[go: up one dir, main page]

TWI849842B - Control device applied to power conversion apparatus - Google Patents

Control device applied to power conversion apparatus Download PDF

Info

Publication number
TWI849842B
TWI849842B TW112113863A TW112113863A TWI849842B TW I849842 B TWI849842 B TW I849842B TW 112113863 A TW112113863 A TW 112113863A TW 112113863 A TW112113863 A TW 112113863A TW I849842 B TWI849842 B TW I849842B
Authority
TW
Taiwan
Prior art keywords
power module
protection circuit
circuit
short
control device
Prior art date
Application number
TW112113863A
Other languages
Chinese (zh)
Other versions
TW202443335A (en
Inventor
陳冠文
陳柏宏
游明弘
李昱伸
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW112113863A priority Critical patent/TWI849842B/en
Priority to CN202310509967.1A priority patent/CN118801688A/en
Application granted granted Critical
Publication of TWI849842B publication Critical patent/TWI849842B/en
Publication of TW202443335A publication Critical patent/TW202443335A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Protection Of Static Devices (AREA)

Abstract

A control device, which is applied to a power conversion apparatus. The control device includes a power module, a short-circuit protection circuit and a temperature compensation protection circuit. The power module is used to execute a switch function. The short-circuit protection circuit is connected to the power module, the short-circuit protection circuit is used to convey a saturation current generated by the power module. The temperature compensation protection circuit is connected to the short-circuit protection circuit and the power module, the temperature compensation protection circuit is used to generate a compensation current, and the compensation current is provided to the short-circuit protection circuit. A current amount of the compensation current varies in response to a temperature of the power module.

Description

應用於電源轉換設備的控制裝置 Control device for power conversion equipment

本揭示關於一種應用於電源轉換設備的控制裝置,特別有關於一種對於功率模組的短路保護電路進行溫度補償的的控制裝置。 The present disclosure relates to a control device applied to a power conversion device, and in particular to a control device for temperature compensation of a short-circuit protection circuit of a power module.

電源轉換設備可作為電源(電網)與再生能源(或負載)之間的轉換媒介,因應於不同功率規格的電源設備或負載設備,電源轉換設備可將電源轉換為特定功率及特定形式的電力。電源轉換設備中的功率模組包括功率半導體元件,功率半導體元件具有切換開關的功能。功率半導體元件具有不同材料,使功率模組具備更高的切換速度。例如,碳化矽(SiC)的功率半導體元件可操作到10kHz~100kHz的切換速度,以適應於功率規格為1kW至10MW的設備。氮化鎵(GaN)的功率半導體元件可操作到更高的100kHz~10MHz的切換速度,以適應於功率規格為100W至10kW的設備。 Power conversion equipment can be used as a conversion medium between power supply (grid) and renewable energy (or load). In response to power supply equipment or load equipment with different power specifications, power conversion equipment can convert power into specific power and specific forms of electricity. The power module in the power conversion equipment includes power semiconductor components, which have the function of switching switches. Power semiconductor components have different materials, which enable power modules to have higher switching speeds. For example, power semiconductor components of silicon carbide (SiC) can operate at a switching speed of 10kHz~100kHz to adapt to equipment with power specifications of 1kW to 10MW. Power semiconductor components of gallium nitride (GaN) can operate at a higher switching speed of 100kHz~10MHz to adapt to equipment with power specifications of 100W to 10kW.

然而,功率半導體元件的寄生效應可能造成切換損耗,而減損電源轉換設備的效能。較嚴重的寄生效應係為元件內部的導體之間的寄生電容所致。功率半導體元件內部的寄生電容包括:金氧半 導電晶體(MOS電晶體)的閘極-源極寄生電容、閘極-汲極寄生電容以及汲極-源極寄生電容。其中,閘極-汲極寄生電容稱為米勒(Miller)電容,米勒電容導致的寄生效應稱為米勒效應(Miller effect)。 However, parasitic effects of power semiconductor components may cause switching losses and reduce the performance of power conversion equipment. More serious parasitic effects are caused by parasitic capacitance between conductors inside the component. The parasitic capacitance inside power semiconductor components includes: gate-source parasitic capacitance, gate-drain parasitic capacitance and drain-source parasitic capacitance of metal oxide semiconductor transistors (MOS transistors). Among them, the gate-drain parasitic capacitance is called Miller capacitance, and the parasitic effect caused by Miller capacitance is called Miller effect.

由於米勒效應的作用,電晶體的閘極-源極電壓在一個時間區間(稱為「米勒平台」)內保持為定電壓值而不再上升。米勒效應的持續時間(即,米勒平台的時間長度)將增加功率半導體元件的導通時間,因此增加了功率半導體元件的切換損耗,而降低了電源轉換設備的轉換效率。並且,當電源轉換設備具有更高的換向速度時,米勒效應可能惡化而大幅增加閘極-源極電壓的毛刺(glitch)電壓。 Due to the Miller effect, the gate-source voltage of the transistor remains at a constant voltage value within a time period (called the "Miller platform") and no longer rises. The duration of the Miller effect (i.e., the duration of the Miller platform) will increase the conduction time of the power semiconductor element, thereby increasing the switching loss of the power semiconductor element and reducing the conversion efficiency of the power conversion device. In addition, when the power conversion device has a higher switching speed, the Miller effect may deteriorate and significantly increase the glitch voltage of the gate-source voltage.

另一方面,當功率模組發生短路時,功率模組可能產生飽和電流而損害功率模組本身、或損害電源轉換設備的其他元件。可藉由短路保護電路提供傳輸路徑以導引飽和電流,達到短路保護的功效。然而,功率模組可能操作於不同溫度,當功率模組的溫度之變化範圍較大時,可能導致短路保護電路的保護機制之觸發時間過晚,降低了短路保護的功效。 On the other hand, when a short circuit occurs in the power module, the power module may generate saturated current and damage the power module itself or other components of the power conversion equipment. The short-circuit protection circuit can provide a transmission path to guide the saturated current to achieve the effect of short-circuit protection. However, the power module may operate at different temperatures. When the temperature of the power module varies greatly, the protection mechanism of the short-circuit protection circuit may be triggered too late, reducing the effectiveness of the short-circuit protection.

針對上述之米勒效應導致的技術問題,需要改良電源轉換設備之控制裝置,以有效抑制米勒效應並精準控制功率半導體元件的閘極電壓。並且,針對上述之短路飽和電流導致的技術問題,需要改良電源轉換設備之短路保護電路以具備溫度補償機制。 In order to solve the technical problems caused by the Miller effect, it is necessary to improve the control device of the power conversion equipment to effectively suppress the Miller effect and accurately control the gate voltage of the power semiconductor element. In addition, in order to solve the technical problems caused by the short-circuit saturation current, it is necessary to improve the short-circuit protection circuit of the power conversion equipment to have a temperature compensation mechanism.

根據本揭示之一方面,提供一種應用於電源轉換設備的控制裝置,包括功率模組、短路保護電路及溫度補償保護電 路。功率模組用於執行切換開關之功能。短路保護電路連接於功率模組,短路保護電路用於傳輸功率模組產生的飽和電流。溫度補償保護電路連接於短路保護電路及功率模組,溫度補償保護電路用於產生補償電流,補償電流提供至短路保護電路。其中,補償電流的電流量係因應於功率模組的溫度而改變。 According to one aspect of the present disclosure, a control device for power conversion equipment is provided, including a power module, a short-circuit protection circuit and a temperature compensation protection circuit. The power module is used to perform the function of a switching switch. The short-circuit protection circuit is connected to the power module, and the short-circuit protection circuit is used to transmit the saturated current generated by the power module. The temperature compensation protection circuit is connected to the short-circuit protection circuit and the power module, and the temperature compensation protection circuit is used to generate a compensation current, and the compensation current is provided to the short-circuit protection circuit. The current amount of the compensation current changes according to the temperature of the power module.

透過閱讀以下圖式、詳細說明以及申請專利範圍,可見本揭示之其他方面以及優點。 Other aspects and advantages of the present disclosure may be seen by reading the following drawings, detailed descriptions and claims.

1000a,1000b:控制裝置 1000a, 1000b: Control device

2000:電源轉換設備 2000: Power conversion equipment

2100:電源 2100: Power supply

2200:儲能元件 2200: Energy storage element

2300:負載 2300: Load

100:米勒開關控制電路 100: Miller switch control circuit

200:可調式電源 200:Adjustable power supply

300:溫度補償保護電路 300: Temperature compensation protection circuit

310:感測器 310:Sensor

320:處理器 320: Processor

330:電流源 330: Current source

400:控制晶片 400: Control chip

410:電流源 410: Current source

420:比較器 420: Comparator

500:驅動電路 500:Drive circuit

600,620:功率模組 600,620: Power module

700:控制電路 700: Control circuit

710~760:控制單元 710~760: Control unit

11,13,51,43:輸入端 11,13,51,43: Input port

12,41,42,52:輸出端 12,41,42,52: output port

31,61:第一端 31,61: First end

32,62:第二端 32,62: Second end

33:第三端 33: The third end

34:第四端 34: The fourth end

53:高電位端 53: High potential end

54:低電位端 54: Low potential end

63:控制端 63: Control terminal

64:感測端 64: Sensing end

C22,C3:電容 C22,C3: Capacitor

Rg,Rdesat:電阻 Rg,R desat : Resistance

D3,Ddesat:二極體 D3,D desat : diode

I1:補償電流 I1: Compensation current

I0:電流 I0: current

Im1:米勒電流 Im1: Miller current

V1+,V2+:定電壓 V1+, V2+: constant voltage

GND0,GND1,GND2:接地端 GND0, GND1, GND2: ground terminals

temp1:溫度 temp1: temperature

Q1,Q2,Q5,Q6:電晶體 Q1,Q2,Q5,Q6: Transistors

d5:汲極 d5: Drain

s5:源極 s5: Source

Vds5:汲極-源極電壓 Vds5: drain-source voltage

Vref:參考電壓 V ref : reference voltage

Vfault:指示電壓 V fault : Indication voltage

第1圖為一比較例的電源轉換設備的控制裝置的電路圖。 Figure 1 is a circuit diagram of a control device for a power conversion device as a comparative example.

第2圖為本揭示一實施例的電源轉換設備的控制裝置的電路圖。 Figure 2 is a circuit diagram of a control device for a power conversion device according to an embodiment of the present disclosure.

第3圖為第2圖的控制裝置之中的溫度補償保護電路的電路圖。 Figure 3 is a circuit diagram of the temperature compensation protection circuit in the control device of Figure 2.

第4A圖為本揭示一實施例的電源轉換設備的方塊圖。 Figure 4A is a block diagram of a power conversion device according to an embodiment of the present disclosure.

第4B圖為第4A圖的電源轉換設備之一實施例的示意圖。 FIG. 4B is a schematic diagram of an embodiment of the power conversion device of FIG. 4A.

本說明書的技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭示之各個實施例分別具有一或多個技術特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者 選擇性地將這些實施例中部分或全部的技術特徵加以組合。 The technical terms in this specification refer to the customary terms in this technical field. If this specification explains or defines some terms, the interpretation of these terms shall be based on the explanation or definition in this specification. Each embodiment disclosed in this disclosure has one or more technical features. Under the premise of possible implementation, a person with ordinary knowledge in this technical field can selectively implement some or all of the technical features in any embodiment, or selectively combine some or all of the technical features in these embodiments.

第1圖為一比較例的電源轉換設備的控制裝置1000a的電路圖。如第1圖所示,控制裝置1000a包括米勒開關控制電路100、控制晶片400、驅動電路500及功率模組600。控制晶片400對於驅動電路500進行控制,使得驅動電路500驅動功率模組600執行切換開關的功能。米勒開關控制電路100用於控制功率模組600的米勒箝位電壓。 FIG. 1 is a circuit diagram of a control device 1000a of a comparative example power conversion device. As shown in FIG. 1, the control device 1000a includes a Miller switch control circuit 100, a control chip 400, a drive circuit 500, and a power module 600. The control chip 400 controls the drive circuit 500 so that the drive circuit 500 drives the power module 600 to perform the function of switching the switch. The Miller switch control circuit 100 is used to control the Miller clamping voltage of the power module 600.

更具體而言,驅動電路500的高電位端53連接於定電壓V1+。驅動電路500的低電位端54連接於米勒開關控制電路100。驅動電路500的輸入端51連接於控制晶片400的輸出端41,驅動電路500經由輸入端51接受控制晶片400的控制。驅動電路500的輸出端52經由電阻Rg連接於功率模組600的控制端63,驅動電路500經由輸出端52驅動功率模組600。 More specifically, the high potential terminal 53 of the driving circuit 500 is connected to the constant voltage V1+. The low potential terminal 54 of the driving circuit 500 is connected to the Miller switch control circuit 100. The input terminal 51 of the driving circuit 500 is connected to the output terminal 41 of the control chip 400, and the driving circuit 500 is controlled by the control chip 400 via the input terminal 51. The output terminal 52 of the driving circuit 500 is connected to the control terminal 63 of the power module 600 via the resistor Rg , and the driving circuit 500 drives the power module 600 via the output terminal 52.

功率模組600作為為功率開關,其具有切換功能。當電源轉換設備提供電力至不同功率規格的設備時,功率模組600因應於不同功率進行該關切換。功率模組600的控制端63接收驅動電路500的驅動電壓,因應於驅動電壓,功率模組600為導通(turned-on)的狀態或斷開(turned-off)的狀態。當功率模組600為導通時,功率模組600的第一端61可導通於第二端62。功率模組600可包括功率半導體元件,在一種示例中,功率模組600的功率半導體元件例如是電晶體(第1圖中未顯示)。電晶體的汲極連接於 第一端61,電晶體的源極連接於第二端62,電晶體的閘極連接於控制端63。 The power module 600 acts as a power switch, which has a switching function. When the power conversion device provides power to devices with different power specifications, the power module 600 performs the switching in response to the different powers. The control end 63 of the power module 600 receives the driving voltage of the driving circuit 500. In response to the driving voltage, the power module 600 is in a turned-on state or a turned-off state. When the power module 600 is turned on, the first end 61 of the power module 600 can be connected to the second end 62. The power module 600 may include a power semiconductor element. In one example, the power semiconductor element of the power module 600 is, for example, a transistor (not shown in FIG. 1). The drain of the transistor is connected to the first terminal 61, the source of the transistor is connected to the second terminal 62, and the gate of the transistor is connected to the control terminal 63.

功率模組600的控制端63連接於電晶體Q6,且電晶體Q6連接於接地端GND0。即,電晶體Q6設置於功率模組600的控制端63與接地端GND0之間。電晶體Q6作為米勒開關以提供米勒電流Im1的旁路傳輸路徑。電晶體Q6的源極經由電阻Rg連接於驅動電路500的輸出端52,電晶體Q6的汲極連接於接地端GND0。電晶體Q6的閘極連接於米勒開關控制電路100的輸出端12,米勒開關控制電路100的輸入端13連接於電容C3及功率模組600的第二端62。米勒開關控制電路100用於控制電晶體Q6為導通的時間,即,米勒開關控制電路100用於控制米勒開關驅動時間tmiller(亦可稱為「米勒鉗位時間」)。並且,米勒開關控制電路100用於控制功率模組600的電晶體的米勒箝位電壓VmillerThe control terminal 63 of the power module 600 is connected to the transistor Q6, and the transistor Q6 is connected to the ground terminal GND0. That is, the transistor Q6 is arranged between the control terminal 63 of the power module 600 and the ground terminal GND0. The transistor Q6 acts as a Miller switch to provide a bypass transmission path for the Miller current Im1. The source of the transistor Q6 is connected to the output terminal 52 of the driving circuit 500 via the resistor Rg, and the drain of the transistor Q6 is connected to the ground terminal GND0. The gate of the transistor Q6 is connected to the output terminal 12 of the Miller switch control circuit 100, and the input terminal 13 of the Miller switch control circuit 100 is connected to the capacitor C3 and the second terminal 62 of the power module 600. Miller switch control circuit 100 is used to control the on-time of transistor Q6, that is, Miller switch drive time t miller (also called “Miller clamping time”). In addition, Miller switch control circuit 100 is used to control the Miller clamping voltage V miller of the transistor of power module 600.

功率模組600的第一端61經由電阻Rdesat及二極體Ddesat連接至控制晶片400的輸出端42。功率模組600的第二端62經由電容C3連接於電阻Rdesat。當功率模組600發生短路時,電阻Rdesat及二極體Ddesat形成的傳輸路徑可導引功率模組600產生的飽和電流,以達到功率模組600的短路保護之功效。即,電阻Rdesat及二極體Ddesat作為功率模組600的短路保護電路。 The first terminal 61 of the power module 600 is connected to the output terminal 42 of the control chip 400 via the resistor R desat and the diode D desat . The second terminal 62 of the power module 600 is connected to the resistor R desat via the capacitor C3. When a short circuit occurs in the power module 600, the transmission path formed by the resistor R desat and the diode D desat can guide the saturated current generated by the power module 600 to achieve the short circuit protection effect of the power module 600. That is, the resistor R desat and the diode D desat serve as the short circuit protection circuit of the power module 600.

第2圖為本揭示一實施例的電源轉換設備的控制裝置1000b的電路圖。如第2圖所示,控制裝置1000b包括米勒開關控制電路100、溫度補償保護電路300、控制晶片400、驅動電路500 及功率模組600。即,第2圖的實施例的控制裝置1000b類似於第1圖的比較例的控制裝置1000a,差異在於:第2圖的控制裝置1000b更包括溫度補償保護電路300。 FIG. 2 is a circuit diagram of a control device 1000b of a power conversion device according to an embodiment of the present disclosure. As shown in FIG. 2, the control device 1000b includes a Miller switch control circuit 100, a temperature compensation protection circuit 300, a control chip 400, a drive circuit 500, and a power module 600. That is, the control device 1000b of the embodiment of FIG. 2 is similar to the control device 1000a of the comparative example of FIG. 1, and the difference is that the control device 1000b of FIG. 2 further includes a temperature compensation protection circuit 300.

驅動電路500包括電晶體Q1及電晶體Q2。電晶體Q1及電晶體Q2形成反向器(inverter)。電晶體Q1、Q2兩者的閘極共同連接於驅動電路500的輸入端51,電晶體Q1、Q2兩者的汲極共同連接於驅動電路500的輸出端52。驅動電路500的輸入端51連接於米勒開關控制電路100的輸入端11及控制晶片400的輸出端41。驅動電路500的輸出端52經由電阻Rg連接於功率模組600的控制端63。 The driving circuit 500 includes a transistor Q1 and a transistor Q2. The transistor Q1 and the transistor Q2 form an inverter. The gates of the transistors Q1 and Q2 are connected to the input terminal 51 of the driving circuit 500, and the drains of the transistors Q1 and Q2 are connected to the output terminal 52 of the driving circuit 500. The input terminal 51 of the driving circuit 500 is connected to the input terminal 11 of the Miller switch control circuit 100 and the output terminal 41 of the control chip 400. The output terminal 52 of the driving circuit 500 is connected to the control terminal 63 of the power module 600 via the resistor Rg .

電阻Rdesat及二極體Ddesat作為功率模組600的短路保護電路,溫度補償保護電路300可對於電阻Rdesat及二極體Ddesa進行溫度補償。溫度補償保護電路300包括第一端31、第二端32、第三端33及第四端34。其中,溫度補償保護電路300的第一端31經由電阻Rdesat及二極體Ddesat連接於功率模組600的第一端61,且第一端31經由電容C3連接於功率模組600的第二端62。溫度補償保護電路300的第二端32連接於功率模組600的感測端64。溫度補償保護電路300的第三端33連接於控制晶片400的輸入端43。溫度補償保護電路300的第四端34連接於控制晶片400的輸出端42。 The resistor R desat and the diode D desat serve as a short circuit protection circuit of the power module 600, and the temperature compensation protection circuit 300 can perform temperature compensation for the resistor R desat and the diode D desat . The temperature compensation protection circuit 300 includes a first terminal 31, a second terminal 32, a third terminal 33, and a fourth terminal 34. The first terminal 31 of the temperature compensation protection circuit 300 is connected to the first terminal 61 of the power module 600 via the resistor R desat and the diode D desat , and the first terminal 31 is connected to the second terminal 62 of the power module 600 via the capacitor C3. The second terminal 32 of the temperature compensation protection circuit 300 is connected to the sensing terminal 64 of the power module 600. The third terminal 33 of the temperature compensation protection circuit 300 is connected to the input terminal 43 of the control chip 400. The fourth terminal 34 of the temperature compensation protection circuit 300 is connected to the output terminal 42 of the control chip 400.

在運作上,溫度補償保護電路300經由功率模組600的感測端64感測功率模組600的溫度。因應於功率模組600 的不同溫度,溫度補償保護電路300提供對應的補償電流至電阻Rdesat及二極體Ddesat形成的傳輸路徑,以達到溫度補償的功效。 In operation, the temperature compensation protection circuit 300 senses the temperature of the power module 600 via the sensing terminal 64 of the power module 600. In response to different temperatures of the power module 600, the temperature compensation protection circuit 300 provides a corresponding compensation current to the transmission path formed by the resistor R desat and the diode D desat to achieve the effect of temperature compensation.

第3圖為第2圖的控制裝置1000b之中的溫度補償保護電路300的電路圖。請同時參見第2圖及第3圖,溫度補償保護電路300的第三端33連接於控制晶片400的輸入端43,且第三端33連接於第三定電壓V2+。控制晶片400的輸出端42經由電容C22連接於接地端GND2。電阻Rdesat及二極體Ddesat的傳輸路徑可提供功率模組600的短路保護。當功率模組600發生短路時,功率模組600的電晶體Q5可能產生飽和電流,電阻Rdesat及二極體Ddesat可提供電晶體Q5的飽和電流的傳輸路徑。溫度補償保護電路300可因應於功率模組600的溫度變化產生對應的補償電流I1,補償電流I1提供至電阻Rdesat及二極體Ddesat形成的傳輸路徑以達到溫度補償的功效。 FIG. 3 is a circuit diagram of the temperature compensation protection circuit 300 in the control device 1000b of FIG. 2. Please refer to FIG. 2 and FIG. 3 at the same time. The third terminal 33 of the temperature compensation protection circuit 300 is connected to the input terminal 43 of the control chip 400, and the third terminal 33 is connected to the third constant voltage V2+. The output terminal 42 of the control chip 400 is connected to the ground terminal GND2 via the capacitor C22. The transmission path of the resistor R desat and the diode D desat can provide short-circuit protection for the power module 600. When a short circuit occurs in the power module 600, the transistor Q5 of the power module 600 may generate a saturation current. The resistor R desat and the diode D desat can provide a transmission path for the saturation current of the transistor Q5. The temperature compensation protection circuit 300 can generate a corresponding compensation current I1 in response to the temperature change of the power module 600. The compensation current I1 is provided to the transmission path formed by the resistor R desat and the diode D desat to achieve the effect of temperature compensation.

溫度補償保護電路300包括感測器310、處理器320、電流源330及二極體D3。功率模組600的第一端61經由電阻Rdesat、二極體Ddesat連接於溫度補償保護電路300的二極體D3,並且經由二極體D3連接於控制晶片400的輸出端42。功率模組600的感測端64連接於感測器310。感測器310例如為溫度感測器,感測器310用於感測功率模組600的溫度temp1。 The temperature compensation protection circuit 300 includes a sensor 310, a processor 320, a current source 330, and a diode D3. The first terminal 61 of the power module 600 is connected to the diode D3 of the temperature compensation protection circuit 300 via the resistor R desat and the diode D desat , and is connected to the output terminal 42 of the control chip 400 via the diode D3. The sensing terminal 64 of the power module 600 is connected to the sensor 310. The sensor 310 is, for example, a temperature sensor, and the sensor 310 is used to sense the temperature temp1 of the power module 600.

功率模組600的溫度temp1之變化範圍例如為攝氏25度至攝氏175度。操作於攝氏25度至攝氏175度的範圍內,功率模組600的電晶體Q5的汲極-源極電壓Vds5具有不同電壓 值,且電晶體Q5的汲極-源極電流Ids5具有不同電流量。其中,汲極-源極電壓Vds5為電晶體Q5的汲極d5與源極s5之電壓差。 The temperature temp1 of the power module 600 varies in a range of, for example, 25 degrees Celsius to 175 degrees Celsius. When operating in a range of 25 degrees Celsius to 175 degrees Celsius, the drain-source voltage Vds5 of the transistor Q5 of the power module 600 has different voltage values, and the drain-source current Ids5 of the transistor Q5 has different current amounts. The drain-source voltage Vds5 is the voltage difference between the drain d5 and the source s5 of the transistor Q5.

在本實施例中,溫度補償保護電路300的預設操作條件為:當功率模組600的溫度temp1大致相等於175度時,溫度補償保護電路300提供的補償電流I1的電流量為零。基於上述的預設操作條件,電阻Rdesat的電阻值R_desat可根據式(1)而得到:

Figure 112113863-A0305-02-0011-1
In this embodiment, the preset operating condition of the temperature compensation protection circuit 300 is: when the temperature temp1 of the power module 600 is approximately equal to 175 degrees, the current of the compensation current I1 provided by the temperature compensation protection circuit 300 is zero. Based on the above preset operating condition, the resistance value R_desat of the resistor R desat can be obtained according to formula (1):
Figure 112113863-A0305-02-0011-1

式(1)的「Vref」為控制晶片400的參考電壓Vref。式(1)的「V_D3」為二極體D3的順向偏壓。式(1)的「V_D_desat」為二極體Ddesat的順向偏壓。式(1)的「Vds5(175°)」為溫度temp1大致相等於175度時汲極-源極電壓Vds5的電壓值。式(1)的「I0」為控制晶片400內部的電流源410提供的電流I0的電流量。即,電阻Rdesat的電阻值R_desat係相關於功率模組600的溫度temp1與電晶體Q5的汲極d5與源極s5之電壓差。 "V ref " in formula (1) is the reference voltage V ref of the control chip 400. "V_D3" in formula (1) is the forward bias of the diode D3. "V_D_desat" in formula (1) is the forward bias of the diode D desat . "Vds5 (175°)" in formula (1) is the voltage value of the drain-source voltage Vds5 when the temperature temp1 is approximately equal to 175 degrees. "I0" in formula (1) is the current amount of the current I0 provided by the current source 410 inside the control chip 400. That is, the resistance value R_desat of the resistor R desat is related to the temperature temp1 of the power module 600 and the voltage difference between the drain d5 and the source s5 of the transistor Q5.

感測器310經由溫度補償保護電路300的第二端32連接於功率模組600的感測端64,以感測功率模組600的溫度temp1。因應於功率模組600的溫度temp1,感測器310提供對應的控制訊號至處理器320。並且,處理器320提供對應的控制訊號至電流源330。在本實施例中,電流源330為電壓控制型電流源(簡稱為「壓控電流源」),處理器320產生的控制訊號為電 壓控制訊號,此電壓控制訊號是隨著功率模組600的溫度temp1而改變。電流源330用於產生補償電流I1,補償電流I1的電流量因應於處理器320的電壓控制訊號而改變,如式(2)所示:

Figure 112113863-A0305-02-0012-2
The sensor 310 is connected to the sensing end 64 of the power module 600 via the second end 32 of the temperature compensation protection circuit 300 to sense the temperature temp1 of the power module 600. In response to the temperature temp1 of the power module 600, the sensor 310 provides a corresponding control signal to the processor 320. In addition, the processor 320 provides a corresponding control signal to the current source 330. In this embodiment, the current source 330 is a voltage-controlled current source (abbreviated as "voltage-controlled current source"), and the control signal generated by the processor 320 is a voltage control signal, which changes with the temperature temp1 of the power module 600. The current source 330 is used to generate a compensation current I1. The current of the compensation current I1 changes in response to the voltage control signal of the processor 320, as shown in equation (2):
Figure 112113863-A0305-02-0012-2

式(2)中的「Vds5(temp1)」為電晶體Q5操作於溫度temp1時的汲極-源極電壓Vds5的電壓值。電流源330提供的補償電流I1可作為電阻Rdesat及二極體Ddesat形成的短路保護電路的電流補償。電流源330因應於溫度temp1之變化而改變補償電流I1的電流量以達到溫度補償的功效。並且,溫度補償保護電路300的二極體D3可阻絕電阻Rdesat及二極體Ddesat的傳輸路徑上可能產生的逆向電流。 "Vds5(temp1)" in formula (2) is the voltage value of the drain-source voltage Vds5 of the transistor Q5 when it operates at the temperature temp1. The compensation current I1 provided by the current source 330 can be used as the current compensation of the short-circuit protection circuit formed by the resistor R desat and the diode D desat . The current source 330 changes the current of the compensation current I1 in response to the change of the temperature temp1 to achieve the effect of temperature compensation. In addition, the diode D3 of the temperature compensation protection circuit 300 can block the reverse current that may be generated on the transmission path of the resistor R desat and the diode D desat .

根據感測器310感測到的功率模組600的溫度temp1,處理器320可根據查表(table lookup)而產生對應的電壓控制訊號,據以控制電流源330產生適當的補償電流I1。據此,當功率模組600的溫度temp1之變化範圍較大時,溫度補償保護電路300仍可精準提供適當的補償電流I1。此外,控制晶片400的比較器420對於輸出端42的電壓值與參考電壓Vref進行比較,比較器420根據比較結果產生指示電壓VfaultAccording to the temperature temp1 of the power module 600 sensed by the sensor 310, the processor 320 can generate a corresponding voltage control signal according to a table lookup, thereby controlling the current source 330 to generate an appropriate compensation current I1. Accordingly, when the temperature temp1 of the power module 600 varies in a larger range, the temperature compensation protection circuit 300 can still accurately provide an appropriate compensation current I1. In addition, the comparator 420 of the control chip 400 compares the voltage value of the output terminal 42 with the reference voltage V ref , and the comparator 420 generates an indication voltage V fault according to the comparison result.

第4A圖為本揭示一實施例的電源轉換設備2000的方塊圖。電源轉換設備2000包括電源2100、功率模組620、儲能元件2200、負載2300及控制電路700。控制電路700可包括 第2圖的實施例的米勒開關控制電路100及溫度補償保護電路300(第4A圖中未顯示)。電源2100例如為大型之固定的電網設備。儲能元件2200例如為小型(甚至為可攜式)的電池裝置。功率模組620設置於電源2100與儲能元件2200之間,功率模組620作為切換開關。因應於不同功率規格的電源2100、儲能元件2200及負載2300,功率模組620對於電源2100提供的電力進行轉換,以產生特定功率及特定形式的電力並提供至儲能元件2200。 FIG. 4A is a block diagram of a power conversion device 2000 of an embodiment of the present disclosure. The power conversion device 2000 includes a power source 2100, a power module 620, an energy storage element 2200, a load 2300, and a control circuit 700. The control circuit 700 may include the Miller switch control circuit 100 and the temperature compensation protection circuit 300 of the embodiment of FIG. 2 (not shown in FIG. 4A). The power source 2100 is, for example, a large fixed grid device. The energy storage element 2200 is, for example, a small (even portable) battery device. The power module 620 is disposed between the power source 2100 and the energy storage element 2200, and the power module 620 serves as a switching switch. In response to the different power specifications of the power source 2100, the energy storage element 2200 and the load 2300, the power module 620 converts the power provided by the power source 2100 to generate specific power and specific form of power and provide it to the energy storage element 2200.

控制電路700連接於功率模組620。功率模組620之中的功率半導體元件可能肇因於米勒效應而導致功率模組620的短路或誤動作。對應的,控制電路700對於功率模組620之中的功率半導體元件進行米勒鉗位控制。例如:控制電路700將功率模組620之中的功率半導體元件的閘極-源極電壓控制於適當的米勒箝位電壓Vmiller,且將米勒開關控制於操作在適當的米勒開關驅動時間tmillerThe control circuit 700 is connected to the power module 620. The power semiconductor elements in the power module 620 may be short-circuited or malfunctioned due to the Miller effect. Accordingly, the control circuit 700 performs Miller clamp control on the power semiconductor elements in the power module 620. For example, the control circuit 700 controls the gate-source voltage of the power semiconductor elements in the power module 620 to an appropriate Miller clamp voltage V miller , and controls the Miller switch to operate at an appropriate Miller switch driving time t miller .

接著,請參見第4B圖,其繪示第4A圖的電源轉換設備2000之一實施例的示意圖。本實施例的功率模組620包括六個功率開關元件,對應的,控制電路700包括六個控制單元710~760。功率模組620的每個功率開關元件具有切換開關的功能,功率模組620的每個功率開關元件由控制電路700的控制單元710~760之對應一者來控制。例如,控制電路700的控制單元710、720分別控制功率模組620的一組功率開關元件,該組功率開關元件作為功率模組620的上臂元件與下臂元件。類似的,控 制電路700的控制單元730、740分別控制功率模組620的另一組功率開關元件,控制電路700的控制單元750、760分別控制功率模組620的又一組功率開關元件。 Next, please refer to FIG. 4B, which is a schematic diagram of an embodiment of the power conversion device 2000 of FIG. 4A. The power module 620 of this embodiment includes six power switch elements, and correspondingly, the control circuit 700 includes six control units 710~760. Each power switch element of the power module 620 has the function of switching switches, and each power switch element of the power module 620 is controlled by a corresponding one of the control units 710~760 of the control circuit 700. For example, the control units 710 and 720 of the control circuit 700 respectively control a group of power switch elements of the power module 620, and the group of power switch elements serves as the upper arm element and the lower arm element of the power module 620. Similarly, control units 730 and 740 of control circuit 700 respectively control another set of power switch elements of power module 620, and control units 750 and 760 of control circuit 700 respectively control another set of power switch elements of power module 620.

雖然本發明已以較佳實施例及範例詳細揭示如上,可理解的是,此些範例意指說明而非限制之意義。可預期的是,所屬技術領域中具有通常知識者可想到多種修改及組合,其多種修改及組合落在本發明之精神以及後附之申請專利範圍之範圍內。 Although the present invention has been disclosed in detail above with preferred embodiments and examples, it is understood that these examples are intended to be illustrative rather than restrictive. It is expected that a person with ordinary knowledge in the relevant technical field can think of various modifications and combinations, and the various modifications and combinations fall within the spirit of the present invention and the scope of the attached patent application.

300:溫度補償保護電路 300: Temperature compensation protection circuit

310:感測器 310:Sensor

320:處理器 320: Processor

330:電流源 330: Current source

400:控制晶片 400: Control chip

410:電流源 410: Current source

420:比較器 420: Comparator

600:功率模組 600: Power module

13,43:輸入端 13,43: Input port

42:輸出端 42: Output terminal

31,61:第一端 31,61: First end

32:第二端 32: Second end

33:第三端 33: The third end

34:第四端 34: The fourth end

64:感測端 64: Sensing end

C22,C3:電容 C22,C3: Capacitor

Rdesat:電阻 R desat : resistance

D3,Ddesat:二極體 D3,D desat : diode

I1:補償電流 I1: Compensation current

I0:電流 I0: current

V2+:定電壓 V2+: constant voltage

GND2:接地端 GND2: ground terminal

temp1:溫度 temp1: temperature

Q5:電晶體 Q5: Transistor

d5:汲極 d5: Drain

s5:源極 s5: Source

Vds5:汲極-源極電壓 Vds5: drain-source voltage

Vref:參考電壓 V ref : reference voltage

Vfault:指示電壓 V fault : Indication voltage

Claims (8)

一種應用於電源轉換設備的控制裝置,包括:一功率模組,用於執行一切換開關之功能;一短路保護電路,連接於該功率模組,該短路保護電路形成一傳輸路徑以導引該功率模組短路時產生的一飽和電流;以及一溫度補償保護電路,連接於該短路保護電路及該功率模組,該溫度補償保護電路用於產生一補償電流,該補償電流的電流量係因應於該功率模組的一溫度而改變,該溫度補償保護電路包括:一感測器,連接於該功率模組的一感測端,用於感測該功率模組的該溫度;一處理器,連接於該感測器,用於依據該功率模組的該溫度以查表方式產生一電壓控制訊號;以及一電流源,連接於該處理器及該短路保護電路,用於產生該補償電流以提供至該短路保護電路,並且因應於該電壓控制訊號改變該補償電流的電流量。 A control device for power conversion equipment includes: a power module for performing a switching function; a short-circuit protection circuit connected to the power module, the short-circuit protection circuit forming a transmission path to guide a saturated current generated when the power module is short-circuited; and a temperature compensation protection circuit connected to the short-circuit protection circuit and the power module, the temperature compensation protection circuit is used to generate a compensation current, the current of which is in response to a temperature of the power module. The temperature compensation protection circuit includes: a sensor connected to a sensing end of the power module for sensing the temperature of the power module; a processor connected to the sensor for generating a voltage control signal in a table lookup manner according to the temperature of the power module; and a current source connected to the processor and the short-circuit protection circuit for generating the compensation current to provide to the short-circuit protection circuit, and changing the current amount of the compensation current in response to the voltage control signal. 如請求項1所述之控制裝置,其中該功率模組具有一第一端,該短路保護電路包括:一第一二極體,連接於該功率模組的該第一端;以及一電阻,連接於該第一二極體的一陽極。 A control device as described in claim 1, wherein the power module has a first end, and the short-circuit protection circuit includes: a first diode connected to the first end of the power module; and a resistor connected to an anode of the first diode. 如請求項2所述之控制裝置,其中該功率模組包括一電晶體,該電晶體具有一源極與一汲極,該汲極連接於該第一二極體的一陰極,其中,該電阻的電阻值係相關於該功率模組的該溫度與該汲極與該源極之間的電壓差。 A control device as described in claim 2, wherein the power module includes a transistor having a source and a drain, the drain being connected to a cathode of the first diode, wherein the resistance value of the resistor is related to the temperature of the power module and the voltage difference between the drain and the source. 如請求項2所述之控制裝置,其中該溫度補償保護電路包括:一第二二極體,具有一陽極與一陰極,該陰極連接於該電阻,其中,該第二二極體用於阻絕該電阻及該第一二極體產生的一逆向電流。 A control device as described in claim 2, wherein the temperature compensation protection circuit includes: a second diode having an anode and a cathode, the cathode being connected to the resistor, wherein the second diode is used to block a reverse current generated by the resistor and the first diode. 如請求項4所述之控制裝置,其中該溫度補償保護電路包括一電流源,該控制裝置更包括:一控制晶片,具有一輸入端,該輸入端連接於該溫度補償保護電路的該電流源。 A control device as described in claim 4, wherein the temperature compensation protection circuit includes a current source, and the control device further includes: a control chip having an input terminal, the input terminal being connected to the current source of the temperature compensation protection circuit. 如請求項5所述之控制裝置,其中該該溫度補償保護電路的該電流源連接於該第二二極體的該陰極與該短路保護電路的該電阻。 A control device as described in claim 5, wherein the current source of the temperature compensation protection circuit is connected to the cathode of the second diode and the resistor of the short-circuit protection circuit. 如請求項5所述之控制裝置,其中該控制晶片具有一輸出端,該輸出端經由該溫度補償保護電路的該第二二極體連接於該短路保護電路的該電阻。 A control device as described in claim 5, wherein the control chip has an output terminal, and the output terminal is connected to the resistor of the short-circuit protection circuit via the second diode of the temperature compensation protection circuit. 如請求項5所述之控制裝置,其中該功率模組具有一控制端,該控制裝置更包括:一驅動電路,連接於該控制晶片與該功率模組的該控制端,該驅動電路用於控制該功率模組的該控制端的電壓以驅動該功率模組。 A control device as described in claim 5, wherein the power module has a control end, and the control device further comprises: a driving circuit connected to the control chip and the control end of the power module, the driving circuit is used to control the voltage of the control end of the power module to drive the power module.
TW112113863A 2023-04-13 2023-04-13 Control device applied to power conversion apparatus TWI849842B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112113863A TWI849842B (en) 2023-04-13 2023-04-13 Control device applied to power conversion apparatus
CN202310509967.1A CN118801688A (en) 2023-04-13 2023-05-08 Control device for power conversion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112113863A TWI849842B (en) 2023-04-13 2023-04-13 Control device applied to power conversion apparatus

Publications (2)

Publication Number Publication Date
TWI849842B true TWI849842B (en) 2024-07-21
TW202443335A TW202443335A (en) 2024-11-01

Family

ID=92929648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113863A TWI849842B (en) 2023-04-13 2023-04-13 Control device applied to power conversion apparatus

Country Status (2)

Country Link
CN (1) CN118801688A (en)
TW (1) TWI849842B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023416A (en) * 2011-09-22 2013-04-03 通用汽车环球科技运作有限责任公司 System and method for current estimation for operation of electric motors
TWI657647B (en) * 2018-06-12 2019-04-21 大陸商昂寶電子(上海)有限公司 Short-circuit protection system for current sensing terminal in switching power supply
TWM606468U (en) * 2020-09-09 2021-01-11 士林電機廠股份有限公司 Temperature compensation short circuit protecting circuit of power solid-state switch
US20220216796A1 (en) * 2020-03-18 2022-07-07 Shenzhen Huntkey Electric Co., Ltd. Switching power supply, power adapter and charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023416A (en) * 2011-09-22 2013-04-03 通用汽车环球科技运作有限责任公司 System and method for current estimation for operation of electric motors
TWI657647B (en) * 2018-06-12 2019-04-21 大陸商昂寶電子(上海)有限公司 Short-circuit protection system for current sensing terminal in switching power supply
US20220216796A1 (en) * 2020-03-18 2022-07-07 Shenzhen Huntkey Electric Co., Ltd. Switching power supply, power adapter and charger
TWM606468U (en) * 2020-09-09 2021-01-11 士林電機廠股份有限公司 Temperature compensation short circuit protecting circuit of power solid-state switch

Also Published As

Publication number Publication date
TW202443335A (en) 2024-11-01
CN118801688A (en) 2024-10-18

Similar Documents

Publication Publication Date Title
TWI441134B (en) Gate drive circuit and semiconductor device
CN109088532B (en) A current mode segmented gate drive circuit with active clamp
Yin et al. A novel gate assisted circuit to reduce switching loss and eliminate shoot-through in SiC half bridge configuration
JP2018182818A (en) Switching element drive device
CN108682672A (en) High-power semiconductor module suitable for the soaking under Short-circuit Working Condition of internal power switch chip
CN201656951U (en) Insulated gate bipolar translator drive circuit
CN212012597U (en) Overcurrent protection circuit based on integrated gallium nitride power device
JP7132099B2 (en) power converter
TWI849842B (en) Control device applied to power conversion apparatus
CN112614826B (en) Dual-gate power metal oxide semiconductor field effect transistor and its driving circuit
CN112953174B (en) Clamping active driving circuit for inhibiting SiC MOSFET crosstalk based on dv/dt detection
CN111555596B (en) A SiC MOSFET gate crosstalk suppression drive circuit with adjustable negative voltage
CN116346099A (en) Gate driving circuit of cascade type power device and integrated semiconductor power device
JP6706876B2 (en) Power module
CN118012220A (en) SiC MOSFET active gate driving circuit based on Wilson current mirror
TWI846201B (en) Control device for power conversion apparatus
CN114244339B (en) Gate drive circuit and electronic device
CN106953624B (en) MOSFET parallel overcurrent protection circuit
CN116449249A (en) Silicon carbide MOSFET short circuit detection circuit and device
Liu et al. Review of SiC MOSFET drive circuit
JPH06105448A (en) Switch device with protecting function
CN222262477U (en) Driving circuit of power module
CN116614121B (en) Power device for improving electromagnetic compatibility
Liang et al. Natural Active Gate Driving for Breaking Trade-off Between Switching Loss and Current Overshoot Using Ordinary Gate Driver
TWI853557B (en) Drive device