[go: up one dir, main page]

TWI855372B - Image processing method, device, electronic equipment and medium - Google Patents

Image processing method, device, electronic equipment and medium Download PDF

Info

Publication number
TWI855372B
TWI855372B TW111133488A TW111133488A TWI855372B TW I855372 B TWI855372 B TW I855372B TW 111133488 A TW111133488 A TW 111133488A TW 111133488 A TW111133488 A TW 111133488A TW I855372 B TWI855372 B TW I855372B
Authority
TW
Taiwan
Prior art keywords
image
images
degradation
sub
image processing
Prior art date
Application number
TW111133488A
Other languages
Chinese (zh)
Other versions
TW202411881A (en
Inventor
王筱從
Original Assignee
英屬維爾京群島商威爾德嘉德有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英屬維爾京群島商威爾德嘉德有限公司 filed Critical 英屬維爾京群島商威爾德嘉德有限公司
Priority to TW111133488A priority Critical patent/TWI855372B/en
Publication of TW202411881A publication Critical patent/TW202411881A/en
Application granted granted Critical
Publication of TWI855372B publication Critical patent/TWI855372B/en

Links

Landscapes

  • Image Processing (AREA)

Abstract

本發明公開了一種影像處理方法、裝置、電子設備和介質,屬於影像處理技術領域。該影像處理方法包括:根據K1個預設圖像,確定N個退化參數;根據N個退化參數對第一圖像進行退化處理,得到N個退化圖像;基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型;根據目標影像處理模型對第二圖像進行處理,得到第二圖像對應的三維點雲圖像。The invention discloses an image processing method, device, electronic equipment and medium, belonging to the field of image processing technology. The image processing method comprises: determining N degradation parameters according to K1 preset images; performing degradation processing on the first image according to the N degradation parameters to obtain N degraded images; repeatedly calculating and training the image processing model based on the bull's eye chart image set to obtain a target image processing model; processing the second image according to the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

Description

影像處理方法、裝置、電子設備及介質Image processing method, device, electronic equipment and medium

本發明屬於影像處理技術領域,具體關於一種影像處理方法、裝置、電子設備和可讀存儲介質。The present invention belongs to the field of image processing technology, and specifically relates to an image processing method, device, electronic equipment and readable storage medium.

隨著虛擬實境技術發展的日趨成熟,部分電子設備具備輸出高清的三維點雲圖像這一功能。As virtual reality technology matures, some electronic devices have the ability to output high-definition three-dimensional point cloud images.

在使用電子設備進行三維圖像採集的過程中,通常會固定電子設備中光學模組的焦距,以統一圖像的精度。然而,光學模組受到電子設備體積和硬體成本的限制,導致電子設備輸出的三維點雲圖像存在像差,影響三維點雲圖像的紋理精細度,進而降低了三維點雲圖像的圖像品質。When using electronic equipment to collect 3D images, the focal length of the optical module in the electronic equipment is usually fixed to unify the image accuracy. However, the optical module is limited by the size of the electronic equipment and the hardware cost, resulting in aberrations in the 3D point cloud images output by the electronic equipment, which affects the texture accuracy of the 3D point cloud images and reduces the image quality of the 3D point cloud images.

本發明實施例的目的是一種影像處理方法、裝置、電子設備和介質,能夠解決三維點雲圖像存在像差,進而降低了三維點雲圖像的圖像品質的問題。The purpose of the embodiments of the present invention is to provide an image processing method, apparatus, electronic device and medium, which can solve the problem of aberration in three-dimensional point cloud images, thereby reducing the image quality of the three-dimensional point cloud images.

第一方面,本發明實施例提供了一種影像處理方法,該方法包括: 根據K1個預設圖像,確定N個退化參數,K1和N均為大於1的正整數; 根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像; 基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型,該靶心圖表像集包括該第一圖像和該N個退化圖像; 根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像。 In a first aspect, an embodiment of the present invention provides an image processing method, the method comprising: Based on K1 preset images, determining N degradation parameters, K1 and N are both positive integers greater than 1; Degrading the first image according to the N degradation parameters to obtain N degraded images; Repeatedly calculating and training the image processing model based on the bull's eye image set to obtain a target image processing model, the bull's eye image set including the first image and the N degraded images; Processing the second image according to the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

第二方面,本發明實施例提供了一種影像處理裝置,該裝置包括: 確定模組,用於根據K1個預設圖像,確定N個退化參數,K1和N均為大於1的正整數; 第一處理模組,用於根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像; 訓練模組,用於基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型,該靶心圖表像集包括該第一圖像和該N個退化圖像; 第二處理模組,用於根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像。 In a second aspect, an embodiment of the present invention provides an image processing device, which includes: A determination module, used to determine N degradation parameters based on K1 preset images, where K1 and N are both positive integers greater than 1; A first processing module, used to perform degradation processing on the first image based on the N degradation parameters to obtain N degraded images; A training module, used to repeatedly calculate and train the image processing model based on a bull's eye image set to obtain a target image processing model, where the bull's eye image set includes the first image and the N degraded images; A second processing module, used to process the second image based on the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

第三方面,本發明實施例提供了一種電子設備,該電子設備包括處理器、記憶體及存儲在該記憶體上並可在該處理器上運行的程式或指令,該程式或指令被該處理器執行時實現如第一方面所述的方法的步驟。In a third aspect, an embodiment of the present invention provides an electronic device, which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the method described in the first aspect.

第四方面,本發明實施例提供了一種可讀存儲介質,該可讀存儲介質上存儲程式或指令,該程式或指令被處理器執行時實現如第一方面所述的方法的步驟。In a fourth aspect, an embodiment of the present invention provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.

第五方面,本發明實施例提供了一種晶片,該晶片包括處理器和通信介面,該通信介面和該處理器耦合,該處理器用於運行程式或指令,實現如第一方面所述的方法。In a fifth aspect, an embodiment of the present invention provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to execute programs or instructions to implement the method described in the first aspect.

第六方面,本發明實施例提供一種電腦程式產品,該程式產品被存儲在存儲介質中,該程式產品被至少一個處理器執行以實現如第一方面所述的方法。In a sixth aspect, an embodiment of the present invention provides a computer program product, which is stored in a storage medium and is executed by at least one processor to implement the method described in the first aspect.

本發明實施例中,根據K1個預設圖像,確定N個退化參數;根據N個退化參數對第一圖像進行退化處理,得到N個退化圖像;基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型;根據目標影像處理模型對第二圖像進行處理,得到第二圖像對應的三維點雲圖像。本發明實施例中,使用包括第一圖像和退化圖像的靶心圖表像集對影像處理模型進行反覆運算訓練,得到目標影像處理模型,該目標影像處理模型用於修復退化圖像,輸出紋理精細度較高的圖像。進一步的,使用目標影像處理模型對輸入的第二圖像進行處理,得到該第二圖像對應的三維點雲圖像,以此消除輸出的三維點雲圖像中存在的像差,提高三維點雲圖像的紋理精細度和圖像品質。In the embodiment of the present invention, N degradation parameters are determined based on K1 preset images; the first image is degraded based on the N degradation parameters to obtain N degraded images; the image processing model is repeatedly trained based on the bull's eye image set to obtain a target image processing model; the second image is processed based on the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image. In the embodiment of the present invention, the image processing model is repeatedly trained using the bull's eye image set including the first image and the degraded image to obtain the target image processing model, which is used to repair the degraded image and output an image with higher texture precision. Furthermore, the target image processing model is used to process the input second image to obtain a three-dimensional point cloud image corresponding to the second image, thereby eliminating the aberration existing in the output three-dimensional point cloud image and improving the texture precision and image quality of the three-dimensional point cloud image.

為了使本發明的目的、技術方案及優點更加清楚明白,下面結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,但並不用於限定本發明。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.

需要說明的是,當元件被稱為“固定於”或“設置於”另一個元件,它可以直接在另一個元件上或者間接在所述另一個元件上。當一個元件被稱為是“連接於”另一個元件,它可以是直接連接到另一個元件或間接連接至所述另一個元件上。It should be noted that when an element is referred to as being "fixed on" or "disposed on" another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.

需要理解的是,術語“長度”、“寬度”、“上”、“下”、“前”、“後”、“左”、“右”、“豎直”、“水準”、“頂”、“底”、“內”、“外”等指示的方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述本發明和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本發明的限制。It should be understood that the directions or positional relationships indicated by the terms "length", "width", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside" and "outside" are based on the directions or positional relationships shown in the accompanying drawings and are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific direction, be constructed and operate in a specific direction, and therefore should not be understood as a limitation on the present invention.

此外,術語“第一”、“第二”僅用於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量。由此,限定有“第一”、“第二”的特徵可以明示或者隱含地包括一個或者更多個所述特徵。在本發明的描述中,“多個”的含義是兩個或兩個以上,除非另有明確具體的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.

在本發明中,除非另有明確的規定和限定,術語“安裝”、“相連”、“連接”、“固定”等術語應做廣義理解,例如,可以是固定連接,也可以是可拆卸連接,或成一體;可以是機械連接,也可以是電連接;可以是直接相連,也可以通過中間媒介間接相連,可以是兩個元件內部的連通或兩個元件的相互作用關係。對於本領域的具有通常知識者而言,可以根據具體情況理解上述術語在本發明中的具體含義。In the present invention, unless otherwise clearly specified and limited, the terms "installation", "connection", "connection", "fixation" and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components. For those with ordinary knowledge in this field, the specific meanings of the above terms in the present invention can be understood according to the specific circumstances.

下面結合附圖,通過具體的實施例及其應用場景對本發明實施例提供的影像處理方法進行詳細地說明。The image processing method provided by the embodiment of the present invention is described in detail below through specific embodiments and application scenarios in conjunction with the accompanying drawings.

現有技術中,可以訓練圖像修正模型,使用訓練完成的圖像修正模型提高三維點雲圖像的紋理精細度。然而,在圖像修正模型的反覆運算訓練過程中,僅對拍攝物件對應的二維圖像的每個區塊結構或者每個圖像特徵進行反覆運算處理,未考慮到拍攝物件的三維空間特徵。In the prior art, an image correction model can be trained and used to improve the texture accuracy of a three-dimensional point cloud image. However, in the repeated calculation training process of the image correction model, only each block structure or each image feature of the two-dimensional image corresponding to the photographed object is repeatedly calculated and processed, without considering the three-dimensional spatial features of the photographed object.

這種情況下,若拍攝物件為物體,且拍攝物件包括近物和遠物,其中,近物與電子設備之間的距離小於遠物與電子設備之間的距離,則使用圖像修正模型對該拍攝物件對應的二維圖像行處理後,會導致近物的失真程度大於遠物的失真程度,這降低了三維點雲圖像的圖像品質。In this case, if the photographed object is an object, and the photographed object includes a near object and a distant object, wherein the distance between the near object and the electronic device is smaller than the distance between the distant object and the electronic device, then after processing the two-dimensional image corresponding to the photographed object using the image correction model, the distortion degree of the near object will be greater than that of the distant object, which reduces the image quality of the three-dimensional point cloud image.

為了解決上述存在的技術問題,本發明實施例提供了一種影像處理方法,請參閱圖1,圖1是本發明實施例提供的影像處理方法的流程圖。本發明實施例提供的影像處理方法包括以下步驟: S101,根據K1個預設圖像,確定N個退化參數。 In order to solve the above-mentioned technical problems, the embodiment of the present invention provides an image processing method. Please refer to Figure 1, which is a flow chart of the image processing method provided by the embodiment of the present invention. The image processing method provided by the embodiment of the present invention includes the following steps: S101, determining N degradation parameters based on K1 preset images.

上述退化參數又稱為點擴散函數(Point Spread Function,PSF),PSF描述了一個成像系統對一個點光源的響應,PSF是聚焦光學系統的脈衝回應。The above degradation parameters are also called point spread function (PSF). PSF describes the response of an imaging system to a point light source. PSF is the pulse response of a focusing optical system.

本實施例提供的影像處理方法可以應用於電子設備,本步驟用於獲取電子設備對應的N個退化參數,其中,N為大於1的正整數。The image processing method provided in this embodiment can be applied to electronic devices. This step is used to obtain N degradation parameters corresponding to the electronic device, where N is a positive integer greater than 1.

本步驟中,可以對K1個預設圖像進行採樣處理,得到N個退化參數,其中,K1為大於1的正整數,具體的如何確定退化參數的技術方案,請參閱後續實施例。In this step, K1 preset images may be sampled and processed to obtain N degradation parameters, where K1 is a positive integer greater than 1. For a specific technical solution on how to determine the degradation parameters, please refer to the subsequent embodiments.

在一種可選地實施方式中,上述N個退化參數是預先設置的。In an optional implementation, the above-mentioned N degradation parameters are preset.

S102,根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像。S102: Perform degradation processing on the first image according to the N degradation parameters to obtain N degraded images.

本步驟中,在獲取N個退化參數之後,使用這N個退化參數對預設的第一圖像進行退化處理,得到N個退化圖像,其中,上述第一圖像可以是多個高清圖像,且退化圖像的失真度大於第一圖像的失真度。具體的如何對第一圖像進行退化處理,得到N個退化圖像的實施方案,請參閱後續實施例。In this step, after obtaining N degradation parameters, the preset first image is degraded using the N degradation parameters to obtain N degraded images, wherein the first image may be a plurality of high-definition images, and the distortion of the degraded image is greater than the distortion of the first image. For a specific implementation of how to degrade the first image to obtain N degraded images, please refer to the subsequent implementation examples.

S103,基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型。S103, repeatedly calculating and training the image processing model based on the bull's eye image set to obtain a target image processing model.

上述目標訓練圖像集包括第一圖像和N個退化圖像,上述影像處理模型為深度學習網路模型,例如,上述影像處理模型為卷積神經網路(Convolutional Neural Networks,CNN)模型,或者人工神經網路(Artificial Neural Network,ANN)模型,或其他類型的深度學習網路模型,在此不作具體限定。The target training image set includes a first image and N degraded images, and the image processing model is a deep learning network model. For example, the image processing model is a convolutional neural network (CNN) model, or an artificial neural network (ANN) model, or other types of deep learning network models, which are not specifically limited herein.

本步驟中,將上述目標訓練圖像集作為待訓練的影像處理模型的訓練資料,對待訓練的影像處理模型進行反覆運算訓練,將訓練完成的影像處理模型確定為目標影像處理模型。In this step, the target training image set is used as training data for the image processing model to be trained, the image processing model to be trained is repeatedly trained, and the trained image processing model is determined as the target image processing model.

可選地,待訓練的影像處理模型在第L次反覆運算訓練過程中,該影像處理模型對應的損失函數小於預設閾值,則確定該影像處理模型訓練完成。其中,影像處理模型的損失函數包括但不限於L1 loss、L2 loss、contextual loss、perceptual loss等具備圖像相似度或感知差異的損失函數。Optionally, during the Lth repetitive training process of the image processing model to be trained, if the loss function corresponding to the image processing model is less than a preset threshold, the training of the image processing model is determined to be completed. The loss function of the image processing model includes but is not limited to loss functions with image similarity or perceptual difference, such as L1 loss, L2 loss, contextual loss, and perceptual loss.

S104,根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像。S104: Process the second image according to the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

上述第二圖像可以是使用者輸入的圖像,或通過其他方式獲取的圖像,在此不作具體限定。可選地,上述第二圖像可以是RGB圖像,或者Raw圖像。The second image may be an image input by a user, or an image obtained by other means, which is not specifically limited herein. Optionally, the second image may be an RGB image, or a Raw image.

在其他實施例中,還可以同步獲取第二圖像對應的深度圖,其中,上述深度圖用於表徵第二圖像中每個像素點對應的深度值。In other embodiments, a depth map corresponding to the second image may also be obtained synchronously, wherein the depth map is used to represent the depth value corresponding to each pixel in the second image.

本步驟中,使用目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像,具體的實施方式請參閱後續實施例。In this step, the target image processing model is used to process the second image to obtain a three-dimensional point cloud image corresponding to the second image. For specific implementation methods, please refer to the subsequent embodiments.

本發明實施例中,根據K1個預設圖像,確定N個退化參數;根據N個退化參數對第一圖像進行退化處理,得到N個退化圖像;基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型;根據目標影像處理模型對第二圖像進行處理,得到第二圖像對應的三維點雲圖像。本發明實施例中,使用包括第一圖像和退化圖像的靶心圖表像集對影像處理模型進行反覆運算訓練,得到目標影像處理模型,該目標影像處理模型用於修復退化圖像,輸出紋理精細度較高的圖像。進一步的,使用目標影像處理模型對輸入的第二圖像進行處理,得到該第二圖像對應的三維點雲圖像,以此消除輸出的三維點雲圖像中存在的像差,提高三維點雲圖像的紋理精細度和圖像品質。In the embodiment of the present invention, N degradation parameters are determined based on K1 preset images; the first image is degraded based on the N degradation parameters to obtain N degraded images; the image processing model is repeatedly trained based on the bull's eye image set to obtain a target image processing model; the second image is processed based on the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image. In the embodiment of the present invention, the image processing model is repeatedly trained using the bull's eye image set including the first image and the degraded image to obtain the target image processing model, which is used to repair the degraded image and output an image with higher texture precision. Furthermore, the target image processing model is used to process the input second image to obtain a three-dimensional point cloud image corresponding to the second image, thereby eliminating the aberration existing in the output three-dimensional point cloud image and improving the texture precision and image quality of the three-dimensional point cloud image.

可選地,該根據K1個預設圖像,確定N個退化參數包括: 依據K1個預設圖像對應的距離維度、視場角維度和波長維度,對該K1個預設圖像進行採樣,得到K1個退化參數; 將該K1個退化參數進行內插處理,得到K2個退化參數; 將該K2個退化參數中的至少部分退化參數確定為N個退化參數。 Optionally, determining N degradation parameters based on K1 preset images includes: Sampling the K1 preset images based on the distance dimension, field angle dimension, and wavelength dimension corresponding to the K1 preset images to obtain K1 degradation parameters; Interpolating the K1 degradation parameters to obtain K2 degradation parameters; Determining at least some of the K2 degradation parameters as N degradation parameters.

本實施例中,可以量測點光源在不同距離維度、不同視場角維度和不同波長維度的退化參數。具體而言,電子設備以點光源為拍攝物件,以不同的距離和/或不同的視場角,對點光源進行拍攝,得到K1個預設圖像,其中,K1個預設圖像中每個圖像對應的拍攝物件相同,均為點光源。In this embodiment, the degradation parameters of the point light source in different distance dimensions, different field angle dimensions, and different wavelength dimensions can be measured. Specifically, the electronic device takes the point light source as the shooting object, shoots the point light source at different distances and/or different field angles, and obtains K1 preset images, wherein the shooting object corresponding to each image in the K1 preset images is the same, which is the point light source.

應理解,上述點光源為理想化的質點點光源,可選地,上述點光源可以為物體;上述距離是指電子設備與點光源之間的距離;上述視場角是指以電子設備中光學模組的鏡頭為頂點,以拍攝物件的物像可通過鏡頭的最大範圍的兩條邊緣構成的夾角。It should be understood that the above-mentioned point light source is an idealized particle point light source. Optionally, the above-mentioned point light source can be an object; the above-mentioned distance refers to the distance between the electronic device and the point light source; the above-mentioned field of view angle refers to the angle formed by the two edges of the maximum range through which the image of the object can pass through the lens with the lens of the optical module in the electronic device as the vertex.

進一步的,通過預設圖像的距離維度、視場角維度和波長維度,對每個預設圖像進行採樣處理,得到每個預設圖像對應的退化參數,即得到K1個退化參數。Furthermore, each preset image is sampled and processed according to the distance dimension, field angle dimension and wavelength dimension of the preset image to obtain the degradation parameter corresponding to each preset image, that is, to obtain K1 degradation parameters.

其中,預設圖像包括R、G、B三個顏色通道,為了提高採樣的準確性,對於每個顏色通道,以該顏色通道對應的最大量子效率波長為採集波長,對預設圖像進行採樣,以實現波長維度採樣。Among them, the default image includes three color channels of R, G, and B. In order to improve the accuracy of sampling, for each color channel, the maximum quantum efficiency wavelength corresponding to the color channel is used as the sampling wavelength, and the default image is sampled to achieve wavelength dimension sampling.

例如,請參閱圖2,圖2中的橫坐標用於表徵波長,縱坐標用於表徵量子效率。在圖2示出的預設圖像的應用場景中,R通道在最大量子效率處對應的波長為600,則在該波長處對預設圖像進行採樣處理。For example, please refer to Figure 2, where the horizontal coordinate is used to represent the wavelength and the vertical coordinate is used to represent the quantum efficiency. In the application scenario of the preset image shown in Figure 2, the wavelength corresponding to the R channel at the maximum quantum efficiency is 600, and the preset image is sampled and processed at this wavelength.

本實施例中,可以使用內插法補充未採集到的退化參數,以此對K1個退化參數進行內插處理,得到K2個退化參數,其中K2為大於K1的正整數。In this embodiment, an interpolation method may be used to supplement the uncollected degradation parameters, so as to perform interpolation processing on K1 degradation parameters to obtain K2 degradation parameters, where K2 is a positive integer greater than K1.

示例性的,若退化參數t1對應的視場角維度和波長維度與退化參數t2對應的視場角維度和波長維度相同,退化參數t1對應的距離維度為8,退化參數t2對應的距離維度為10,且退化參數t1的具體數值為10,退化參數t2的具體數值為20。對於退化參數t3,若退化參數t3對應的視場角維度和波長維度與退化參數t2對應的視場角維度和波長維度相同,且退化參數t3對應的距離維度為9,則可以使用內插法增加退化參數t3,且退化參數t3的距離數值為15。Exemplarily, if the field angle dimension and wavelength dimension corresponding to the degradation parameter t1 are the same as the field angle dimension and wavelength dimension corresponding to the degradation parameter t2, the distance dimension corresponding to the degradation parameter t1 is 8, the distance dimension corresponding to the degradation parameter t2 is 10, and the specific value of the degradation parameter t1 is 10, and the specific value of the degradation parameter t2 is 20. For the degradation parameter t3, if the field angle dimension and wavelength dimension corresponding to the degradation parameter t3 are the same as the field angle dimension and wavelength dimension corresponding to the degradation parameter t2, and the distance dimension corresponding to the degradation parameter t3 is 9, the degradation parameter t3 can be increased by interpolation, and the distance value of the degradation parameter t3 is 15.

進一步的,在K2個退化參數中隨機選擇N個退化參數,使用者N個退化參數分別對第一圖像進行退化處理。Furthermore, N degradation parameters are randomly selected from the K2 degradation parameters, and the first image is degraded using the N degradation parameters respectively.

可選地,該將該K2個退化參數中的至少部分退化參數確定為N個退化參數包括: 基於該K2個退化參數,建立退化參數表; 從該退化參數表中選擇N個退化參數。 Optionally, determining at least part of the K2 degradation parameters as N degradation parameters includes: establishing a degradation parameter table based on the K2 degradation parameters; selecting N degradation parameters from the degradation parameter table.

本實施例中,在通過內插法得到K2個退化參數之後,可以使用上述K2個退化參數建立退化參數表,其中,退化參數表用於表徵退化參數與距離維度、視場角維度和波長維度之間的映射關係。In this embodiment, after obtaining K2 degradation parameters by interpolation, a degradation parameter table can be established using the K2 degradation parameters, wherein the degradation parameter table is used to characterize the mapping relationship between the degradation parameters and the distance dimension, the field of view angle dimension, and the wavelength dimension.

進一步的,在建立的退化參數表中隨機選擇N個退化參數,進而使用上述N個退化參數分別對第一圖像進行退化參數,得到N個退化圖像。Furthermore, N degradation parameters are randomly selected from the established degradation parameter table, and then the N degradation parameters are used to perform degradation on the first image respectively, so as to obtain N degraded images.

在一些實施例中,在得到K2個退化參數後,不建立退化參數表,直接從K2個退化參數中選擇N個退化參數,進而使用上述N個退化參數分別對第一圖像進行退化處理,得到N個退化圖像。In some embodiments, after obtaining K2 degradation parameters, a degradation parameter table is not established, and N degradation parameters are directly selected from the K2 degradation parameters, and then the first image is degraded using the N degradation parameters to obtain N degraded images.

由於退化參數是基於對預設圖像從距離維度、視場角維度和波長維度進行採樣得到的,因此使用退化參數對第一圖像進行退化處理得到的退化圖像具備三維空間特徵,後續將退化圖像作為影像處理模型的訓練資料,以此在影像處理模型的訓練過程中考慮到了拍攝物件的三維空間特徵對輸出圖像的影響,使得輸出圖像中的遠物和近物具有相同的紋理精細度。Since the degradation parameters are obtained based on sampling of the preset image from the distance dimension, the field angle dimension and the wavelength dimension, the degraded image obtained by degrading the first image using the degradation parameters has three-dimensional spatial characteristics. The degraded image is subsequently used as training data for the image processing model, so that the influence of the three-dimensional spatial characteristics of the photographed object on the output image is taken into account in the training process of the image processing model, so that the distant objects and near objects in the output image have the same texture precision.

可選地,該根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像包括: 根據該N個退化參數,對該第一圖像進行卷積處理,得到N個退化圖像。 Optionally, performing degradation processing on the first image according to the N degradation parameters to obtain N degraded images includes: Performing convolution processing on the first image according to the N degradation parameters to obtain N degraded images.

本實施例中,對第一圖像進行卷積處理的具體實施方式為,使用N個退化參數,從第一圖像的距離維度、視場角維度和波長維度,分別對第一圖像進行卷積處理,得到N個退化圖像。In this embodiment, the specific implementation method of performing convolution processing on the first image is to use N degradation parameters to perform convolution processing on the first image from the distance dimension, field angle dimension and wavelength dimension of the first image respectively to obtain N degraded images.

為便於理解本發明實施例提供的影像處理方法中關於模型訓練的整體技術方案,請參閱圖3,如圖3所示,S301,首先量測點光源在不同距離、不同視場角和不同波長維度對應的K1個退化參數;S302,基於K1個退化參數建立退化參數表;S303,高清圖(即第一圖像)經過退化參數卷積得到模糊圖(即退化圖像);S304,將高清圖和模糊圖作為影像處理模型的訓練資料,對影像處理模型進行反覆運算訓練,得到目標影像處理模型。To facilitate understanding of the overall technical solution for model training in the image processing method provided by the embodiment of the present invention, please refer to Figure 3. As shown in Figure 3, S301, first measure K1 degradation parameters corresponding to the point light source at different distances, different field angles and different wavelength dimensions; S302, establish a degradation parameter table based on the K1 degradation parameters; S303, the high-definition image (i.e., the first image) is convolved with the degradation parameters to obtain a blurred image (i.e., the degraded image); S304, use the high-definition image and the blurred image as training data for the image processing model, repeatedly perform calculation training on the image processing model, and obtain the target image processing model.

可選地,該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像包括: 確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數; 將該M個子圖像和該至少一個退化參數輸入至該目標影像處理模型,得到M個目標子圖像; 將該M個目標子圖像轉換第三圖像,根據該第三圖像得到該第二圖像對應的三維點雲圖像。 Optionally, the target image processing model processes the second image to obtain a three-dimensional point cloud image corresponding to the second image, including: Determining M sub-images corresponding to the second image, and at least one degradation parameter corresponding to each of the M sub-images; Inputting the M sub-images and the at least one degradation parameter into the target image processing model to obtain M target sub-images; Converting the M target sub-images into a third image, and obtaining a three-dimensional point cloud image corresponding to the second image according to the third image.

如上該,第二圖像可以是使用者輸入的圖像,或通過其他方式獲取的圖像。本實施例中,在獲取第二圖像之後,確定第二圖像對應的M個子圖像,以及每個子圖像對應的至少一個退化參數,其中,M為大於1的正整數,M個子圖像基於第二圖像的顏色通道對第二圖像進行轉換處理得到。具體的如何對第二圖像進行轉換處理以及如何確定子圖像對應的退化參數的技術方案,請參閱後續實施例。As mentioned above, the second image can be an image input by a user, or an image obtained by other means. In this embodiment, after obtaining the second image, M sub-images corresponding to the second image and at least one degradation parameter corresponding to each sub-image are determined, where M is a positive integer greater than 1, and the M sub-images are obtained by converting the second image based on the color channel of the second image. For specific technical solutions on how to convert the second image and how to determine the degradation parameters corresponding to the sub-images, please refer to the subsequent embodiments.

本實施例中,將上述M個子圖像和至少一個退化參數作為目標影像處理模型的輸入,使得目標影像處理模組輸出M個目標子圖像。In this embodiment, the above-mentioned M sub-images and at least one degradation parameter are used as inputs of the target image processing model, so that the target image processing module outputs M target sub-images.

本實施例中,在得到M個目標子圖像之後,對M個目標子圖像進行格式重組處理,得到第三圖像,其中,第三圖像的圖像格式與第二圖像的圖像格式相同,也就是說,若第二圖像為RGB圖像,則第三圖像也是RGB圖像。In this embodiment, after obtaining M target sub-images, the M target sub-images are formatted and reorganized to obtain a third image, wherein the image format of the third image is the same as the image format of the second image, that is, if the second image is an RGB image, the third image is also an RGB image.

進一步的,對第三圖像中每個像素點,依據該像素點對應的深度值進行三維投影,得到三維點雲圖像,其中,可以在深度圖中對第三圖像中每個像素點進行查詢,得到該像素點對應的深度值。Furthermore, a three-dimensional projection is performed on each pixel in the third image according to the depth value corresponding to the pixel to obtain a three-dimensional point cloud image, wherein each pixel in the third image can be queried in the depth map to obtain the depth value corresponding to the pixel.

需要說明的是,若第三圖像為Raw圖像,則需要對第三圖像進行圖像信號處理(Image Signal Processing,ISP)轉換為RGB圖像,再對第三圖像中每個像素點進行三維投影,得到三維點雲圖像。It should be noted that if the third image is a Raw image, it is necessary to perform image signal processing (ISP) on the third image to convert it into an RGB image, and then perform three-dimensional projection on each pixel in the third image to obtain a three-dimensional point cloud image.

可選地,該確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數包括: 確定第二圖像對應的M個子圖像; 對於該M個子圖像中的任意一個子圖像,基於目標退化參數表,確定該子圖像中每個像素點對應的維度資訊,得到該子圖像對應的至少一個退化參數。 Optionally, the determining of the M sub-images corresponding to the second image and at least one degradation parameter corresponding to each of the M sub-images includes: Determining the M sub-images corresponding to the second image; For any one of the M sub-images, based on the target degradation parameter table, determining the dimension information corresponding to each pixel in the sub-image, and obtaining at least one degradation parameter corresponding to the sub-image.

本實施例中,對第二圖像進行轉換處理,得到M個子圖像。對於每個子圖像,在預設的目標退化參數表中對子圖像中每個像素點對應的維度資訊進行查詢,得到子圖像對應的至少一個退化參數,其中,目標退化參數表用於表徵退化參數與距離維度、視場角維度和波長維度之間的映射關係,維度資訊包括距離維度、視場角維度和波長維度中的至少一項。In this embodiment, the second image is converted to obtain M sub-images. For each sub-image, the dimension information corresponding to each pixel in the sub-image is queried in a preset target degradation parameter table to obtain at least one degradation parameter corresponding to the sub-image, wherein the target degradation parameter table is used to characterize the mapping relationship between the degradation parameter and the distance dimension, the field angle dimension and the wavelength dimension, and the dimension information includes at least one of the distance dimension, the field angle dimension and the wavelength dimension.

應理解,在獲取第二圖像的過程中,同步獲取第二圖像對應的深度圖,如上所述,深度圖用於表徵第二圖像中每個像素點對應的深度值,應理解,每個像素點對應的深度值即每個像素點對應的距離維度。這樣,可以在目標退化參數表中輸入子圖像每個像素點對應的深度值,得到該子圖像對應的至少一個退化參數。It should be understood that in the process of obtaining the second image, the depth map corresponding to the second image is obtained synchronously. As mentioned above, the depth map is used to characterize the depth value corresponding to each pixel in the second image. It should be understood that the depth value corresponding to each pixel is the distance dimension corresponding to each pixel. In this way, the depth value corresponding to each pixel of the sub-image can be input into the target degradation parameter table to obtain at least one degradation parameter corresponding to the sub-image.

可選地,該確定第二圖像對應的M個子圖像包括: 在該第二圖像為第一類型圖像的情況下,基於該第二圖像的顏色通道對該第二圖像進行轉換,得到M個子圖像; 在該第二圖像為第二類型圖像的情況下,對該第二圖像進行逆變換處理,得到第四圖像,基於該第四圖像的顏色通道對該第四圖像進行轉換,得到M個子圖像。 Optionally, determining the M sub-images corresponding to the second image includes: When the second image is a first type of image, transforming the second image based on the color channel of the second image to obtain M sub-images; When the second image is a second type of image, inverse transforming the second image to obtain a fourth image, transforming the fourth image based on the color channel of the fourth image to obtain M sub-images.

上述第一類型為Raw圖像,上述第二類型為RGB圖像。本實施例中,根據第二圖像的圖像類型,確定對第二圖像進行轉換處理的方式。The first type is a Raw image, and the second type is an RGB image. In this embodiment, the method for converting the second image is determined according to the image type of the second image.

一種實施方式為:在第二圖像的圖像類型為第一類型的情況下,直接基於第二圖像的顏色通道對第二圖像進行轉換,得到R通道子圖像、G通道子圖像和B通道子圖像。One implementation is: when the image type of the second image is the first type, the second image is directly converted based on the color channel of the second image to obtain an R channel sub-image, a G channel sub-image, and a B channel sub-image.

另一種實施方式為:在第二圖像的圖像類型為第二類型的情況下,對第二圖像進行伽馬逆變換、顏色逆變換和白平衡逆變換得到第四圖像,進而基於第四圖像的顏色通道對第四圖像進行轉換,得到R通道子圖像、G通道子圖像和B通道子圖像。Another implementation method is: when the image type of the second image is the second type, the second image is subjected to inverse gamma transformation, inverse color transformation and inverse white balance transformation to obtain a fourth image, and then the fourth image is transformed based on the color channel of the fourth image to obtain an R channel sub-image, a G channel sub-image and a B channel sub-image.

為便於理解本發明實施例提供的影像處理方法中關於使用目標影像處理模型的整體技術方案,請參閱圖4,如圖4所示,S401,獲取第二圖像和第二圖像對應的深度圖;S402,將第二圖像轉換為不同顏色通道的子圖像;S403,根據子圖像中每個像素點對應的深度值,確定退化參數,即在預設的目標退化參數表中對子圖像對應的深度值進行查詢,得到該子圖像對應的退化參數;S404,將子圖像和退化參數輸入至目標影像處理模型,得到M個目標子圖像;S405,對M個目標子圖像進行重組;S406,將重組後的靶心圖表像按照每個像素點的深度值投影到三維空間產生點雲。To facilitate understanding of the overall technical solution of using the target image processing model in the image processing method provided by the embodiment of the present invention, please refer to FIG. 4. As shown in FIG. 4, S401, a second image and a depth map corresponding to the second image are obtained; S402, the second image is converted into sub-images of different color channels; S403, a degradation parameter is determined according to the depth value corresponding to each pixel in the sub-image, that is, the depth value corresponding to the sub-image is queried in a preset target degradation parameter table to obtain the degradation parameter corresponding to the sub-image; S404, the sub-image and the degradation parameter are input into the target image processing model to obtain M target sub-images; S405, the M target sub-images are reorganized; S406, the reorganized bull's eye image is projected into three-dimensional space according to the depth value of each pixel to generate a point cloud.

下面結合附圖,通過具體的實施例及其應用場景對本發明實施例提供的影像處理裝置進行詳細地說明。The image processing device provided by the embodiment of the present invention is described in detail below through specific embodiments and application scenarios in conjunction with the accompanying drawings.

如圖5所示,影像處理模型的訓練裝置500包括: 確定模組501,用於根據K1個預設圖像,確定N個退化參數; 第一處理模組502,用於根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像; 訓練模組503,用於基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型; 第二處理模組504,用於根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像。 As shown in FIG5 , the training device 500 of the image processing model includes: A determination module 501, used to determine N degradation parameters based on K1 preset images; A first processing module 502, used to perform degradation processing on the first image based on the N degradation parameters to obtain N degraded images; A training module 503, used to repeatedly calculate and train the image processing model based on the bull's eye chart image set to obtain a target image processing model; A second processing module 504, used to process the second image based on the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

可選地,該確定模組501,具體用於: 依據K1個預設圖像對應的距離維度、視場角維度和波長維度,對該K1個預設圖像進行採樣,得到K1個退化參數; 將該K1個退化參數進行內插處理,得到K2個退化參數; 將該K2個退化參數中的至少部分退化參數確定為N個退化參數。 Optionally, the determination module 501 is specifically used to: Sample the K1 preset images according to the distance dimension, field angle dimension and wavelength dimension corresponding to the K1 preset images to obtain K1 degradation parameters; Interpolate the K1 degradation parameters to obtain K2 degradation parameters; Determine at least part of the K2 degradation parameters as N degradation parameters.

可選地,該確定模組501,還具體用於: 基於該K2個退化參數,建立退化參數表; 從該退化參數表中選擇N個退化參數。 Optionally, the determination module 501 is also specifically used to: Establish a degradation parameter table based on the K2 degradation parameters; Select N degradation parameters from the degradation parameter table.

可選地,該第一處理模組502,具體用於: 根據該N個退化參數,對該第一圖像進行卷積處理,得到N個退化圖像。 Optionally, the first processing module 502 is specifically used to: Perform convolution processing on the first image according to the N degradation parameters to obtain N degraded images.

可選地,該第二處理模組504,具體用於: 確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數,M為大於1的正整數; 將該M個子圖像和該至少一個退化參數輸入至該目標影像處理模型,得到M個目標子圖像; 將該M個目標子圖像轉換第三圖像,根據該第三圖像得到該第二圖像對應的三維點雲圖像。 Optionally, the second processing module 504 is specifically used to: Determine M sub-images corresponding to the second image, and at least one degradation parameter corresponding to each of the M sub-images, where M is a positive integer greater than 1; Input the M sub-images and the at least one degradation parameter into the target image processing model to obtain M target sub-images; Convert the M target sub-images into a third image, and obtain a three-dimensional point cloud image corresponding to the second image based on the third image.

可選地,該第二處理模組504,還具體用於: 確定第二圖像對應的M個子圖像; 對於該M個子圖像中的任意一個子圖像,基於目標退化參數表,確定該子圖像中每個像素點對應的維度資訊,得到該子圖像對應的至少一個退化參數。 Optionally, the second processing module 504 is further specifically used to: Determine M sub-images corresponding to the second image; For any one of the M sub-images, based on the target degradation parameter table, determine the dimension information corresponding to each pixel in the sub-image, and obtain at least one degradation parameter corresponding to the sub-image.

可選地,該第二處理模組504,還具體用於: 在該第二圖像為第一類型圖像的情況下,基於該第二圖像的顏色通道對該第二圖像進行轉換,得到M個子圖像; 在該第二圖像為第二類型圖像的情況下,對該第二圖像進行逆變換處理,得到第四圖像,基於該第四圖像的顏色通道對該第三圖像進行轉換,得到M個子圖像。 Optionally, the second processing module 504 is further specifically used for: When the second image is a first type of image, transform the second image based on the color channel of the second image to obtain M sub-images; When the second image is a second type of image, perform inverse transformation processing on the second image to obtain a fourth image, and transform the third image based on the color channel of the fourth image to obtain M sub-images.

本發明實施例中,使用包括第一圖像和退化圖像的靶心圖表像集對影像處理模型進行反覆運算訓練,得到目標影像處理模型,該目標影像處理模型用於修復退化圖像,輸出紋理精細度較高的圖像。進一步的,使用目標影像處理模型對輸入的第二圖像進行處理,得到該第二圖像對應的三維點雲圖像,以此消除輸出的三維點雲圖像中存在的像差,提高三維點雲圖像的紋理精細度和圖像品質。In the embodiment of the present invention, the image processing model is repeatedly trained using a bull's eye image set including the first image and the degraded image to obtain a target image processing model, which is used to repair the degraded image and output an image with higher texture precision. Furthermore, the target image processing model is used to process the input second image to obtain a three-dimensional point cloud image corresponding to the second image, thereby eliminating the aberration existing in the output three-dimensional point cloud image and improving the texture precision and image quality of the three-dimensional point cloud image.

本發明實施例中的影像處理裝置可以是電子設備,也可以是電子設備中的部件、例如積體電路或晶片。該電子設備可以是終端,也可以為除終端之外的其他設備。示例性的,電子設備可以為手機、平板電腦、筆記型電腦、掌上型電腦、車載電子設備、行動上網裝置(Mobile Internet Device,MID)、擴增實境(augmented reality,AR)/虛擬實境(virtual reality,VR)設備、機器人、可穿戴設備、超級行動個人電腦(ultra-mobile personal computer,UMPC)、迷你手提電腦或者個人數位助理(personal digital assistant,PDA)等,還可以為伺服器、網路附屬記憶體(Network Attached Storage,NAS)、個人電腦(personal computer,PC)、電視機(television,TV)、櫃員機或者自助機等,本發明實施例不作具體限定。The image processing device in the embodiment of the present invention can be an electronic device, or a component in the electronic device, such as an integrated circuit or a chip. The electronic device can be a terminal, or other devices except the terminal. Exemplarily, the electronic device may be a mobile phone, a tablet computer, a laptop computer, a handheld computer, a vehicle-mounted electronic device, a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device, an ultra-mobile personal computer (UMPC), a mini laptop computer or a personal digital assistant (PDA), etc. It may also be a server, a network attached storage (NAS), a personal computer (PC), a television (TV), a teller machine or a self-service machine, etc., and the embodiments of the present invention are not specifically limited.

本發明實施例中的影像處理裝置可以為具有作業系統的裝置。該作業系統可以為安卓(Android)作業系統,可以為ios作業系統,還可以為其他可能的作業系統,本發明實施例不作具體限定。The image processing device in the embodiment of the present invention may be a device having an operating system. The operating system may be an Android operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in the embodiment of the present invention.

本發明實施例提供影像處理裝置能夠實現圖1的方法實施例實現的各個過程,為避免重複,這裡不再贅述。The image processing device provided in the embodiment of the present invention can implement various processes implemented in the method embodiment of FIG. 1 . To avoid repetition, they will not be described again here.

可選地,如圖6所示,本發明實施例還提供一種電子設備600,包括處理器601,記憶體602,存儲在記憶體602上並可在該處理器601上運行的程式或指令,該程式或指令被處理器601執行時實現上述影像處理模型的訓練方法實施例的各個過程,或者實現上述影像處理方法實施例的各個過程,且能達到相同的技術效果,為避免重複,這裡不再贅述。Optionally, as shown in FIG6 , an embodiment of the present invention further provides an electronic device 600, including a processor 601, a memory 602, and a program or instruction stored in the memory 602 and executable on the processor 601. When the program or instruction is executed by the processor 601, the various processes of the training method embodiment of the above-mentioned image processing model are implemented, or the various processes of the above-mentioned image processing method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be described here.

需要說明的是,本發明實施例中的電子設備包括上述該的行動電子設備和非行動電子設備。It should be noted that the electronic devices in the embodiments of the present invention include the above-mentioned mobile electronic devices and non-mobile electronic devices.

圖7為實現本發明實施例的一種電子設備的硬體結構示意圖。FIG7 is a schematic diagram of the hardware structure of an electronic device implementing an embodiment of the present invention.

該電子設備700包括但不限於:射頻單元701、網路模組702、音訊輸出單元703 、輸入單元704、感測器705、顯示單元706、使用者輸入單元707、介面單元708、記憶體709、以及處理器710等部件。The electronic device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710 and other components.

本領域的具有通常知識者可以理解,電子設備700還可以包括給各個部件供電的電源(比如電池),電源可以通過電源管理系統與處理器710邏輯相連,從而通過電源管理系統實現管理充電、放電、以及功耗管理等功能。圖7中示出的電子設備結構並不構成對電子設備的限定,電子設備可以包括比圖示更多或更少的部件,或者組合某些部件,或者不同的部件佈置,在此不再贅述。It is understood by those skilled in the art that the electronic device 700 may also include a power source (such as a battery) for supplying power to various components. The power source may be logically connected to the processor 710 through a power management system, so that the power management system can manage charging, discharging, and power consumption. The electronic device structure shown in FIG7 does not constitute a limitation on the electronic device. The electronic device may include more or fewer components than shown, or combine certain components, or arrange components differently, which will not be elaborated here.

其中,處理器710,還用於根據K1個預設圖像,確定N個退化參數;The processor 710 is further used to determine N degradation parameters according to K1 preset images;

根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像;Performing degradation processing on the first image according to the N degradation parameters to obtain N degraded images;

基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型;Based on the bull's eye image set, the image processing model is repeatedly trained to obtain the target image processing model;

根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像。The second image is processed according to the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image.

其中,處理器710,還用於依據K1個預設圖像對應的距離維度、視場角維度和波長維度,對該K1個預設圖像進行採樣,得到K1個退化參數;The processor 710 is further configured to sample the K1 preset images according to the distance dimension, the field angle dimension and the wavelength dimension corresponding to the K1 preset images to obtain K1 degradation parameters;

將該K1個退化參數進行內插處理,得到K2個退化參數;The K1 degradation parameters are interpolated to obtain K2 degradation parameters;

將該K2個退化參數中的至少部分退化參數確定為N個退化參數。At least part of the K2 degradation parameters are determined as N degradation parameters.

其中,處理器710,還用於基於該K2個退化參數,建立退化參數表;The processor 710 is further used to establish a degradation parameter table based on the K2 degradation parameters;

從該退化參數表中選擇N個退化參數。Select N degradation parameters from the degradation parameter table.

其中,處理器710,還用於根據該N個退化參數,對該第一圖像進行卷積處理,得到N個退化圖像。The processor 710 is further used to perform convolution processing on the first image according to the N degradation parameters to obtain N degraded images.

其中,處理器710,還用於確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數;The processor 710 is further configured to determine M sub-images corresponding to the second image, and at least one degradation parameter corresponding to each of the M sub-images;

將該M個子圖像和該至少一個退化參數輸入至該目標影像處理模型,得到M個目標子圖像;Inputting the M sub-images and the at least one degradation parameter into the target image processing model to obtain M target sub-images;

將該M個目標子圖像轉換第三圖像,根據該第三圖像得到該第二圖像對應的三維點雲圖像。The M target sub-images are converted into a third image, and a three-dimensional point cloud image corresponding to the second image is obtained according to the third image.

其中,處理器710,還用於確定第二圖像對應的M個子圖像;The processor 710 is further used to determine M sub-images corresponding to the second image;

對於該M個子圖像中的任意一個子圖像,基於目標退化參數表,確定該子圖像中每個像素點對應的維度資訊,得到該子圖像對應的至少一個退化參數。For any sub-image among the M sub-images, dimension information corresponding to each pixel in the sub-image is determined based on the target degradation parameter table, and at least one degradation parameter corresponding to the sub-image is obtained.

其中,處理器710,還用於在該第二圖像為第一類型圖像的情況下,基於該第二圖像的顏色通道對該第二圖像進行轉換,得到M個子圖像;The processor 710 is further configured to, when the second image is an image of the first type, convert the second image based on the color channel of the second image to obtain M sub-images;

在該第二圖像為第二類型圖像的情況下,對該第二圖像進行逆變換處理,得到第四圖像,基於該第四圖像的顏色通道對該第四圖像進行轉換,得到M個子圖像。When the second image is a second type image, the second image is inversely transformed to obtain a fourth image, and the fourth image is transformed based on a color channel of the fourth image to obtain M sub-images.

本發明實施例中,使用包括第一圖像和退化圖像的靶心圖表像集對影像處理模型進行反覆運算訓練,得到目標影像處理模型,該目標影像處理模型用於修復退化圖像,輸出紋理精細度較高的圖像。進一步的,使用目標影像處理模型對輸入的第二圖像進行處理,得到該第二圖像對應的三維點雲圖像,以此消除輸出的三維點雲圖像中存在的像差,提高三維點雲圖像的紋理精細度和圖像品質。In the embodiment of the present invention, the image processing model is repeatedly trained using a bull's eye image set including the first image and the degraded image to obtain a target image processing model, which is used to repair the degraded image and output an image with higher texture precision. Furthermore, the target image processing model is used to process the input second image to obtain a three-dimensional point cloud image corresponding to the second image, thereby eliminating the aberration existing in the output three-dimensional point cloud image and improving the texture precision and image quality of the three-dimensional point cloud image.

應理解的是,本發明實施例中,輸入單元704可以包括圖形處理器(Graphics Processing Unit,GPU)7041和麥克風7042,圖形處理器7041對在視頻捕獲模式或圖像捕獲模式中由圖像捕獲裝置(如攝像機)獲得的靜態圖片或視頻的圖像資料進行處理。顯示單元706可包括顯示面板7061,可以採用液晶顯示器、有機發光二極體等形式來配置顯示面板7071。使用者輸入單元707包括觸控面板7071以及其他輸入裝置7072中的至少一種。觸控面板7071,也稱為觸控式螢幕。觸控面板7071可包括觸摸檢測裝置和觸摸控制器兩個部分。其他輸入裝置7072可以包括但不限於實體鍵盤、功能鍵(比如音量控制按鍵、開關按鍵等)、軌跡球、滑鼠、操作桿,在此不再贅述。It should be understood that in the embodiment of the present invention, the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042, and the graphics processor 7041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode. The display unit 706 may include a display panel 7061, and the display panel 7071 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc. The user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072. The touch panel 7071 is also called a touch screen. The touch panel 7071 may include two parts: a touch detection device and a touch controller. Other input devices 7072 may include but are not limited to a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be elaborated here.

記憶體709可用於存儲軟體程式以及各種資料。記憶體709可主要包括存儲程式或指令的第一存儲區和存儲資料的第二存儲區,其中,第一存儲區可存儲作業系統、至少一個功能所需的應用程式或指令(比如聲音播放功能、圖像播放功能等)等。此外,記憶體709可以包括揮發性記憶體或非揮發性記憶體,或者,記憶體709可以包括揮發性和非揮發性記憶體兩者。其中,非揮發性記憶體可以是唯讀記憶體(Read-Only Memory,ROM)、可程式設計唯讀記憶體(Programmable ROM,PROM)、可擦除可程式設計唯讀記憶體(Erasable PROM,EPROM)、電可擦除可程式設計唯讀記憶體(Electrically EPROM,EEPROM)或快閃記憶體。揮發性記憶體可以是隨機存取記憶體(Random Access Memory,RAM),靜態隨機存取記憶體(Static RAM,SRAM)、動態隨機存取記憶體(Dynamic RAM,DRAM)、同步動態隨機存取記憶體(Synchronous DRAM,SDRAM)、雙倍數據速率同步動態隨機存取記憶體(Double Data Rate SDRAM,DDRSDRAM)、增強型同步動態隨機存取記憶體(Enhanced SDRAM,ESDRAM)、同步連接動態隨機存取記憶體(Synch link DRAM,SLDRAM)和直接記憶體匯流排隨機存取記憶體(Direct Rambus RAM,DRRAM)。本發明實施例中的記憶體709包括但不限於這些和任意其它適合類型的記憶體。The memory 709 can be used to store software programs and various data. The memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.). In addition, the memory 709 may include a volatile memory or a non-volatile memory, or the memory 709 may include both a volatile memory and a non-volatile memory. Among them, the non-volatile memory can be a read-only memory (ROM), a programmable ROM (PROM), an erasable programmable ROM (EPROM), an electrically erasable programmable ROM (EEPROM) or a flash memory. Volatile memory can be random access memory (RAM), static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDRSDRAM), enhanced synchronous dynamic random access memory (ESDRAM), synchronous link dynamic random access memory (SLDRAM) and direct memory bus random access memory (DRRAM). The memory 709 in embodiments of the present invention includes but is not limited to these and any other suitable types of memory.

處理器710可包括一個或多個處理單元;可選的,處理器710集成應用處理器和調製解調處理器,其中,應用處理器主要處理涉及作業系統、使用者介面和應用程式等的操作,調製解調處理器主要處理無線通訊信號,如基頻處理器。可以理解的是,上述調製解調處理器也可以不集成到處理器710中。The processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modulation and demodulation processor, wherein the application processor mainly processes operations related to the operating system, the user interface, and the application program, and the modulation and demodulation processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.

本發明實施例還提供一種可讀存儲介質,該可讀存儲介質上存儲有程式或指令,該程式或指令被處理器執行時實現上述影像處理方法實施例的各個過程,且能達到相同的技術效果,為避免重複,這裡不再贅述。The embodiment of the present invention also provides a readable storage medium, on which a program or instruction is stored. When the program or instruction is executed by a processor, each process of the above-mentioned image processing method embodiment is implemented and the same technical effect can be achieved. To avoid repetition, it will not be described here.

其中,該處理器為上述實施例中該的電子設備中的處理器。該可讀存儲介質,包括電腦可讀存儲介質,如電腦唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟或者光碟等。The processor is the processor in the electronic device in the above embodiment. The readable storage medium includes a computer readable storage medium, such as a computer read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

本發明實施例另提供了一種晶片,該晶片包括處理器和通信介面,該通信介面和該處理器耦合,該處理器用於運行程式或指令,實現上述影像處理方法實施例的各個過程,且能達到相同的技術效果,為避免重複,這裡不再贅述。The embodiment of the present invention further provides a chip, which includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned image processing method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.

應理解,本發明實施例提到的晶片還可以稱為系統級晶片、系統晶片、晶片系統或片上系統晶片等。It should be understood that the chip mentioned in the embodiments of the present invention can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.

本發明實施例提供一種電腦程式產品,該程式產品被存儲在存儲介質中,該程式產品被至少一個處理器執行以實現上述影像處理方法實施例的各個過程,且能達到相同的技術效果,為避免重複,這裡不再贅述。The embodiment of the present invention provides a computer program product, which is stored in a storage medium. The program product is executed by at least one processor to implement the various processes of the above-mentioned image processing method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.

需要說明的是,在本文中,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、物品或者裝置不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、物品或者裝置所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,並不排除在包括該要素的過程、方法、物品或者裝置中還存在另外的相同要素。此外,需要指出的是,本發明實施方式中的方法和裝置的範圍不限按示出或討論的順序來執行功能,還可包括根據所涉及的功能按基本同時的方式或按相反的順序來執行功能,例如,可以按不同於所描述的次序來執行所描述的方法,並且還可以添加、省去、或組合各種步驟。另外,參照某些示例所描述的特徵可在其他示例中被組合。It should be noted that, in this article, the terms "comprise", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, an element defined by the phrase "comprises a ..." does not exclude the presence of other identical elements in the process, method, article or device including the element. In addition, it should be pointed out that the scope of the method and device in the embodiment of the present invention is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in a reverse order according to the functions involved. For example, the described method may be performed in an order different from that described, and various steps may be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

通過以上的實施方式的描述,本領域的具有通常知識者可以清楚地瞭解到上述實施例方法可借助軟體加必需的通用硬體平臺的方式來實現,當然也可以通過硬體,但很多情況下前者是更佳的實施方式。基於這樣的理解,本發明的技術方案本質上或者說對現有技術做出貢獻的部分可以以電腦軟體產品的形式體現出來,該電腦軟體產品存儲在一個存儲介質(如ROM/RAM、磁碟、光碟)中,包括若干指令用以使得一台終端(可以是手機,電腦,伺服器,或者網路設備等)執行本發明各個實施例所述的方法。Through the description of the above implementation, a person with ordinary knowledge in the field can clearly understand that the above implementation method can be implemented by means of software plus a necessary general hardware platform, and of course it can also be implemented by hardware, but in many cases the former is a better implementation method. Based on this understanding, the technical solution of the present invention, or the part that contributes to the prior art, can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, disk, optical disk), including a number of instructions for a terminal (which can be a mobile phone, computer, server, or network equipment, etc.) to execute the methods described in each embodiment of the present invention.

上面結合附圖對本發明的實施例進行了描述,但是本發明並不局限於上述的具體實施方式,上述的具體實施方式僅僅是示意性的,而不是限制性的,本領域的具有通常知識者在本發明的啟示下,在不脫離本發明宗旨和權利要求所保護的範圍情況下,還可做出很多形式,均屬於本發明的保護之內。The embodiments of the present invention are described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, a person with ordinary knowledge in the field can make many forms without departing from the scope of protection of the purpose of the present invention and the claims, all of which are within the protection of the present invention.

S101-S104:步驟 S301-S304:步驟 S401-S406:步驟 500:訓練裝置 501:確定模組 502:第一處理模組 503:訓練模組 504:第二處理模組 600:電子設備 601:處理器 602:記憶體 700:電子設備 701:射頻單元 702:網路模組 703:音訊輸出單元 704:輸入單元 7041:圖形處理器 7042:麥克風 705:感測器 706:顯示單元 7061:顯示面板 707:使用者輸入單元 7071:觸控面板 7072:其他輸入裝置 708:介面單元 709:記憶體 710:處理器 S101-S104: Steps S301-S304: Steps S401-S406: Steps 500: Training device 501: Determination module 502: First processing module 503: Training module 504: Second processing module 600: Electronic device 601: Processor 602: Memory 700: Electronic device 701: RF unit 702: Network module 703: Audio output unit 704: Input unit 7041: Graphics processor 7042: Microphone 705: Sensor 706: Display unit 7061: Display panel 707: User input unit 7071: Touch panel 7072: Other input devices 708: Interface unit 709: Memory 710: Processor

圖1是本發明實施例提供的影像處理方法的流程圖; 圖2是預設圖像在不同的顏色通道對應的波長示意圖; 圖3是本發明實施例提供的影像處理方法的應用流程圖之一; 圖4是本發明實施例提供的影像處理方法的應用流程圖之二; 圖5是本發明實施例提供的影像處理裝置的結構圖; 圖6是本發明實施例提供的電子設備的結構圖; 圖7是本發明實施例提供的電子設備的硬體結構圖。 FIG. 1 is a flow chart of an image processing method provided by an embodiment of the present invention; FIG. 2 is a schematic diagram of wavelengths corresponding to different color channels of a preset image; FIG. 3 is one of the application flow charts of the image processing method provided by an embodiment of the present invention; FIG. 4 is a second application flow chart of the image processing method provided by an embodiment of the present invention; FIG. 5 is a structural diagram of an image processing device provided by an embodiment of the present invention; FIG. 6 is a structural diagram of an electronic device provided by an embodiment of the present invention; FIG. 7 is a hardware structural diagram of an electronic device provided by an embodiment of the present invention.

S101-S103:步驟 S101-S103: Steps

Claims (9)

一種影像處理方法,其特徵在於,包括:根據K1個預設圖像,確定N個退化參數,K1和N均為大於1的正整數;根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像;基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型,該靶心圖表像集包括該第一圖像和該N個退化圖像;根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像;該根據K1個預設圖像,確定N個退化參數包括:依據K1個預設圖像對應的距離維度、視場角維度和波長維度,對該K1個預設圖像進行採樣,得到K1個退化參數;該K1個預設圖像中每個圖像對應的拍攝物件相同;將該K1個退化參數進行內插處理,得到K2個退化參數,該K2為大於K1的正整數;將該K2個退化參數中的至少部分退化參數確定為N個退化參數。 An image processing method is characterized in that it includes: determining N degradation parameters based on K1 preset images, where K1 and N are both positive integers greater than 1; performing degradation processing on a first image based on the N degradation parameters to obtain N degraded images; repeatedly calculating and training an image processing model based on a bull's eye image set to obtain a target image processing model, where the bull's eye image set includes the first image and the N degraded images; processing a second image based on the target image processing model to obtain a three-dimensional image corresponding to the second image. Point cloud image; the determining N degradation parameters according to K1 preset images includes: sampling the K1 preset images according to the distance dimension, field angle dimension and wavelength dimension corresponding to the K1 preset images to obtain K1 degradation parameters; each image in the K1 preset images corresponds to the same photographed object; interpolating the K1 degradation parameters to obtain K2 degradation parameters, wherein K2 is a positive integer greater than K1; determining at least part of the K2 degradation parameters as N degradation parameters. 如請求項1所述的影像處理方法,其特徵在於,該將該K2個退化參數中的至少部分退化參數確定為N個退化參數包括:基於該K2個退化參數,建立退化參數表,該退化參數表用於 表徵退化參數與距離維度、視場角維度和波長維度之間的映射關係;從該退化參數表中選擇N個退化參數。 The image processing method as described in claim 1 is characterized in that determining at least part of the K2 degradation parameters as N degradation parameters includes: establishing a degradation parameter table based on the K2 degradation parameters, the degradation parameter table is used to characterize the mapping relationship between the degradation parameters and the distance dimension, the field of view angle dimension and the wavelength dimension; selecting N degradation parameters from the degradation parameter table. 如請求項1所述的影像處理方法,其特徵在於,該根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像包括:根據該N個退化參數,對該第一圖像進行卷積處理,得到N個退化圖像。 The image processing method as described in claim 1 is characterized in that the step of performing degradation processing on the first image according to the N degradation parameters to obtain N degraded images includes: performing convolution processing on the first image according to the N degradation parameters to obtain N degraded images. 如請求項1所述的影像處理方法,其特徵在於,根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像包括:確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數,M為大於1的正整數;將該M個子圖像和該至少一個退化參數輸入至該目標影像處理模型,得到M個目標子圖像;將該M個目標子圖像轉換第三圖像,根據該第三圖像得到該第二圖像對應的三維點雲圖像。 The image processing method as described in claim 1 is characterized in that the second image is processed according to the target image processing model to obtain a three-dimensional point cloud image corresponding to the second image, including: determining M sub-images corresponding to the second image, and at least one degradation parameter corresponding to each of the M sub-images, where M is a positive integer greater than 1; inputting the M sub-images and the at least one degradation parameter into the target image processing model to obtain M target sub-images; converting the M target sub-images into a third image, and obtaining a three-dimensional point cloud image corresponding to the second image according to the third image. 如請求項4所述的影像處理方法,其特徵在於,該確定第二圖像對應的M個子圖像,以及該M個子圖像中每個子圖像對應的至少一個退化參數包括:確定第二圖像對應的M個子圖像;對於該M個子圖像中的任意一個子圖像,基於目標退化參數表,確定該子圖像中每個像素點對應的維度資訊,得到該子圖像 對應的至少一個退化參數;其中,該目標退化參數表用於表徵退化參數與目標維度之間的映射關係,該目標維度包括距離維度、視場角維度和波長維度中的至少一項。 The image processing method as described in claim 4 is characterized in that the determining of the M sub-images corresponding to the second image and the at least one degradation parameter corresponding to each of the M sub-images comprises: determining the M sub-images corresponding to the second image; for any one of the M sub-images, based on a target degradation parameter table, determining the dimension information corresponding to each pixel in the sub-image, and obtaining at least one degradation parameter corresponding to the sub-image; wherein the target degradation parameter table is used to characterize the mapping relationship between the degradation parameter and the target dimension, and the target dimension includes at least one of the distance dimension, the field of view angle dimension and the wavelength dimension. 如請求項4所述的影像處理方法,其特徵在於,該確定第二圖像對應的M個子圖像包括:在該第二圖像為第一類型圖像的情況下,基於該第二圖像的顏色通道對該第二圖像進行轉換,得到M個子圖像;在該第二圖像為第二類型圖像的情況下,對該第二圖像進行逆變換處理,得到第四圖像,基於該第四圖像的顏色通道對該第四圖像進行轉換,得到M個子圖像。 The image processing method as described in claim 4 is characterized in that the determining of the M sub-images corresponding to the second image includes: when the second image is a first type of image, the second image is transformed based on the color channel of the second image to obtain the M sub-images; when the second image is a second type of image, the second image is inversely transformed to obtain a fourth image, and the fourth image is transformed based on the color channel of the fourth image to obtain the M sub-images. 一種影像處理裝置,其特徵在於,該裝置包括:確定模組,用於根據K1個預設圖像,確定N個退化參數,K1和N均為大於1的正整數;第一處理模組,用於根據該N個退化參數對第一圖像進行退化處理,得到N個退化圖像;訓練模組,用於基於靶心圖表像集對影像處理模型反覆運算訓練,得到目標影像處理模型,該靶心圖表像集包括該第一圖像和該N個退化圖像;第二處理模組,用於根據該目標影像處理模型對第二圖像進行處理,得到該第二圖像對應的三維點雲圖像;該確定模組,具體用於: 依據K1個預設圖像對應的距離維度、視場角維度和波長維度,對該K1個預設圖像進行採樣,得到K1個退化參數;該K1個預設圖像中每個圖像對應的拍攝物件相同;將該K1個退化參數進行內插處理,得到K2個退化參數,該K2為大於K1的正整數;將該K2個退化參數中的至少部分退化參數確定為N個退化參數。 An image processing device, characterized in that the device comprises: a determination module, used to determine N degradation parameters according to K1 preset images, K1 and N are both positive integers greater than 1; a first processing module, used to perform degradation processing on a first image according to the N degradation parameters to obtain N degraded images; a training module, used to repeatedly calculate and train an image processing model based on a bull's eye image set to obtain a target image processing model, the bull's eye image set including the first image and the N degraded images; a second processing module, used to perform a training on an image processing model based on the target image processing model Process the second image to obtain a three-dimensional point cloud image corresponding to the second image; the determination module is specifically used to: According to the distance dimension, field angle dimension and wavelength dimension corresponding to the K1 preset images, sample the K1 preset images to obtain K1 degradation parameters; each image in the K1 preset images corresponds to the same photographed object; interpolate the K1 degradation parameters to obtain K2 degradation parameters, where K2 is a positive integer greater than K1; determine at least part of the K2 degradation parameters as N degradation parameters. 一種電子設備,其特徵在於,包括處理器,記憶體及存儲在該記憶體上並可在該處理器上運行的程式或指令,該程式或指令被該處理器執行時實現如請求項1至6中任一項所述的影像處理方法的步驟。 An electronic device, characterized in that it includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the image processing method as described in any one of claims 1 to 6. 一種可讀存儲介質,其特徵在於,該可讀存儲介質上存儲程式或指令,該程式或指令被處理器執行時實現如請求項1至6中任一項所述的影像處理方法的步驟。 A readable storage medium, characterized in that a program or instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the image processing method described in any one of claim items 1 to 6 are implemented.
TW111133488A 2022-09-05 2022-09-05 Image processing method, device, electronic equipment and medium TWI855372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111133488A TWI855372B (en) 2022-09-05 2022-09-05 Image processing method, device, electronic equipment and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111133488A TWI855372B (en) 2022-09-05 2022-09-05 Image processing method, device, electronic equipment and medium

Publications (2)

Publication Number Publication Date
TW202411881A TW202411881A (en) 2024-03-16
TWI855372B true TWI855372B (en) 2024-09-11

Family

ID=91228075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111133488A TWI855372B (en) 2022-09-05 2022-09-05 Image processing method, device, electronic equipment and medium

Country Status (1)

Country Link
TW (1) TWI855372B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892305A (en) * 2017-04-24 2020-03-17 爱尔康公司 Stereoscopic visualization cameras and platforms
CN113570510A (en) * 2021-01-19 2021-10-29 腾讯科技(深圳)有限公司 Image processing method, device, equipment and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892305A (en) * 2017-04-24 2020-03-17 爱尔康公司 Stereoscopic visualization cameras and platforms
CN113570510A (en) * 2021-01-19 2021-10-29 腾讯科技(深圳)有限公司 Image processing method, device, equipment and storage medium

Also Published As

Publication number Publication date
TW202411881A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
CN107274338B (en) Systems, methods, and apparatus for low-latency warping of depth maps
CN110300292B (en) Projection distortion correction method, device, system and storage medium
US9973672B2 (en) Photographing for dual-lens device using photographing environment determined using depth estimation
CN111540004B (en) Single camera polar line correction method and device
CN110493525B (en) Zoom image determination method and device, storage medium and terminal
US20170064174A1 (en) Image shooting terminal and image shooting method
US10726580B2 (en) Method and device for calibration
CN112017222B (en) Video panorama stitching and three-dimensional fusion method and device
CN111083458B (en) Brightness correction method, system, equipment and computer readable storage medium
CN110751735B (en) Remote guidance method and device based on augmented reality
CN114339042B (en) Image processing method and device based on multiple cameras, and computer-readable storage medium
CN114742703B (en) Method, device, equipment and storage medium for generating binocular stereoscopic panoramic images
CN114640833B (en) Projection picture adjusting method, device, electronic equipment and storage medium
US10154241B2 (en) Depth map based perspective correction in digital photos
CN119011796B (en) Processing method of environmental image data in camera perspective VST, head display device and storage medium
CN112233185B (en) Camera calibration method, image registration method, image pickup device and storage device
TWI855372B (en) Image processing method, device, electronic equipment and medium
KR20110088275A (en) Mobile communication terminal with video conversion function
CN117294829A (en) Depth compensation method and device thereof
CN110349109B (en) Fisheye distortion correction method and system and electronic equipment thereof
KR102534449B1 (en) Image processing method, device, electronic device and computer readable storage medium
CN113301321A (en) Imaging method, system, device, electronic equipment and readable storage medium
CN115965675A (en) Image processing method and device, electronic device and storage medium
CN114020150A (en) Image display method, image display device, electronic apparatus, and medium
CN115514895B (en) Image anti-shake method, device, electronic device and computer-readable storage medium