TWI851193B - Welding wire and manufacturing method the same - Google Patents
Welding wire and manufacturing method the same Download PDFInfo
- Publication number
- TWI851193B TWI851193B TW112117230A TW112117230A TWI851193B TW I851193 B TWI851193 B TW I851193B TW 112117230 A TW112117230 A TW 112117230A TW 112117230 A TW112117230 A TW 112117230A TW I851193 B TWI851193 B TW I851193B
- Authority
- TW
- Taiwan
- Prior art keywords
- content
- welding wire
- welding
- silicon
- manganese
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 99
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 48
- 239000010703 silicon Substances 0.000 claims abstract description 48
- 239000010959 steel Substances 0.000 claims abstract description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 40
- 239000011572 manganese Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000010936 titanium Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 32
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 30
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 30
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 30
- 239000011651 chromium Substances 0.000 claims abstract description 28
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 238000005098 hot rolling Methods 0.000 claims abstract description 17
- 238000010583 slow cooling Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 238000010622 cold drawing Methods 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 11
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 10
- 239000002244 precipitate Substances 0.000 claims description 6
- 239000002893 slag Substances 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000009713 electroplating Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000005491 wire drawing Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GNVXPFBEZCSHQZ-UHFFFAOYSA-N iron(2+);sulfide Chemical compound [S-2].[Fe+2] GNVXPFBEZCSHQZ-UHFFFAOYSA-N 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
本發明係關於一種銲線與其製造方法,特別是關於一種銲道電鍍性優良的銲線成份及其製造方法。 The present invention relates to a welding wire and a method for manufacturing the same, and in particular to a welding wire composition with excellent electroplating properties and a method for manufacturing the same.
氣體保護遮銲是一種用惰性氣體保護電弧進行的銲接方法。相較於其他銲接方法,氣體保護遮銲的銲接速度更快,且方便應用於自動化製程,故為工業上最常見的銲接製程。 Gas shield welding is a welding method that uses an inert gas to protect the arc. Compared with other welding methods, gas shield welding has a faster welding speed and is convenient for use in automated processes, so it is the most common welding process in industry.
然而,惰性氣體的選擇,將影響電弧的型態,並改變銲接時,熔融液滴(droplet)的形狀。 However, the choice of inert gas will affect the arc pattern and change the shape of the molten droplet during welding.
若採100%的二氧化碳作為保護氣體時,則因二氧化碳在電弧的超高溫環境下,造成氣體分子分解。二氧化碳分解時會吸收熱能,具冷卻電弧效果,使得電弧僅集中在小區域的銲線,而液滴將形成球狀傳導(globular transfer),也使得銲道熔融區較窄。 If 100% carbon dioxide is used as the shielding gas, the carbon dioxide will decompose the gas molecules in the ultra-high temperature environment of the arc. When carbon dioxide decomposes, it will absorb heat energy and have the effect of cooling the arc, so that the arc is only concentrated on a small area of the welding wire, and the droplets will form a globular transfer, which also makes the welding channel molten area narrower.
若採100%的氬氣氣作為保護氣體時,因為氬氣是不參與反應的單原子惰性氣體,造成電弧長,電弧容易不穩定,且容易遊移、擺盪。因此,業界常見採用氬氣中混入少量的二氧化碳,同時結合兩者的優點,以達到良好的銲道品質。 If 100% argon is used as the protective gas, because argon is a monatomic inert gas that does not participate in the reaction, the arc will be long, unstable, and easy to move and swing. Therefore, the industry often uses a small amount of carbon dioxide mixed with argon to combine the advantages of both to achieve good weld quality.
然而,二氧化碳在電弧作用下會發生分解,游離出的氧也將混入銲道中。鋼鐵內常見的合金元素矽容易與氧發生反應。因此,在銲接過程中,矽會搶先於鐵、碳,與氧優先反應,形成矽氧化物,此即為銲渣。銲接時,若有銲渣生成,移除氧則可避免銲道內的鐵、碳大量氧化。 However, carbon dioxide will decompose under the action of the arc, and the freed oxygen will also be mixed into the weld. Silicon, a common alloying element in steel, easily reacts with oxygen. Therefore, during the welding process, silicon will react with oxygen before iron and carbon to form silicon oxide, which is welding slag. If welding slag is generated during welding, removing oxygen can prevent the large-scale oxidation of iron and carbon in the weld.
銲渣會黏著在銲道表面,其將影響銲道的外觀。此外,以矽為基底的銲渣,耐酸鹼又不可導電,當被銲工件進行後續的製程時(例如酸洗時),有銲渣沾黏的區域將難以洗去。在後續進行電鍍時,表面含有矽氧化物的區域便會形成未鍍點。 Welding slag will adhere to the surface of the weld, which will affect the appearance of the weld. In addition, the welding slag based on silicon is acid-resistant and alkali-resistant and non-conductive. When the welded workpiece undergoes subsequent processes (such as pickling), the area with welding slag adhesion will be difficult to wash off. When electroplating is performed later, the area containing silicon oxide on the surface will form unplated spots.
另外,由於矽氧化物與鋼鐵的熱膨脹係數、晶格差異大,隨著工件使用一段時間後,在矽氧化物與鋼鐵間逐漸累積殘留應力,導致矽氧化物附著性降低,並進一步其脫落,進而裸露出鋼材表面。腐蝕通常會由矽氧化物脫落之處發生。因此一旦被銲工件表面有殘留銲渣,耐腐蝕性就會變差。 In addition, due to the large difference in thermal expansion coefficient and lattice between silicon oxide and steel, residual stress gradually accumulates between silicon oxide and steel after the workpiece is used for a period of time, resulting in reduced adhesion of silicon oxide and further detachment, exposing the steel surface. Corrosion usually occurs where silicon oxide detaches. Therefore, once there is residual slag on the surface of the welded workpiece, the corrosion resistance will deteriorate.
為了降低銲渣生成,現有技術採取雷同的作法,均是降低矽的含量。如將矽含量降低至0.15%以下。透過降低矽含量,可以減少含矽的銲渣的生成。然而,矽是熔煉鐵水中常見的脫氧劑,並為造渣元素,故較難控制矽成分至0.15%以下。另外,現有技術還將銲線合金成分控制成需滿足Si×Mn0.3,(Si+Mn/5)/(Ti+Al)3之條件式。但是,若合金中錳含量為2%以上,則矽含量需控制為0.15%以下,同樣於鋼鐵冶煉製程中不易控制。 In order to reduce the generation of slag, the existing technology adopts a similar approach, which is to reduce the silicon content. For example, the silicon content is reduced to below 0.15%. By reducing the silicon content, the generation of silicon-containing slag can be reduced. However, silicon is a common deoxidizer in molten iron and a slag-forming element, so it is difficult to control the silicon content to below 0.15%. In addition, the existing technology also controls the alloy composition of the welding wire to meet Si×Mn 0.3, (Si+Mn/5)/(Ti+Al) 3. However, if the manganese content in the alloy is above 2%, the silicon content must be controlled below 0.15%, which is also difficult to control in the steel smelting process.
為了提高矽的成分範圍,同時避免生成銲渣,故需對銲線進行成分設計。此外,銲線需經多道次的抽製製程,因此也需對熱軋組織進行控制。 In order to increase the composition range of silicon and avoid the generation of welding slag, the composition of the welding wire needs to be designed. In addition, the welding wire needs to go through multiple drawing processes, so the hot rolling structure also needs to be controlled.
因此,有必要提供一種銲道電鍍性優良的銲線與其製造方法,以解決習用技術所存在的問題。 Therefore, it is necessary to provide a welding wire with excellent electroplating properties and a manufacturing method thereof to solve the problems existing in the conventional technology.
本發明之一目的在於提供一種銲道電鍍性優良的銲線成份及其製造方法,通過對合金設計的設計,可提高銲線成分中矽的含量,使鋼鐵冶煉時較容易。 One of the purposes of the present invention is to provide a welding wire composition with excellent electroplating properties and a manufacturing method thereof. By designing the alloy, the silicon content in the welding wire composition can be increased, making steel smelting easier.
本發明又一目的在於提供一種銲道電鍍性優良的銲線成份及其製造方法,通過對錳、鉻、鈦等合金元素的成分設計,進而對銲渣進行改質,從而使銲道表面無明顯含矽之銲渣,使得後續電鍍不會產生未鍍點進而影響產品品質。 Another purpose of the present invention is to provide a welding wire composition with excellent electroplating properties and a manufacturing method thereof, by designing the composition of alloying elements such as manganese, chromium, and titanium, and then modifying the welding slag, so that there is no obvious silicon-containing welding slag on the surface of the welding path, so that the subsequent electroplating will not produce unplated points and thus affect the product quality.
為達上述之目的,本發明提供一種銲線的製造方法,包含以下步驟:提供一鋼胚,該鋼胚成分為:按鋼胚總重為100wt.%計,碳含量為0.02至0.10wt.%之間、錳含量為2.00至3.00wt.%之間、矽含量為0.01至0.25wt.%之間,鉻含量為0.10至0.5wt.%之間,鈦含量為0.10至0.3wt.%之間,以及不可避免的雜質,其餘為鐵,其中該鋼胚成分符合(錳含量/2+鈦含量+鉻含量/1.33)/矽含量大於5的判斷式;將該鋼胚進行一加熱程序;將加熱後的鋼胚後進行一熱軋程序,以形成一線材;對熱軋後的線材進行一緩冷程序;以及對進行該緩冷程序的線材進行一冷抽程序,以製成一銲線。 To achieve the above-mentioned object, the present invention provides a method for manufacturing a welding wire, comprising the following steps: providing a steel billet, wherein the steel billet comprises: based on the total weight of the steel billet being 100wt.%, a carbon content of 0.02 to 0.10wt.%, a manganese content of 2.00 to 3.00wt.%, a silicon content of 0.01 to 0.25wt.%, a chromium content of 0.10 to 0.5wt.%, and a titanium content of 0.10 to 0.3wt.%, and inevitable impurities, the rest being iron, wherein the composition of the steel billet meets the judgment formula of (manganese content/2+titanium content+chromium content/1.33)/silicon content greater than 5; the steel billet is subjected to a heating process; the heated steel billet is subjected to a hot rolling process to form a wire rod; the hot rolled wire rod is subjected to a slow cooling process; and the wire rod subjected to the slow cooling process is subjected to a cold drawing process to produce a welding wire.
在本發明的一些實施例中,該鋼胚的矽含量/錳含量的比例為0.02至0.1之間。 In some embodiments of the present invention, the ratio of silicon content to manganese content of the steel blank is between 0.02 and 0.1.
在本發明的一些實施例中,該加熱程序為將鋼胚加熱並控制至溫度為1000至1050℃之間。 In some embodiments of the present invention, the heating process is to heat and control the steel embryo to a temperature between 1000 and 1050°C.
在本發明的一些實施例中,該熱軋程序的軋延溫度為820至1000℃,並將完軋溫度控制為800至850℃之間。 In some embodiments of the present invention, the rolling temperature of the hot rolling process is 820 to 1000°C, and the finishing temperature is controlled to be between 800 and 850°C.
在本發明的一些實施例中,該緩冷程序冷卻速率為每秒0.1至5℃之間。 In some embodiments of the present invention, the cooling rate of the slow cooling process is between 0.1 and 5°C per second.
在本發明的一些實施例中,該銲線中麻田散鐵的比例為小於5%。 In some embodiments of the present invention, the proportion of ferrite in the welding wire is less than 5%.
另外,本發明還提供一種銲線,包含:該銲線成分為:按銲線總重為100wt.%計,碳含量為0.02至0.10wt.%之間、錳含量為2.00至3.00wt.%之間、矽含量為0.01至0.25wt.%之間,鉻含量為0.10至0.5wt.%之間,鈦含量為0.10至0.3wt.%之間,以及不可避免的雜質,其餘為鐵,其中該銲線成分符合(錳含量/2+鈦含量+鉻含量/1.33)/矽含量大於5的判斷式。 In addition, the present invention also provides a welding wire, comprising: the welding wire composition is: based on the total weight of the welding wire as 100wt.%, the carbon content is between 0.02 and 0.10wt.%, the manganese content is between 2.00 and 3.00wt.%, the silicon content is between 0.01 and 0.25wt.%, the chromium content is between 0.10 and 0.5wt.%, the titanium content is between 0.10 and 0.3wt.%, and inevitable impurities, and the rest is iron, wherein the welding wire composition meets the judgment formula of (manganese content/2+titanium content+chromium content/1.33)/silicon content greater than 5.
在本發明的一些實施例中,該銲線的矽含量/錳含量的比例為0.02至0.1之間。 In some embodiments of the present invention, the ratio of silicon content to manganese content of the welding wire is between 0.02 and 0.1.
在本發明的一些實施例中,該銲線中麻田散鐵的比例為小於5%。 In some embodiments of the present invention, the proportion of ferrite in the welding wire is less than 5%.
在本發明的一些實施例中,該銲線中含有奈米級碳化鈦析出物。 In some embodiments of the present invention, the welding wire contains nano-scale titanium carbide precipitates.
S100:銲線製造方法 S100: Welding wire manufacturing method
S101~S105:步驟 S101~S105: Steps
[圖1]:本發明實施例的銲線的製造方法的示意流程圖。 [Figure 1]: Schematic flow chart of the method for manufacturing the welding wire of an embodiment of the present invention.
[圖2]:本發明實施例的氧化物自由能圖(Ellingham diagram)。 [Figure 2]: Oxide free energy diagram (Ellingham diagram) of an embodiment of the present invention.
[圖3]:本發明實施例的熱軋組織的電子顯微鏡示意圖。 [Figure 3]: Electron microscope schematic diagram of the hot-rolled structure of an embodiment of the present invention.
[圖4]:本發明實施例銲後的銲道表面電子顯微鏡示意圖。 [Figure 4]: Schematic diagram of the surface of the weld after welding in an embodiment of the present invention using an electron microscope.
[圖5]:本發明實施例銲後的銲道表面的電子顯微鏡示意圖。 [Figure 5]: Electron microscope schematic diagram of the surface of the weld after welding in the embodiment of the present invention.
[圖6]:本發明實施例銲道內部的的組織以及介在物分布的示意圖。 [Figure 6]: Schematic diagram of the internal structure and distribution of intermediaries in the embodiment of the present invention.
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 In order to make the above and other purposes, features and advantages of the present invention more clearly understandable, the following will specifically cite the preferred embodiments of the present invention and provide a detailed description in conjunction with the attached drawings. Furthermore, the directional terms mentioned in the present invention, such as top, bottom, top, bottom, front, back, left, right, inside, outside, side, periphery, center, horizontal, transverse, vertical, longitudinal, axial, radial, topmost or bottommost, etc., are only referenced to the directions of the attached drawings. Therefore, the directional terms used are used to explain and understand the present invention, not to limit the present invention.
如本文所用的,提及變量的數值範圍旨在表示變量等於該範圍內的任意值。因此,對於本身不連續的變量,該變量等於該數值範圍內的任意整數值,包括該範圍的端點。類似地,對於本身連續的變量,該變量等於該數值範圍內的任意實值,包括該範圍的端點。作為例子,而不是限制,如果變量本身是不連續的,描述為具有0-2之間的值的變量取0、1或2的值;而如果變量本身是連續的,則取0.0、0.1、0.01、0.001的值或0且2的其他任何實值。 As used herein, reference to a numerical range for a variable is intended to mean that the variable is equal to any value within the range. Thus, for a variable that is itself discontinuous, the variable is equal to any integer value within the numerical range, including the endpoints of the range. Similarly, for a variable that is itself continuous, the variable is equal to any real value within the numerical range, including the endpoints of the range. By way of example, and not limitation, a variable described as having a value between 0-2 takes on a value of 0, 1, or 2 if the variable is itself discontinuous, and takes on a value of 0.0, 0.1, 0.01, 0.001, or 2 if the variable is itself continuous. 0 and Any other real value of 2.
為使更容易理解本發明的設計原理,以下針對本發明銲線各成分對銲接時的影響進行說明: In order to make it easier to understand the design principle of the present invention, the following is an explanation of the effects of the various components of the welding wire of the present invention on welding:
碳(C):碳可影響銲後的強度。一般而言,碳含量提高,則銲後的硬度較高。若碳含量小於0.02%,則銲後可能硬度不足;若碳含量太高,則銲後硬脆組織比例高、因此硬度高,但可能有韌性不佳的問題。雖然銲後的韌性可藉由銲後熱處理來改善,但熱處理將提高成本、延長工件製程時間,提高生產成本。因此,本發明將銲線的碳成分上限設定為約0.15%。 Carbon (C): Carbon can affect the strength after welding. Generally speaking, the higher the carbon content, the higher the hardness after welding. If the carbon content is less than 0.02%, the hardness after welding may be insufficient; if the carbon content is too high, the hardness is high due to the high ratio of hard and brittle structures after welding, but there may be problems with poor toughness. Although the toughness after welding can be improved by heat treatment after welding, heat treatment will increase the cost, extend the workpiece processing time, and increase the production cost. Therefore, the present invention sets the upper limit of the carbon content of the welding wire to about 0.15%.
矽(Si):矽為常見的脫氧劑,在銲接過程中,矽會搶先於鐵,與氧優先反應,形成矽的氧化物。因此現有技術通過降低矽成分,進而避免含 矽銲渣的生成,並提高耐腐蝕性。另一方面,矽添加後,可藉由固溶強化,提高銲道之硬度。如下文所述,通過錳、鉻、鈦的成分設計,進行銲渣的改質後,可提高合金冶煉的裕度,因此本發明將矽設計為0.01至0.25wt.%之間。 Silicon (Si): Silicon is a common deoxidizer. During the welding process, silicon will react with oxygen before iron to form silicon oxide. Therefore, the existing technology reduces the silicon content to avoid the formation of silicon-containing slag and improve corrosion resistance. On the other hand, after adding silicon, the hardness of the weld can be improved by solid solution strengthening. As described below, by designing the composition of manganese, chromium, and titanium, the alloy smelting margin can be improved after the slag is modified. Therefore, the silicon content of the present invention is designed to be between 0.01 and 0.25wt.%.
錳(Mn):在銲接時,錳可以捕捉硫,形成硫化錳(MnS),避免硫化鐵(FeS)生成;由於硫化鐵熔點較低,再加上銲接時冷熱變化大,收縮膨脹下造成熱應力。一旦組織內有硫化鐵等低熔點的液化相,就會造成銲接時發生熱裂。錳可以延緩肥粒鐵相變態,因此可調整銲道組織,提升銲接後的強度。此外,錳也有脫氧的效果。另外,參考圖2的Ellingham圖表,可發現錳的脫氧能力僅略遜於矽。若生成錳的氧化物,因氧化錳的導電性落於導體的範疇,故氧化錳不影響後續電鍍製程,不會形成未鍍點。然而,錳太高時,將使得銲接後的組織產生麻田散鐵,使得銲道硬度太高,韌性下降,容易發生冷裂。因此,本發明錳設計為2.00至3.00wt.%之間。 Manganese (Mn): During welding, manganese can capture sulfur to form manganese sulfide (MnS) and prevent the formation of iron sulfide (FeS); due to the low melting point of iron sulfide, coupled with the large temperature changes during welding, thermal stress is caused by shrinkage and expansion. Once there is a low-melting-point liquefied phase such as iron sulfide in the structure, thermal cracking will occur during welding. Manganese can delay the transformation of manganese phase, so the weld structure can be adjusted to improve the strength after welding. In addition, manganese also has a deoxidation effect. In addition, referring to the Ellingham diagram in Figure 2, it can be found that the deoxidation ability of manganese is only slightly inferior to that of silicon. If manganese oxide is generated, since the conductivity of manganese oxide falls within the scope of conductors, manganese oxide will not affect the subsequent electroplating process and will not form unplated spots. However, when the manganese content is too high, the structure after welding will produce stray iron, making the weld hardness too high, the toughness decreased, and cold cracking is prone to occur. Therefore, the manganese content of the present invention is designed to be between 2.00 and 3.00wt.%.
鉻(Cr):鉻可以延緩肥粒鐵相變態,因此可調整銲道組織,提升銲接後的強度。鉻也具有脫氧的效果。然而,鉻氧化物的導電性略差,故僅作為輔助使用。因此,本發明鉻設計為0.10至0.5wt.%之間。 Chromium (Cr): Chromium can delay the transformation of the ferrous iron phase, so it can adjust the weld structure and improve the strength after welding. Chromium also has a deoxidation effect. However, the conductivity of chromium oxide is slightly poor, so it is only used as an auxiliary. Therefore, the chromium content of the present invention is designed to be between 0.10 and 0.5wt.%.
鈦(Ti):鈦具有強烈脫氧效果。此外,在銲道內,鈦生成的氧化物,可促進針狀肥粒鐵組之生成,因此有助於銲道提升機械強度及韌性。然而,若鈦含量太高,則鈦在熱軋後,將與碳結合生成奈米級的碳化鈦(TiC)析出物,而大幅提升鋼材的強度。由於在製作銲線時,需經過大變形量的抽線製程,高強度的銲線將導致冷抽加工不易,並造成模具損耗,甚至發生抽線裂。因此,本發明鈦設計的添加量為0.10至0.3wt.%之間。 Titanium (Ti): Titanium has a strong deoxidation effect. In addition, in the weld channel, the oxides generated by titanium can promote the formation of needle-shaped ferrite groups, thus helping to improve the mechanical strength and toughness of the weld channel. However, if the titanium content is too high, titanium will combine with carbon after hot rolling to form nano-scale titanium carbide (TiC) precipitates, which greatly improves the strength of the steel. Since the welding wire needs to go through a large deformation wire drawing process when making it, high-strength welding wire will make cold drawing difficult, cause mold damage, and even wire drawing cracks. Therefore, the titanium addition amount designed in the present invention is between 0.10 and 0.3wt.%.
根據上述設計原理,本發明提出一種銲線的製造方法,包含以下步驟:提供一鋼胚,該鋼胚成分為:按鋼胚總重為100wt.%計,碳含量為 0.02至0.10wt.%之間、錳含量為2.00至3.00wt.%之間、矽含量為0.01至0.25wt.%之間,鉻含量為0.10至0.5wt.%之間,鈦含量為0.10至0.3wt.%之間,以及不可避免的雜質,其餘為鐵,其中該鋼胚成分符合(錳含量/2+鈦含量+鉻含量/1.33)/矽含量大於5的判斷式;將該鋼胚進行一加熱程序;將加熱後的鋼胚後進行一熱軋程序,以形成一線材;對熱軋後的線材進行一緩冷程序;以及對進行該緩冷程序的線材進行一冷抽程序,以製成一銲線。 According to the above design principle, the present invention proposes a method for manufacturing a welding wire, comprising the following steps: providing a steel billet, wherein the steel billet composition is: based on the total weight of the steel billet being 100wt.%, the carbon content is between 0.02 and 0.10wt.%, the manganese content is between 2.00 and 3.00wt.%, the silicon content is between 0.01 and 0.25wt.%, the chromium content is between 0.10 and 0.5wt.%, and the titanium content is between 0.1 0 to 0.3wt.%, and inevitable impurities, the rest is iron, wherein the composition of the steel billet meets the judgment formula of (manganese content/2+titanium content+chromium content/1.33)/silicon content greater than 5; the steel billet is subjected to a heating process; the heated steel billet is subjected to a hot rolling process to form a wire rod; the hot rolled wire rod is subjected to a slow cooling process; and the wire rod subjected to the slow cooling process is subjected to a cold drawing process to produce a welding wire.
透過對錳、鉻、鈦的成分設計,可以進行銲渣的改質。因此,銲接後之銲道表面,可形成均勻氧化鐵薄膜,避免表面生成以矽為主的銲渣,因此提高了電鍍性。改質後的成分,增加銲線成分中矽的裕度,使鋼鐵冶煉時較容易。 By designing the composition of manganese, chromium and titanium, the welding slag can be modified. Therefore, a uniform iron oxide film can be formed on the surface of the weld after welding, avoiding the formation of silicon-based welding slag on the surface, thereby improving the electroplating performance. The modified composition increases the silicon margin in the welding wire composition, making it easier to smelt steel.
本發明的一個實施例的銲線製作採用兩道工序進行製作:(1)將鋼胚熱軋為線材盤元;及(2)將線材冷抽為銲線。在進行熱軋時,鋼胚(例如,小鋼胚)需經一加熱程序重新加熱,重新加熱的溫度在1000至1050℃之間(例如,約1030℃)。若重新加熱的溫度太高,則碳化鈦會發生固溶。鈦在熱軋後與碳結合,產生奈米級的碳化鈦析出物,將大幅提升鋼材強度,並導致冷抽加工不易、增強模具損耗。若重新加熱的溫度太低,則熱軋輥輪的損耗將過大,也容易增加軋機負荷,導致軋延不順。 The welding wire manufacturing of an embodiment of the present invention is carried out in two steps: (1) hot rolling the steel billet into a wire coil; and (2) cold drawing the wire into the welding wire. During the hot rolling, the steel billet (e.g., a small steel billet) needs to be reheated through a heating process, and the reheating temperature is between 1000 and 1050°C (e.g., about 1030°C). If the reheating temperature is too high, titanium carbide will undergo solid solution. Titanium combines with carbon after hot rolling to produce nano-scale titanium carbide precipitates, which will greatly increase the strength of the steel, and make the cold drawing process difficult and increase mold wear. If the reheating temperature is too low, the hot rollers will be damaged too much and the roller load will increase, resulting in uneven rolling.
在熱軋程序時,所採用的軋延溫度約820至1000℃之間,完軋溫度的設定為800至850℃之間(例如,約820℃)。若完軋溫度過高,則熱軋後組織的晶粒較為粗大,不利後續之抽線。此外,因成分中含2至3%的錳,粗大的熱軋組織也將導致島狀麻田散鐵生成,導致抽線後容易發生斷線。若完軋溫度太低,則容易增加軋機負荷,導致軋延不順。熱軋後的緩冷程序,將熱軋後的線材散置後於史蒂摩(Stelmor)冷卻輸送帶上進行緩冷,冷卻速率設計約每秒0.1至5℃。若冷速太高,則線材將形成變韌鐵、麻田散鐵,不利後續之抽線。 若冷速太低,則生產的產率過低,導致生產成本提高。熱軋產出的線材,再經多道次的冷抽加工後,即可製作為銲線。 During the hot rolling process, the rolling temperature used is between 820 and 1000°C, and the final rolling temperature is set between 800 and 850°C (for example, about 820°C). If the final rolling temperature is too high, the grains of the hot rolled structure will be coarse, which is not conducive to the subsequent wire drawing. In addition, because the composition contains 2 to 3% manganese, the coarse hot rolled structure will also lead to the formation of island-like scattered iron, which will easily cause wire breakage after wire drawing. If the final rolling temperature is too low, it is easy to increase the rolling machine load, resulting in uneven rolling. The slow cooling process after hot rolling is to spread the hot rolled wires on the Stelmor cooling conveyor for slow cooling. The cooling rate is designed to be about 0.1 to 5°C per second. If the cooling rate is too high, the wires will form tough iron and loose iron, which is not conducive to subsequent wire drawing. If the cooling rate is too low, the production yield is too low, resulting in increased production costs. The wires produced by hot rolling can be made into welding wires after multiple cold drawing processes.
實施例: Implementation example:
由於在銲接時的氧化反應發生時產生以下反應:Si+O2→SiO2 The oxidation reaction during welding produces the following reaction: Si+O 2 →SiO 2
4/3Cr+O2→2/3Cr2O3 4/3Cr+O 2 →2/3Cr 2 O 3
Ti+O2→TiO2 Ti+O 2 →TiO 2
2Mn+O2→2MnO 2Mn+O 2 →2MnO
因此本發明設計一指標α,用此α指標代表氧被錳、鉻、鈦捕捉,相對於被矽捕捉的比例,其中α=(Mn/2+Ti+Cr/1.33)/Si。預期α值越大,則氧被錳、鉻、鈦捕捉的比例越高。本發明熔煉實施例成分如表1所示。本發明透過將α值控制為大於5,於銲接後銲道的表現優良,下詳細結果如下文示例。 Therefore, the present invention designs an index α, which is used to represent the ratio of oxygen captured by manganese, chromium, and titanium relative to that captured by silicon, where α=(Mn/2+Ti+Cr/1.33)/Si. It is expected that the larger the α value, the higher the ratio of oxygen captured by manganese, chromium, and titanium. The composition of the smelting embodiment of the present invention is shown in Table 1. The present invention controls the α value to be greater than 5, and the performance of the weld after welding is excellent. The detailed results are shown in the following examples.
如圖3所示,其示出本發明實施例經熱軋後的熱軋組織結果,含大於95%體積分率的肥粒鐵,以及小於5%的麻田散鐵組織。 As shown in Figure 3, it shows the hot-rolled structure of the embodiment of the present invention after hot rolling, which contains more than 95% volume fraction of granular iron and less than 5% of the Ma Tian scattered iron structure.
因此,可選地,該銲線中麻田散鐵的比例設計為小於5%。 Therefore, optionally, the proportion of the iron ore in the welding wire is designed to be less than 5%.
圖4示出本發明實施例銲後的銲道表面的電子顯微鏡示意圖。如圖4所示,目視均可達到表面無銲渣。 FIG4 shows an electron microscope schematic diagram of the weld surface after welding in the embodiment of the present invention. As shown in FIG4, it can be visually observed that there is no welding slag on the surface.
圖5示出本發明實施例銲後的銲道表面的電子顯微鏡示意圖。選取α值最低的實施例1,分析銲道表面。如圖5所示,並未發現任何富含矽的氧化物存在。圖6示出本發明實施例銲道內部的的組織以及介在物分布的示意圖。如圖6所示,可觀察到許多介在物(即氧化物)。通過測定介在物成分來評估氧化物的成分,本發明實施例的矽/錳(Si/Mn)比,約為0.02至0.1之間。而比較例的成分,矽/錳(Si/Mn)比則約為1.5以上。 FIG5 shows an electron microscope schematic diagram of the surface of the weld after welding of the embodiment of the present invention. Example 1 with the lowest α value was selected to analyze the weld surface. As shown in FIG5, no silicon-rich oxide was found. FIG6 shows a schematic diagram of the structure inside the weld of the embodiment of the present invention and the distribution of intermediates. As shown in FIG6, many intermediates (i.e., oxides) can be observed. The composition of the oxide is evaluated by measuring the composition of the intermediates. The silicon/manganese (Si/Mn) ratio of the embodiment of the present invention is about 0.02 to 0.1. The silicon/manganese (Si/Mn) ratio of the comparative example is about 1.5 or more.
因此,可選地,該銲線的矽含量/錳含量的比例設計為0.02至0.1之間。 Therefore, optionally, the ratio of silicon content/manganese content of the welding wire is designed to be between 0.02 and 0.1.
通過本發明實施例示例進行銲線的成分調整,改良了渣性,使矽氧化物不易生成,因此提升了表面品質、電鍍性。 By adjusting the composition of the welding wire according to the embodiment of the present invention, the slag property is improved, and silicon oxide is not easily generated, thereby improving the surface quality and electroplating properties.
本發明透過錳、鉻、鈦等合金元素的成分設計,進行了銲渣的改質。銲線成分設計採2至3%的錳、搭配0.1至0.3%的鈦,再加上輔助作用的0.1至0.5%之鉻,因此矽的含量可以例如達約0.25wt.%。此外,合金成分符合α>5,其中α=(錳含量/2+鈦含量+鉻含量/1.33)/矽含量,實驗後表面可達到表面無明顯含矽之銲渣。如此一來,後續電鍍時就不會產生未鍍點。 The present invention improves the soldering slag through the composition design of alloy elements such as manganese, chromium, and titanium. The soldering wire composition design uses 2 to 3% manganese, 0.1 to 0.3% titanium, and 0.1 to 0.5% chromium for auxiliary effect, so the silicon content can reach about 0.25wt.%. In addition, the alloy composition meets α>5, where α=(manganese content/2+titanium content+chromium content/1.33)/silicon content. After the experiment, the surface can reach a surface without obvious silicon-containing soldering slag. In this way, no unplated spots will be generated during subsequent electroplating.
另外,本發明的銲線線材製造時,需採用1000至1050℃之間(例如,約1030℃)之低出爐溫進行固溶,減少碳化鈦固溶;若碳化鈦大量固溶,則鈦在熱軋後將與碳結合,產生奈米級的碳化鈦析出物,銲線線材的強度將容易過高。熱軋溫度採約820至1000℃,並控制完軋溫度約800至850℃之間(例如,約820℃),以促進肥粒鐵生成。若完軋溫度太高,則會出現島狀麻田散鐵組織,麻田散鐵組織將會造成抽線斷裂。而若出爐溫、或完軋溫度太低,則軋機將難以負荷。 In addition, when manufacturing the welding wire of the present invention, a low furnace temperature between 1000 and 1050°C (for example, about 1030°C) is used for solid solution to reduce the solid solution of titanium carbide; if a large amount of titanium carbide is solid-solved, titanium will combine with carbon after hot rolling to produce nano-scale titanium carbide precipitates, and the strength of the welding wire will be easily too high. The hot rolling temperature is about 820 to 1000°C, and the final rolling temperature is controlled to be between about 800 and 850°C (for example, about 820°C) to promote the formation of granular iron. If the final rolling temperature is too high, an island-like hemp field scattered iron structure will appear, and the hemp field scattered iron structure will cause wire drawing to break. If the temperature out of the furnace or the temperature after rolling is too low, the rolling machine will have difficulty bearing the load.
完軋後的線材經散置後,於史蒂摩(Stelmor)冷卻輸送帶上,以每秒0.1至5℃的冷速進行冷卻。若冷速過高,則會產生高強度之變韌鐵、麻田散鐵,將造成後續抽線困難。若冷速太低,則導致產率過低。 After rolling, the wire is spread out and cooled on the Stelmor cooling conveyor at a cooling rate of 0.1 to 5°C per second. If the cooling rate is too high, high-strength tantalum and loose iron will be produced, which will make subsequent wire drawing difficult. If the cooling rate is too low, the yield will be too low.
此外,本發明還提供一種銲線,包含:該銲線成分為:按銲線總重為100wt.%計,碳含量為0.02至0.10wt.%之間、錳含量為2.00至3.00wt.%之間、矽含量為0.01至0.25wt.%之間,鉻含量為0.10至0.5wt.%之間,鈦含量為0.10至0.3wt.%之間,以及不可避免的雜質,其餘為鐵,其中該銲線成分符合(錳含量/2+鈦含量+鉻含量/1.33)/矽含量大於5的判斷式。 In addition, the present invention also provides a welding wire, comprising: the welding wire composition is: based on the total weight of the welding wire as 100wt.%, the carbon content is between 0.02 and 0.10wt.%, the manganese content is between 2.00 and 3.00wt.%, the silicon content is between 0.01 and 0.25wt.%, the chromium content is between 0.10 and 0.5wt.%, the titanium content is between 0.10 and 0.3wt.%, and inevitable impurities, and the rest is iron, wherein the welding wire composition meets the judgment formula of (manganese content/2+titanium content+chromium content/1.33)/silicon content greater than 5.
在本發明的一些實施例中,該銲線的矽含量/錳含量的比例為0.02至0.1之間。 In some embodiments of the present invention, the ratio of silicon content to manganese content of the welding wire is between 0.02 and 0.1.
在本發明的一些實施例中,該銲線中麻田散鐵的比例為小於5%。 In some embodiments of the present invention, the proportion of ferrite in the welding wire is less than 5%.
在本發明的一些實施例中,該銲線中含有奈米級碳化鈦析出物。 In some embodiments of the present invention, the welding wire contains nano-scale titanium carbide precipitates.
S100:銲線製造方法 S100: Welding wire manufacturing method
S101~S105:步驟 S101~S105: Steps
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112117230A TWI851193B (en) | 2023-05-09 | 2023-05-09 | Welding wire and manufacturing method the same |
JP2024061221A JP2024163017A (en) | 2023-05-09 | 2024-04-05 | Welding wire and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112117230A TWI851193B (en) | 2023-05-09 | 2023-05-09 | Welding wire and manufacturing method the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI851193B true TWI851193B (en) | 2024-08-01 |
TW202444496A TW202444496A (en) | 2024-11-16 |
Family
ID=93283814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112117230A TWI851193B (en) | 2023-05-09 | 2023-05-09 | Welding wire and manufacturing method the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024163017A (en) |
TW (1) | TWI851193B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104981319A (en) * | 2013-02-15 | 2015-10-14 | 新日铁住金株式会社 | Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint |
CN105132621A (en) * | 2015-09-28 | 2015-12-09 | 南京钢铁股份有限公司 | Smelting process for steel for low-silicon aluminum steel-free welding wire |
CN106794558A (en) * | 2014-09-03 | 2017-05-31 | 株式会社神户制钢所 | Flux-cored wire for gas-shielded arc welding |
CN109641327A (en) * | 2016-09-06 | 2019-04-16 | 株式会社神户制钢所 | Flux-cored wire for gas-shielded arc welding and welding metal |
EP3476522A1 (en) * | 2017-10-27 | 2019-05-01 | Hyundai Welding Co., Ltd. | Ultra-low silicon wire for welding having excellent porosity resistance and electrodeposition coating properties, and deposited metal obtained therefrom |
CN113787279A (en) * | 2021-09-01 | 2021-12-14 | 南昌航空大学 | Gas-shielded welding process for a thin-gauge medium-Ti high-strength steel |
CN114507819A (en) * | 2022-01-28 | 2022-05-17 | 包头钢铁(集团)有限责任公司 | Production method of vehicle atmospheric corrosion resistant 500MPa grade welding wire steel |
TWI779913B (en) * | 2021-11-01 | 2022-10-01 | 中國鋼鐵股份有限公司 | Titanium-containing alloy steel and method for producing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63188491A (en) * | 1987-02-02 | 1988-08-04 | Nippon Steel Corp | Submerged arc welding method |
JP3978364B2 (en) * | 2002-04-26 | 2007-09-19 | Jfe条鋼株式会社 | High strength steel wire rod excellent in drawability and method for producing the same |
JP5042744B2 (en) * | 2007-08-23 | 2012-10-03 | 新日本製鐵株式会社 | Electroslag welding method |
CN104551441A (en) * | 2014-11-27 | 2015-04-29 | 宝山钢铁股份有限公司 | Ultrahigh-strength gas protection welding wire containing V and manufacturing method thereof |
JP6771638B1 (en) * | 2019-11-07 | 2020-10-21 | 株式会社神戸製鋼所 | Gas shield arc welding wire |
KR102318035B1 (en) * | 2019-12-17 | 2021-10-27 | 주식회사 포스코 | Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof |
CN111571060B (en) * | 2020-04-23 | 2022-04-22 | 武汉铁锚焊接材料股份有限公司 | Special 70 kg-level high-strength high-toughness gas-shielded solid welding wire for coal machine industry |
-
2023
- 2023-05-09 TW TW112117230A patent/TWI851193B/en active
-
2024
- 2024-04-05 JP JP2024061221A patent/JP2024163017A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104981319A (en) * | 2013-02-15 | 2015-10-14 | 新日铁住金株式会社 | Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint |
CN106794558A (en) * | 2014-09-03 | 2017-05-31 | 株式会社神户制钢所 | Flux-cored wire for gas-shielded arc welding |
CN105132621A (en) * | 2015-09-28 | 2015-12-09 | 南京钢铁股份有限公司 | Smelting process for steel for low-silicon aluminum steel-free welding wire |
CN109641327A (en) * | 2016-09-06 | 2019-04-16 | 株式会社神户制钢所 | Flux-cored wire for gas-shielded arc welding and welding metal |
EP3476522A1 (en) * | 2017-10-27 | 2019-05-01 | Hyundai Welding Co., Ltd. | Ultra-low silicon wire for welding having excellent porosity resistance and electrodeposition coating properties, and deposited metal obtained therefrom |
CN113787279A (en) * | 2021-09-01 | 2021-12-14 | 南昌航空大学 | Gas-shielded welding process for a thin-gauge medium-Ti high-strength steel |
TWI779913B (en) * | 2021-11-01 | 2022-10-01 | 中國鋼鐵股份有限公司 | Titanium-containing alloy steel and method for producing the same |
CN114507819A (en) * | 2022-01-28 | 2022-05-17 | 包头钢铁(集团)有限责任公司 | Production method of vehicle atmospheric corrosion resistant 500MPa grade welding wire steel |
Also Published As
Publication number | Publication date |
---|---|
JP2024163017A (en) | 2024-11-21 |
TW202444496A (en) | 2024-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210053290A (en) | Corrosion-resistant mirror die steel and manufacturing method thereof | |
CN103266287A (en) | Medium-carbon ferrite-pearlite non-quenched and tempered steel and manufacturing method thereof | |
CN111961988B (en) | Production process and forging method of medium-carbon non-quenched and tempered steel for automobile expansion fracture connecting rod | |
CN102936688B (en) | Wire material for bridge cables with tensile strength ≥ 2000MPa and production method thereof | |
CN110846555B (en) | Large-size high-strength and high-toughness symmetrical flat-bulb steel and production method thereof | |
CN104438418A (en) | Rolling method of stainless steel mold cast steel ingot by one-heating forming | |
CN114351042B (en) | A kind of die steel and the preheating treatment method of carbide dispersion in it | |
CN102337462B (en) | Production method for GCr15 bearing steel pipe | |
CN106319358A (en) | High-carbon steel wire rod for filament drawing and production method thereof | |
CN110863146A (en) | High-strength corrosion-resistant flat-bulb steel and production method thereof | |
CN109913750A (en) | High-strength steel sheet and preparation method thereof with great surface quality | |
CN115433875A (en) | 12.9-grade alloy cold heading steel wire rod with large deformation capacity and production method thereof | |
CN107164694A (en) | A kind of processing technology of high abrasion roll | |
CN101086044A (en) | High-strength high elasticity Cu-Ti alloy and its preparing process | |
CN113579558A (en) | Nuclear-grade nickel-chromium-iron alloy welding core and manufacturing method thereof | |
CN111015019A (en) | 00Cr20Mo16 welding wire and production process thereof | |
TWI851193B (en) | Welding wire and manufacturing method the same | |
CN105369139A (en) | Break-down roller made of special alloy semi-steel material and manufacturing method of break-down roller | |
CN107815609A (en) | Steel Bar and its LF stove production methods are built containing Nb, Cr microalloy | |
CN103643157B (en) | A kind of copper-bearing ferritic Stainless Steel Disc unit and manufacture method thereof | |
CN102899581A (en) | Steel material for CT80 level coiled tubing and manufacturing method thereof | |
CN115418547B (en) | Method for controlling MnS inclusion of low-sulfur low-alloy structural steel | |
CN112548397B (en) | Heat-resistant steel argon arc welding wire for gasification furnace and preparation method thereof | |
CN116497263A (en) | Production method of annealing-free weather-resistant wire rod for welding wire steel of vehicle | |
CN114561598A (en) | 2200 MPa-grade wire rod for steel wire and manufacturing method thereof |