[go: up one dir, main page]

TWI858446B - Direct current converter - Google Patents

Direct current converter Download PDF

Info

Publication number
TWI858446B
TWI858446B TW111146328A TW111146328A TWI858446B TW I858446 B TWI858446 B TW I858446B TW 111146328 A TW111146328 A TW 111146328A TW 111146328 A TW111146328 A TW 111146328A TW I858446 B TWI858446 B TW I858446B
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
resonant
switch
coupled
Prior art date
Application number
TW111146328A
Other languages
Chinese (zh)
Other versions
TW202425506A (en
Inventor
吳森統
洪浚騰
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW111146328A priority Critical patent/TWI858446B/en
Publication of TW202425506A publication Critical patent/TW202425506A/en
Application granted granted Critical
Publication of TWI858446B publication Critical patent/TWI858446B/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A direct current (DC) converter includes a boost converting circuit and a resonant converting circuit. The boost converting circuit is coupled to a DC power and boosts an input DC voltage of the DC power to a first output DC voltage. The resonant converting circuit is coupled to the boost converting circuit and includes an inverter circuit, a resonant circuit and a rectifier circuit. The inverter circuit converts the first output DC voltage into an alternating current (AC) voltage. The resonant circuit and the rectifier circuit convert the AC voltage into a second output DC voltage to supply the second output DC voltage to a load. The inverter circuit has a switching frequency, and the resonant circuit has a first resonant frequency and a second resonant frequency. When the switching frequency is between the first resonant frequency and the second resonant frequency, the inverter circuit operates in a zero voltage switching (ZVS), and the rectifier circuit operates in a zero current switching (ZCS). Therefore, the DC converter can be applied to the wide input voltage range and has the effect of the soft switching.

Description

直流轉換裝置DC Converter

本揭示內容是關於一種直流轉換裝置,特別是關於一種具有高變壓比的直流轉換裝置。The present disclosure relates to a DC conversion device, and more particularly to a DC conversion device with a high transformation ratio.

隨著經濟發展和科技進步,現今社會對環保節能的要求越來越高。由於傳統的化石能源,例如石油、天然氣及煤炭,不但其儲存含量持續減少且對環境會造成極大的汙染,因此可再生能源(Renewable Energy)的發展逐漸受到重視。可再生能源包含太陽能、風力、地熱能及氫能。太陽能與風能易受到自然環境的限制,地熱能欠缺良好的熱交換技術,導致其熱效率低,故氫能為可再生能源中較具有發展前景的選項。With the development of economy and the advancement of science and technology, the requirements for environmental protection and energy conservation are getting higher and higher in today's society. As the storage content of traditional fossil energy, such as oil, natural gas and coal, continues to decrease and it also causes great pollution to the environment, the development of renewable energy has gradually received attention. Renewable energy includes solar energy, wind power, geothermal energy and hydrogen energy. Solar energy and wind energy are easily restricted by the natural environment, and geothermal energy lacks good heat exchange technology, resulting in low thermal efficiency. Therefore, hydrogen energy is a more promising option among renewable energy.

近年來,燃油動力載具逐漸轉為電動化,但因為純電系統未完全普及,許多廠商轉向使用燃料電池作為替代方案。由於燃料電池具環境汙染低、轉換效率高、低噪音、啟動快速及大電流輸出能力的優點,因此燃料電池已成為近年來供電系統的首選。即使燃料電池具有前述優點,但與一般儲蓄電池不同的是燃料電池本身不具有儲存能力,會因為輸出負載大小影響其輸出電壓範圍,造成其寬範圍的輸出電壓特性,且燃料電池多為低電壓輸出,不適合直接提供一般負載作為使用。由此可知,目前市場上缺乏一種能使燃料電池提供穩定電壓予直流負載的轉換裝置,故相關業者均在尋求其解決之道。In recent years, fuel-powered vehicles have gradually turned to electrification, but because pure electric systems are not fully popularized, many manufacturers have turned to fuel cells as an alternative. Fuel cells have the advantages of low environmental pollution, high conversion efficiency, low noise, fast startup, and large current output capacity, so fuel cells have become the first choice for power supply systems in recent years. Even though fuel cells have the above advantages, unlike general storage batteries, fuel cells themselves do not have storage capacity. The output voltage range will be affected by the output load size, resulting in a wide range of output voltage characteristics. In addition, fuel cells are mostly low-voltage outputs, which are not suitable for directly providing general loads. It can be seen from this that there is currently a lack of a conversion device on the market that can enable fuel cells to provide stable voltage to DC loads, so relevant industries are looking for solutions.

因此,本揭示內容之目的在於提供一種直流轉換裝置,其前級使用升壓轉換電路以減少輸入電流漣波,且其後級使用諧振轉換電路以具有柔性切換之效,並將諧振轉換電路串聯耦接升壓轉換電路,達到高變壓比且能應用於寬輸入電壓範圍,並同時減少開關的切換損失。藉此,可解決習知技術中諧振轉換器雖有調壓功能,但仍無法直接使用在當前燃料電池之寬範圍輸入電壓的問題。Therefore, the purpose of the present disclosure is to provide a DC converter, wherein the front stage uses a boost converter circuit to reduce input current ripples, and the rear stage uses a resonant converter circuit to have a flexible switching effect, and the resonant converter circuit is coupled in series with the boost converter circuit to achieve a high conversion ratio and be applicable to a wide input voltage range, while reducing the switching loss of the switch. This can solve the problem that the resonant converter in the prior art has a voltage regulation function but still cannot be directly used in the wide range of input voltages of current fuel cells.

依據本揭示內容的一實施方式提供一種直流轉換裝置,其包含一升壓轉換電路以及一諧振轉換電路。升壓轉換電路耦接一直流電源,並將直流電源的一輸入直流電壓升壓為一第一輸出直流電壓。諧振轉換電路耦接升壓轉換電路,且包含一逆變電路、一諧振電路及一整流電路。逆變電路將第一輸出直流電壓轉換為一交流電壓。諧振電路耦接逆變電路。整流電路耦接諧振電路。諧振電路與整流電路將交流電壓轉換為一第二輸出直流電壓,以對一負載進行供電。逆變電路具有一開關切換頻率,且諧振電路具有一第一諧振頻率與一第二諧振頻率。當開關切換頻率介於第一諧振頻率與第二諧振頻率之間時,逆變電路操作於一零電壓切換,且整流電路操作於一零電流切換。According to an implementation method of the present disclosure, a DC conversion device is provided, which includes a boost conversion circuit and a resonant conversion circuit. The boost conversion circuit is coupled to a DC power source, and boosts an input DC voltage of the DC power source to a first output DC voltage. The resonant conversion circuit is coupled to the boost conversion circuit, and includes an inverter circuit, a resonant circuit, and a rectifier circuit. The inverter circuit converts the first output DC voltage to an AC voltage. The resonant circuit is coupled to the inverter circuit. The rectifier circuit is coupled to the resonant circuit. The resonant circuit and the rectifier circuit convert the AC voltage to a second output DC voltage to supply power to a load. The inverter circuit has a switch switching frequency, and the resonant circuit has a first resonant frequency and a second resonant frequency. When the switch switching frequency is between the first resonant frequency and the second resonant frequency, the inverter circuit operates in a zero voltage switching, and the rectifier circuit operates in a zero current switching.

藉此,本揭示內容的直流轉換裝置在開關切換頻率介於第一諧振頻率與第二諧振頻率之間時,其逆變電路與整流電路可具有柔性切換的功能,進而改善現有電路硬性切換所造成的損失,並提高整體轉換效率。Thus, when the switch switching frequency of the DC converter disclosed in the present invention is between the first resonant frequency and the second resonant frequency, the inverter circuit and the rectifier circuit can have a flexible switching function, thereby improving the loss caused by the rigid switching of the existing circuit and improving the overall conversion efficiency.

前述實施方式的其他實施例如下:前述直流電源可具有一第一電壓端與一第二電壓端,且升壓轉換電路可包含一輸入電容、一第一升壓電感、一第二升壓電感、一第一功率開關、一第二功率開關、一第一二極體、一第二二極體及一輸出電容。輸入電容的二端分別耦接第一電壓端與第二電壓端。第一升壓電感的一端耦接第一電壓端。第二升壓電感的一端耦接第一電壓端。第一功率開關的一汲極端耦接第一升壓電感的另一端。第二功率開關的一汲極端耦接第二升壓電感的另一端。第一二極體的一陽極端耦接第一升壓電感的另一端。第二二極體的一陽極端耦接第二升壓電感的另一端。輸出電容的一端耦接第一二極體的一陰極端與第二二極體的一陰極端,且輸出電容的另一端耦接第一功率開關的一源極端、第二功率開關的一源極端及第二電壓端。Other embodiments of the aforementioned embodiment are as follows: The aforementioned DC power source may have a first voltage terminal and a second voltage terminal, and the boost conversion circuit may include an input capacitor, a first boost inductor, a second boost inductor, a first power switch, a second power switch, a first diode, a second diode and an output capacitor. The two ends of the input capacitor are coupled to the first voltage terminal and the second voltage terminal respectively. One end of the first boost inductor is coupled to the first voltage terminal. One end of the second boost inductor is coupled to the first voltage terminal. A drain end of the first power switch is coupled to the other end of the first boost inductor. A drain end of the second power switch is coupled to the other end of the second boost inductor. An anode end of the first diode is coupled to the other end of the first boost inductor. An anode terminal of the second diode is coupled to the other terminal of the second boost inductor. One terminal of the output capacitor is coupled to a cathode terminal of the first diode and a cathode terminal of the second diode, and the other terminal of the output capacitor is coupled to a source terminal of the first power switch, a source terminal of the second power switch and the second voltage terminal.

前述實施方式的其他實施例如下:前述第一功率開關與第二功率開關的一開關責任比可受二第一開關驅動訊號控制,且二第一開關驅動訊號之間的一相位差為180°。當開關責任比為0.5時,流經第一升壓電感的一第一電流漣波與流經第二升壓電感的一第二電流漣波相互抵消。Other embodiments of the aforementioned embodiment are as follows: a switch duty ratio of the aforementioned first power switch and the second power switch can be controlled by two first switch drive signals, and a phase difference between the two first switch drive signals is 180°. When the switch duty ratio is 0.5, a first current ripple flowing through the first boost inductor and a second current ripple flowing through the second boost inductor cancel each other out.

前述實施方式的其他實施例如下:前述逆變電路可包含二第一開關及二第二開關。二第一開關相互串接組成一第一橋臂,且第一橋臂耦接諧振電路。二第二開關相互串接組成一第二橋臂,且第二橋臂耦接諧振電路。第一橋臂與第二橋臂之間具有交流電壓。Other embodiments of the above-mentioned embodiment are as follows: The above-mentioned inverter circuit may include two first switches and two second switches. The two first switches are connected in series to form a first bridge arm, and the first bridge arm is coupled to the resonant circuit. The two second switches are connected in series to form a second bridge arm, and the second bridge arm is coupled to the resonant circuit. There is an AC voltage between the first bridge arm and the second bridge arm.

前述實施方式的其他實施例如下:前述一第一開關與一第二開關可分別受二第二開關驅動訊號控制而於開關切換頻率下以50%的一開關責任比進行工作,且此一第一開關與此一第二開關之間的一相位差為180°。Other embodiments of the aforementioned embodiment are as follows: the aforementioned first switch and the second switch can be controlled by two second switch driving signals respectively and operate at a switch duty ratio of 50% at a switch switching frequency, and a phase difference between the first switch and the second switch is 180°.

前述實施方式的其他實施例如下:前述諧振電路可包含一諧振電容、一諧振電感、一激磁電感及一變壓器。諧振電容的一端耦接第一橋臂。諧振電感的一端耦接諧振電容的另一端。激磁電感的一端耦接諧振電感的另一端,且激磁電感的另一端耦接第二橋臂。變壓器具有一一次側與一二次側,一次側並聯激磁電感,且二次側耦接整流電路。Other embodiments of the aforementioned embodiment are as follows: The aforementioned resonant circuit may include a resonant capacitor, a resonant inductor, a magnetizing inductor and a transformer. One end of the resonant capacitor is coupled to the first bridge arm. One end of the resonant inductor is coupled to the other end of the resonant capacitor. One end of the magnetizing inductor is coupled to the other end of the resonant inductor, and the other end of the magnetizing inductor is coupled to the second bridge arm. The transformer has a primary side and a secondary side, the magnetizing inductor is connected in parallel to the primary side, and the secondary side is coupled to the rectifier circuit.

前述實施方式的其他實施例如下:當前述開關切換頻率介於第一諧振頻率與第二諧振頻率之間時,流經諧振電感的一諧振電流與流經激磁電感的一激磁電流相等,且變壓器進入一解耦區間以使整流電路截止並操作於零電流切換。Other embodiments of the aforementioned embodiment are as follows: when the aforementioned switch switching frequency is between the first resonant frequency and the second resonant frequency, a resonant current flowing through the resonant inductor is equal to an excitation current flowing through the excitation inductor, and the transformer enters a decoupling region so that the rectifier circuit is turned off and operates at zero current switching.

前述實施方式的其他實施例如下:前述整流電路可包含二第一整流二極體、二第二整流二極體及一輸出電容。二第一整流二極體相互串接組成一第三橋臂,且第三橋臂耦接變壓器的二次側的一起始端。二第二整流二極體相互串接組成一第四橋臂,且第四橋臂耦接變壓器的二次側的一結束端。輸出電容的二端分別耦接二次側的起始端與結束端。Other embodiments of the aforementioned embodiment are as follows: The aforementioned rectifier circuit may include two first rectifier diodes, two second rectifier diodes and an output capacitor. The two first rectifier diodes are connected in series to form a third bridge arm, and the third bridge arm is coupled to a starting end of the secondary side of the transformer. The two second rectifier diodes are connected in series to form a fourth bridge arm, and the fourth bridge arm is coupled to an ending end of the secondary side of the transformer. The two ends of the output capacitor are respectively coupled to the starting end and the ending end of the secondary side.

前述實施方式的其他實施例如下:前述直流轉換裝置可更包含一電壓取樣模組、一數位控制模組及一開關驅動電路。電壓取樣模組耦接升壓轉換電路與整流電路,並擷取第一輸出直流電壓與第二輸出直流電壓而分別產生一第一回授類比訊號與一第二回授類比訊號。數位控制模組電性連接電壓取樣模組。數位控制模組依據第一回授類比訊號而產生複數第一控制訊號,並依據第二回授類比訊號而產生複數第二控制訊號。開關驅動電路電性連接數位控制模組、升壓轉換電路及逆變電路。開關驅動電路將此些第一控制訊號轉換為複數第一開關驅動訊號,並將此些第二控制訊號轉換為複數第二開關驅動訊號,以控制升壓轉換電路與逆變電路。Other embodiments of the aforementioned implementation method are as follows: The aforementioned DC conversion device may further include a voltage sampling module, a digital control module and a switch drive circuit. The voltage sampling module is coupled to the boost conversion circuit and the rectifier circuit, and captures the first output DC voltage and the second output DC voltage to generate a first feedback analog signal and a second feedback analog signal respectively. The digital control module is electrically connected to the voltage sampling module. The digital control module generates a plurality of first control signals according to the first feedback analog signal, and generates a plurality of second control signals according to the second feedback analog signal. The switch drive circuit is electrically connected to the digital control module, the boost conversion circuit and the inverter circuit. The switch driving circuit converts the first control signals into a plurality of first switch driving signals, and converts the second control signals into a plurality of second switch driving signals to control the boost conversion circuit and the inverter circuit.

前述實施方式的其他實施例如下:前述數位控制模組可包含一訊號轉換器、一減法器及一比例積分控制器。訊號轉換器將第一回授類比訊號轉換為一第一回授數位訊號,並將第二回授類比訊號轉換為一第二回授數位訊號。減法器電性連接訊號轉換器。減法器將第一回授數位訊號分別與複數第一參考電壓訊號進行相減而產生複數第一差值訊號,並將第二回授數位訊號分別與複數第二參考電壓訊號進行相減而產生複數第二差值訊號。比例積分控制器電性連接減法器。比例積分控制器接收此些第一差值訊號及此些第二差值訊號而分別產生此些第一控制訊號及此些第二控制訊號。Other embodiments of the aforementioned implementation method are as follows: The aforementioned digital control module may include a signal converter, a subtractor, and a proportional integral controller. The signal converter converts the first feedback analog signal into a first feedback digital signal, and converts the second feedback analog signal into a second feedback digital signal. The subtractor is electrically connected to the signal converter. The subtractor subtracts the first feedback digital signal from a plurality of first reference voltage signals to generate a plurality of first difference signals, and subtracts the second feedback digital signal from a plurality of second reference voltage signals to generate a plurality of second difference signals. The proportional integral controller is electrically connected to the subtractor. The proportional-integral controller receives the first difference signals and the second difference signals to generate the first control signals and the second control signals respectively.

以下將參照圖式說明本揭示內容的複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭示內容。也就是說,在本揭示內容部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複的元件將可能使用相同的編號表示之。The following will describe multiple embodiments of the present disclosure with reference to the drawings. For the sake of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly known structures and components will be depicted in a simple schematic manner in the drawings; and repeated components may be represented by the same number.

此外,本文中當某一元件(或單元或模組等)「連接/連結」於另一元件,可指所述元件是直接連接/連結於另一元件,亦可指某一元件是間接連接/連結於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接/連結」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中的元件/單元/電路的組合非此領域中的一般周知、常規或習知的組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中的通常知識者輕易完成。In addition, in this article, when a certain component (or unit or module, etc.) is "connected/linked" to another component, it may refer to that the component is directly connected/linked to the other component, or it may refer to that the component is indirectly connected/linked to the other component, that is, there are other components between the component and the other component. When it is explicitly stated that a certain component is "directly connected/linked" to another component, it means that there are no other components between the component and the other component. The terms first, second, third, etc. are only used to describe different components, and there is no restriction on the components themselves. Therefore, the first component can also be renamed as the second component. Moreover, the combination of components/units/circuits in this article is not a generally known, conventional or known combination in this field. Whether the components/units/circuits themselves are known cannot be used to determine whether their combination relationship is easy to be completed by ordinary knowledgeable people in the technical field.

請一併參閱第1圖與第2圖,其中第1圖係繪示依照本揭示內容的第一實施例的直流轉換裝置100的方塊示意圖,第2圖係繪示第1圖的直流轉換裝置100的電路示意圖。如第1圖與第2圖所示,直流轉換裝置100耦接於一直流電源10與一負載20之間,其中直流電源10可為供電予一電動車的一燃料電池或一儲能裝置,且負載20可為電動車的一儲蓄電池或一供電系統。直流轉換裝置100包含作為前級使用的一升壓轉換電路110以及作為後級使用的一諧振轉換電路120。升壓轉換電路110耦接直流電源10,並將直流電源10的一輸入直流電壓V IN1升壓為一第一輸出直流電壓V OUT1。諧振轉換電路120串聯耦接升壓轉換電路110,且包含一逆變電路121、一諧振電路122及一整流電路123。逆變電路121將第一輸出直流電壓V OUT1轉換為一交流電壓v AB。諧振電路122與整流電路123將交流電壓v AB轉換為一第二輸出直流電壓V OUT2以對負載20進行供電,且負載20包含一負載電阻RL 2,其跨壓為第二輸出直流電壓V OUT2。逆變電路121具有一開關切換頻率,且諧振電路122具有一第一諧振頻率與一第二諧振頻率。當直流轉換裝置100受一數位控制模組控制且逆變電路121的開關切換頻率介於諧振電路122的第一諧振頻率與第二諧振頻率之間時,逆變電路121操作於一零電壓切換(Zero Voltage Switching;ZVS),且整流電路123操作於一零電流切換(Zero Current Switching;ZCS)。 Please refer to FIG. 1 and FIG. 2 together, wherein FIG. 1 is a block diagram of a DC converter 100 according to a first embodiment of the present disclosure, and FIG. 2 is a circuit diagram of the DC converter 100 of FIG. 1. As shown in FIG. 1 and FIG. 2, the DC converter 100 is coupled between a DC power source 10 and a load 20, wherein the DC power source 10 may be a fuel cell or an energy storage device for supplying power to an electric vehicle, and the load 20 may be a storage battery or a power supply system of the electric vehicle. The DC converter 100 includes a boost converter circuit 110 used as a front stage and a resonant converter circuit 120 used as a rear stage. The boost converter circuit 110 is coupled to the DC power source 10 and boosts an input DC voltage V IN1 of the DC power source 10 to a first output DC voltage V OUT1 . The resonant converter circuit 120 is coupled in series to the boost converter circuit 110 and includes an inverter circuit 121, a resonant circuit 122 and a rectifier circuit 123. The inverter circuit 121 converts the first output DC voltage V OUT1 to an AC voltage v AB . The resonant circuit 122 and the rectifier circuit 123 convert the AC voltage vAB into a second output DC voltage VOUT2 to power the load 20, and the load 20 includes a load resistor RL2 , whose voltage is the second output DC voltage VOUT2 . The inverter circuit 121 has a switching frequency, and the resonant circuit 122 has a first resonant frequency and a second resonant frequency. When the DC converter 100 is controlled by a digital control module and the switching frequency of the inverter circuit 121 is between the first resonant frequency and the second resonant frequency of the resonant circuit 122, the inverter circuit 121 operates in a zero voltage switching (Zero Voltage Switching; ZVS), and the rectifier circuit 123 operates in a zero current switching (Zero Current Switching; ZCS).

進一步地說,升壓轉換電路110可為一交錯式升壓轉換器。諧振轉換電路120可為一全橋LLC諧振轉換器、一半橋LLC諧振轉換器或一相移式全橋LLC諧振轉換器。因此,本揭示內容的直流轉換裝置100即為一種交錯式升壓轉換器串級LLC諧振轉換器,其透過升壓轉換電路110降低總輸入電流漣波,並控制諧振轉換電路120於適當頻率(即開關切換頻率介於第一諧振頻率與第二諧振頻率之間)的操作下,藉以令逆變電路121與整流電路123可具有柔性切換的功能,進而改善現有電路硬性切換所造成的損失,並提高整體轉換效率。以下將詳細說明本揭示內容的直流轉換裝置100的各電路結構。Specifically, the boost converter circuit 110 may be an interleaved boost converter. The resonant converter circuit 120 may be a full-bridge LLC resonant converter, a half-bridge LLC resonant converter, or a phase-shifted full-bridge LLC resonant converter. Therefore, the DC converter 100 of the present disclosure is a staggered boost converter cascade LLC resonant converter, which reduces the total input current ripple through the boost converter circuit 110 and controls the resonant converter circuit 120 to operate at an appropriate frequency (i.e., the switch switching frequency is between the first resonant frequency and the second resonant frequency), so that the inverter circuit 121 and the rectifier circuit 123 can have a flexible switching function, thereby improving the loss caused by the hard switching of the existing circuit and improving the overall conversion efficiency. The following will describe in detail the various circuit structures of the DC converter 100 of the present disclosure.

詳細地說,直流電源10的輸入直流電壓V IN1可具有一第一電壓端(即正電壓端)與一第二電壓端(即負電壓端)。升壓轉換電路110可包含一輸入電容C IN1、一第一升壓電感L 1、一第二升壓電感L 2、一第一功率開關S 1、一第二功率開關S 2、一第一二極體D 1、一第二二極體D 2及一輸出電容C OUT1。輸入電容C IN1的二端分別耦接輸入直流電壓V IN1的第一電壓端與第二電壓端。第一升壓電感L 1的一端與第二升壓電感L 2的一端皆耦接輸入直流電壓V IN1的第一電壓端。第一功率開關S 1的一汲極端耦接第一升壓電感L 1的另一端。第二功率開關S 2的一汲極端耦接第二升壓電感L 2的另一端。第一二極體D 1的一陽極端耦接第一升壓電感L 1的另一端。第二二極體D 2的一陽極端耦接第二升壓電感L 2的另一端。輸出電容C OUT1的一端耦接第一二極體D 1的一陰極端與第二二極體D 2的一陰極端,且輸出電容C OUT1的另一端耦接第一功率開關S 1的一源極端、第二功率開關S 2的一源極端及輸入直流電壓V IN1的第二電壓端。 Specifically, the input DC voltage V IN1 of the DC power source 10 may have a first voltage terminal (i.e., a positive voltage terminal) and a second voltage terminal (i.e., a negative voltage terminal). The boost conversion circuit 110 may include an input capacitor C IN1 , a first boost inductor L 1 , a second boost inductor L 2 , a first power switch S 1 , a second power switch S 2 , a first diode D 1 , a second diode D 2 and an output capacitor C OUT1 . Two ends of the input capacitor C IN1 are respectively coupled to the first voltage terminal and the second voltage terminal of the input DC voltage V IN1 . One end of the first boost inductor L1 and one end of the second boost inductor L2 are both coupled to the first voltage terminal of the input DC voltage V IN1 . A drain end of the first power switch S1 is coupled to the other end of the first boost inductor L1 . A drain end of the second power switch S2 is coupled to the other end of the second boost inductor L2 . An anode end of the first diode D1 is coupled to the other end of the first boost inductor L1 . An anode end of the second diode D2 is coupled to the other end of the second boost inductor L2 . One end of the output capacitor C OUT1 is coupled to a cathode end of the first diode D 1 and a cathode end of the second diode D 2 , and the other end of the output capacitor C OUT1 is coupled to a source end of the first power switch S 1 , a source end of the second power switch S 2 and a second voltage end of the input DC voltage V IN1 .

在升壓轉換電路110的部分,直流轉換裝置100採用脈波寬度調變技術(Pulse Width Modulation;PWM),第一功率開關S 1與第二功率開關S 2的一開關責任比(Duty Ratio)可受來自一開關驅動電路的二第一開關驅動訊號v GS1、v GS2(繪示於第3圖)控制,且經由PWM調變之後,二第一開關驅動訊號v GS1、v GS2之間的一相位差可為180°,進而可控制第一升壓電感L 1和第二升壓電感L 2所儲存的能量以達到調節第一輸出直流電壓V OUT1的功能。當前述開關責任比為0.5時,流經第一升壓電感L 1的一第一電流漣波與流經第二升壓電感L 2的一第二電流漣波相互抵消,即產生漣波抵消(Ripple Cancellation),藉以令直流電源10的一總輸入電流i IN1(繪示於第3圖)的漣波減小。 In the boost conversion circuit 110, the DC conversion device 100 adopts pulse width modulation (PWM) technology. A switch duty ratio (Duty Ratio) of the first power switch S1 and the second power switch S2 can be controlled by two first switch drive signals v GS1 and v GS2 (shown in FIG. 3 ) from a switch drive circuit. After PWM modulation, a phase difference between the two first switch drive signals v GS1 and v GS2 can be 180°, thereby controlling the energy stored in the first boost inductor L1 and the second boost inductor L2 to achieve the function of regulating the first output DC voltage V OUT1 . When the switch duty ratio is 0.5, a first current ripple flowing through the first boost inductor L1 and a second current ripple flowing through the second boost inductor L2 cancel each other, i.e., ripple cancellation occurs, thereby reducing the ripple of a total input current i IN1 (shown in FIG. 3 ) of the DC power source 10 .

此外,逆變電路121可包含一輸入電容C IN2、二第一開關S 3、S 4及二第二開關S 5、S 6。輸入電容C IN2並聯輸出電容C OUT1。輸入電容C IN2耦接第一開關S 3的一汲極端與第二開關S 5的一汲極端,並耦接第一開關S 4的一源極端與第二開關S 6的一源極端。二第一開關S 3、S 4相互串接組成一第一橋臂B 1,且第一橋臂B 1耦接諧振電路122。二第二開關S 5、S 6相互串接組成一第二橋臂B 2,且第二橋臂B 2耦接諧振電路122。第一橋臂B 1與第二橋臂B 2之間具有交流電壓v AB;換言之,直流轉換裝置100藉由控制二第一開關S 3、S 4的一開關責任比和二第二開關S 5、S 6的一開關責任比而將第一輸出直流電壓V OUT1轉換為交流電壓v AB,並由第一橋臂B 1與第二橋臂B 2輸出,其中交流電壓v AB可為一方波輸入電壓,其可作為後端諧振槽(即諧振電路122)的輸入電壓。 In addition, the inverter circuit 121 may include an input capacitor C IN2 , two first switches S 3 , S 4 and two second switches S 5 , S 6 . The input capacitor C IN2 is connected in parallel with the output capacitor C OUT1 . The input capacitor C IN2 is coupled to a drain terminal of the first switch S 3 and a drain terminal of the second switch S 5 , and is coupled to a source terminal of the first switch S 4 and a source terminal of the second switch S 6 . The two first switches S 3 , S 4 are connected in series to form a first bridge arm B 1 , and the first bridge arm B 1 is coupled to the resonant circuit 122 . The two second switches S 5 , S 6 are connected in series to form a second bridge arm B 2 , and the second bridge arm B 2 is coupled to the resonant circuit 122 . There is an AC voltage v AB between the first bridge arm B1 and the second bridge arm B2 ; in other words, the DC conversion device 100 converts the first output DC voltage V OUT1 into an AC voltage v AB by controlling a switch duty ratio of the two first switches S 3 and S 4 and a switch duty ratio of the two second switches S 5 and S 6 , and outputs the AC voltage v AB from the first bridge arm B1 and the second bridge arm B2 , wherein the AC voltage v AB can be a square wave input voltage, which can be used as an input voltage of the rear-end resonant tank (i.e., the resonant circuit 122).

諧振電路122可包含一諧振電容C r、一諧振電感L r、一激磁電感L m及一變壓器TR。諧振電容C r的一端耦接第一橋臂B 1。諧振電感L r的一端耦接諧振電容C r的另一端。激磁電感L m的一端耦接諧振電感L r的另一端,且激磁電感L m的另一端耦接第二橋臂B 2。變壓器TR具有一一次側與一二次側,一次側並聯激磁電感L m,且二次側耦接整流電路123,其中一次側的匝數N P可為16匝,二次側的匝數N S為40匝,因此變壓器TR的匝數比可為0.4,但本揭示內容不以此為限。 The resonant circuit 122 may include a resonant capacitor Cr , a resonant inductor Lr , a magnetizing inductor Lm and a transformer TR. One end of the resonant capacitor Cr is coupled to the first bridge arm B1 . One end of the resonant inductor Lr is coupled to the other end of the resonant capacitor Cr . One end of the magnetizing inductor Lm is coupled to the other end of the resonant inductor Lr , and the other end of the magnetizing inductor Lm is coupled to the second bridge arm B2 . The transformer TR has a primary side and a secondary side, the primary side is connected in parallel with the magnetizing inductor L m , and the secondary side is coupled to the rectifier circuit 123 , wherein the number of turns NP of the primary side can be 16 turns, and the number of turns NS of the secondary side can be 40 turns, so the turns ratio of the transformer TR can be 0.4, but the present disclosure is not limited thereto.

整流電路123可包含二第一整流二極體D 3、D 4、二第二整流二極體D 5、D 6及一輸出電容C OUT2。二第一整流二極體D 3、D 4相互串接組成一第三橋臂B 3,且第三橋臂B 3耦接變壓器TR的二次側的一起始端(即圓點端)。二第二整流二極體D 5、D 6相互串接組成一第四橋臂B 4,且第四橋臂B 4耦接變壓器TR的二次側的一結束端。輸出電容C OUT2的二端分別耦接二次側的起始端與結束端,並分別耦接負載電阻RL 2的二端。 The rectifier circuit 123 may include two first rectifier diodes D 3 , D 4 , two second rectifier diodes D 5 , D 6 and an output capacitor C OUT2 . The two first rectifier diodes D 3 , D 4 are connected in series to form a third bridge arm B 3 , and the third bridge arm B 3 is coupled to a starting end (i.e., a dot end) of the secondary side of the transformer TR. The two second rectifier diodes D 5 , D 6 are connected in series to form a fourth bridge arm B 4 , and the fourth bridge arm B 4 is coupled to an ending end of the secondary side of the transformer TR. The two ends of the output capacitor C OUT2 are respectively coupled to the starting end and the ending end of the secondary side, and are respectively coupled to the two ends of the load resistor RL 2 .

在諧振轉換電路120的部分,直流轉換裝置100採用脈波頻率調變技術(Pulse Frequency Modulation;PFM),第一開關S 3與第二開關S 6可分別受來自開關驅動電路的二第二開關驅動訊號控制而於開關切換頻率下以50%的開關責任比進行工作,且第一開關S 3與第二開關S 6之間的一相位差可為180°。同理,第一開關S 4與第二開關S 5可分別受來自開關驅動電路的另二第二開關驅動訊號控制而於開關切換頻率下以50%的開關責任比進行工作,且第一開關S 4與第二開關S 5之間的一相位差可為180°,其中前述的開關責任比可包含一死區時間(Dead time),以防止所有開關同時發生導通而造成電路短路損毀。因此,直流轉換裝置100透過由二第一開關S 3、S 4及二第二開關S 5、S 6組成的全橋逆變器(即逆變電路121),將第一輸出直流電壓V OUT1切成交流方波(即交流電壓v AB)饋入諧振電路122。諧振轉換電路120透過變壓器TR將交流電壓v AB的能量從一次側傳送至二次側,然後藉由整流電路123將二次側的另一交流電壓整流成第二輸出直流電壓V OUT2以供負載20使用。在諧振轉換電路120中,逆變電路121和整流電路123皆各自達成柔性切換,進而減少開關切換損失且減少電磁干擾(Electromagnetic Interference;EMI)。 In the part of the resonant conversion circuit 120, the DC conversion device 100 adopts a pulse frequency modulation (PFM) technique. The first switch S3 and the second switch S6 can be respectively controlled by two second switch driving signals from the switch driving circuit to operate at a switching duty ratio of 50% at the switch switching frequency, and a phase difference between the first switch S3 and the second switch S6 can be 180°. Similarly, the first switch S4 and the second switch S5 can be controlled by the other two second switch driving signals from the switch driving circuit respectively and work at a switch duty ratio of 50% at the switch switching frequency, and a phase difference between the first switch S4 and the second switch S5 can be 180°, wherein the aforementioned switch duty ratio can include a dead time to prevent all switches from being turned on at the same time and causing circuit short circuit damage. Therefore, the DC conversion device 100 cuts the first output DC voltage V OUT1 into an AC square wave (i.e., AC voltage v AB ) to feed the resonant circuit 122 through a full-bridge inverter (i.e., inverter circuit 121 ) composed of two first switches S3 , S4 and two second switches S5, S6. The resonant converter circuit 120 transmits the energy of the AC voltage v AB from the primary side to the secondary side through the transformer TR, and then rectifies the other AC voltage on the secondary side into a second output DC voltage V OUT2 for use by the load 20 through the rectifier circuit 123. In the resonant converter circuit 120, the inverter circuit 121 and the rectifier circuit 123 each achieve soft switching, thereby reducing switch switching loss and electromagnetic interference (EMI).

另一方面,直流轉換裝置100的一總電壓增益可分為一第一電壓增益與一第二電壓增益,其中第一電壓增益為輸入直流電壓V IN1轉換至第一輸出直流電壓V OUT1,第二電壓增益為第一輸出直流電壓V OUT1轉換至第二輸出直流電壓V OUT2On the other hand, a total voltage gain of the DC converter 100 can be divided into a first voltage gain and a second voltage gain, wherein the first voltage gain is the conversion of the input DC voltage V IN1 to the first output DC voltage V OUT1 , and the second voltage gain is the conversion of the first output DC voltage V OUT1 to the second output DC voltage V OUT2 .

於升壓轉換電路110中,第一升壓電感L 1的一電感電流與第二升壓電感L 2的一電感電流均處於連續導通模式(Continuous Conduction Mode;CCM),前述二電感電流之間的相位差可為180°。因此,在分析第一電壓增益時,僅須單獨取其中一個電感進行分析即可。當第一功率開關S 1導通時,第一升壓電感L 1可為一儲存能量狀態,第一升壓電感L 1的電感電流呈線性上升;當第一功率開關S 1截止時,儲存於第一升壓電感L 1的能量透過第一二極體D 1向輸出電容C OUT1釋放,第一升壓電感L 1的電感電流呈線性下降。當升壓轉換電路110處於穩態時,在一個開關週期內,根據伏秒平衡原理可推導出下列式子(1)與(2): (1); (2)。 In the boost conversion circuit 110, an inductor current of the first boost inductor L1 and an inductor current of the second boost inductor L2 are both in continuous conduction mode (CCM), and the phase difference between the two inductor currents can be 180°. Therefore, when analyzing the first voltage gain, only one of the inductors needs to be analyzed. When the first power switch S1 is turned on, the first boost inductor L1 can be in an energy storage state, and the inductor current of the first boost inductor L1 increases linearly; when the first power switch S1 is turned off, the energy stored in the first boost inductor L1 is released to the output capacitor C OUT1 through the first diode D1 , and the inductor current of the first boost inductor L1 decreases linearly. When the boost converter circuit 110 is in a steady state, within a switching cycle, the following equations (1) and (2) can be derived according to the volt-second balance principle: (1); (2).

其中,V IN1為輸入直流電壓,D為第一功率開關S 1與第二功率開關S 2的開關責任比(0<D<1),T S為開關週期,G 1為升壓轉換電路110的電壓增益(即為第一電壓增益)。由式子(2)可知,升壓轉換電路110的電壓增益與開關責任比有關,電壓增益隨著開關責任比增大而變大,且恆大於等於1。 Wherein, V IN1 is the input DC voltage, D is the switching duty ratio of the first power switch S 1 and the second power switch S 2 (0<D<1), TS is the switching period, and G 1 is the voltage gain of the boost converter circuit 110 (i.e., the first voltage gain). It can be seen from equation (2) that the voltage gain of the boost converter circuit 110 is related to the switching duty ratio. The voltage gain increases as the switching duty ratio increases, and is always greater than or equal to 1.

於諧振轉換電路120中,最常使用一基本諧波近似法(Fundamental Harmonic Approximation;FHA)分析諧振電路122的等效模型以獲得諧振電路122的電壓增益與切換頻率的關係式。當諧振電路122操作於諧振頻率點上時,諧振電感L r的一諧振電流相似於正弦波,因此只須考慮交流電壓v AB和激磁電感L m與變壓器TR的一次側電壓的基波成分。根據FHA獲得諧振電路122的電壓增益符合下列式子(3),諧振轉換電路120的電壓增益符合下列式子(4): (3); (4)。 In the resonant converter circuit 120, a fundamental harmonic approximation (FHA) is most commonly used to analyze the equivalent model of the resonant circuit 122 to obtain the relationship between the voltage gain and the switching frequency of the resonant circuit 122. When the resonant circuit 122 operates at the resonant frequency point, a resonant current of the resonant inductor Lr is similar to a sine wave, so only the fundamental component of the AC voltage vAB and the excitation inductor Lm and the primary voltage of the transformer TR need to be considered. According to FHA, the voltage gain of the resonant circuit 122 meets the following equation (3), and the voltage gain of the resonant converter circuit 120 meets the following equation (4): (3); (4).

其中,M vr為諧振電路122的電壓增益,f n為標準化頻率,其為開關切換頻率與諧振頻率的比值。k為激磁電感L m與諧振電感L r的比值(本揭示內容設定k=6),Q為電路品質因數(本揭示內容設定Q=0.45),N為變壓器TR的匝數比,G 2為諧振轉換電路120的電壓增益(即為第二電壓增益)。由此可知,第二電壓增益受到各變數(f n、k、Q)所影響,但仍可藉由改變二第一開關S 3、S 4及二第二開關S 5、S 6的切換頻率來穩定第二輸出直流電壓V OUT2,達到穩壓效果。藉此,本揭示內容的直流轉換裝置100可透過前級的升壓轉換電路110將直流電源10的寬範圍輸入(即輸入直流電壓V IN1)升壓至第一輸出直流電壓V OUT1,再透過後級的諧振轉換電路120的變壓器TR進行升壓,最後經由調頻控制以穩定第二輸出直流電壓V OUT2,達到具高變壓比的直流-直流轉換器之效。以下將透過第2圖搭配後續圖式以說明本揭示內容的直流轉換裝置100的各電路的細節動作。 Wherein, M vr is the voltage gain of the resonant circuit 122, f n is the normalized frequency, which is the ratio of the switch switching frequency to the resonant frequency, k is the ratio of the magnetizing inductance L m to the resonant inductance L r (the present disclosure sets k=6), Q is the circuit quality factor (the present disclosure sets Q=0.45), N is the turns ratio of the transformer TR, and G 2 is the voltage gain of the resonant conversion circuit 120 (i.e., the second voltage gain). It can be seen that the second voltage gain is affected by various variables (f n , k, Q), but the second output DC voltage V OUT2 can still be stabilized by changing the switching frequency of the two first switches S 3 , S 4 and the two second switches S 5 , S 6 to achieve a voltage stabilization effect. Thus, the DC converter 100 of the present disclosure can boost the wide-range input (i.e., input DC voltage V IN1 ) of the DC power source 10 to the first output DC voltage V OUT1 through the front-stage boost converter circuit 110, and then boost it through the transformer TR of the rear-stage resonant converter circuit 120, and finally stabilize the second output DC voltage V OUT2 through frequency modulation control, thereby achieving the effect of a DC-DC converter with a high conversion ratio. The following will use FIG. 2 in conjunction with subsequent figures to illustrate the detailed operation of each circuit of the DC converter 100 of the present disclosure.

請一併參閱第2圖、第3圖、第4圖及第5圖,其中第3圖係繪示第2圖的直流轉換裝置100的第一功率開關S 1與第二功率開關S 2導通的電路示意圖,第4圖係繪示第2圖的直流轉換裝置100的第一功率開關S 1導通且第二功率開關S 2截止的電路示意圖,第5圖係繪示第2圖的直流轉換裝置100的第一功率開關S 1截止且第二功率開關S 2導通的電路示意圖。於電路動作分析中,第2圖的直流轉換裝置100操作於穩態。輸入電容C IN1與輸出電容C OUT1為大電容,直流電源10為理想直流電源。各開關具有本質二極體與寄生電容,但導通電阻與寄生電容皆忽略不計。變壓器TR、各電感、各電容及各二極體皆為理想元件,寄生元件與串聯等效電阻皆忽略不計。第一升壓電感L 1的一電感值與第二升壓電感L 2的一電感值相同。 Please refer to FIG. 2, FIG. 3, FIG. 4 and FIG. 5 together, wherein FIG. 3 is a circuit diagram showing the first power switch S1 and the second power switch S2 of the DC converter 100 of FIG. 2 being turned on, FIG. 4 is a circuit diagram showing the first power switch S1 of the DC converter 100 of FIG. 2 being turned on and the second power switch S2 being turned off, and FIG. 5 is a circuit diagram showing the first power switch S1 of the DC converter 100 of FIG. 2 being turned off and the second power switch S2 being turned on. In the circuit action analysis, the DC converter 100 of FIG. 2 operates in a steady state. The input capacitor C IN1 and the output capacitor C OUT1 are large capacitors, and the DC power source 10 is an ideal DC power source. Each switch has an intrinsic diode and a parasitic capacitance, but the on-resistance and the parasitic capacitance are both negligible. The transformer TR, each inductor, each capacitor and each diode are all ideal components, and parasitic components and series equivalent resistance are all negligible. An inductance value of the first boost inductor L1 is the same as an inductance value of the second boost inductor L2 .

升壓轉換電路110為二組升壓電路的結合,第一功率開關S 1與第二功率開關S 2的開關責任比(以下簡稱D)相同。二第一開關驅動訊號v GS1、v GS2存在180°相位差。當輸入直流電壓V IN1的2倍大於第一輸出直流電壓V OUT1時,D小於0.5;當輸入直流電壓V IN1的2倍小於第一輸出直流電壓V OUT1時,D大於0.5。升壓轉換電路110的動作狀態可分為三個部分。由於D小於0.5所對應的電路動作與D大於0.5所對應的電路動作相同,因此以下僅針對D大於0.5進行說明。 The boost converter circuit 110 is a combination of two boost circuits. The switch duty ratio (hereinafter referred to as D) of the first power switch S1 and the second power switch S2 is the same. The two first switch drive signals v GS1 and v GS2 have a 180° phase difference. When the input DC voltage V IN1 is twice greater than the first output DC voltage V OUT1 , D is less than 0.5; when the input DC voltage V IN1 is twice less than the first output DC voltage V OUT1 , D is greater than 0.5. The operation state of the boost converter circuit 110 can be divided into three parts. Since the circuit operation corresponding to D less than 0.5 is the same as the circuit operation corresponding to D greater than 0.5, the following only describes D greater than 0.5.

如第3圖所示,第一功率開關S 1與第二功率開關S 2皆為導通狀態,總輸入電流i IN1可拆分為一第一電感電流i L1與一第二電感電流i L2,且其分別自輸入直流電壓V IN1流經第一升壓電感L 1與第二升壓電感L 2而進行儲能。第一二極體D 1與第二二極體D 2皆逆向偏壓截止,輸出電容C OUT1釋放能量至一輸出電阻R OUT1。如第4圖所示,第一功率開關S 1為導通狀態,第二功率開關S 2為截止狀態。第二二極體D 2順向偏壓導通,流經第二升壓電感L 2的第二電感電流i L2釋放能量至輸出電容C OUT1和輸出電阻R OUT1。第一升壓電感L 1進行儲能。如第5圖所示,第一功率開關S 1為截止狀態,第二功率開關S 2為導通狀態。第一二極體D 1順向偏壓導通,流經第一升壓電感L 1的第一電感電流i L1釋放能量至輸出電容C OUT1和輸出電阻R OUT1。第二升壓電感L 2進行儲能。 As shown in FIG. 3 , the first power switch S 1 and the second power switch S 2 are both in the on state, and the total input current i IN1 can be split into a first inductor current i L1 and a second inductor current i L2 , and they flow from the input DC voltage V IN1 through the first boost inductor L 1 and the second boost inductor L 2 to store energy. The first diode D 1 and the second diode D 2 are both reverse biased and cut off, and the output capacitor C OUT1 releases energy to an output resistor R OUT1 . As shown in FIG. 4 , the first power switch S 1 is in the on state, and the second power switch S 2 is in the off state. The second diode D 2 is forward biased and turned on, and the second inductor current i L2 flowing through the second boost inductor L 2 releases energy to the output capacitor C OUT1 and the output resistor R OUT1 . The first boost inductor L 1 stores energy. As shown in FIG. 5 , the first power switch S 1 is in the off state, and the second power switch S 2 is in the on state. The first diode D 1 is forward biased and turned on, and the first inductor current i L1 flowing through the first boost inductor L 1 releases energy to the output capacitor C OUT1 and the output resistor R OUT1 . The second boost inductor L 2 stores energy.

進一步地說,由於二電感值相同,流經第一升壓電感L 1的第一電流漣波與流經第二升壓電感L 2的第二電流漣波亦相同,且符合下列式子(5): (5)。 Furthermore, since the two inductors have the same value, the first current ripple flowing through the first boost inductor L1 and the second current ripple flowing through the second boost inductor L2 are also the same and meet the following equation (5): (5).

其中, 為各相電流漣波, 為第一電流漣波, 為第二電流漣波,V IN1為輸入直流電壓,D為第一功率開關S 1與第二功率開關S 2的開關責任比,f s為第一功率開關S 1與第二功率開關S 2的開關切換頻率。總輸入電流i IN1為第一電感電流i L1與第二電感電流i L2的總和(即i IN1=i L1+i L2)。當D≤0.5時,總輸入電流漣波符合下列式子(6);當D>0.5時,總輸入電流漣波符合下列式子(7): (6); (7)。 in, is the current ripple of each phase, is the first current wave, is the second current ripple, V IN1 is the input DC voltage, D is the switching duty ratio of the first power switch S 1 to the second power switch S 2 , and f s is the switching frequency of the first power switch S 1 to the second power switch S 2. The total input current i IN1 is the sum of the first inductor current i L1 and the second inductor current i L2 (i.e., i IN1 =i L1 +i L2 ). When D ≤ 0.5, the total input current ripple meets the following formula (6); when D > 0.5, the total input current ripple meets the following formula (7): (6); (7).

其中, 為總輸入電流漣波,T s為第一功率開關S 1與第二功率開關S 2的開關週期。接著,根據式子(5)至(7)可推導得出下列式子(8): (8)。 in, is the total input current ripple, Ts is the switching period of the first power switch S1 and the second power switch S2 . Then, according to equations (5) to (7), the following equation (8) can be derived: (8).

其中,λ為一漣波係數,其表示總輸入電流漣波的抑制能力。當λ越小代表抑制能力越好,總輸入電流漣波越小。由此可知,漣波係數隨著開關責任比逐漸增大而先下降後再上升。當開關責任比為0.5時,第一電流漣波與第二電流漣波相互抵消。藉此,可減少直流電源10的總輸入電流漣波,進而提高輸出功率。Wherein, λ is a ripple coefficient, which indicates the ability to suppress the total input current ripple. When λ is smaller, it means the suppression ability is better, and the total input current ripple is smaller. It can be seen that the ripple coefficient first decreases and then increases as the switch duty ratio gradually increases. When the switch duty ratio is 0.5, the first current ripple and the second current ripple cancel each other. In this way, the total input current ripple of the DC power supply 10 can be reduced, thereby increasing the output power.

請一併參閱第2圖與第6圖,其中第6圖係繪示第2圖的直流轉換裝置100的諧振電路122的電壓增益曲線圖。如第6圖所示,本揭示內容可透過一數學模擬運算軟體(Mathcad)對諧振電路122進行理論分析以獲得諧振電路122於不同數值的電路品質因數Q的電壓增益曲線圖,其中縱軸代表諧振電路122的電壓增益,橫軸代表標準化頻率(f n),且標準化頻率為逆變電路121的開關切換頻率f s除以第一諧振頻率f r(即f n=f s/f r)。需說明的是,第一諧振頻率f r可由諧振電容C r和諧振電感L r所形成,第二諧振頻率f m可由諧振電容C r、諧振電感L r及激磁電感L m所形成,且符合下列式子(9)與(10): (9); (10)。 Please refer to FIG. 2 and FIG. 6 together, wherein FIG. 6 is a voltage gain curve diagram of the resonant circuit 122 of the DC converter 100 of FIG. 2. As shown in FIG. 6, the present disclosure can be used to perform theoretical analysis on the resonant circuit 122 through a mathematical simulation software (Mathcad) to obtain a voltage gain curve diagram of the resonant circuit 122 at different values of the circuit quality factor Q, wherein the vertical axis represents the voltage gain of the resonant circuit 122, and the horizontal axis represents the normalized frequency (f n ), and the normalized frequency is the switch switching frequency f s of the inverter circuit 121 divided by the first resonant frequency f r ( i.e., f n =f s /f r ). It should be noted that the first resonant frequency f r can be formed by the resonant capacitor Cr and the resonant inductor L r , and the second resonant frequency f m can be formed by the resonant capacitor Cr , the resonant inductor L r and the magnetizing inductor L m , and they meet the following equations (9) and (10): (9); (10).

本揭示內容的諧振轉換電路120採用諧振參數配置,並藉由調控開關切換頻率f s且搭配第6圖的電壓增益曲線圖可分為四種工作區域。 The resonant converter circuit 120 of the present disclosure adopts a resonant parameter configuration and can be divided into four working regions by adjusting the switch switching frequency fs and in combination with the voltage gain curve of FIG. 6 .

其一,當開關切換頻率f s大於第一諧振頻率f r(即f s>f r)時,電壓增益曲線操作於第一區域R1。此時,諧振轉換電路120的輸入阻抗呈現電感性,逆變電路121的二第一開關S 3、S 4及二第二開關S 5、S 6操作於ZVS。但因為開關週期小於諧振週期,諧振電感L r的諧振電流與激磁電感L m的激磁電流不相等,能量不斷往變壓器TR的二次側傳遞,導致二次側的電流呈連續狀態,故二次側無法達到ZCS之功能。 First, when the switch switching frequency fs is greater than the first resonant frequency fr (i.e., fs > fr ), the voltage gain curve operates in the first region R1. At this time, the input impedance of the resonant converter circuit 120 is inductive, and the two first switches S3 , S4 and the two second switches S5 , S6 of the inverter circuit 121 operate in ZVS. However, because the switching cycle is shorter than the resonant cycle, the resonant current of the resonant inductor Lr is not equal to the excitation current of the excitation inductor Lm , and the energy is continuously transmitted to the secondary side of the transformer TR, resulting in the current on the secondary side being in a continuous state, so the secondary side cannot achieve the ZCS function.

其二,當開關切換頻率f s等於第一諧振頻率f r(即f s=f r)時,電壓增益曲線操作於第二區域R2。此時,諧振電感L r與諧振電容C r進行串聯諧振,諧振轉換電路120的輸入阻抗呈現電感性,逆變電路121操作於ZVS,整流電路123操作於ZCS。諧振轉換電路120的效率最高。電壓增益可為1且不受負載20影響。 Secondly, when the switch switching frequency fs is equal to the first resonant frequency fr (i.e., fs = fr ), the voltage gain curve operates in the second region R2. At this time, the resonant inductor Lr and the resonant capacitor Cr resonate in series, the input impedance of the resonant converter circuit 120 is inductive, the inverter circuit 121 operates in ZVS, and the rectifier circuit 123 operates in ZCS. The efficiency of the resonant converter circuit 120 is the highest. The voltage gain can be 1 and is not affected by the load 20.

其三,當開關切換頻率f s介於第一諧振頻率f r與第二諧振頻率f m之間(即f m<f s<f r)時,電壓增益曲線操作於第三區域R3。此時,諧振轉換電路120的輸入阻抗呈現電感性,逆變電路121操作於ZVS。但因為開關週期大於諧振週期,在激磁電感L m參與諧振時,諧振電感L r的諧振電流與激磁電感L m的激磁電流相等。變壓器TR進入解耦區間,在解耦區間時變壓器TR的一次側無法傳遞能量至二次側,使二次側的電流呈不連續狀態。因此,流經二第一整流二極體D 3、D 4及二第二整流二極體D 5、D 6的電流會自然降為零,整流電路123達到ZCS。藉此,本揭示內容的諧振轉換電路120操作於第三區域R3時可具有柔性切換的特性,進而減少切換損失。 Third, when the switching frequency fs is between the first resonant frequency fr and the second resonant frequency fm (i.e. fm < fs < fr ), the voltage gain curve operates in the third region R3. At this time, the input impedance of the resonant converter circuit 120 is inductive, and the inverter circuit 121 operates in ZVS. However, because the switching cycle is longer than the resonant cycle, when the magnetizing inductor Lm participates in the resonance, the resonant current of the resonant inductor Lr is equal to the magnetizing current of the magnetizing inductor Lm . The transformer TR enters the decoupling region, and in the decoupling region, the primary side of the transformer TR cannot transfer energy to the secondary side, making the current on the secondary side discontinuous. Therefore, the current flowing through the two first rectifying diodes D3 , D4 and the two second rectifying diodes D5 , D6 will naturally drop to zero, and the rectifying circuit 123 reaches ZCS. Thus, the resonant converter circuit 120 of the present disclosure can have a soft switching characteristic when operating in the third region R3, thereby reducing switching loss.

其四,當開關切換頻率f s小於第一諧振頻率f r(即f s<f r)時,電壓增益曲線操作於第四區域R4。此時,諧振轉換電路120的輸入阻抗呈現電容性,逆變電路121無法達到ZVS。在第四區域R4中電壓增益會隨著開關切換頻率f s的變化而產生較大變動,故應避免諧振轉換電路120操作在第四區域R4。本揭示內容的諧振轉換電路120屬於單向固定輸出輸入電壓,為了使一次側和二次側均能具有柔性切換的特性,諧振轉換電路120應操作於第三區域R3(即開關切換頻率f s介於第一諧振頻率f r與第二諧振頻率f m之間時)。以下將詳細說明諧振轉換電路120受調頻控制後而操作於第三區域R3的多個工作狀態。 Fourth, when the switch switching frequency fs is less than the first resonant frequency fr (i.e., fs < fr ), the voltage gain curve operates in the fourth region R4. At this time, the input impedance of the resonant converter circuit 120 exhibits capacitive properties, and the inverter circuit 121 cannot achieve ZVS. In the fourth region R4, the voltage gain will vary greatly with the change of the switch switching frequency fs , so the resonant converter circuit 120 should be avoided from operating in the fourth region R4. The resonant converter circuit 120 of the present disclosure has a unidirectional fixed output input voltage. In order to enable both the primary side and the secondary side to have flexible switching characteristics, the resonant converter circuit 120 should be operated in the third region R3 (i.e., when the switch switching frequency fs is between the first resonant frequency fr and the second resonant frequency fm ). The following will describe in detail the multiple working states of the resonant converter circuit 120 operating in the third region R3 after being controlled by frequency modulation.

請一併參閱第2圖、第6圖、第7圖、第8圖、第9圖、第10圖、第11圖及第12圖,其中第7圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120的各元件操作於第三區域R3的波形圖,第8圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120操作於第一工作狀態的電路示意圖,第9圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120操作於第二工作狀態的電路示意圖,第10圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120操作於第三工作狀態的電路示意圖,第11圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120操作於第四工作狀態的電路示意圖,第12圖係繪示第2圖的直流轉換裝置100的諧振轉換電路120操作於第五工作狀態的電路示意圖。需先說明的是,根據二第一開關S 3、S 4及二第二開關S 5、S 6的切換狀態,用以控制各開關的各第二開關驅動訊號v GS3,v GS4,v GS5,v GS6之一週期可分為10個工作狀態。由於正半週的工作狀態和負半週的工作狀態相似,因此本揭示內容僅說明正半週的5個工作狀態,負半週的5個工作狀態不另贅述。以下將搭配第8圖至第12圖以說明第7圖中直流轉換裝置100的各元件於多個時間區段中的操作波形。此外,二第一開關S 3、S 4分別具有二電流i DS3、i DS4,二第二開關S 5、S 6分別具有二電流i DS5、i DS6。二第一整流二極體D 3、D 4分別具有二電壓v D3、v D4,二第二整流二極體D 5、D 6分別具有二電壓v D5、v D6Please refer to FIG. 2, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 11 and FIG. 12, wherein FIG. 7 is a waveform diagram showing the components of the resonant conversion circuit 120 of the DC converter 100 of FIG. 2 operating in the third region R3, FIG. 8 is a circuit diagram showing the resonant conversion circuit 120 of the DC converter 100 of FIG. 2 operating in the first working state, and FIG. 9 is a circuit diagram showing the resonant conversion of the DC converter 100 of FIG. 2. FIG. 10 is a circuit diagram showing the resonant conversion circuit 120 of the DC converter 100 of FIG. 2 operating in the third working state, FIG. 11 is a circuit diagram showing the resonant conversion circuit 120 of the DC converter 100 of FIG. 2 operating in the fourth working state, and FIG. 12 is a circuit diagram showing the resonant conversion circuit 120 of the DC converter 100 of FIG. 2 operating in the fifth working state. It should be noted that, according to the switching states of the two first switches S 3 , S 4 and the two second switches S 5 , S 6 , one cycle of each second switch driving signal v GS3 , v GS4 , v GS5 , v GS6 for controlling each switch can be divided into 10 working states. Since the working state of the positive half cycle is similar to the working state of the negative half cycle, the present disclosure only describes the five working states of the positive half cycle, and the five working states of the negative half cycle are not described separately. The following will be used in conjunction with Figures 8 to 12 to illustrate the operating waveforms of each component of the DC converter 100 in Figure 7 in multiple time segments. In addition, the two first switches S 3 and S 4 have two currents i DS3 and i DS4 respectively, and the two second switches S 5 and S 6 have two currents i DS5 and i DS6 respectively. The two first rectifying diodes D 3 and D 4 have two voltages v D3 and v D4 respectively, and the two second rectifying diodes D 5 and D 6 have two voltages v D5 and v D6 respectively.

如第8圖所示,當時間t為時間t 0(t=t 0)時,第一開關S 4與第二開關S 5關斷,且位於一次側的二第一開關S 3、S 4及二第二開關S 5、S 6均截止並進入死區狀態。諧振電流i Lr開始對第一開關S 4的一寄生電容C oss4和第二開關S 5的一寄生電容C oss5進行儲存能量(即電壓v DS4、v DS5上升),亦同時對第一開關S 3的一寄生電容C oss3和第二開關S 6的一寄生電容C oss6進行能量釋放(即電壓v DS3、v DS6下降)。位於二次側的第一整流二極體D 3與第二整流二極體D 6導通,第一整流二極體D 4與第二整流二極體D 5截止。本揭示內容於開關責任比中配置死區時間,且寄生電容C oss4、C oss5的儲存能量時間和寄生電容C oss3、C oss6的釋放能量時間皆小於死區時間,進而確保二第一開關S 3、S 4及二第二開關S 5、S 6達到ZVS切換。當寄生電容C oss4、C oss5充電至另一輸入直流電壓V IN2(等同於第一輸出直流電壓V OUT1)時,寄生電容C oss3、C oss6放電至0伏特(V),且第一工作狀態結束。 As shown in FIG. 8 , when time t is time t 0 (t=t 0 ), the first switch S 4 and the second switch S 5 are turned off, and the two first switches S 3 , S 4 and the two second switches S 5 , S 6 on the primary side are all turned off and enter the dead zone state. The resonant current i Lr begins to store energy in a parasitic capacitor Coss4 of the first switch S 4 and a parasitic capacitor Coss5 of the second switch S 5 (i.e., the voltages v DS4 , v DS5 rise), and simultaneously releases energy in a parasitic capacitor Coss3 of the first switch S 3 and a parasitic capacitor Coss6 of the second switch S 6 (i.e., the voltages v DS3 , v DS6 drop). The first rectifier diode D3 and the second rectifier diode D6 on the secondary side are turned on, and the first rectifier diode D4 and the second rectifier diode D5 are turned off. The present disclosure configures a dead time in the switch duty ratio, and the energy storage time of the parasitic capacitors C oss4 and C oss5 and the energy release time of the parasitic capacitors C oss3 and C oss6 are both less than the dead time, thereby ensuring that the two first switches S 3 and S 4 and the two second switches S 5 and S 6 achieve ZVS switching. When the parasitic capacitors C oss4 and C oss5 are charged to another input DC voltage V IN2 (equal to the first output DC voltage V OUT1 ), the parasitic capacitors C oss3 and C oss6 are discharged to 0V, and the first working state ends.

如第9圖所示,當時間t為時間t 1(t=t 1)時,二第一開關S 3、S 4及二第二開關S 5、S 6皆截止,且各寄生電容C oss3、C oss4、C oss5、C oss6完成充放電。諧振電流i Lr將寄生電容C oss3、C oss6放電至0 V之後,透過第一開關S 3的本質二極體(未另標號)與第二開關S 6的本質二極體(未另標號)續流,使第一開關S 3與第二開關S 6達到ZVS切換。同時,諧振電流i Lr透過變壓器TR傳送能量至二次側。第一整流二極體D 3與第二整流二極體D 6導通,第一整流二極體D 4與第二整流二極體D 5截止。當時間t為時間t 2(t=t 2)時,第一開關S 3與第二開關S 6導通,第二工作狀態進入第三工作狀態。 As shown in FIG. 9 , when time t is time t 1 (t=t 1 ), the two first switches S 3 , S 4 and the two second switches S 5 , S 6 are all turned off, and the parasitic capacitors C oss3 , C oss4 , C oss5 , and C oss6 are charged and discharged. After the resonant current i Lr discharges the parasitic capacitors C oss3 and C oss6 to 0 V, it continues to flow through the intrinsic diode (not separately labeled) of the first switch S 3 and the intrinsic diode (not separately labeled) of the second switch S 6 , so that the first switch S 3 and the second switch S 6 achieve ZVS switching. At the same time, the resonant current i Lr transmits energy to the secondary side through the transformer TR. The first rectifying diode D3 and the second rectifying diode D6 are turned on, and the first rectifying diode D4 and the second rectifying diode D5 are turned off. When time t is time t2 (t= t2 ), the first switch S3 and the second switch S6 are turned on, and the second working state enters the third working state.

如第10圖所示,當時間t為時間t 2(t=t 2)時,第一開關S 3與第二開關S 6導通,第一開關S 4與第二開關S 5截止,並實現ZVS柔性切換。此時,諧振電流i Lr與激磁電流i Lm持續上升,諧振電流i Lr與激磁電流i Lm之間的電流差藉由變壓器TR傳遞能量至二次側。第一整流二極體D 3與第二整流二極體D 6導通提供能量至一輸出電阻R OUT2。激磁電感L m因受到第二輸出直流電壓V OUT2箝位影響,激磁電感L m不參與諧振,故激磁電流i Lm持續上升。當諧振電流i Lr等於0時,第三工作狀態結束。 As shown in FIG. 10 , when time t is time t 2 (t=t 2 ), the first switch S 3 and the second switch S 6 are turned on, the first switch S 4 and the second switch S 5 are turned off, and ZVS soft switching is realized. At this time, the resonant current i Lr and the excitation current i Lm continue to rise, and the current difference between the resonant current i Lr and the excitation current i Lm transfers energy to the secondary side through the transformer TR. The first rectifier diode D 3 and the second rectifier diode D 6 are turned on to provide energy to an output resistor R OUT2 . Due to the clamping effect of the second output DC voltage V OUT2 , the excitation inductance L m does not participate in the resonance, so the excitation current i Lm continues to rise. When the resonant current i Lr is equal to 0, the third working state ends.

如第11圖所示,當時間t為時間t 3(t=t 3)時,第一開關S 3與第二開關S 6依然導通,諧振電流i Lr由負變為0。此時,諧振電容C r與諧振電感L r進行諧振,藉以令諧振電流i Lr增加,且諧振電流i Lr與激磁電流i Lm之間的電流差藉由變壓器TR傳遞能量至二次側。第一整流二極體D 3與第二整流二極體D 6導通提供能量至輸出電阻R OUT2。激磁電感L m因受到第二輸出直流電壓V OUT2箝位影響,激磁電感L m不參與諧振,故激磁電流i Lm持續上升由負變為正,直到諧振電流i Lr與激磁電流i Lm相等時,第四工作狀態結束。同時,流經第一整流二極體D 3的一電流i D3與流經第二整流二極體D 6的一電流i D6也降至0安培(A),達成ZCS切換。 As shown in FIG. 11 , when time t is time t 3 (t=t 3 ), the first switch S 3 and the second switch S 6 are still turned on, and the resonant current i Lr changes from negative to 0. At this time, the resonant capacitor Cr and the resonant inductor L r resonate to increase the resonant current i Lr , and the current difference between the resonant current i Lr and the excitation current i Lm transfers energy to the secondary side through the transformer TR. The first rectifier diode D 3 and the second rectifier diode D 6 are turned on to provide energy to the output resistor R OUT2 . The magnetizing inductor L m is affected by the clamping of the second output DC voltage V OUT2 , and the magnetizing inductor L m does not participate in the resonance, so the magnetizing current i Lm continues to rise from negative to positive until the resonance current i Lr is equal to the magnetizing current i Lm , and the fourth working state ends. At the same time, a current i D3 flowing through the first rectifier diode D 3 and a current i D6 flowing through the second rectifier diode D 6 also drop to 0 amperes (A), achieving ZCS switching.

如第12圖所示,當時間t為時間t 4(t=t 4)時,第一開關S 3與第二開關S 6依然導通,第一開關S 4與第二開關S 5截止,且諧振電流i Lr與激磁電流i Lm相等。此時,變壓器TR進入解耦區間且不傳遞能量,故電流i D3、i D4、i D5、i D6均自然截止,達成ZCS切換。由於變壓器TR沒有傳遞能量至輸出電阻R OUT2,未使激磁電感L m受到第二輸出直流電壓V OUT2箝位影響,因此諧振電容C r、諧振電感L r及激磁電感L m產生諧振,直到時間t為時間t 5時,第一開關S 3與第二開關S 6截止,且第五工作狀態結束。於其他的時間區段(即第7圖的時間t 5、t 6、t 7、t 8、t 9、t 10)中,各元件的作動方式與前述的各工作狀態相同,故不再贅述。藉此,本揭示內容的直流轉換裝置100的前級使用升壓轉換電路110以減少輸入電流漣波,且其後級使用諧振轉換電路120以具有柔性切換之效,達到高變壓比且能應用於燃料電池的寬輸入電壓範圍,並同時減少開關的切換損失。 As shown in FIG. 12 , when time t is time t 4 (t=t 4 ), the first switch S 3 and the second switch S 6 are still on, the first switch S 4 and the second switch S 5 are off, and the resonant current i Lr is equal to the excitation current i Lm . At this time, the transformer TR enters the decoupling region and does not transfer energy, so the currents i D3 , i D4 , i D5 , and i D6 are naturally cut off, achieving ZCS switching. Since the transformer TR does not transfer energy to the output resistor R OUT2 , the magnetizing inductor L m is not clamped by the second output DC voltage V OUT2 , so the resonant capacitor Cr , the resonant inductor L r and the magnetizing inductor L m resonate until the time t is time t 5 , the first switch S 3 and the second switch S 6 are turned off, and the fifth working state ends. In other time segments (i.e., time t 5 , t 6 , t 7 , t 8 , t 9 , t 10 in FIG. 7 ), the operation mode of each component is the same as that of the aforementioned working states, so it is not repeated. Thus, the DC converter 100 of the present disclosure uses a boost converter circuit 110 at the front stage to reduce input current ripple, and uses a resonant converter circuit 120 at the rear stage to have a flexible switching effect, thereby achieving a high transformation ratio and being applicable to a wide input voltage range of fuel cells, while reducing switching losses of switches.

請一併參閱第13圖與第14圖,其中第13圖係繪示依照本揭示內容的第二實施例的直流轉換裝置100的電路示意圖,第14圖係繪示第13圖的直流轉換裝置100的數位控制模組140的示意圖。如第13圖與第14圖所示,直流轉換裝置100可更包含一電壓取樣模組130、一數位控制模組140及一開關驅動電路150。電壓取樣模組130耦接升壓轉換電路110與整流電路123。電壓取樣模組130自升壓轉換電路110擷取第一輸出直流電壓V OUT1並自整流電路123擷取第二輸出直流電壓V OUT2而分別產生一第一回授類比訊號F S1與一第二回授類比訊號F S2。數位控制模組140電性連接電壓取樣模組130。數位控制模組140依據第一回授類比訊號F S1而產生複數第一控制訊號con 1、con 2,並依據第二回授類比訊號F S2而產生複數第二控制訊號con 3、con 4、con 5、con 6。開關驅動電路150電性連接數位控制模組140、升壓轉換電路110的第一功率開關S 1與第二功率開關S 2以及逆變電路121的二第一開關S 3、S 4和二第二開關S 5、S 6。開關驅動電路150將此些第一控制訊號con 1、con 2轉換為複數第一開關驅動訊號v GS1、v GS2,並將此些第二控制訊號con 3、con 4、con 5、con 6轉換為複數第二開關驅動訊號v GS3、v GS4、v GS5、v GS6,以控制升壓轉換電路110與逆變電路121。藉此,本揭示內容的直流轉換裝置100僅使用電壓取樣模組130、數位控制模組140及開關驅動電路150作為升壓轉換電路110與諧振轉換電路120的裝置控制核心,因此無須外接/外掛其他控制迴路,進而可減少裝置成本與元件數量,還能縮小直流轉換裝置100的體積。 Please refer to FIG. 13 and FIG. 14 together, wherein FIG. 13 is a circuit diagram of a DC converter 100 according to a second embodiment of the present disclosure, and FIG. 14 is a schematic diagram of a digital control module 140 of the DC converter 100 of FIG. 13. As shown in FIG. 13 and FIG. 14, the DC converter 100 may further include a voltage sampling module 130, a digital control module 140, and a switch driving circuit 150. The voltage sampling module 130 is coupled to the boost converter circuit 110 and the rectifier circuit 123. The voltage sampling module 130 captures the first output DC voltage V OUT1 from the boost converter circuit 110 and the second output DC voltage V OUT2 from the rectifier circuit 123 to generate a first feedback analog signal FS1 and a second feedback analog signal FS2 respectively. The digital control module 140 is electrically connected to the voltage sampling module 130. The digital control module 140 generates a plurality of first control signals con 1 and con 2 according to the first feedback analog signal FS1 , and generates a plurality of second control signals con 3 , con 4 , con 5 , and con 6 according to the second feedback analog signal FS2 . The switch driving circuit 150 is electrically connected to the digital control module 140, the first power switch S1 and the second power switch S2 of the boost converter circuit 110, and the two first switches S3 , S4 and the two second switches S5 , S6 of the inverter circuit 121. The switch driving circuit 150 converts the first control signals con1 , con2 into a plurality of first switch driving signals vGS1 , vGS2 , and converts the second control signals con3 , con4 , con5 , con6 into a plurality of second switch driving signals vGS3 , vGS4 , vGS5 , vGS6 to control the boost converter circuit 110 and the inverter circuit 121. Thus, the DC converter device 100 disclosed in the present invention only uses the voltage sampling module 130, the digital control module 140 and the switch driving circuit 150 as the device control core of the boost converter circuit 110 and the resonant converter circuit 120, so there is no need to connect/hang other control loops externally, thereby reducing the device cost and the number of components, and also reducing the size of the DC converter device 100.

具體而言,電壓取樣模組130可為一隔離式電壓感測器。數位控制模組140可為一一般用途處理器、一特殊用途處理器、一數位訊號處理器、多個微處理器(Microprocessor)、一個或多個結合數位訊號處理器核心的一微處理器、一控制器、一微控制器、一特殊應用積體電路(Application Specific Integrated Circuit;ASIC)、一現場可程式閘陣列電路(Field Programmable Gate Array;FPGA)、任何其他種類的一積體電路、一狀態機、基於進階精簡指令集機器(Advanced RISC Machine;ARM)的一處理器以及類似品,但本揭示內容不以此為限。Specifically, the voltage sampling module 130 can be an isolated voltage sensor. The digital control module 140 can be a general purpose processor, a special purpose processor, a digital signal processor, a plurality of microprocessors, a microprocessor combined with a digital signal processor core, a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), any other type of integrated circuit, a state machine, an advanced RISC machine (ARM) based processor, and the like, but the present disclosure is not limited thereto.

進一步地說,數位控制模組140可包含一訊號轉換器141、一減法器142、一比例積分控制器143、一定電壓/電流控制器144及一脈波訊號產生模組145。訊號轉換器141可為一類比數位轉換器(Analog-to-digital Converter;ADC),其將第一回授類比訊號F S1轉換為一第一回授數位訊號V ADC1,並將第二回授類比訊號F S2轉換為一第二回授數位訊號V ADC2。減法器142電性連接訊號轉換器141。減法器142將第一回授數位訊號V ADC1分別與複數第一參考電壓訊號V ref1進行相減而產生複數第一差值訊號Dif 1,並將第二回授數位訊號V ADC2分別與複數第二參考電壓訊號V ref2進行相減而產生複數第二差值訊號Dif 2。比例積分控制器143電性連接減法器142。比例積分控制器143接收此些第一差值訊號Dif 1及此些第二差值訊號Dif 2,且透過定電壓/電流控制器144與脈波訊號產生模組145而分別產生此些第一控制訊號con 1、con 2及此些第二控制訊號con 3、con 4、con 5、con 6,其中此些第一控制訊號con 1、con 2係由脈波訊號產生模組145的一PWM產生器所輸出,此些第二控制訊號con 3、con 4、con 5、con 6係由脈波訊號產生模組145的一PFM產生器所輸出。 Specifically, the digital control module 140 may include a signal converter 141, a subtractor 142, a proportional integral controller 143, a constant voltage/current controller 144, and a pulse signal generating module 145. The signal converter 141 may be an analog-to-digital converter (ADC), which converts the first feedback analog signal FS1 into a first feedback digital signal VADC1 and converts the second feedback analog signal FS2 into a second feedback digital signal VADC2 . The subtractor 142 is electrically connected to the signal converter 141. The subtractor 142 subtracts the first feedback digital signal V ADC1 from the plurality of first reference voltage signals V ref1 to generate a plurality of first difference signals Dif 1 , and subtracts the second feedback digital signal V ADC2 from the plurality of second reference voltage signals V ref2 to generate a plurality of second difference signals Dif 2 . The proportional-integral controller 143 is electrically connected to the subtractor 142 . The proportional-integral controller 143 receives these first difference signals Dif 1 and these second difference signals Dif 2 , and generates these first control signals con 1 , con 2 and these second control signals con 3 , con 4 , con 5 , con 6 respectively through the constant voltage/current controller 144 and the pulse signal generating module 145, wherein these first control signals con 1 , con 2 are output by a PWM generator of the pulse signal generating module 145, and these second control signals con 3 , con 4 , con 5 , con 6 are output by a PFM generator of the pulse signal generating module 145.

藉此,本揭示內容的直流轉換裝置100以數位控制模組140作為裝置控制核心,並可實現模擬直流電源10在低壓時可具有寬輸入電壓範圍(例如40 V~125 V)與負載20輸出第二輸出直流電壓V OUT2(例如400 V)。直流轉換裝置100透過電壓取樣模組130回授訊號至數位控制模組140,且能因應負載20的變動進行電壓調節與訊號處理控制,達成整體系統輸出穩定。此外,經實驗結果可得出,直流轉換裝置100操作於低壓輸入40 V時,最高轉換效率可達92.69%,而操作於高壓輸入125 V時,最高轉換效率可達93.57%。 Thus, the DC converter 100 of the present disclosure uses the digital control module 140 as the device control core, and can realize that the analog DC power source 10 can have a wide input voltage range (e.g., 40 V to 125 V) and output the second output DC voltage V OUT2 (e.g., 400 V) to the load 20 when the voltage is low. The DC converter 100 feeds back a signal to the digital control module 140 through the voltage sampling module 130, and can perform voltage regulation and signal processing control in response to changes in the load 20, thereby achieving overall system output stability. In addition, experimental results show that when the DC converter 100 operates at a low voltage input of 40 V, the maximum conversion efficiency can reach 92.69%, and when it operates at a high voltage input of 125 V, the maximum conversion efficiency can reach 93.57%.

綜上所述,本揭示內容具有下列優點:其一,前級使用升壓轉換電路,後級使用諧振轉換電路,因此直流轉換裝置可達到具高變壓比,且能應用於寬輸入電壓範圍。其二,藉由升壓轉換電路減少總輸入電流的漣波,進而提高直流轉換裝置的輸出功率。其三,利用數位控制模組調控開關切換頻率,藉以令開關切換頻率介於第一諧振頻率與第二諧振頻率之間,使得逆變電路操作於ZVS,且整流電路操作於ZCS,因此直流轉換裝置可具有柔性切換之效,進而減少開關的切換損失。其四,使用電壓取樣模組、數位控制模組及開關驅動電路作為裝置控制核心,因此無須外接/外掛其他控制迴路,進而可減少裝置成本與元件數量,還能縮小直流轉換裝置的體積。In summary, the present disclosure has the following advantages: First, the front stage uses a boost converter circuit, and the rear stage uses a resonant converter circuit, so the DC converter can achieve a high conversion ratio and can be applied to a wide input voltage range. Second, the boost converter circuit reduces the ripple of the total input current, thereby increasing the output power of the DC converter. Third, the digital control module is used to adjust the switch switching frequency, so that the switch switching frequency is between the first resonant frequency and the second resonant frequency, so that the inverter circuit operates in ZVS and the rectifier circuit operates in ZCS, so that the DC converter can have a flexible switching effect, thereby reducing the switching loss of the switch. Fourthly, the voltage sampling module, digital control module and switch drive circuit are used as the device control core, so there is no need to connect/hang up other control loops, thereby reducing the device cost and the number of components, and also reducing the size of the DC conversion device.

雖然本揭示內容已以實施例揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容的精神和範圍內,當可作各種的更動與潤飾,因此本揭示內容的保護範圍當視後附的申請專利範圍所界定者為準。Although the contents of this disclosure have been disclosed as above by way of embodiments, they are not intended to limit the contents of this disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the contents of this disclosure. Therefore, the protection scope of the contents of this disclosure shall be subject to the scope defined by the attached patent application.

10:直流電源 20:負載 100:直流轉換裝置 110:升壓轉換電路 120:諧振轉換電路 121:逆變電路 122:諧振電路 123:整流電路 130:電壓取樣模組 140:數位控制模組 141:訊號轉換器 142:減法器 143:比例積分控制器 144:定電壓/電流控制器 145:脈波訊號產生模組 150:開關驅動電路 V IN1,V IN2:輸入直流電壓 V OUT1:第一輸出直流電壓 V OUT2:第二輸出直流電壓 v AB:交流電壓 v D3,v D4,v D5,v D6,v DS3,v DS4,v DS5,v DS6:電壓 L 1:第一升壓電感 L 2:第二升壓電感 L r:諧振電感 L m:激磁電感 S 1:第一功率開關 S 2:第二功率開關 S 3,S 4:第一開關 S 5,S 6:第二開關 D 1:第一二極體 D 2:第二二極體 D 3,D 4:第一整流二極體 D 5,D 6:第二整流二極體 B 1:第一橋臂 B 2:第二橋臂 B 3:第三橋臂 B 4:第四橋臂 C IN1,C IN2:輸入電容 C OUT1,C OUT2:輸出電容 C r:諧振電容 C oss3,C oss4,C oss5,C oss6:寄生電容 TR:變壓器 N P,N S:匝數 i IN1:總輸入電流 i L1:第一電感電流 i L2:第二電感電流 i Lr:諧振電流 i Lm:激磁電流 i D3,i D4,i D5,i D6,i DS3,i DS4,i DS5,i DS6:電流 RL 2:負載電阻 R OUT1,R OUT2:輸出電阻 F S1:第一回授類比訊號 F S2:第二回授類比訊號 V ADC1:第一回授數位訊號 V ADC2:第二回授數位訊號 V ref1:第一參考電壓訊號 V ref2:第二參考電壓訊號 Dif 1:第一差值訊號 Dif 2:第二差值訊號 v GS1,v GS2:第一開關驅動訊號 v GS3,v GS4,v GS5,v GS6:第二開關驅動訊號 con 1,con 2:第一控制訊號 con 3,con 4,con 5,con 6:第二控制訊號 R1:第一區域 R2:第二區域 R3:第三區域 R4:第四區域 f s:開關切換頻率 f r:第一諧振頻率 f m:第二諧振頻率 t,t 0,t 1,t 2,t 3,t 4,t 5,t 6,t 7,t 8,t 9,t 10:時間 Q:電路品質因數 10: DC power source 20: Load 100: DC converter 110: Boost converter circuit 120: Resonant converter circuit 121: Inverter circuit 122: Resonant circuit 123: Rectifier circuit 130: Voltage sampling module 140: Digital control module 141: Signal converter 142: Subtractor 143: Proportional integral controller 144: Constant voltage/current controller 145: Pulse signal generation module 150: Switch drive circuit V IN1 , V IN2 : Input DC voltage V OUT1 : First output DC voltage V OUT2 : Second output DC voltage v AB : AC voltage v D3 , v D4 , v D5 , v D6 , v DS3 , v DS4 ,v DS5 ,v DS6 : voltage L 1 : first boost inductor L 2 : second boost inductor L r : resonant inductor L m : magnetizing inductor S 1 : first power switch S 2 : second power switch S 3 ,S 4 : first switch S 5 ,S 6 : second switch D 1 : first diode D 2 : second diode D 3 ,D 4 : first rectifier diode D 5 ,D 6 : second rectifier diode B 1 : first bridge arm B 2 : second bridge arm B 3 : third bridge arm B 4 : fourth bridge arm C IN1 ,C IN2 : input capacitor C OUT1 ,C OUT2 : output capacitor C r : resonant capacitor C oss3 , C oss4 , C oss5 , C oss6 : parasitic capacitance TR: transformer N P , N S : number of turns i IN1 : total input current i L1 : first inductor current i L2 : second inductor current i Lr : resonance current i Lm : magnetizing current i D3 , i D4 , i D5 , i D6 , i DS3 , i DS4 , i DS5 , i DS6 : current RL2 : load resistance R OUT1, R OUT2 : output resistance F S1 : first feedback analog signal F S2 : second feedback analog signal V ADC1 : first feedback digital signal V ADC2 : second feedback digital signal V ref1 : first reference voltage signal V ref2 : second reference voltage signal Dif 1 : first difference signal Dif 2 : second difference signal v GS1 ,v GS2 : first switch drive signal v GS3 ,v GS4 ,v GS5 ,v GS6 : second switch drive signal con 1 ,con 2 : first control signal con 3 ,con 4 ,con 5 ,con 6 : second control signal R1 : first region R2 : second region R3 : third region R4 : fourth region f s : switch switching frequency f r : first resonant frequency f m : second resonant frequency t, t 0 ,t 1 ,t 2 ,t 3 ,t 4 ,t 5 ,t 6 ,t 7 ,t 8 ,t 9 ,t 10 :Time Q: Circuit quality factor

第1圖係繪示依照本揭示內容的第一實施例的直流轉換裝置的方塊示意圖; 第2圖係繪示第1圖的直流轉換裝置的電路示意圖; 第3圖係繪示第2圖的直流轉換裝置的第一功率開關與第二功率開關導通的電路示意圖; 第4圖係繪示第2圖的直流轉換裝置的第一功率開關導通且第二功率開關截止的電路示意圖; 第5圖係繪示第2圖的直流轉換裝置的第一功率開關截止且第二功率開關導通的電路示意圖; 第6圖係繪示第2圖的直流轉換裝置的諧振電路的電壓增益曲線圖; 第7圖係繪示第2圖的直流轉換裝置的諧振轉換電路的各元件操作於第三區域的波形圖; 第8圖係繪示第2圖的直流轉換裝置的諧振轉換電路操作於第一工作狀態的電路示意圖; 第9圖係繪示第2圖的直流轉換裝置的諧振轉換電路操作於第二工作狀態的電路示意圖; 第10圖係繪示第2圖的直流轉換裝置的諧振轉換電路操作於第三工作狀態的電路示意圖; 第11圖係繪示第2圖的直流轉換裝置的諧振轉換電路操作於第四工作狀態的電路示意圖; 第12圖係繪示第2圖的直流轉換裝置的諧振轉換電路操作於第五工作狀態的電路示意圖; 第13圖係繪示依照本揭示內容的第二實施例的直流轉換裝置的電路示意圖;以及 第14圖係繪示第13圖的直流轉換裝置的數位控制模組的示意圖。 Figure 1 is a block diagram of a DC converter according to the first embodiment of the present disclosure; Figure 2 is a circuit diagram of the DC converter of Figure 1; Figure 3 is a circuit diagram of the DC converter of Figure 2 with the first power switch and the second power switch turned on; Figure 4 is a circuit diagram of the DC converter of Figure 2 with the first power switch turned on and the second power switch turned off; Figure 5 is a circuit diagram of the DC converter of Figure 2 with the first power switch turned off and the second power switch turned on; Figure 6 is a voltage gain curve of the resonant circuit of the DC converter of Figure 2; Figure 7 is a waveform diagram of each element of the resonant conversion circuit of the DC converter of Figure 2 operating in the third region; FIG. 8 is a circuit diagram showing the resonant conversion circuit of the DC conversion device of FIG. 2 operating in the first working state; FIG. 9 is a circuit diagram showing the resonant conversion circuit of the DC conversion device of FIG. 2 operating in the second working state; FIG. 10 is a circuit diagram showing the resonant conversion circuit of the DC conversion device of FIG. 2 operating in the third working state; FIG. 11 is a circuit diagram showing the resonant conversion circuit of the DC conversion device of FIG. 2 operating in the fourth working state; FIG. 12 is a circuit diagram showing the resonant conversion circuit of the DC conversion device of FIG. 2 operating in the fifth working state; FIG. 13 is a circuit diagram showing a DC conversion device according to the second embodiment of the present disclosure; and FIG. 14 is a circuit diagram showing a digital control module of the DC conversion device of FIG. 13.

10:直流電源 10: DC power supply

20:負載 20: Load

100:直流轉換裝置 100: DC conversion device

110:升壓轉換電路 110: Boost converter circuit

120:諧振轉換電路 120: Resonance conversion circuit

121:逆變電路 121: Inverter circuit

122:諧振電路 122: Resonance circuit

123:整流電路 123: Rectifier circuit

Claims (9)

一種直流轉換裝置,包含:一升壓轉換電路,耦接一直流電源,並將該直流電源的一輸入直流電壓升壓為一第一輸出直流電壓;一諧振轉換電路,耦接該升壓轉換電路,且包含:一逆變電路,將該第一輸出直流電壓轉換為一交流電壓;一諧振電路,耦接該逆變電路;及一整流電路,耦接該諧振電路;一電壓取樣模組,耦接該升壓轉換電路與該整流電路,並擷取該第一輸出直流電壓與該第二輸出直流電壓而分別產生一第一回授類比訊號與一第二回授類比訊號;一數位控制模組,電性連接該電壓取樣模組,該數位控制模組依據該第一回授類比訊號而產生複數第一控制訊號,並依據該第二回授類比訊號而產生複數第二控制訊號;以及一開關驅動電路,電性連接該數位控制模組、該升壓轉換電路及該逆變電路,該開關驅動電路將該些第一控制訊號轉換為複數第一開關驅動訊號,並將該些第二控制訊號轉換為複數第二開關驅動訊號,以控制該升壓轉換電路與該逆變電路;其中,該諧振電路與該整流電路將該交流電壓轉換為一第二輸出直流電壓,以對一負載進行供電;其中,該逆變電路具有一開關切換頻率,該諧振電路具 有一第一諧振頻率與一第二諧振頻率,當該開關切換頻率介於該第一諧振頻率與該第二諧振頻率之間時,該逆變電路操作於一零電壓切換,且該整流電路操作於一零電流切換。 A DC conversion device includes: a boost conversion circuit coupled to a DC power source and boosting an input DC voltage of the DC power source to a first output DC voltage; a resonant conversion circuit coupled to the boost conversion circuit and including: an inverter circuit converting the first output DC voltage to an AC voltage; a resonant circuit coupled to the inverter circuit; and a rectifier circuit coupled to the resonant circuit; a voltage sampling module, coupled to the boost conversion circuit and the rectifier circuit, and capturing the first output DC voltage and the second output DC voltage to generate a first feedback analog signal and a second feedback analog signal respectively; a digital control module, electrically connected to the voltage sampling module, the digital control module generates a plurality of first control signals according to the first feedback analog signal, and generates a plurality of first control signals according to the second feedback analog signal and generating a plurality of second control signals; and a switch drive circuit electrically connected to the digital control module, the boost conversion circuit and the inverter circuit, the switch drive circuit converting the first control signals into a plurality of first switch drive signals, and converting the second control signals into a plurality of second switch drive signals to control the boost conversion circuit and the inverter circuit; wherein the resonant circuit and the rectifier circuit The inverter circuit converts the AC voltage into a second output DC voltage to supply power to a load; wherein the inverter circuit has a switch switching frequency, and the resonant circuit has a first resonant frequency and a second resonant frequency. When the switch switching frequency is between the first resonant frequency and the second resonant frequency, the inverter circuit operates in a zero voltage switching, and the rectifier circuit operates in a zero current switching. 如請求項1所述之直流轉換裝置,其中該直流電源具有一第一電壓端與一第二電壓端,且該升壓轉換電路包含:一輸入電容,該輸入電容的二端分別耦接該第一電壓端與該第二電壓端;一第一升壓電感,該第一升壓電感的一端耦接該第一電壓端;一第二升壓電感,該第二升壓電感的一端耦接該第一電壓端;一第一功率開關,該第一功率開關的一汲極端耦接該第一升壓電感的另一端;一第二功率開關,該第二功率開關的一汲極端耦接該第二升壓電感的另一端;一第一二極體,該第一二極體的一陽極端耦接該第一升壓電感的另一端;一第二二極體,該第二二極體的一陽極端耦接該第二升壓電感的另一端;及一輸出電容,該輸出電容的一端耦接該第一二極體的一陰極端與該第二二極體的一陰極端,該輸出電容的另一端 耦接該第一功率開關的一源極端、該第二功率開關的一源極端及該第二電壓端。 A DC conversion device as described in claim 1, wherein the DC power source has a first voltage terminal and a second voltage terminal, and the boost conversion circuit comprises: an input capacitor, two ends of the input capacitor are coupled to the first voltage terminal and the second voltage terminal respectively; a first boost inductor, one end of the first boost inductor is coupled to the first voltage terminal; a second boost inductor, one end of the second boost inductor is coupled to the first voltage terminal; a first power switch, a drain end of the first power switch is coupled to the other end of the first boost inductor; a second power switch, A drain terminal of the second power switch is coupled to the other end of the second boost inductor; a first diode, an anode terminal of the first diode is coupled to the other end of the first boost inductor; a second diode, an anode terminal of the second diode is coupled to the other end of the second boost inductor; and an output capacitor, one end of the output capacitor is coupled to a cathode terminal of the first diode and a cathode terminal of the second diode, and the other end of the output capacitor is coupled to a source terminal of the first power switch, a source terminal of the second power switch and the second voltage terminal. 如請求項2所述之直流轉換裝置,其中,該第一功率開關與該第二功率開關的一開關責任比受二第一開關驅動訊號控制,該二第一開關驅動訊號之間的一相位差為180°;及當該開關責任比為0.5時,流經該第一升壓電感的一第一電流漣波與流經該第二升壓電感的一第二電流漣波相互抵消。 A DC converter as described in claim 2, wherein a switch duty ratio of the first power switch and the second power switch is controlled by two first switch drive signals, and a phase difference between the two first switch drive signals is 180°; and when the switch duty ratio is 0.5, a first current ripple flowing through the first boost inductor and a second current ripple flowing through the second boost inductor cancel each other out. 如請求項1所述之直流轉換裝置,其中該逆變電路包含:二第一開關,相互串接組成一第一橋臂,其中該第一橋臂耦接該諧振電路;及二第二開關,相互串接組成一第二橋臂,其中該第二橋臂耦接該諧振電路;其中,該第一橋臂與該第二橋臂之間具有該交流電壓。 A DC converter as described in claim 1, wherein the inverter circuit comprises: two first switches connected in series to form a first bridge arm, wherein the first bridge arm is coupled to the resonant circuit; and two second switches connected in series to form a second bridge arm, wherein the second bridge arm is coupled to the resonant circuit; wherein the AC voltage exists between the first bridge arm and the second bridge arm. 如請求項4所述之直流轉換裝置,其中,一該第一開關與一該第二開關分別受二第二開關驅動訊號控制而於該開關切換頻率下以50%的一開關責任比進行工作,且該一第一開關與該一第二開關之間的一相位差為180°。 A DC converter as described in claim 4, wherein the first switch and the second switch are respectively controlled by two second switch drive signals and operate at a switch duty ratio of 50% at the switch switching frequency, and a phase difference between the first switch and the second switch is 180°. 如請求項4所述之直流轉換裝置,其中該諧振電路包含:一諧振電容,該諧振電容的一端耦接該第一橋臂;一諧振電感,該諧振電感的一端耦接該諧振電容的另一端;一激磁電感,該激磁電感的一端耦接該諧振電感的另一端,該激磁電感的另一端耦接該第二橋臂;及一變壓器,具有一一次側與一二次側,其中該一次側並聯該激磁電感,且該二次側耦接該整流電路。 A DC converter as described in claim 4, wherein the resonant circuit comprises: a resonant capacitor, one end of which is coupled to the first bridge arm; a resonant inductor, one end of which is coupled to the other end of the resonant capacitor; an excitation inductor, one end of which is coupled to the other end of the resonant inductor, and the other end of which is coupled to the second bridge arm; and a transformer having a primary side and a secondary side, wherein the primary side is connected in parallel to the excitation inductor, and the secondary side is coupled to the rectifier circuit. 如請求項6所述之直流轉換裝置,其中,當該開關切換頻率介於該第一諧振頻率與該第二諧振頻率之間時,流經該諧振電感的一諧振電流與流經該激磁電感的一激磁電流相等,該變壓器進入一解耦區間以使該整流電路截止並操作於該零電流切換。 A DC converter as described in claim 6, wherein when the switch switching frequency is between the first resonant frequency and the second resonant frequency, a resonant current flowing through the resonant inductor is equal to an excitation current flowing through the excitation inductor, and the transformer enters a decoupling region to turn off the rectifier circuit and operate in the zero current switching. 如請求項6所述之直流轉換裝置,其中該整流電路包含:二第一整流二極體,相互串接組成一第三橋臂,其中該第三橋臂耦接該變壓器的該二次側的一起始端;二第二整流二極體,相互串接組成一第四橋臂,其中該第四橋臂耦接該變壓器的該二次側的一結束端;及一輸出電容,該輸出電容的二端分別耦接該二次側的該起始端與該結束端。 A DC converter as described in claim 6, wherein the rectifier circuit comprises: two first rectifier diodes connected in series to form a third bridge arm, wherein the third bridge arm is coupled to a starting end of the secondary side of the transformer; two second rectifier diodes connected in series to form a fourth bridge arm, wherein the fourth bridge arm is coupled to an ending end of the secondary side of the transformer; and an output capacitor, wherein two ends of the output capacitor are respectively coupled to the starting end and the ending end of the secondary side. 如請求項1所述之直流轉換裝置,其中該數位控制模組包含:一訊號轉換器,將該第一回授類比訊號轉換為一第一回授數位訊號,並將該第二回授類比訊號轉換為一第二回授數位訊號;一減法器,電性連接該訊號轉換器,該減法器將該第一回授數位訊號分別與複數第一參考電壓訊號進行相減而產生複數第一差值訊號,並將該第二回授數位訊號分別與複數第二參考電壓訊號進行相減而產生複數第二差值訊號;及一比例積分控制器,電性連接該減法器,該比例積分控制器接收該些第一差值訊號及該些第二差值訊號而分別產生該些第一控制訊號及該些第二控制訊號。 The DC converter device as described in claim 1, wherein the digital control module comprises: a signal converter, which converts the first feedback analog signal into a first feedback digital signal, and converts the second feedback analog signal into a second feedback digital signal; a subtractor, which is electrically connected to the signal converter, and the subtractor subtracts the first feedback digital signal from a plurality of first reference voltage signals to generate a plurality of first difference signals, and subtracts the second feedback digital signal from a plurality of second reference voltage signals to generate a plurality of second difference signals; and a proportional-integral controller, which is electrically connected to the subtractor, and the proportional-integral controller receives the first difference signals and the second difference signals to generate the first control signals and the second control signals respectively.
TW111146328A 2022-12-02 2022-12-02 Direct current converter TWI858446B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111146328A TWI858446B (en) 2022-12-02 2022-12-02 Direct current converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111146328A TWI858446B (en) 2022-12-02 2022-12-02 Direct current converter

Publications (2)

Publication Number Publication Date
TW202425506A TW202425506A (en) 2024-06-16
TWI858446B true TWI858446B (en) 2024-10-11

Family

ID=92539911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111146328A TWI858446B (en) 2022-12-02 2022-12-02 Direct current converter

Country Status (1)

Country Link
TW (1) TWI858446B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200820830A (en) * 2006-10-16 2008-05-01 Hon Hai Prec Ind Co Ltd Light source module driving device
CN205883057U (en) * 2016-07-05 2017-01-11 昆明理工大学 Ware drive power supply is used to microwave based on LCC resonance network
US20180234022A1 (en) * 2015-08-26 2018-08-16 Futurewei Technologies, Inc. Ac/dc converters with wider voltage regulation range
TW201911721A (en) * 2017-08-03 2019-03-16 台達電子工業股份有限公司 Power conversion device
CN110481323A (en) * 2019-10-15 2019-11-22 新誉轨道交通科技有限公司 A kind of control method of train and its power supply unit and train power supply device
CN214480274U (en) * 2021-04-23 2021-10-22 西安中车永电捷通电气有限公司 DC conversion circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200820830A (en) * 2006-10-16 2008-05-01 Hon Hai Prec Ind Co Ltd Light source module driving device
US20180234022A1 (en) * 2015-08-26 2018-08-16 Futurewei Technologies, Inc. Ac/dc converters with wider voltage regulation range
CN205883057U (en) * 2016-07-05 2017-01-11 昆明理工大学 Ware drive power supply is used to microwave based on LCC resonance network
TW201911721A (en) * 2017-08-03 2019-03-16 台達電子工業股份有限公司 Power conversion device
CN110481323A (en) * 2019-10-15 2019-11-22 新誉轨道交通科技有限公司 A kind of control method of train and its power supply unit and train power supply device
CN214480274U (en) * 2021-04-23 2021-10-22 西安中车永电捷通电气有限公司 DC conversion circuit

Also Published As

Publication number Publication date
TW202425506A (en) 2024-06-16

Similar Documents

Publication Publication Date Title
de Melo et al. A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications
Jin et al. Three-level bidirectional converter for fuel-cell/battery hybrid power system
Hsieh et al. Novel high step-up DC–DC converter for distributed generation system
Lee et al. Isolated coupled-inductor-integrated DC–DC converter with nondissipative snubber for solar energy applications
Seok et al. High step-up resonant DC–DC converter with ripple-free input current for renewable energy systems
Do A soft-switching DC/DC converter with high voltage gain
CN111725993B (en) High-efficiency Sepic soft switch converter and control method thereof
Do Asymmetrical full-bridge converter with high-voltage gain
Silva et al. Proposal of a new high step-up converter for UPS applications
Li et al. A novel soft-switching secondary-side modulated multioutput DC–DC converter with extended ZVS range
Liang et al. High step-up three-port converter for renewable energy systems
CN210724563U (en) A Novel Boost DC-DC Converter Topology with TΓ
Lu et al. Design and implementation of a bidirectional DC-DC forward/flyback converter with leakage energy recycled
Do A zero-voltage-switching DC–DC converter with high voltage gain
Tseng et al. Interleaved coupled-inductor boost converter with boost type snubber for PV system
Muthukrishnan et al. DC–DC Boost converter for solar power application
Choi et al. High-efficiency supercapacitor charger using an improved two-switch forward converter
Huang et al. Design of active-clamped push–pull-based DC/DC converter with high step-up ratio and high power conversion efficiency
Tandon et al. Partial series resonance-pulse assisted zero-current-switching current-fed three-phase current sharing DC-DC converter
TWI252589B (en) High-efficiency fuel cell high-boost-ratio DC/DC converter with voltage-clamped and soft-switching mechanism
Zhu et al. High Step-up SEPIC Converters Based on a Family of Coat Circuit
TWI858446B (en) Direct current converter
Chen et al. A fixed switching frequency dual-input LLC converter with PWM controlled semi-active rectifiers for PV applications
Kanimozhi et al. Battery charger for automotive applications
Gao et al. Single-stage LLC AC/DC converter with wide input range and low bus voltage