[go: up one dir, main page]

TWI858958B - Semiconductor device and method of forming the same - Google Patents

Semiconductor device and method of forming the same Download PDF

Info

Publication number
TWI858958B
TWI858958B TW112138964A TW112138964A TWI858958B TW I858958 B TWI858958 B TW I858958B TW 112138964 A TW112138964 A TW 112138964A TW 112138964 A TW112138964 A TW 112138964A TW I858958 B TWI858958 B TW I858958B
Authority
TW
Taiwan
Prior art keywords
region
layer
trench
gate
insulating layer
Prior art date
Application number
TW112138964A
Other languages
Chinese (zh)
Other versions
TW202517031A (en
Inventor
張錦維
林浩揚
陳信宏
陳輝煌
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW112138964A priority Critical patent/TWI858958B/en
Application granted granted Critical
Publication of TWI858958B publication Critical patent/TWI858958B/en
Publication of TW202517031A publication Critical patent/TW202517031A/en

Links

Images

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present disclosure provides a semiconductor device and a method of forming the same. The method includes following steps. An epitaxial layer is formed on a substrate, wherein the epitaxial layer includes a first well adjacent to the substrate, a second well on the first well, and a first trench extending into the first well. An implantation region is formed in the first well adjacent to a bottom portion of the first trench. A portion of the implantation region is removed through the first trench to form a second trench and a first doped region surrounding the second trench. A second doped region is formed in the first well adjacent to a bottom portion of the second trench, and a third doped region is formed under the second doped region. The second and third doped regions in the device region form a source region, and the second and third doped regions in the pick-up region form a connection region. The source region is electrically connected to the connection region through the second and the third doped regions.

Description

半導體裝置及其形成方法Semiconductor device and method of forming the same

本發明是有關於一種半導體裝置及其形成方法。The present invention relates to a semiconductor device and a method for forming the same.

功率金屬氧化物半導體場效電晶體(metal oxide semiconductor field Effect transistor,MOSFET)是一種常應用於類和/或數位電路的功率元件,其根據電流的流動方向可分為平面式的功率MOSFET和垂直式的功率MOSFET。垂直式功率MOSFET可例如作為在低壓下工作的功率MOSFET,其可包括溝渠式功率MOSFET(trench gate power MOSFET)或是分離式閘極功率MOSFET(split gate power MOSFET)等類型。A power metal oxide semiconductor field effect transistor (MOSFET) is a power device commonly used in analog and/or digital circuits. It can be divided into planar power MOSFET and vertical power MOSFET according to the direction of current flow. Vertical power MOSFET can be used as a power MOSFET operating at low voltage, which may include trench gate power MOSFET or split gate power MOSFET.

在元件尺寸不斷縮小且使用者對於電子元件的性能要求不斷提升的趨勢下,現有的功率MOSFET在一些性能表現上(例如崩潰電壓(breakdown voltage)或閘極-源極間電荷(Qgs))可能難以滿足現今或是未來的需求,並且製造成本也越來越昂貴而不易商業化。As device sizes continue to shrink and users' requirements for electronic device performance continue to increase, existing power MOSFETs may not be able to meet current or future requirements in terms of certain performance (such as breakdown voltage or gate-source charge (Qgs)), and the manufacturing cost is becoming increasingly expensive, making it difficult to commercialize.

本發明提供一種半導體裝置及其形成方法,其中第二摻雜區和第三摻雜區在基底的裝置區中形成為源極區,而第二摻雜區和第三摻雜區在基底的拾取區中形成為連接區,源極區通過第二摻雜區和第三摻雜區與連接區彼此連接,如此可節省元件所佔用的面積(例如與橫向擴散金屬氧化物半導體(LDMOS)相比),基底在材料選擇上也不需使用昂貴的高摻雜濃度之基底,並且也不需使用晶圓背面研磨和晶背金屬化製程(BGBM)來將裝置區中的源極連接至拾取區中。The present invention provides a semiconductor device and a method for forming the same, wherein a second doped region and a third doped region are formed as a source region in a device region of a substrate, and the second doped region and the third doped region are formed as a connection region in a pickup region of the substrate, and the source region is connected to the connection region through the second doped region and the third doped region, thereby saving the area occupied by the component (for example, compared with a laterally diffused metal oxide semiconductor (LDMOS)), and the substrate does not need to use an expensive substrate with a high doping concentration in terms of material selection, and does not need to use a wafer back grinding and wafer back metallization process (BGBM) to connect the source in the device region to the pickup region.

本發明一實施例提供一種半導體裝置的形成方法,其包括:於基底上形成磊晶層,其中磊晶層包括鄰接基底的第一井區以及在第一井區上的第二井區,磊晶層包括延伸至第一井區中的第一溝渠;於第一井區中形成鄰接第一溝渠的底部的佈植區;通過第一溝渠移除佈植區的一部分,以形成第二溝渠以及環繞第二溝渠的第一摻雜區;以及於第一井區中形成鄰接第二溝渠的底部的第二摻雜區以及在第二摻雜區下方的第三摻雜區。第二摻雜區和第三摻雜區在基底的裝置區中形成為源極區,第二摻雜區和第三摻雜區在基底的拾取區中形成為連接區,源極區通過第二摻雜區和第三摻雜區電性連接至連接區。An embodiment of the present invention provides a method for forming a semiconductor device, which includes: forming an epitaxial layer on a substrate, wherein the epitaxial layer includes a first well region adjacent to the substrate and a second well region on the first well region, and the epitaxial layer includes a first trench extending into the first well region; forming a implantation region adjacent to the bottom of the first trench in the first well region; removing a portion of the implantation region through the first trench to form a second trench and a first doped region surrounding the second trench; and forming a second doped region adjacent to the bottom of the second trench and a third doped region below the second doped region in the first well region. The second doped region and the third doped region are formed as a source region in the device region of the substrate, the second doped region and the third doped region are formed as a connection region in the pickup region of the substrate, and the source region is electrically connected to the connection region through the second doped region and the third doped region.

在本發明的一實施例中,第二井區、第一摻雜區及第二摻雜區具有第一導電類型,第一井區、第三摻雜區及基底具有不同於第一導電類型的第二導電類型。In one embodiment of the present invention, the second well region, the first doped region and the second doped region have a first conductivity type, and the first well region, the third doped region and the substrate have a second conductivity type different from the first conductivity type.

在本發明的一實施例中,半導體裝置的形成方法更包括:於裝置區中的第二溝渠的底部中形成底部氧化層;於底部氧化層上及第二溝渠的側壁上形成閘極介電材料層;於閘極介電材料層上形成閘極材料層;移除閘極介電材料層的一部分以形成閘極介電層,閘極介電層暴露出閘極材料層的側壁以及第二溝渠的鄰接第二井區的側壁;以及對閘極材料層及第二井區進行氧化製程,以形成閘極層、在閘極層的頂面及側壁上的第一場氧化層以及在第二溝渠的鄰接第二井區的側壁上的第二場氧化層,第二場氧化層自第二溝渠中延伸至磊晶層的頂面上。In one embodiment of the present invention, the method for forming a semiconductor device further includes: forming a bottom oxide layer in the bottom of the second trench in the device region; forming a gate dielectric material layer on the bottom oxide layer and on the sidewalls of the second trench; forming a gate material layer on the gate dielectric material layer; removing a portion of the gate dielectric material layer to form a gate dielectric layer, exposing the gate dielectric layer; The side walls of the gate material layer and the side walls of the second well region adjacent to the second trench are formed; and the gate material layer and the second well region are subjected to an oxidation process to form a gate layer, a first field oxide layer on the top surface and the side walls of the gate layer, and a second field oxide layer on the side walls of the second trench adjacent to the second well region, wherein the second field oxide layer extends from the second trench to the top surface of the epitaxial layer.

在本發明的一實施例中,半導體裝置的形成方法更包括:於閘極層、第一場氧化層及第二場氧化層上形成介電層;在閘極層的相對兩側處的介電層中形成多個汲極接觸件開孔,汲極接觸件開孔穿過第二場氧化層以暴露出磊晶層的頂面的一部分;以及通過磊晶層的頂面的部分於磊晶層的第二井區中形成汲極。In one embodiment of the present invention, the method for forming a semiconductor device further includes: forming a dielectric layer on a gate layer, a first field oxide layer and a second field oxide layer; forming a plurality of drain contact openings in the dielectric layer at opposite sides of the gate layer, the drain contact openings passing through the second field oxide layer to expose a portion of the top surface of the epitaxial layer; and forming a drain in a second well region of the epitaxial layer through a portion of the top surface of the epitaxial layer.

在本發明的一實施例中,底部氧化層的頂面低於第一井區和第二井區彼此接觸的界面。In one embodiment of the present invention, the top surface of the bottom oxide layer is lower than the interface where the first well region and the second well region contact each other.

在本發明的一實施例中,閘極材料層包括多晶矽。In one embodiment of the present invention, the gate material layer includes polysilicon.

在本發明的一實施例中,在垂直於基底的方向上,閘極層與源極區之間的距離大於閘極介電層的厚度。In one embodiment of the present invention, in a direction perpendicular to the substrate, the distance between the gate layer and the source region is greater than the thickness of the gate dielectric layer.

在本發明的一實施例中,半導體裝置的形成方法更包括:於拾取區中的第二溝渠中形成第一絕緣層;於拾取區中的磊晶層上形成覆蓋第一絕緣層的第二絕緣層;於第二絕緣層上形成第三絕緣層;於第三絕緣層上形成介電層;以及形成穿過介電層、第三絕緣層、第二絕緣層、第一絕緣層以及連接區的一部分的源極接觸件,其中源極接觸件通過連接區與源極區電性連接。In one embodiment of the present invention, the method for forming a semiconductor device further includes: forming a first insulating layer in a second trench in a pickup region; forming a second insulating layer covering the first insulating layer on the epitaxial layer in the pickup region; forming a third insulating layer on the second insulating layer; forming a dielectric layer on the third insulating layer; and forming a source contact passing through the dielectric layer, the third insulating layer, the second insulating layer, the first insulating layer and a portion of the connection region, wherein the source contact is electrically connected to the source region through the connection region.

本發明提供一種半導體裝置,其包括基底、磊晶層、源極區以及連接區。基底包括裝置區以及拾取區。磊晶層設置在基底上且包括鄰接基底的第一井區以及在第一井區上的第二井區。磊晶層包括延伸至第一井區中且分別配置在裝置區及拾取區中的第一溝渠及第二溝渠。磊晶層包括環繞第一溝渠及第二溝渠的第一摻雜區。源極區設置在鄰接第一溝渠的底部的第一井區中。連接區設置在鄰接第二溝渠的底部的第一井區中。連接區與源極區彼此連接。The present invention provides a semiconductor device, which includes a substrate, an epitaxial layer, a source region and a connection region. The substrate includes a device region and a pickup region. The epitaxial layer is arranged on the substrate and includes a first well region adjacent to the substrate and a second well region on the first well region. The epitaxial layer includes a first trench and a second trench extending into the first well region and respectively arranged in the device region and the pickup region. The epitaxial layer includes a first doped region surrounding the first trench and the second trench. The source region is arranged in the first well region adjacent to the bottom of the first trench. The connection region is arranged in the first well region adjacent to the bottom of the second trench. The connection region and the source region are connected to each other.

在本發明的一實施例中,源極區和連接區包括第二摻雜區和第三摻雜區,所述第二井區、第一摻雜區及第二摻雜區具有第一導電類型,所述第一井區、第三摻雜區及基底具有不同於第一導電類型的第二導電類型。In one embodiment of the present invention, the source region and the connection region include a second doped region and a third doped region, the second well region, the first doped region and the second doped region have a first conductivity type, and the first well region, the third doped region and the substrate have a second conductivity type different from the first conductivity type.

在本發明的一實施例中,半導體裝置更包括底部氧化層、閘極介電層、閘極層、第一場氧化層以及第二場氧化層。底部氧化層設置在第一溝渠的底部中。閘極介電層設置在底部氧化層上以及第一溝渠的鄰接第一井區的側壁上。閘極層設置在閘極介電層上。第一場氧化層設置在閘極層的頂面及側壁上。第二場氧化層設置在第一溝渠的鄰接第二井區的側壁上且延伸至磊晶層的頂面上。In one embodiment of the present invention, the semiconductor device further includes a bottom oxide layer, a gate dielectric layer, a gate layer, a first field oxide layer and a second field oxide layer. The bottom oxide layer is disposed in the bottom of the first trench. The gate dielectric layer is disposed on the bottom oxide layer and on the sidewalls of the first trench adjacent to the first well region. The gate layer is disposed on the gate dielectric layer. The first field oxide layer is disposed on the top surface and the sidewalls of the gate layer. The second field oxide layer is disposed on the sidewalls of the first trench adjacent to the second well region and extends to the top surface of the epitaxial layer.

在本發明的一實施例中,在垂直於基底的方向上,閘極層與所述源極區之間的距離大於閘極介電層的厚度。In one embodiment of the present invention, in a direction perpendicular to the substrate, a distance between the gate layer and the source region is greater than a thickness of the gate dielectric layer.

在本發明的一實施例中,半導體裝置更包括第一絕緣層、第二絕緣層、第三絕緣層、介電層以及源極接觸件。第一絕緣層設置在第二溝渠中。第二絕緣層設置在拾取區中的磊晶層上並覆蓋第一絕緣層。第三絕緣層設置在第二絕緣層上。介電層設置在第三絕緣層上。源極接觸件穿過介電層、第三絕緣層、第二絕緣層、第一絕緣層以及連接區的一部分。源極接觸件通過連接區與源極區電性連接。In one embodiment of the present invention, the semiconductor device further includes a first insulating layer, a second insulating layer, a third insulating layer, a dielectric layer, and a source contact. The first insulating layer is disposed in the second trench. The second insulating layer is disposed on the epitaxial layer in the pickup region and covers the first insulating layer. The third insulating layer is disposed on the second insulating layer. The dielectric layer is disposed on the third insulating layer. The source contact passes through the dielectric layer, the third insulating layer, the second insulating layer, the first insulating layer, and a portion of the connection region. The source contact is electrically connected to the source region through the connection region.

基於上述,在上述實施例的半導體裝置及其形成方法中,第二摻雜區和第三摻雜區在基底的裝置區中形成為源極區,而第二摻雜區和第三摻雜區在基底的拾取區中形成為連接區,源極區通過第二摻雜區和第三摻雜區電性連接至連接區。如此一來,不需使用晶圓背面研磨和晶背金屬化製程(BGBM)來將裝置區中的源極連接至拾取區中,基底在材料選擇上也不需使用昂貴的高摻雜濃度之基底,並且可節省元件所佔用的面積(例如與LDMOS相比)。Based on the above, in the semiconductor device and the method for forming the same of the above embodiment, the second doped region and the third doped region are formed as a source region in the device region of the substrate, and the second doped region and the third doped region are formed as a connection region in the pickup region of the substrate, and the source region is electrically connected to the connection region through the second doped region and the third doped region. In this way, it is not necessary to use wafer back grinding and wafer back metallization process (BGBM) to connect the source in the device region to the pickup region, and the substrate does not need to use an expensive high-doping concentration substrate in material selection, and the area occupied by the component can be saved (for example, compared with LDMOS).

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of the present embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numbers represent the same or similar elements, and the following paragraphs will not be repeated one by one.

應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理和/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。本文中所使用的「電性連接」可包括物理連接(例如有線連接)及物理斷接(例如無線連接)。It should be understood that when an element is referred to as being "on" or "connected to" another element, it may be directly on or connected to another element, or there may be an intermediate element. If an element is referred to as being "directly on" or "directly connected to" another element, there are no intermediate elements. As used herein, "connection" may refer to physical and/or electrical connection, and "electrical connection" or "coupling" may be the presence of other elements between two elements. As used herein, "electrical connection" may include physical connection (e.g., wired connection) and physical disconnection (e.g., wireless connection).

本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "approximately" or "substantially" includes the referenced value and the average value within an acceptable deviation range of a specific value that can be determined by a person of ordinary skill in the art, taking into account the measurement in question and the specific amount of error associated with the measurement (i.e., the limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, as used herein, "about", "approximately" or "substantially" can select a more acceptable deviation range or standard deviation depending on the optical properties, etching properties or other properties, and can apply to all properties without a single standard deviation.

使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。The terms used herein are used to describe exemplary embodiments only, rather than to limit the present disclosure. In this case, unless otherwise explained in the context, the singular form includes the plural form.

圖1至圖13是本發明一實施例的半導體裝置的形成方法的剖面示意圖。1 to 13 are cross-sectional schematic views of a method for forming a semiconductor device according to an embodiment of the present invention.

首先,請參照圖1,於基底100上形成磊晶層110。基底100可包括裝置區R1和拾取區R2。裝置區R1是如MOS等主動元件形成的區域。拾取區R2是用來拾取裝置區R1中如MOS等主動元件的訊號(例如與源極、汲極和/或閘極連接的訊號)並將其連接至對應結構/圖案之佈線圖案所形成的區域。在一些實施例中,拾取區R2可鄰接於裝置區R1。磊晶層110包括鄰接基底100的第一井區PW以及在第一井區PW上的第二井區ND。在一些實施例中,磊晶層110可藉由磊晶生長(epitaxy growth)製程形成。基底100可摻雜有第一導電型的摻雜物而具有第一導電型或是摻雜有與第一導電型互補的第二導電型的摻雜物而具有第二導電型。在一些實施例中,第一導電類型可為P型,第二導電類型可為N型,但並不限於此。基底100可具有第一導電類型。磊晶層110的第一井區PW可具有第一導電類型,而磊晶層110的第二井區ND可具有與第一導電類型不同的第二導電類型。First, referring to FIG. 1 , an epitaxial layer 110 is formed on a substrate 100. The substrate 100 may include a device region R1 and a pickup region R2. The device region R1 is a region where active components such as MOS are formed. The pickup region R2 is used to pick up signals (e.g., signals connected to the source, drain, and/or gate) of active components such as MOS in the device region R1 and connect them to a region formed by a wiring pattern of a corresponding structure/pattern. In some embodiments, the pickup region R2 may be adjacent to the device region R1. The epitaxial layer 110 includes a first well region PW adjacent to the substrate 100 and a second well region ND on the first well region PW. In some embodiments, the epitaxial layer 110 may be formed by an epitaxial growth process. The substrate 100 may be doped with a first conductivity type dopant to have a first conductivity type or may be doped with a second conductivity type dopant complementary to the first conductivity type to have a second conductivity type. In some embodiments, the first conductivity type may be a P type and the second conductivity type may be an N type, but is not limited thereto. The substrate 100 may have a first conductivity type. The first well region PW of the epitaxial layer 110 may have a first conductivity type, and the second well region ND of the epitaxial layer 110 may have a second conductivity type different from the first conductivity type.

基底100可包括半導體基底。半導體基底中的半導體材料可包括元素半導體、合金半導體或化合物半導體。舉例而言,元素半導體可包括Si或Ge。合金半導體可包括SiGe、SiGeC等。化合物半導體可包括SiC、III-V族半導體材料或II-VI族半導體材料。III-V族半導體材料可包括GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs或InAlPAs。II-VI族半導體材料可包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe或HgZnSTe。半導體材料可摻雜有第一導電型的摻雜物或與第一導電型互補的第二導電型的摻雜物。The substrate 100 may include a semiconductor substrate. The semiconductor material in the semiconductor substrate may include an elemental semiconductor, an alloy semiconductor, or a compound semiconductor. For example, the elemental semiconductor may include Si or Ge. The alloy semiconductor may include SiGe, SiGeC, etc. The compound semiconductor may include SiC, a III-V semiconductor material, or a II-VI semiconductor material. The III-V semiconductor material may include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, or InAlPAs. Group II-VI semiconductor materials may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdH gTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe or HgZnSTe. The semiconductor material may be doped with a first conductivity type dopant or a second conductivity type dopant that is complementary to the first conductivity type.

接著,於磊晶層110上形成保護層PL。保護層PL可包括如正矽酸四乙酯(tetraethyl orthosilicate;TEOS)等的介電材料。Next, a protection layer PL is formed on the epitaxial layer 110. The protection layer PL may include a dielectric material such as tetraethyl orthosilicate (TEOS).

然後,於磊晶層110中形成延伸至第一井區PW中的第一溝渠T1。第一溝渠T1形成於裝置區R1和拾取區R2中。在一些實施例中,可藉由圖案化製程移除保護層PL和磊晶層110的一部分,以於磊晶層110中形成延伸至第一井區PW中的第一溝渠T1。Then, a first trench T1 extending into the first well region PW is formed in the epitaxial layer 110. The first trench T1 is formed in the device region R1 and the pickup region R2. In some embodiments, the protective layer PL and a portion of the epitaxial layer 110 may be removed by a patterning process to form the first trench T1 extending into the first well region PW in the epitaxial layer 110.

然後,請參照圖1和圖2,於第一井區PW中形成鄰接第一溝渠T1的底部的佈植區112。佈植區112可與第二井區ND具有相同的導電型,例如第二導電類型。在一些實施例中,可通過離子佈植製程形成佈植區112。在一些實施例中,保護層PL可在執行離子佈植製程時防止摻雜物自磊晶層110的頂面植入至第一井區PW中。Then, referring to FIG. 1 and FIG. 2 , a implantation region 112 is formed in the first well region PW adjacent to the bottom of the first trench T1. The implantation region 112 may have the same conductivity type as the second well region ND, for example, the second conductivity type. In some embodiments, the implantation region 112 may be formed by an ion implantation process. In some embodiments, the protection layer PL may prevent dopants from being implanted from the top surface of the epitaxial layer 110 into the first well region PW when the ion implantation process is performed.

而後,請參照圖2和圖3,通過第一溝渠T1移除佈植區112的一部分(例如垂直移除佈植區112的一部分),以形成第二溝渠T2以及環繞第二溝渠T2的第一摻雜區113。Then, referring to FIG. 2 and FIG. 3 , a portion of the implantation region 112 is removed through the first trench T1 (eg, a portion of the implantation region 112 is vertically removed) to form a second trench T2 and a first doped region 113 surrounding the second trench T2 .

之後,請參照圖3和圖4,於第一井區PW中形成鄰接第二溝渠T2的底部的第二摻雜區114以及在第二摻雜區114下方的第三摻雜區116。第二摻雜區114可具有與第一摻雜區113和第二井區ND具有相同的導電型,例如第二導電類型。第三摻雜區116可具有與基底100和第一井區PW具有相同的導電型,例如第一導電類型。在一些實施例中,可通過離子佈植製程形成第二摻雜區114。在一些實施例中,可通過離子佈植製程於第二摻雜區114下方形成第三摻雜區116。第二摻雜區114和第三摻雜區116在基底100的裝置區R1中形成為源極區。第二摻雜區114和第三摻雜區116在基底100的拾取區R2中形成為連接區。裝置區R1中的源極區通過第二摻雜區114和第三摻雜區116電性連接至拾取區R2中的連接區,如此可不需使用晶圓背面研磨和晶背金屬化製程(BGBM)來將裝置區R1中的源極連接至拾取區R2中,基底100在材料選擇上也不需使用昂貴的高摻雜濃度之基底,並且可節省元件所佔用的面積(例如與LDMOS相比)。Thereafter, referring to FIGS. 3 and 4 , a second doped region 114 adjacent to the bottom of the second trench T2 and a third doped region 116 below the second doped region 114 are formed in the first well region PW. The second doped region 114 may have the same conductivity type as the first doped region 113 and the second well region ND, for example, the second conductivity type. The third doped region 116 may have the same conductivity type as the substrate 100 and the first well region PW, for example, the first conductivity type. In some embodiments, the second doped region 114 may be formed by an ion implantation process. In some embodiments, the third doped region 116 may be formed below the second doped region 114 by an ion implantation process. The second doped region 114 and the third doped region 116 are formed as a source region in the device region R1 of the substrate 100. The second doped region 114 and the third doped region 116 are formed as a connection region in the pickup region R2 of the substrate 100. The source region in the device region R1 is electrically connected to the connection region in the pickup region R2 through the second doped region 114 and the third doped region 116, so that it is not necessary to use a wafer back grinding and wafer back metallization process (BGBM) to connect the source in the device region R1 to the pickup region R2, and the substrate 100 does not need to use an expensive high-doping concentration substrate in terms of material selection, and the area occupied by the component can be saved (for example, compared with LDMOS).

第二井區ND、第一摻雜區113及第二摻雜區114可具有第一導電類型,第一井區PW、第三摻雜區116及基底100可具有不同於第一導電類型的第二導電類型。The second well region ND, the first doped region 113, and the second doped region 114 may have a first conductivity type, and the first well region PW, the third doped region 116, and the substrate 100 may have a second conductivity type different from the first conductivity type.

接著,請參照圖4和圖5,在形成第二摻雜區114和第三摻雜區116後,將保護層PL移除並於第二溝渠T2中形成第一絕緣層120。第一絕緣層120形成於裝置區R1和拾取區R2中。在一些實施例中,第一絕緣層120可例如藉由以下步驟形成。首先,在移除保護層PL後,將絕緣材料(例如氧化物)填入於第二溝渠T2中。在此步驟中,絕緣材料也會形成於磊晶層110的頂面上。接著,藉由回蝕刻製程移除形成於磊晶層110的頂面上的絕緣材料,以於第二溝渠T2中形成第一絕緣層120。Next, referring to FIG. 4 and FIG. 5 , after forming the second doping region 114 and the third doping region 116, the protective layer PL is removed and a first insulating layer 120 is formed in the second trench T2. The first insulating layer 120 is formed in the device region R1 and the pickup region R2. In some embodiments, the first insulating layer 120 can be formed, for example, by the following steps. First, after removing the protective layer PL, an insulating material (e.g., oxide) is filled in the second trench T2. In this step, the insulating material is also formed on the top surface of the epitaxial layer 110. Next, the insulating material formed on the top surface of the epitaxial layer 110 is removed by an etch-back process to form a first insulating layer 120 in the second trench T2.

之後,請參照圖5和圖6,於磊晶層110的頂面上形成覆蓋第一絕緣層120的第二絕緣層130。第二絕緣層130形成於裝置區R1和拾取區R2中。第二絕緣層130可包括如氧化物等絕緣材料。在一些實施例中,第一絕緣層120和第二絕緣層130可包括相同的絕緣材料。Thereafter, referring to FIGS. 5 and 6 , a second insulating layer 130 covering the first insulating layer 120 is formed on the top surface of the epitaxial layer 110. The second insulating layer 130 is formed in the device region R1 and the pickup region R2. The second insulating layer 130 may include an insulating material such as oxide. In some embodiments, the first insulating layer 120 and the second insulating layer 130 may include the same insulating material.

接著,於拾取區R2的第二絕緣層130上形成第三絕緣層140。第三絕緣層140不形成於裝置區R1的第二絕緣層130上。第三絕緣層140可包括如氮化矽等氮化物。第三絕緣層140的材料不同於第二絕緣層130(例如第二絕緣層130可包括氧化物,而第三絕緣層140可包括氮化物)。如此一來,第三絕緣層140可作為罩幕層,使得後續在對裝置區R1進行其他製程時(例如形成MOS的製程),在拾取區R2中的位於第三絕緣層140下方的結構/膜層不會受到影響。Next, a third insulating layer 140 is formed on the second insulating layer 130 of the pickup region R2. The third insulating layer 140 is not formed on the second insulating layer 130 of the device region R1. The third insulating layer 140 may include a nitride such as silicon nitride. The material of the third insulating layer 140 is different from that of the second insulating layer 130 (for example, the second insulating layer 130 may include an oxide, and the third insulating layer 140 may include a nitride). In this way, the third insulating layer 140 can be used as a mask layer, so that when other processes are subsequently performed on the device region R1 (such as a process for forming a MOS), the structure/film layer located below the third insulating layer 140 in the pickup region R2 will not be affected.

然後,請參照圖6和圖7,移除裝置區R1中的第二絕緣層130以及第一絕緣層120的一部分,以於裝置區R1中的第二溝渠T2的底部中形成底部氧化層122。在一些實施例中,可藉由回蝕刻製程移除第二絕緣層130以及第一絕緣層120的一部分。第三絕緣層140的材料不同於第二絕緣層130以及第一絕緣層120,故上述於裝置區R1中進行的製程不會影響拾取區R2的膜層/結構。在一些實施例中,底部氧化層122的頂面低於第一井區PW和第二井區ND彼此接觸的界面。Then, referring to FIG. 6 and FIG. 7 , the second insulating layer 130 and a portion of the first insulating layer 120 in the device region R1 are removed to form a bottom oxide layer 122 in the bottom of the second trench T2 in the device region R1. In some embodiments, the second insulating layer 130 and a portion of the first insulating layer 120 can be removed by an etch-back process. The material of the third insulating layer 140 is different from that of the second insulating layer 130 and the first insulating layer 120, so the above process performed in the device region R1 will not affect the film layer/structure of the pickup region R2. In some embodiments, the top surface of the bottom oxide layer 122 is lower than the interface where the first well region PW and the second well region ND contact each other.

之後,請參照圖7和圖8,於底部氧化層122上及第二溝渠T2的側壁上形成閘極介電材料層150。在一些實施例中,閘極介電材料層150可形成於磊晶層110的頂面上並延伸至第二溝渠T2中,以於第二溝渠T2的側壁上及底部氧化層122上形成閘極介電材料層150。閘極介電材料層150可包括任何適合用於閘極介電層的材料,例如氧化矽。7 and 8, a gate dielectric material layer 150 is formed on the bottom oxide layer 122 and the sidewalls of the second trench T2. In some embodiments, the gate dielectric material layer 150 may be formed on the top surface of the epitaxial layer 110 and extend into the second trench T2 to form the gate dielectric material layer 150 on the sidewalls of the second trench T2 and the bottom oxide layer 122. The gate dielectric material layer 150 may include any material suitable for a gate dielectric layer, such as silicon oxide.

然後,於閘極介電材料層150上形成閘極材料層160。閘極材料層160包括多晶矽。在一些實施例中,閘極材料層160可藉由以下步驟形成於第二溝渠T2中。首先,於閘極介電材料層150上形成閘極材料。接著,移除磊晶層110的頂面上方的閘極材料以於第二溝渠T2中形成閘極材料層160。在一些實施例中,可藉由回蝕刻的方式移除磊晶層110的頂面上方的閘極材料以於第二溝渠T2中形成閘極材料層160。在一些實施例中,閘極材料層160的頂面可低於磊晶層110的頂面。Then, a gate material layer 160 is formed on the gate dielectric material layer 150. The gate material layer 160 includes polysilicon. In some embodiments, the gate material layer 160 can be formed in the second trench T2 by the following steps. First, a gate material is formed on the gate dielectric material layer 150. Then, the gate material above the top surface of the epitaxial layer 110 is removed to form the gate material layer 160 in the second trench T2. In some embodiments, the gate material above the top surface of the epitaxial layer 110 can be removed by etching back to form the gate material layer 160 in the second trench T2. In some embodiments, a top surface of the gate material layer 160 may be lower than a top surface of the epitaxial layer 110 .

而後,請參照圖8和圖9,移除閘極介電材料層150的一部分以形成閘極介電層152,其中閘極介電層152暴露出閘極材料層160的側壁以及第二溝渠T2的鄰接第二井區ND的側壁。在一些實施例中,可藉由濕蝕刻製程移除閘極介電材料層150的一部分。由於第三絕緣層140的材料不同於閘極介電材料層150,故上述於裝置區R1中進行的製程不會影響拾取區R2的膜層/結構。Then, referring to FIG8 and FIG9, a portion of the gate dielectric material layer 150 is removed to form a gate dielectric layer 152, wherein the gate dielectric layer 152 exposes the sidewalls of the gate material layer 160 and the sidewalls of the second trench T2 adjacent to the second well region ND. In some embodiments, a portion of the gate dielectric material layer 150 may be removed by a wet etching process. Since the material of the third insulating layer 140 is different from that of the gate dielectric material layer 150, the above-mentioned process performed in the device region R1 will not affect the film layer/structure of the pickup region R2.

之後,請參照圖9和圖10,對閘極材料層160及磊晶層110的第二井區ND進行氧化製程,以形成閘極層162、在閘極層162的頂面及側壁上的第一場氧化層170a以及在第二溝渠T2的鄰接第二井區ND的側壁上的第二場氧化層170b,其中第二場氧化層170b自第二溝渠T2中延伸至磊晶層110的頂面上。在一些實施例中,可對閘極材料層160及磊晶層110的第二井區ND進行熱氧化製程,在閘極材料層160包含多晶矽且經磊晶生長製程所形成之磊晶層110包含矽的情況下,閘極材料層160以及磊晶層110的第二井區ND在暴露於該製程的表面處會產生氧化反應而形成材料為氧化矽的第一場氧化層170a和第二場氧化層170b。也就是說,閘極材料層160於鄰近該些暴露表面的部分會被氧化,故閘極層162的形狀或輪廓會不同於閘極材料層160的形狀或輪廓(如圖10所示)。同樣地,磊晶層110的第二井區ND於鄰近該些暴露表面的部分會被氧化,而與在形成第二場氧化層170b之前的磊晶層110有所差異。在一些實施例中,第一場氧化層170a和第二場氧化層170b彼此接觸的界面在第二溝渠T2中。Thereafter, referring to FIGS. 9 and 10 , an oxidation process is performed on the gate material layer 160 and the second well region ND of the epitaxial layer 110 to form a gate layer 162, a first field oxide layer 170a on the top surface and side walls of the gate layer 162, and a second field oxide layer 170b on the side walls of the second well region ND adjacent to the second trench T2, wherein the second field oxide layer 170b extends from the second trench T2 to the top surface of the epitaxial layer 110. In some embodiments, a thermal oxidation process may be performed on the gate material layer 160 and the second well region ND of the epitaxial layer 110. When the gate material layer 160 includes polysilicon and the epitaxial layer 110 formed by the epitaxial growth process includes silicon, the gate material layer 160 and the second well region ND of the epitaxial layer 110 may undergo an oxidation reaction at the surface exposed to the process to form a first field oxide layer 170a and a second field oxide layer 170b whose material is silicon oxide. In other words, the portion of the gate material layer 160 adjacent to the exposed surfaces may be oxidized, so the shape or outline of the gate layer 162 may be different from the shape or outline of the gate material layer 160 (as shown in FIG. 10 ). Similarly, the second well region ND of the epitaxial layer 110 is oxidized near the exposed surfaces, which is different from the epitaxial layer 110 before the second field oxide layer 170b is formed. In some embodiments, the interface where the first field oxide layer 170a and the second field oxide layer 170b contact each other is in the second trench T2.

如圖10所示,在垂直於基底100的方向上,由於閘極層162和在裝置區R1中作為源極區之第二摻雜區114和第三摻雜區116之間除了閘極介電層152之外還存在底部氧化層122(亦即閘極層162與源極區之間的距離大於閘極介電層152的厚度),如此能夠在不增加元件尺寸的前提下,降低閘極-源極間電荷(Qgs),以提升半導體裝置的性能表現。As shown in FIG. 10 , in a direction perpendicular to the substrate 100 , since there is a bottom oxide layer 122 between the gate layer 162 and the second doped region 114 and the third doped region 116 serving as the source region in the device region R1 in addition to the gate dielectric layer 152 (i.e., the distance between the gate layer 162 and the source region is greater than the thickness of the gate dielectric layer 152 ), the gate-source charge (Qgs) can be reduced without increasing the size of the device, thereby improving the performance of the semiconductor device.

之後,請參照圖10和圖11,於閘極層162、第一場氧化層170a及第二場氧化層170b上形成介電層180。介電層180還形成於拾取區R2的第三絕緣層140上。10 and 11, a dielectric layer 180 is formed on the gate layer 162, the first field oxide layer 170a, and the second field oxide layer 170b. The dielectric layer 180 is also formed on the third insulating layer 140 of the pickup region R2.

然後,在閘極層162的相對兩側處的介電層180中形成多個汲極接觸件開孔DCH。汲極接觸件開孔DCH穿過第二場氧化層170b以暴露出磊晶層110的頂面的一部分。接著,通過磊晶層110的所述頂面的所述部分於磊晶層110的第二井區ND中形成汲極118。汲極118可與第二井區ND具有相同的導電型,例如第二導電型。汲極118與閘極162之間存在自閘極材料層160生長出來的第一場氧化層170a以及自磊晶層110的第二井區ND生長出來的第二場氧化層170b,故所形成之場氧化層包括第一場氧化層170a和第二場氧化層170b,使此能夠在不增加元件尺寸的前提下,提升半導體裝置的崩潰電壓(breakdown voltage)。Then, a plurality of drain contact openings DCH are formed in the dielectric layer 180 at opposite sides of the gate layer 162. The drain contact openings DCH penetrate the second field oxide layer 170b to expose a portion of the top surface of the epitaxial layer 110. Then, a drain 118 is formed in the second well region ND of the epitaxial layer 110 through the portion of the top surface of the epitaxial layer 110. The drain 118 may have the same conductivity type as the second well region ND, for example, the second conductivity type. There is a first field oxide layer 170a grown from the gate material layer 160 and a second field oxide layer 170b grown from the second well region ND of the epitaxial layer 110 between the drain 118 and the gate 162. Therefore, the formed field oxide layer includes the first field oxide layer 170a and the second field oxide layer 170b, so that the breakdown voltage of the semiconductor device can be increased without increasing the size of the component.

之後,請參照圖11和圖12,於拾取區R2中形成穿過介電層180、第三絕緣層140、第二絕緣層130、第一絕緣層120以及作為連接區之第二摻雜區114和第三摻雜區116的一部分的源極接觸件開孔SCH。11 and 12, a source contact opening SCH is formed in the pickup region R2 through the dielectric layer 180, the third insulating layer 140, the second insulating layer 130, the first insulating layer 120, and a portion of the second doped region 114 and the third doped region 116 as a connection region.

而後,請參照圖12和圖13,通過汲極接觸件開孔DCH將矽化物190形成於裝置區R1的汲極118上,且通過源極接觸件開孔SCH將矽化物190形成於拾取區R2的連接區上(例如源極接觸件開孔SCH所暴露出的第二摻雜區114和第三摻雜區116上)。矽化物190可包括矽化鎢、矽化鈦、矽化鈷、矽化鋯、矽化鉑、矽化鉬、矽化銅、矽化鎳或其組合。Then, referring to FIG. 12 and FIG. 13 , a silicide 190 is formed on the drain 118 of the device region R1 through the drain contact opening DCH, and a silicide 190 is formed on the connection region of the pickup region R2 through the source contact opening SCH (e.g., on the second doped region 114 and the third doped region 116 exposed by the source contact opening SCH). The silicide 190 may include tungsten silicide, titanium silicide, cobalt silicide, zirconium silicide, platinum silicide, molybdenum silicide, copper silicide, nickel silicide, or a combination thereof.

之後,請參照圖13和圖14,於汲極接觸件開孔DCH和源極接觸件開孔SCH中填入導電材料,以分別於裝置區R1和拾取區R2中形成汲極接觸件DC和源極接觸件SC。導電材料可包括金屬、金屬合金、金屬氮化物或其組合。在一些實施例中,金屬與金屬合金可例如是Cu、Al、Ti、Ta、W、Pt、Cr、Mo或其合金。金屬氮化物可例如是氮化鈦、氮化鎢、氮化鉭、氮化矽鉭、氮化矽鈦、氮化矽鎢或其組合。Thereafter, referring to FIGS. 13 and 14 , conductive materials are filled into the drain contact opening DCH and the source contact opening SCH to form drain contacts DC and source contacts SC in the device region R1 and the pickup region R2, respectively. The conductive materials may include metals, metal alloys, metal nitrides, or combinations thereof. In some embodiments, the metals and metal alloys may be, for example, Cu, Al, Ti, Ta, W, Pt, Cr, Mo, or alloys thereof. The metal nitride may be, for example, titanium nitride, tungsten nitride, tantalum nitride, tantalum silicon nitride, titanium silicon nitride, tungsten silicon nitride, or combinations thereof.

源極接觸件SC穿過介電層180、第三絕緣層140、第二絕緣層130、第一絕緣層120以及作為連接區的第二摻雜區114和第三摻雜區116的一部分。源極接觸件SC通過連接區(拾取區R2中的第二摻雜區114和第三摻雜區116形成為連接區)電性連接至裝置區R1中的源極區(裝置區R1中的第二摻雜區114和第三摻雜區116形成為源極區)。如此一來,不需使用晶圓背面研磨和晶背金屬化製程(BGBM)來將裝置區R1中的源極連接至拾取區R2中,基底100在材料選擇上也不需使用昂貴的高摻雜濃度之基底,並且可節省元件所佔用的面積(例如與LDMOS相比)。The source contact SC passes through the dielectric layer 180, the third insulating layer 140, the second insulating layer 130, the first insulating layer 120, and a portion of the second doped region 114 and the third doped region 116 as the connection region. The source contact SC is electrically connected to the source region in the device region R1 (the second doped region 114 and the third doped region 116 in the device region R1 are formed as the source region) through the connection region (the second doped region 114 and the third doped region 116 in the pickup region R2 are formed as the connection region). As a result, there is no need to use wafer back grinding and wafer back metallization (BGBM) to connect the source in the device region R1 to the pickup region R2, and the substrate 100 does not need to use an expensive high-doping concentration substrate in material selection, and the area occupied by the component can be saved (for example, compared with LDMOS).

以下,將藉由圖13來舉例說明本發明一實施例的半導體裝置。此外,形成本發明一實施例的半導體裝置的方法雖然是以上述方法為例進行說明,但形成本發明的半導體裝置的方法並不以此為限。Hereinafter, a semiconductor device according to an embodiment of the present invention will be described by way of example with reference to FIG13. In addition, although the method for forming a semiconductor device according to an embodiment of the present invention is described using the above method as an example, the method for forming a semiconductor device according to the present invention is not limited thereto.

請參照圖13,半導體裝置包括基底100、磊晶層110、源極區(裝置區R1中的第二摻雜區114和第三摻雜區116形成為源極區)以及連接區(拾取區R2中的第二摻雜區114和第三摻雜區116形成為連接區)。基底100包括裝置區R1以及拾取區R2。磊晶層110設置在基底100上且包括鄰接基底100的第一井區PW以及在第一井區PW上的第二井區ND。磊晶層110包括延伸至第一井區PW中且分別配置在裝置區R1及拾取區R2中的第一溝渠及第二溝渠(例如圖4所示出之溝渠T2)。磊晶層110包括環繞第一溝渠及第二溝渠的第一摻雜區113。源極區設置在鄰接第一溝渠的底部的第一井區PW中。連接區設置在鄰接第二溝渠的底部的第一井區PW中。連接區與源極區彼此連接。Referring to FIG. 13 , the semiconductor device includes a substrate 100, an epitaxial layer 110, a source region (the second doping region 114 and the third doping region 116 in the device region R1 are formed as the source region), and a connection region (the second doping region 114 and the third doping region 116 in the pickup region R2 are formed as the connection region). The substrate 100 includes the device region R1 and the pickup region R2. The epitaxial layer 110 is disposed on the substrate 100 and includes a first well region PW adjacent to the substrate 100 and a second well region ND on the first well region PW. The epitaxial layer 110 includes a first trench and a second trench (e.g., trench T2 shown in FIG. 4 ) extending into the first well region PW and respectively disposed in the device region R1 and the pickup region R2. The epitaxial layer 110 includes a first doped region 113 surrounding the first trench and the second trench. The source region is disposed in a first well region PW adjacent to the bottom of the first trench. The connection region is disposed in the first well region PW adjacent to the bottom of the second trench. The connection region and the source region are connected to each other.

在一些實施例中,源極區和連接區包括第二摻雜區114和第三摻雜區116,第二井區ND、第一摻雜區113及第二摻雜區114具有第一導電類型,第一井區PW、第三摻雜區116及基底100具有不同於第一導電類型的第二導電類型。In some embodiments, the source region and the connection region include a second doped region 114 and a third doped region 116, the second well region ND, the first doped region 113, and the second doped region 114 have a first conductivity type, and the first well region PW, the third doped region 116, and the substrate 100 have a second conductivity type different from the first conductivity type.

在一些實施例中,半導體裝置更包括底部氧化層122、閘極介電層152、閘極層162、第一場氧化層170a以及第二場氧化層170b。底部氧化層122設置在第一溝渠的底部中。閘極介電層152設置在底部氧化層122上以及第一溝渠的鄰接第一井區PW的側壁上。閘極層162設置在閘極介電層152上。第一場氧化層170a設置在閘極層162的頂面及側壁上。第二場氧化層170b設置在第一溝渠的鄰接第二井區ND的側壁上且延伸至磊晶層110的頂面上。In some embodiments, the semiconductor device further includes a bottom oxide layer 122, a gate dielectric layer 152, a gate layer 162, a first field oxide layer 170a, and a second field oxide layer 170b. The bottom oxide layer 122 is disposed in the bottom of the first trench. The gate dielectric layer 152 is disposed on the bottom oxide layer 122 and on the sidewalls of the first trench adjacent to the first well region PW. The gate layer 162 is disposed on the gate dielectric layer 152. The first field oxide layer 170a is disposed on the top surface and the sidewalls of the gate layer 162. The second field oxide layer 170b is disposed on the sidewall of the first trench adjacent to the second well region ND and extends to the top surface of the epitaxial layer 110.

在本發明的一實施例中,在垂直於基底100的方向上,閘極層162與源極區(裝置區R1中的第二摻雜區114和第三摻雜區116形成為源極區)之間的距離大於閘極介電層152的厚度。In one embodiment of the present invention, in a direction perpendicular to the substrate 100 , a distance between the gate layer 162 and the source region (the second doped region 114 and the third doped region 116 in the device region R1 are formed as the source region) is greater than a thickness of the gate dielectric layer 152 .

在本發明的一實施例中,半導體裝置更包括第一絕緣層120、第二絕緣層130、第三絕緣層140、介電層180以及源極接觸件SC。第一絕緣層120設置在第二溝渠中。第二絕緣層130設置在拾取區R2中的磊晶層110上並覆蓋第一絕緣層120。第三絕緣層140設置在第二絕緣層130上。介電層180設置在第三絕緣層140上。源極接觸件SC穿過介電層180、第三絕緣層140、第二絕緣層130、第一絕緣層120以及連接區(拾取區R2中的第二摻雜區114和第三摻雜區116形成為連接區)的一部分。源極接觸件SC通過連接區與源極區電性連接。In one embodiment of the present invention, the semiconductor device further includes a first insulating layer 120, a second insulating layer 130, a third insulating layer 140, a dielectric layer 180, and a source contact SC. The first insulating layer 120 is disposed in the second trench. The second insulating layer 130 is disposed on the epitaxial layer 110 in the pickup region R2 and covers the first insulating layer 120. The third insulating layer 140 is disposed on the second insulating layer 130. The dielectric layer 180 is disposed on the third insulating layer 140. The source contact SC passes through the dielectric layer 180, the third insulating layer 140, the second insulating layer 130, the first insulating layer 120, and a portion of the connection region (the second doped region 114 and the third doped region 116 in the pickup region R2 form the connection region). The source contact SC is electrically connected to the source region through the connection region.

綜上所述,在上述實施例的半導體裝置及其形成方法中,第二摻雜區和第三摻雜區在基底的裝置區中形成為源極區,而第二摻雜區和第三摻雜區在基底的拾取區中形成為連接區,源極區通過第二摻雜區和第三摻雜區電性連接至連接區。如此一來,不需使用晶圓背面研磨和晶背金屬化製程(BGBM)來將裝置區中的源極連接至拾取區中,基底在材料選擇上也不需使用昂貴的高摻雜濃度之基底,並且可節省元件所佔用的面積(例如與LDMOS相比)。In summary, in the semiconductor device and the method for forming the same according to the above-mentioned embodiment, the second doped region and the third doped region are formed as a source region in the device region of the substrate, and the second doped region and the third doped region are formed as a connection region in the pickup region of the substrate, and the source region is electrically connected to the connection region through the second doped region and the third doped region. In this way, it is not necessary to use wafer back grinding and wafer back metallization (BGBM) to connect the source in the device region to the pickup region, and the substrate does not need to use an expensive substrate with a high doping concentration in terms of material selection, and the area occupied by the component can be saved (for example, compared with LDMOS).

100:基底100: Base

110:磊晶層110: Epitaxial layer

112:佈植區112: Planting area

113:第一摻雜區113: First mixed area

114:第二摻雜區114: Second mixed area

116:第三摻雜區116: The third mixed area

118:汲極118: Drain

120:第一絕緣層120: First insulation layer

122:底部氧化層122: Bottom oxide layer

130:第二絕緣層130: Second insulation layer

140:第三絕緣層140: The third insulating layer

150:閘極介電材料層150: Gate dielectric material layer

152:閘極介電層152: Gate dielectric layer

160:閘極材料層160: Gate material layer

162:閘極層162: Gate layer

170a:第一場氧化層170a: First field oxide layer

170b:第二場氧化層170b: Second field oxide layer

180:介電層180: Dielectric layer

190:矽化物190:Silicide

DC:汲極接觸件DC: Drain contact

DCH:汲極接觸件開孔DCH: Drain Contact Hole

ND:第二井區ND: Second Well Area

PW:第一井區PW: First Well Area

PL:保護層PL: Protective layer

R1:裝置區R1: Equipment area

R2:拾取區R2: Pickup Area

SC:源極接觸件SC: Source Contact

SCH:源極接觸件開孔SCH: Source contact opening

T1:第一溝渠T1: First channel

T2:第二溝渠/溝渠T2: Second channel/channel

圖1至圖13是本發明一實施例的半導體裝置的形成方法的剖面示意圖。1 to 13 are cross-sectional schematic views of a method for forming a semiconductor device according to an embodiment of the present invention.

100:基底 100: Base

110:磊晶層 110: Epitaxial layer

113:第一摻雜區 113: First mixed area

114:第二摻雜區 114: Second mixed area

116:第三摻雜區 116: The third mixed area

118:汲極 118: Drain

120:第一絕緣層 120: First insulation layer

122:底部氧化層 122: Bottom oxide layer

130:第二絕緣層 130: Second insulation layer

140:第三絕緣層 140: The third insulating layer

152:閘極介電層 152: Gate dielectric layer

162:閘極層 162: Gate layer

170a:第一場氧化層 170a: First oxide layer

170b:第二場氧化層 170b: Second field oxide layer

180:介電層 180: Dielectric layer

190:矽化物 190: Silicide

DC:汲極接觸件 DC: Drain contact

ND:第二井區 ND: Second well area

PW:第一井區 PW: First Well Area

R1:裝置區 R1: Equipment area

R2:拾取區 R2: Pickup Area

SC:源極接觸件 SC: Source contact

Claims (12)

一種形成半導體裝置的方法,包括:於基底上形成磊晶層,其中所述磊晶層包括鄰接所述基底的第一井區以及在所述第一井區上的第二井區,所述磊晶層包括延伸至所述第一井區中的第一溝渠;於所述第一井區中形成鄰接所述第一溝渠的底部的佈植區;通過所述第一溝渠移除所述佈植區的一部分,以形成第二溝渠以及環繞所述第二溝渠的第一摻雜區;以及於所述第一井區中形成鄰接所述第二溝渠的底部的第二摻雜區以及在所述第二摻雜區下方的第三摻雜區,其中所述第二摻雜區和所述第三摻雜區在所述基底的裝置區中形成為源極區,所述第二摻雜區和所述第三摻雜區在所述基底的拾取區中形成為連接區,所述源極區通過所述第二摻雜區和所述第三摻雜區電性連接至所述連接區。 A method for forming a semiconductor device, comprising: forming an epitaxial layer on a substrate, wherein the epitaxial layer comprises a first well region adjacent to the substrate and a second well region on the first well region, and the epitaxial layer comprises a first trench extending into the first well region; forming a implantation region adjacent to a bottom of the first trench in the first well region; removing a portion of the implantation region through the first trench to form a second trench and a first trench surrounding the second trench; doped region; and forming a second doped region adjacent to the bottom of the second trench in the first well region and a third doped region below the second doped region, wherein the second doped region and the third doped region are formed as a source region in the device region of the substrate, the second doped region and the third doped region are formed as a connection region in the pickup region of the substrate, and the source region is electrically connected to the connection region through the second doped region and the third doped region. 如請求項1所述的方法,其中所述第二井區、所述第一摻雜區及所述第二摻雜區具有第一導電類型,所述第一井區、所述第三摻雜區及所述基底具有不同於所述第一導電類型的第二導電類型。 The method of claim 1, wherein the second well region, the first doped region and the second doped region have a first conductivity type, and the first well region, the third doped region and the substrate have a second conductivity type different from the first conductivity type. 如請求項1所述的方法,更包括:於所述裝置區中的所述第二溝渠的所述底部中形成底部氧化層;於所述底部氧化層上及所述第二溝渠的側壁上形成閘極介電 材料層;於所述閘極介電材料層上形成閘極材料層;移除所述閘極介電材料層的一部分以形成閘極介電層,所述閘極介電層暴露出所述閘極材料層的側壁以及所述第二溝渠的鄰接所述第二井區的側壁;以及對所述閘極材料層及所述第二井區進行氧化製程,以形成閘極層、在所述閘極層的頂面及側壁上的第一場氧化層以及在所述第二溝渠的鄰接所述第二井區的所述側壁上的第二場氧化層,所述第二場氧化層自所述第二溝渠中延伸至所述磊晶層的頂面上。 The method of claim 1 further comprises: forming a bottom oxide layer in the bottom of the second trench in the device region; forming a gate dielectric material layer on the bottom oxide layer and on the sidewalls of the second trench; forming a gate material layer on the gate dielectric material layer; removing a portion of the gate dielectric material layer to form a gate dielectric layer, wherein the gate dielectric layer exposes the gate material layer. The sidewall of the second trench and the sidewall of the second well region adjacent to the second trench; and the gate material layer and the second well region are subjected to an oxidation process to form a gate layer, a first field oxide layer on the top surface and sidewall of the gate layer, and a second field oxide layer on the sidewall of the second trench adjacent to the second well region, wherein the second field oxide layer extends from the second trench to the top surface of the epitaxial layer. 如請求項3所述的方法,更包括:於所述閘極層、所述第一場氧化層及所述第二場氧化層上形成介電層;在所述閘極層的相對兩側處的所述介電層中形成多個汲極接觸件開孔,所述汲極接觸件開孔穿過所述第二場氧化層以暴露出所述磊晶層的所述頂面的一部分;以及通過所述磊晶層的所述頂面的所述部分於所述磊晶層的所述第二井區中形成汲極。 The method of claim 3 further includes: forming a dielectric layer on the gate layer, the first field oxide layer and the second field oxide layer; forming a plurality of drain contact openings in the dielectric layer at opposite sides of the gate layer, the drain contact openings passing through the second field oxide layer to expose a portion of the top surface of the epitaxial layer; and forming a drain in the second well region of the epitaxial layer through the portion of the top surface of the epitaxial layer. 如請求項3所述的方法,其中所述底部氧化層的頂面低於所述第一井區和所述第二井區彼此接觸的界面。 As described in claim 3, the top surface of the bottom oxide layer is lower than the interface where the first well region and the second well region contact each other. 如請求項3所述的方法,其中所述閘極材料層包括多晶矽。 A method as described in claim 3, wherein the gate material layer includes polysilicon. 如請求項3所述的方法,其中在垂直於所述基底的方向上,所述閘極層與所述源極區之間的距離大於所述閘極介電層的厚度。 A method as described in claim 3, wherein the distance between the gate layer and the source region in a direction perpendicular to the substrate is greater than the thickness of the gate dielectric layer. 如請求項1所述的方法,更包括:於所述拾取區中的所述第二溝渠中形成第一絕緣層;於所述拾取區中的所述磊晶層上形成覆蓋所述第一絕緣層的第二絕緣層;於所述第二絕緣層上形成第三絕緣層;於所述第三絕緣層上形成介電層;以及形成穿過所述介電層、所述第三絕緣層、所述第二絕緣層、所述第一絕緣層以及所述連接區的一部分的源極接觸件,其中所述源極接觸件通過所述連接區與所述源極區電性連接。 The method of claim 1 further includes: forming a first insulating layer in the second trench in the pickup region; forming a second insulating layer covering the first insulating layer on the epitaxial layer in the pickup region; forming a third insulating layer on the second insulating layer; forming a dielectric layer on the third insulating layer; and forming a source contact passing through the dielectric layer, the third insulating layer, the second insulating layer, the first insulating layer and a portion of the connection region, wherein the source contact is electrically connected to the source region through the connection region. 一種半導體裝置,包括:基底,包括裝置區以及拾取區;磊晶層,設置在所述基底上且包括鄰接所述基底的第一井區以及在所述第一井區上的第二井區,所述磊晶層包括延伸至所述第一井區中且分別配置在所述裝置區及所述拾取區中的第一溝渠及第二溝渠,且包括環繞所述第一溝渠及所述第二溝渠的第一摻雜區;源極區,設置在鄰接所述第一溝渠的底部的所述第一井區中;以及連接區,設置在鄰接所述第二溝渠的底部的所述第一井區 中,其中所述連接區與所述源極區彼此連接,其中所述源極區和所述連接區包括第二摻雜區和第三摻雜區,所述第二井區、所述第一摻雜區及所述第二摻雜區具有第一導電類型,所述第一井區、所述第三摻雜區及所述基底具有不同於所述第一導電類型的第二導電類型。 A semiconductor device comprises: a substrate, comprising a device region and a pickup region; an epitaxial layer, disposed on the substrate and comprising a first well region adjacent to the substrate and a second well region on the first well region, the epitaxial layer comprising a first trench and a second trench extending into the first well region and respectively disposed in the device region and the pickup region, and comprising a first doped region surrounding the first trench and the second trench; a source region, disposed at the bottom of the first trench adjacent to the first trench and a connecting region disposed in the first well region adjacent to the bottom of the second trench, wherein the connecting region and the source region are connected to each other, wherein the source region and the connecting region include a second doped region and a third doped region, the second well region, the first doped region and the second doped region have a first conductivity type, and the first well region, the third doped region and the substrate have a second conductivity type different from the first conductivity type. 如請求項9所述的半導體裝置,更包括:底部氧化層,設置在所述第一溝渠的所述底部中;閘極介電層,設置在所述底部氧化層上以及所述第一溝渠的鄰接所述第一井區的側壁上;閘極層,設置在所述閘極介電層上;第一場氧化層,設置在所述閘極層的頂面及側壁上;以及第二場氧化層,設置在所述第一溝渠的鄰接所述第二井區的側壁上且延伸至所述磊晶層的頂面上。 The semiconductor device as described in claim 9 further includes: a bottom oxide layer disposed in the bottom of the first trench; a gate dielectric layer disposed on the bottom oxide layer and on the sidewalls of the first trench adjacent to the first well region; a gate layer disposed on the gate dielectric layer; a first field oxide layer disposed on the top surface and sidewalls of the gate layer; and a second field oxide layer disposed on the sidewalls of the first trench adjacent to the second well region and extending to the top surface of the epitaxial layer. 如請求項10所述的半導體裝置,其中在垂直於所述基底的方向上,所述閘極層與所述源極區之間的距離大於所述閘極介電層的厚度。 A semiconductor device as described in claim 10, wherein the distance between the gate layer and the source region in a direction perpendicular to the substrate is greater than the thickness of the gate dielectric layer. 如請求項9所述的半導體裝置,更包括:第一絕緣層,設置在所述第二溝渠中;第二絕緣層,設置在所述拾取區中的所述磊晶層上並覆蓋所述第一絕緣層;第三絕緣層,設置在所述第二絕緣層上;介電層,設置在所述第三絕緣層上;以及 源極接觸件,穿過所述介電層、所述第三絕緣層、所述第二絕緣層、所述第一絕緣層以及所述連接區的一部分,其中所述源極接觸件通過所述連接區與所述源極區電性連接。 The semiconductor device as described in claim 9 further includes: a first insulating layer disposed in the second trench; a second insulating layer disposed on the epitaxial layer in the pickup region and covering the first insulating layer; a third insulating layer disposed on the second insulating layer; a dielectric layer disposed on the third insulating layer; and a source contact passing through the dielectric layer, the third insulating layer, the second insulating layer, the first insulating layer and a portion of the connection region, wherein the source contact is electrically connected to the source region through the connection region.
TW112138964A 2023-10-12 2023-10-12 Semiconductor device and method of forming the same TWI858958B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112138964A TWI858958B (en) 2023-10-12 2023-10-12 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112138964A TWI858958B (en) 2023-10-12 2023-10-12 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
TWI858958B true TWI858958B (en) 2024-10-11
TW202517031A TW202517031A (en) 2025-04-16

Family

ID=94083996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112138964A TWI858958B (en) 2023-10-12 2023-10-12 Semiconductor device and method of forming the same

Country Status (1)

Country Link
TW (1) TWI858958B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712926A (en) * 2018-02-19 2020-09-25 三菱电机株式会社 Silicon carbide semiconductor device
TW202341479A (en) * 2022-04-13 2023-10-16 力拓半導體股份有限公司 Silicon carbide semiconductor power transistor and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712926A (en) * 2018-02-19 2020-09-25 三菱电机株式会社 Silicon carbide semiconductor device
TW202341479A (en) * 2022-04-13 2023-10-16 力拓半導體股份有限公司 Silicon carbide semiconductor power transistor and method of manufacturing the same

Also Published As

Publication number Publication date
TW202517031A (en) 2025-04-16

Similar Documents

Publication Publication Date Title
US11380771B2 (en) High electron mobility transistor device and manufacturing method thereof
US20200312837A1 (en) Semiconductor device comprising deep counter well
TWI858958B (en) Semiconductor device and method of forming the same
TWI714909B (en) High electron mobility transistor device and manufacturing method thereof
TWI775648B (en) Semiconductor device and method for manufacturing the same
TWI858955B (en) Semiconductor device and method of forming the same
TWI880402B (en) Semiconductor device and method of forming the same
US20250204028A1 (en) Semiconductor device and method for forming the same
TWI876940B (en) Method for forming semiconductor device
US20250234614A1 (en) Semiconductor device and method for forming the same
TWI866778B (en) Semiconductor device and method for forming the same
TWI870249B (en) Method for forming semiconductor device
TWI835557B (en) Interconnection structure and method for forming the same
TWI828456B (en) Overlay mark and method of forming the same
TWI876839B (en) Semiconductor device and method for forming the same
US20250246550A1 (en) Semiconductor device and method for forming the same
TWI889139B (en) Semiconductor device and method for forming the same
US20240243187A1 (en) Semiconductor device and method of forming the same
TW202519057A (en) Semiconductor device and method of forming the same
TWI828598B (en) Method of forming pattern
TWI883821B (en) Method for forming patterns
TWI866763B (en) Semiconductor device and method for forming the same
TWI862045B (en) Semiconductor device and method for operating the same
TWI835564B (en) Semiconductor structure and method of forming the same
TWI832491B (en) Semiconductor structure and method thereof