社杰士汤浅国际 铅蓄电池
JP6724636B2 (ja) 2016-07-29 2020-07-15 株式会社Gsユアサ 制御弁式鉛蓄電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201537814A (zh) * 2014-03-28 2015-10-01 Shin Kobe Electric Machinery 鉛蓄電池及鉛蓄電池用之電極集電體
US20170092934A1 (en) * 2014-05-26 2017-03-30 Gs Yuasa International Ltd. Lead-acid battery
CN107615535A (zh) * 2015-05-29 2018-01-19 株式会社杰士汤浅国际 铅蓄电池和铅蓄电池的制造方法
JP2017155111A (ja) * 2016-03-01 2017-09-07 日立化成株式会社 フェノール系樹脂、電極、鉛蓄電池及びこれらの製造方法、並びに、樹脂組成物
TW201835147A (zh) * 2016-12-20 2018-10-01 日商迪愛生股份有限公司 電池用包裝材料用接著劑、電池用包裝材料、電池用容器及電池
WO2018199123A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
US20220344668A1 (en) 2022-10-27
CN114514632A (zh) 2022-05-17
TW202118131A (zh) 2021-05-01
JP7622635B2 (ja) 2025-01-28
US11894560B2 (en) 2024-02-06
JPWO2021060325A1 (zh) 2021-04-01
WO2021060325A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
JP7143950B2 (ja) 鉛蓄電池
JP6756182B2 (ja) 鉛蓄電池
TWI859325B (zh) 鉛蓄電池
JP2018018803A (ja) 鉛蓄電池
JP7099449B2 (ja) 鉛蓄電池
JP6954353B2 (ja) 鉛蓄電池
JP7363288B2 (ja) 鉛蓄電池用負極板および鉛蓄電池、ならびに鉛蓄電池用負極板の製造方法
JP7314747B2 (ja) 鉛蓄電池用負極板およびそれを備える鉛蓄電池
JP7099448B2 (ja) 鉛蓄電池
TW202114286A (zh) 鉛蓄電池
JP6984779B1 (ja) 制御弁式鉛蓄電池およびその製造方法、ならびに制御弁式鉛蓄電池を備える蓄電システム
JP7505499B2 (ja) 鉛蓄電池
JP7608799B2 (ja) 鉛蓄電池
WO2021060324A1 (ja) 鉛蓄電池用負極板および鉛蓄電池
JPWO2019225161A1 (ja) 鉛蓄電池
CN111971823A (zh) 铅蓄电池用负极板和铅蓄电池
WO2023210635A1 (ja) 鉛蓄電池
JP2024104758A (ja) 鉛蓄電池
WO2020241879A1 (ja) 鉛蓄電池