TWI849803B - Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides - Google Patents
Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides Download PDFInfo
- Publication number
- TWI849803B TWI849803B TW112109764A TW112109764A TWI849803B TW I849803 B TWI849803 B TW I849803B TW 112109764 A TW112109764 A TW 112109764A TW 112109764 A TW112109764 A TW 112109764A TW I849803 B TWI849803 B TW I849803B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- wet etching
- core
- sin
- patterned
- Prior art date
Links
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000001039 wet etching Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 28
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 49
- 238000005530 etching Methods 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 238000005253 cladding Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 238000007704 wet chemistry method Methods 0.000 claims 1
- 238000001312 dry etching Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 58
- 239000012792 core layer Substances 0.000 description 11
- 239000000835 fiber Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005305 interferometry Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/72—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
- G01C19/721—Details
- G01C19/722—Details of the mechanical construction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12061—Silicon
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/121—Channel; buried or the like
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本案揭示內容關於整合的基於光子的光學陀螺儀的各種結構和製造方法,該等陀螺儀利用具有平滑側壁的氮化矽波導。The present invention discloses various structures and fabrication methods for integrated photonic-based optical gyroscopes that utilize silicon nitride waveguides with smooth sidewalls.
陀螺儀(也簡稱為「gyro」)是能夠感測角速度的裝置。陀螺儀的應用包括但不限於軍事、飛行器導航、機器人、自動駕駛運具、虛擬實境、擴增實境、遊戲等。陀螺儀能夠是機械式或光學式,且能夠在精確度、效能、成本及尺寸方面有所不同。由於光學陀螺儀不具有任何移動部件,所以它們比起機械陀螺儀更具優勢,因為它們比起具有移動部件的機械陀螺儀更能承受衝擊、振動和溫度變化的效應。最常見的光學陀螺儀是光纖陀螺儀(FOG),該FOG是基於薩格納克(Sagnac)效應(在干涉測量中遇到的由旋轉所引發的現象)造成的光學相移的干涉測量來操作。FOG的構造一般涉及線圈,該線圈包含數圈的偏振維持(polarization-maintaining, PM)光纖。雷射光射入PM光纖線圈的兩端,使得兩道光束以相反方向行進。如果光纖線圈在移動,則以相反方向行進的光束會經歷彼此不同的光路長度。藉由設置干涉系統,能夠測量小路徑長度差,該小路徑長度差與該數圈的光纖線圈所包圍的迴路面積及旋轉的光纖線圈的角速度成正比。此路徑長度差是以兩個反向旋轉光束之間的相位差(稱為「相位訊號」)表達。A gyroscope (also referred to as a "gyro") is a device capable of sensing angular velocity. Applications of gyroscopes include, but are not limited to, the military, aircraft navigation, robotics, autonomous vehicles, virtual reality, augmented reality, gaming, etc. Gyroscopes can be mechanical or optical, and can vary in accuracy, performance, cost, and size. Since optical gyroscopes do not have any moving parts, they have an advantage over mechanical gyroscopes because they can withstand the effects of shock, vibration, and temperature changes better than mechanical gyroscopes with moving parts. The most common optical gyroscope is the fiber optic gyroscope (FOG), which operates based on the interferometry of the optical phase shift caused by the Sagnac effect (a phenomenon induced by rotation encountered in interferometry). The construction of a FOG generally involves a coil that contains several turns of polarization-maintaining (PM) fiber. Laser light is injected into the two ends of the PM fiber coil, causing the two beams to travel in opposite directions. If the fiber coil is moving, the beams traveling in opposite directions experience different optical path lengths from each other. By setting up an interferometric system, it is possible to measure a small path length difference that is proportional to the loop area enclosed by the turns of the fiber coil and the angular velocity of the rotating fiber coil. This path length difference is expressed as the phase difference between the two counter-rotating beams (called the "phase signal").
光學陀螺儀的相位訊號與薩格納克效應乘以角旋轉速度成正比,如下式所示: Δφ=(8πNA/λc)Ω 其中,N=陀螺儀的圈數, A=包圍的面積 Ω=角旋轉速度 Δφ=光相位差訊號 λ=光波長 c=光速 The phase signal of an optical gyroscope is proportional to the Sagnac effect multiplied by the angular rotation speed, as shown in the following formula: Δφ=(8πNA/λc)Ω Where, N=number of turns of the gyroscope, A=enclosed area Ω=angular rotation speed Δφ=optical phase difference signal λ=light wavelength c=speed of light
基於光纖的陀螺儀能夠提供非常高的精確度,但此時它們佔地面積更大,非常昂貴,並且難以組裝,這是因為裝置是基於需要精確對準的分立的光學部件而構建所造成。通常,涉及手動對準,這難以規模放大到大量生產。Fiber-optic based gyroscopes can provide very high accuracy, but at this time they take up more space, are very expensive, and are difficult to assemble because the devices are built from discrete optical components that need to be precisely aligned. Typically, manual alignment is involved, which is difficult to scale up for mass production.
本案發明人提議使用基於波導的整合光子部件取代光纖,以便在半導體平台上進行節省成本且簡易的整合,這對於陀螺儀的大量生產而言更大有可為。此申請案描述了各種結構,包括在矽平台上製造的氮化矽(SiN)波導核心,如下文所詳述。本文揭示的SiN波導核心能夠具有平滑的側壁,這是因濕式蝕刻而非習知乾式蝕刻方法所造成,習知乾式蝕刻方法通常會導致微米或奈米範圍的側壁粗糙度,這對陀螺儀的光學效能可能是有害的。The inventors of this case propose to use waveguide-based integrated photonic components to replace optical fibers for cost-effective and simple integration on semiconductor platforms, which is more promising for high-volume production of gyroscopes. This application describes various structures, including silicon nitride (SiN) waveguide cores fabricated on silicon platforms, as described in detail below. The SiN waveguide cores disclosed herein are capable of having smooth sidewalls due to wet etching rather than conventional dry etching methods, which typically result in sidewall roughness in the micrometer or nanometer range, which can be detrimental to the optical performance of the gyroscope.
以下是本案揭示內容的簡化概要,以提供對本案揭示內容的一些態樣的基本理解。此概要並非本案揭示內容的詳盡概述。其既不旨在識別本案揭示內容的關鍵或臨界要素,也不旨在勾勒出本案揭示內容的特定實施方式的任何範疇或申請專利範圍的任何範疇。其唯一目的是以簡化的形式呈現本案揭示內容的一些概念,作為稍後呈現的更詳細描述的序言。The following is a simplified summary of the disclosure of this case to provide a basic understanding of some aspects of the disclosure of this case. This summary is not a detailed overview of the disclosure of this case. It is neither intended to identify the key or critical elements of the disclosure of this case, nor to outline any scope of specific implementation methods of the disclosure of this case or any scope of the scope of the patent application. Its only purpose is to present some concepts of the disclosure of this case in a simplified form as a prelude to the more detailed description presented later.
本案揭示內容的態樣涉及製造具有氮化矽核心的波導結構的處理流程,該氮化矽核心具有藉由濕式蝕刻(而非習知乾式蝕刻處理)所達成的原子級平滑側壁。Aspects of the present disclosure relate to a process flow for fabricating a waveguide structure having a silicon nitride core with atomically smooth sidewalls achieved by wet etching rather than conventional dry etching processes.
更特定而言,揭示一種方法,其中製造波導結構,其藉由:在具氧化物層的基板之頂部上形成氮化矽(SiN)層,該氧化物層作為該波導的下包覆物(cladding)(或底部包覆物),而該SiN層在經圖案化時作為該波導的核心;在該SiN層之頂部上形成帽蓋層;藉由第一濕式蝕刻步驟圖案化該帽蓋層,而形成圖案化的帽蓋層,該圖案化的帽蓋層包括在該SiN上方的帽蓋;及執行第二濕式蝕刻步驟而在該圖案化的帽蓋層下方形成該SiN層,而產生該波導之核心。More specifically, a method is disclosed in which a waveguide structure is fabricated by: forming a silicon nitride (SiN) layer on top of a substrate having an oxide layer, the oxide layer serving as a lower cladding (or bottom cladding) of the waveguide, and the SiN layer serving as a core of the waveguide when patterned; forming a capping layer on top of the SiN layer; patterning the capping layer by a first wet etching step to form a patterned capping layer, the patterned capping layer comprising a cap above the SiN; and performing a second wet etching step to form the SiN layer below the patterned capping layer to produce the core of the waveguide.
預偏置遮罩,以形成正確尺寸的該圖案化的帽蓋層,而形成適當寬度的波導核心。在形成具有超平滑之側壁(由於濕式蝕刻所致)的波導核心之後,沉積上包覆物(或頂部包覆物)層。The mask is pre-biased to form the correct dimensions of the patterned cap layer to form a waveguide core of the appropriate width. After forming the waveguide core with ultra-smooth sidewalls (due to wet etching), the cladding (or top cladding) layer is deposited.
該波導結構能夠用作整合光子的光學陀螺儀中的旋轉感應元件。該旋轉感應元件能夠為波導線圈之形式。該波導線圈能夠分佈在多個垂直層之間,其中光在該波導線圈的該等多個垂直層之間漸逝式(evanescently)耦合。或者,該旋轉感應元件能夠為基於波導的微諧振環之形式,該基於波導的微諧振環能夠形成在一層或多層中,而在該等垂直分佈的層中漸逝式耦合。The waveguide structure can be used as a rotation sensing element in an integrated photon optical gyroscope. The rotation sensing element can be in the form of a waveguide coil. The waveguide coil can be distributed between multiple vertical layers, wherein light is evanescently coupled between the multiple vertical layers of the waveguide coil. Alternatively, the rotation sensing element can be in the form of a waveguide-based micro-resonance ring, which can be formed in one or more layers and evanescently coupled in the vertically distributed layers.
雖為簡潔起見,在此特定的揭示內容中僅詳述了製造處理,但申請人透過引用方式併入較早提交的專利申請案,該專利申請案描述了用於光學陀螺儀的單層和多層波導結構,請見美國專利第10,969,548號,於2021年4 月6日公告。Although for the sake of brevity only the manufacturing process is described in detail in this particular disclosure, the applicant incorporates by reference an earlier filed patent application describing single-layer and multi-layer waveguide structures for optical gyroscopes, see U.S. Patent No. 10,969,548, published on April 6, 2021.
本案揭示內容的多個態樣涉及製造具有平滑側壁的緊密型超低損耗整合式基於光子的波導核心的方法,其可在大規模製造中完成。這些波導能夠用作為例如在光子整合光學陀螺儀中的平面光子整合電路(PIC)上的光學元件。如背景段落中所討論,基於光纖的光學陀螺儀的高性能的關鍵是用於測量薩格納克效應的高品質低損耗光纖的長的長度。本案之發明人認識到,隨著適用於晶圓級處理的整合矽光子學問世,有機會在不犧牲效能的情況下用更小的整合光子晶片解決方案取代FOG。基於光子的光學陀螺儀具有減少的尺寸、重量、功率及成本,但此外能夠大量地量產、抗震動、且具有提供與FOG相當效能的潛力。當在矽平台上製造整合光學陀螺儀時,其簡稱為SiPhOG TM(矽光子光學陀螺儀)。 Various aspects of the present disclosure relate to methods for fabricating compact ultra-low-loss integrated photonic-based waveguide cores with smooth sidewalls that can be accomplished in large-scale manufacturing. These waveguides can be used as optical components on planar photonic integrated circuits (PICs), for example, in photonic integrated optical gyroscopes. As discussed in the background section, the key to high performance of fiber-based optical gyroscopes is long lengths of high-quality, low-loss optical fibers for measuring the Sagnac effect. The inventors of the present invention recognized that with the advent of integrated silicon photonics suitable for wafer-scale processing, there is an opportunity to replace FOGs with smaller integrated photonic chip solutions without sacrificing performance. Optical gyroscopes based on photons have reduced size, weight, power and cost, but are also mass-producible, vibration-resistant, and have the potential to provide comparable performance to FOGs. When an integrated optical gyroscope is fabricated on a silicon platform, it is referred to as SiPhOG TM (Silicon Photonics Optical Gyroscope).
該整合光子解決方案的一項關鍵要素是生產極低損耗波導核心,該核心由被氧化物或熔融二氧化矽包覆物所包圍的氮化矽(Si 3N 4)製成。整個波導結構(包括核心和包覆物)有時簡稱SiN波導。SiN波導中的傳播損耗能夠遠低於0.1 db/公尺。這比當前最先進的SiN製程(傳播損耗在0.1 db/公分的範圍)有巨大的改善。 A key element of this integrated photonic solution is the production of extremely low-loss waveguide cores made of silicon nitride (Si 3 N 4 ) surrounded by an oxide or fused silicon dioxide cladding. The entire waveguide structure (including core and cladding) is sometimes referred to as a SiN waveguide. The propagation losses in a SiN waveguide can be well below 0.1 db/meter. This is a huge improvement over the current state-of-the-art SiN processes, which have propagation losses in the 0.1 db/cm range.
圖1顯示在習知矽基板上製造SiN波導的第一步。詳言之,圖1顯示基板102,該基板102可為矽基板。該基板102可具有標準晶圓的厚度「H」,例如,厚度可以是725 μm。請注意,不同材料層的厚度並未按比例繪製。然而,為了傳達基板102比圖中所示的其餘材料層厚得多的概念,僅為視覺效果,在層102的中間引入了不連續部101。層104和116在基板102的兩側上能夠具有15微米之範圍內的厚度「h1」。層104用作波導核心層110的下包覆物。波導核心層110在經圖案化而成為正確尺寸時(如圖4至圖5所示)時能夠被認為是波導線圈的一匝。波導核心層110能具有厚度「h」,且當被圖案化時,具有寬度「w」。「h」的非限制性示範性尺寸能夠是60-100 nm,「w」能夠是2-3 μm。波導核心層110由氮化矽(SiN)製成。請注意,當層104與110形成在基板102的一側上時,相應的層116和118也形成在基板102的另一側上,即使這些層可能不用於波導之用途。或者,如必要,這些層能夠在不同的層中創建波導。具在2-3 μm範圍內的厚度「h2」的上包覆物層114也可以是該結構的一部分。層114和116都能夠具有相同的材料120。FIG1 shows the first step in fabricating a SiN waveguide on a known silicon substrate. In detail, FIG1 shows a substrate 102, which may be a silicon substrate. The substrate 102 may have a thickness “H” of a standard wafer, for example, the thickness may be 725 μm. Note that the thicknesses of the different material layers are not drawn to scale. However, to convey the idea that the substrate 102 is much thicker than the rest of the material layers shown in the figure, a discontinuity 101 is introduced in the middle of the layer 102 for visual effect only. Layers 104 and 116 can have a thickness “h1” in the range of 15 microns on both sides of the substrate 102. Layer 104 serves as a lower cladding for the waveguide core layer 110. The waveguide core layer 110 can be considered as one turn of a waveguide coil when patterned to the correct dimensions (as shown in FIGS. 4-5 ). The waveguide core layer 110 can have a thickness “h” and, when patterned, a width “w”. Non-limiting exemplary dimensions of “h” can be 60-100 nm and “w” can be 2-3 μm. The waveguide core layer 110 is made of silicon nitride (SiN). Note that when layers 104 and 110 are formed on one side of the substrate 102, corresponding layers 116 and 118 are also formed on the other side of the substrate 102, even though these layers may not be used for waveguide purposes. Alternatively, these layers can create waveguides in different layers if necessary. An upper cladding layer 114 having a thickness "h2" in the range of 2-3 μm may also be part of the structure. Both layers 114 and 116 may be of the same material 120.
圖2顯示製造SiN波導核心的第二步。SiO 2帽蓋層106沉積在波導核心SiN層110的頂部上。 Figure 2 shows the second step in fabricating the SiN waveguide core. A SiO2 cap layer 106 is deposited on top of the waveguide core SiN layer 110.
圖3顯示製造SiN波導核心的第三步,其中,SiO 2帽蓋層106藉由蝕刻而圖案化至適當的寬度「w」(例如,2-3 μm)。SiO 2帽蓋層作為硬遮罩。光阻劑能夠用作乾式蝕刻SiO 2帽蓋層的遮罩。實驗表明,濕式蝕刻硬遮罩接著濕式蝕刻SiN層獲得了最佳的側壁粗糙度,因為當阻劑用作為遮罩並且受到乾式蝕刻時,阻劑上的側壁粗糙度也被「複製」降至下面的SiN層。參考圖7至圖9,更詳細地描述該第一和第二濕式蝕刻。 FIG3 shows the third step of fabricating the SiN waveguide core, in which the SiO2 capping layer 106 is patterned by etching to an appropriate width "w" (e.g., 2-3 μm). The SiO2 capping layer acts as a hard mask. Photoresist can be used as a mask for dry etching the SiO2 capping layer. Experiments have shown that wet etching the hard mask followed by wet etching the SiN layer achieves the best sidewall roughness because when the resist acts as a mask and is dry etched, the sidewall roughness on the resist is also "copied" down to the underlying SiN layer. The first and second wet etches are described in more detail with reference to FIGS. 7 to 9.
圖4顯示製造SiN波導核心的第四步,其中,波導核心層110藉由濕式蝕刻而圖案化至具寬度「w」(例如,2-3 μm)的圖案化SiO 2帽蓋層106下方的適當的寬度,如橢圓虛線400內所示。SiN的濕式蝕刻能夠藉由例如熱磷酸來完成。硬遮罩應該選擇性地抵抗濕式蝕刻劑。 FIG4 shows the fourth step of fabricating the SiN waveguide core, wherein the waveguide core layer 110 is patterned by wet etching to a suitable width below the patterned SiO2 cap layer 106 having a width "w" (e.g., 2-3 μm), as shown within the elliptical dashed line 400. Wet etching of SiN can be done by, for example, hot phosphoric acid. The hard mask should be selectively resistant to the wet etchant.
圖5顯示藉由濕式蝕刻製造的SiN波導核心110的分解圖,顯示出平滑側壁510和512。尺寸「x」顯示由於可能的過度蝕刻(「x」通常是每側20-25 nm的範圍內)所造成的層106下方之凹部。藉由濕式蝕刻達成的平滑側壁有助於減少陀螺儀波導線圈內傳播期間的光損耗。藉由濕式蝕刻達成的側壁粗糙度在原子級,而由乾式蝕刻達成的側壁粗糙度為微米或奈米範圍,即比原子級平滑度高得多的粗糙度。取決於波導核心縱向尺寸(例如,厚度「h」),此平滑度能夠是決定傳播損耗和光學模式限制的重要因素,尤其是在波導彎曲附近。FIG5 shows an exploded view of a SiN waveguide core 110 fabricated by wet etching, showing smooth sidewalls 510 and 512. The dimension "x" shows the recess beneath layer 106 due to possible overetching ("x" is typically in the range of 20-25 nm per side). The smooth sidewalls achieved by wet etching help reduce light losses during propagation within the gyroscope waveguide coils. The sidewall roughness achieved by wet etching is at the atomic level, while the sidewall roughness achieved by dry etching is in the micrometer or nanometer range, i.e., a much higher roughness than atomic level smoothness. Depending on the waveguide core longitudinal dimensions (e.g., thickness "h"), this smoothness can be an important factor in determining propagation losses and optical mode confinement, especially near waveguide bends.
圖6是根據本案揭示內容的一個實施例的藉由濕式蝕刻製造的SiN波導核心(頂部上有硬遮罩)的掃描式電子顯微照片,顯示出平滑側壁。FIG. 6 is a scanning electron micrograph of a SiN waveguide core (with a hard mask on top) fabricated by wet etching according to an embodiment of the present disclosure, showing smooth sidewalls.
圖7顯示了帽蓋層106頂部上的光阻劑層150,其使用第一濕式蝕刻處理而圖案化。該步驟能被視為圖1和圖2中所示步驟之後的步驟。圖案化帽蓋層的寬度可大於波導核心的目標寬度。這是藉由預偏置用於圖案化帽蓋層106的遮罩而達成,即,在遮罩上寫入比晶圓上的實際特徵更大的特徵。預偏置有助於補償帽蓋層濕式蝕刻和隨後的SiN核心層濕式蝕刻期間的橫向蝕刻。橫向蝕刻的量取決於濕式蝕刻處理的化學條件。橫向蝕刻能夠小至每側20-25 nm或大至500 nm。 有關橫向蝕刻量的先前知識有助於設計預偏置之遮罩的尺寸。FIG7 shows a photoresist layer 150 on top of the cap layer 106 that is patterned using a first wet etch process. This step can be considered as a step following the steps shown in FIGS. 1 and 2 . The width of the patterned cap layer can be larger than the target width of the waveguide core. This is achieved by pre-biasing the mask used to pattern the cap layer 106, i.e., writing features on the mask that are larger than the actual features on the wafer. Pre-biasing helps to compensate for lateral etching during the cap layer wet etch and the subsequent SiN core layer wet etch. The amount of lateral etching depends on the chemistry of the wet etching process. The lateral etching can be as small as 20-25 nm per side or as large as 500 nm. Prior knowledge of the amount of lateral etching helps in designing the dimensions of the pre-biased mask.
圖8顯示第二濕式蝕刻步驟以形成SiN波導核心110。如前文所述,SiN波導核心的理想寬度為刻蝕後2-3 μm。圖案化帽蓋層106的寬度(在第一濕式蝕刻步驟之後)更接近波導核心的期望目標寬度,但仍可能稍大以應付橫向蝕刻。第二濕式蝕刻能夠使用熱磷酸完成,通常會產生20-25 nm的橫向蝕刻。所得的側壁(在虛線800內)顯示於圖9中。帽蓋層的側壁916和914也是平滑的,並且略微彎曲,如果使用乾式蝕刻則不會是這種情況。SiN核心110的側壁912和910平滑達到次奈米尺度的原子級。FIG8 shows a second wet etch step to form the SiN waveguide core 110. As previously mentioned, the ideal width of the SiN waveguide core is 2-3 μm after etching. The width of the patterned capping layer 106 (after the first wet etch step) is closer to the desired target width of the waveguide core, but may still be slightly larger to account for the lateral etching. The second wet etch can be done using hot phosphoric acid and typically produces a lateral etch of 20-25 nm. The resulting sidewalls (within dashed line 800) are shown in FIG9. The sidewalls 916 and 914 of the capping layer are also smooth and slightly curved, which would not be the case if dry etching was used. The sidewalls 912 and 910 of the SiN core 110 are smooth to the sub-nanometer atomic level.
在第二濕式蝕刻之後,在SiN核心上方的剩餘硬遮罩之頂部上沉積上包覆物(或頂部包覆物)。剩餘的硬遮罩能夠作為包覆物的一部分,且確保上包覆物與核心層之間的界面有高度完整性和強度,以保持光學模式的嚴密限制。這能夠顯示於圖10的SEM照片中。虛線顯示具有彎曲側壁的波導核心的輪廓。波導核心與上包覆物之間沒有空隙。After the second wet etch, an upper cladding (or top cladding) is deposited on top of the remaining hard mask above the SiN core. The remaining hard mask can act as part of the cladding and ensure that the interface between the upper cladding and the core layer has high integrity and strength to maintain tight confinement of the optical mode. This can be shown in the SEM image of Figure 10. The dotted line shows the outline of the waveguide core with curved sidewalls. There is no gap between the waveguide core and the upper cladding.
在前文的說明書中,已參考本案揭示內容的特定示範實施方式描述了本案揭示內容的實施方式。明顯的是,在不脫離如所附之申請專利範圍中所闡述的本案揭示內容的實施方式的更廣泛的精神和範疇的情況下,可以進行各種修改。因此,說明書和圖式被認為是說明性意義的,而非限制性意義的。此外,方向性術語,例如「頂部」、「底部」等並不將本案揭示內容的範疇限制在任何固定走向,而是涵蓋了走向的各種排列和組合。In the foregoing specification, embodiments of the present disclosure have been described with reference to specific exemplary embodiments of the present disclosure. Obviously, various modifications may be made without departing from the broader spirit and scope of embodiments of the present disclosure as set forth in the attached claims. Therefore, the specification and drawings are to be regarded as illustrative rather than restrictive. In addition, directional terms such as "top", "bottom", etc. do not limit the scope of the present disclosure to any fixed orientation, but cover various arrangements and combinations of orientations.
101:不連續部 102:基板 104:層 106:帽蓋層 110:波導核心層 114:上包覆物層 116:層 120:材料 150:光阻劑層 400:橢圓虛線 510,512:平滑側壁 800:虛線 910,912,914,916:側壁 101: Discontinuous part 102: Substrate 104: Layer 106: Cap layer 110: Waveguide core layer 114: Upper cladding layer 116: Layer 120: Material 150: Photoresist layer 400: Elliptical dotted line 510,512: Smooth sidewall 800: Dotted line 910,912,914,916: Sidewall
由下文提出的詳細描述和由本案揭示內容的各種實施方式的伴隨圖式,會更完整地理解本案揭示內容。A more complete understanding of the present disclosure will be obtained from the detailed description set forth below and the accompanying drawings of various implementations of the present disclosure.
圖1是顯示根據本案揭示內容的實施例的沉積在氧化物包覆物上的氮化矽(SiN)波導核心層的示意性剖面圖。FIG. 1 is a schematic cross-sectional view showing a silicon nitride (SiN) waveguide core layer deposited on an oxide cladding according to an embodiment of the present disclosure.
圖2是顯示根據本案揭示內容的實施例的沉積在 SiN波導核心層上的二氧化矽(SiO 2)帽蓋層的示意性剖面圖。 FIG. 2 is a schematic cross-sectional view showing a silicon dioxide (SiO 2 ) capping layer deposited on a SiN waveguide core layer according to an embodiment of the present disclosure.
圖3是顯示根據本案揭示內容的實施例將SiO 2帽蓋層圖案化至適當寬度以形成SiN波導核心的示意性剖面圖。 FIG. 3 is a schematic cross-sectional view showing a SiO 2 capping layer patterned to an appropriate width to form a SiN waveguide core according to an embodiment of the present disclosure.
圖4是顯示根據本案揭示內容的實施例的藉由濕式蝕刻製造的SiN波導核心的示意性剖面圖。FIG. 4 is a schematic cross-sectional view showing a SiN waveguide core fabricated by wet etching according to an embodiment of the present disclosure.
圖5是根據本案揭示內容的實施例的藉由濕式蝕刻製造的SiN波導核心的分解示意性剖面圖,其顯示出平滑的側壁。5 is an exploded schematic cross-sectional view of a SiN waveguide core fabricated by wet etching showing smooth sidewalls according to an embodiment of the present disclosure.
圖6是根據本案揭示內容的實施例的藉由濕式蝕刻製造的SiN波導核心(頂部上有硬遮罩)的掃描式電子顯微照片,其顯示出平滑的側壁。6 is a scanning electron micrograph of a SiN waveguide core (with a hard mask on top) fabricated by wet etching according to an embodiment of the present disclosure, showing smooth sidewalls.
圖7是顯示根據本案揭示內容的實施例的利用濕式蝕刻圖案化SiO 2帽蓋層的示意性剖面圖。 FIG. 7 is a schematic cross-sectional view showing a SiO2 capping layer patterned by wet etching according to an embodiment of the present disclosure.
圖8是顯示根據本案揭示內容的實施例的在預偏置遮罩的同時利用濕式蝕刻圖案化SiN波導核心以獲得SiN波導核心的適當寬度的示意性剖面圖。FIG. 8 is a schematic cross-sectional view showing a method of patterning a SiN waveguide core using wet etching while pre-biasing a mask to obtain a suitable width of the SiN waveguide core according to an embodiment of the present disclosure.
圖9是根據本案揭示內容的實施例的藉由濕式蝕刻帽蓋層與波導層兩者而製造的用於平滑側壁的SiN波導核心的分解示意性剖面圖。9 is an exploded schematic cross-sectional view of a SiN waveguide core for smooth sidewalls fabricated by wet etching both a cap layer and a waveguide layer according to an embodiment of the present disclosure.
圖10是根據本案揭示內容的實施例的藉由濕式蝕刻製造的SiN波導核心(核心的頂部上沉積了頂部包覆物)的掃描式電子顯微照片,顯示出平滑側壁造成波導核心與包覆物之間沒有空隙。FIG. 10 is a scanning electron micrograph of a SiN waveguide core fabricated by wet etching with a top cladding deposited on top of the core according to an embodiment of the present disclosure, showing smooth sidewalls resulting in no gaps between the waveguide core and the cladding.
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None
104:層 106:帽蓋層 110:波導核心層 800:虛線 910,912,914,916:側壁 104: layer 106: cap layer 110: waveguide core layer 800: dashed line 910,912,914,916: side wall
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/083,432 US11782211B2 (en) | 2020-09-15 | 2022-12-16 | Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides |
US18/083,432 | 2022-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202426991A TW202426991A (en) | 2024-07-01 |
TWI849803B true TWI849803B (en) | 2024-07-21 |
Family
ID=91486292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112109764A TWI849803B (en) | 2022-12-16 | 2023-03-16 | Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI849803B (en) |
WO (1) | WO2024129761A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110170825A1 (en) * | 2009-08-14 | 2011-07-14 | Massachusetts Institute Of Technology | Waveguide Coupler Having Continuous Three-Dimensional Tapering |
CN110186447A (en) * | 2019-05-30 | 2019-08-30 | 中国科学院半导体研究所 | Resonant mode gyroscope chip of light waveguide and preparation method thereof |
WO2020093136A1 (en) * | 2018-11-08 | 2020-05-14 | Francois Menard | Structures and methods for stress and gap mitigation in integrated optics microelectromechanical systems |
US20220075113A1 (en) * | 2018-11-16 | 2022-03-10 | Oscps Motion Sensing Inc. | Optical gyroscopes and methods of manufacturing of optical gyroscopes |
US20220229346A1 (en) * | 2021-01-15 | 2022-07-21 | Nokia Solutions And Networks Oy | Dual-ring resonators for optical frequency comb generation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014217A1 (en) * | 2006-07-17 | 2008-01-17 | Emmanuel Jules Hanon | Influenza vaccine |
US10852137B2 (en) * | 2017-09-29 | 2020-12-01 | Gener8, LLC | Multilayer waveguide optical gyroscope |
-
2023
- 2023-03-16 TW TW112109764A patent/TWI849803B/en active
- 2023-12-12 WO PCT/US2023/083672 patent/WO2024129761A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110170825A1 (en) * | 2009-08-14 | 2011-07-14 | Massachusetts Institute Of Technology | Waveguide Coupler Having Continuous Three-Dimensional Tapering |
WO2020093136A1 (en) * | 2018-11-08 | 2020-05-14 | Francois Menard | Structures and methods for stress and gap mitigation in integrated optics microelectromechanical systems |
US20220075113A1 (en) * | 2018-11-16 | 2022-03-10 | Oscps Motion Sensing Inc. | Optical gyroscopes and methods of manufacturing of optical gyroscopes |
CN110186447A (en) * | 2019-05-30 | 2019-08-30 | 中国科学院半导体研究所 | Resonant mode gyroscope chip of light waveguide and preparation method thereof |
US20220229346A1 (en) * | 2021-01-15 | 2022-07-21 | Nokia Solutions And Networks Oy | Dual-ring resonators for optical frequency comb generation |
Also Published As
Publication number | Publication date |
---|---|
WO2024129761A1 (en) | 2024-06-20 |
TW202426991A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11788841B2 (en) | Process flow for fabricating integrated photonics optical gyroscopes | |
US11119276B1 (en) | Single-layer and multi-layer structures for integrated silicon photonics optical gyroscopes | |
US8805135B2 (en) | Practical silicon photonic multi-function integrated-optic chip for fiber sensor applications | |
CN110186447B (en) | Resonant gyroscope optical waveguide chip and preparation method thereof | |
JP3436691B2 (en) | Method of manufacturing tapered waveguide | |
US20220326014A1 (en) | Integration of photonics optical gyroscopes with micro-electro-mechanical sensors | |
US20240337790A1 (en) | Integrated photonics optical gyroscopes with improved sensitivity utilizing high density silicon nitride waveguides | |
US11624615B2 (en) | Ring waveguide based integrated photonics optical gyroscope with balanced detection scheme | |
TWI849803B (en) | Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides | |
US11782211B2 (en) | Process flow with pre-biased mask and wet etching for smooth sidewalls in silicon nitride waveguides | |
US11543589B2 (en) | Process flow with wet etching for smooth sidewalls in silicon nitride waveguides | |
US11803013B2 (en) | Seamless stitching for multi-reticle fabrication of integrated photonics optical components | |
JP3795848B2 (en) | Optical planar circuit type optical element manufacturing method | |
TW202349481A (en) | Process flow for fabricating integrated photonics optical gyroscopes including chemical mechanical polishing (cmp) | |
US20230258863A1 (en) | Interferometric integrated optical gyroscopes |