TWI849769B - Magnetic rotary encoder and backup control method thereof - Google Patents
Magnetic rotary encoder and backup control method thereof Download PDFInfo
- Publication number
- TWI849769B TWI849769B TW112106731A TW112106731A TWI849769B TW I849769 B TWI849769 B TW I849769B TW 112106731 A TW112106731 A TW 112106731A TW 112106731 A TW112106731 A TW 112106731A TW I849769 B TWI849769 B TW I849769B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic sensor
- signal
- data
- analog
- aforementioned
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 317
- 238000000034 method Methods 0.000 title claims description 22
- 238000012545 processing Methods 0.000 claims abstract description 104
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 230000006870 function Effects 0.000 claims description 41
- 230000005330 Barkhausen effect Effects 0.000 claims description 30
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 16
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 2
- 238000012937 correction Methods 0.000 description 49
- 238000001514 detection method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 14
- 238000010248 power generation Methods 0.000 description 11
- 238000012886 linear function Methods 0.000 description 8
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 6
- 101000797092 Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099) Probable acetoacetate decarboxylase 3 Proteins 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101710096655 Probable acetoacetate decarboxylase 1 Proteins 0.000 description 3
- 101710096660 Probable acetoacetate decarboxylase 2 Proteins 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D18/00—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
提供一種磁性旋轉編碼器,可以一邊利用精確度比第一磁性感測器更低且低價的第二磁性感測器的輸出訊號,一邊生成比較高精確度的旋轉角度資訊,來作為前述第一磁性感測器故障時的備援控制用的位置資訊。 前述磁性旋轉編碼器具備:第一磁性感測器訊號的處理單元,依據第1磁性感測器的輸出,生成和旋轉軸的旋轉角度相關的第1類比資料及第1數位資料;及第二磁性感測器訊號的處理單元,依據第2磁性感測器的輸出的類比數位(AD)轉換資料,生成和前述旋轉軸相關的第2類比資料及第2數位資料,前述第2磁性感測器的解析度比第1磁性感測器差,依據第1磁性感測器的輸出來校正前述第2磁性感測器的輸出,作為前述旋轉編碼器的前述故障安全功能,依據前述第2磁性感測器的校正歷程,校正前述第2磁性感測器的前述第2類比資料及前述第2數位資料。 A magnetic rotary encoder is provided, which can generate relatively high-precision rotation angle information as position information for backup control when the first magnetic sensor fails, while utilizing the output signal of a second magnetic sensor that is less accurate and inexpensive than the first magnetic sensor. The magnetic rotary encoder comprises: a first magnetic sensor signal processing unit, which generates first analog data and first digital data related to the rotation angle of the rotary shaft according to the output of the first magnetic sensor; and a second magnetic sensor signal processing unit, which generates second analog data and second digital data related to the rotary shaft according to analog-to-digital (AD) conversion data of the output of the second magnetic sensor. The resolution of the second magnetic sensor is worse than that of the first magnetic sensor. The output of the second magnetic sensor is corrected according to the output of the first magnetic sensor. As the fail-safe function of the rotary encoder, the second analog data and the second digital data of the second magnetic sensor are corrected according to the calibration history of the second magnetic sensor.
Description
本發明是有關於磁性旋轉編碼器及其備援控制方法,且是有關於在磁性感測器等的故障時或失去電源時,具備進行備援的功能之磁性旋轉編碼器、及其備援控制方法。 The present invention relates to a magnetic rotary encoder and a backup control method thereof, and to a magnetic rotary encoder having a backup function when a magnetic sensor fails or power is lost, and a backup control method thereof.
旋轉編碼器是使用來偵測旋轉電機所驅動的旋轉軸的角度位置及旋轉速度。特別是,有關於馬達,例如無刷DC馬達,會依據磁性感測器所偵測到的旋轉軸的角度位置或旋轉速度,來生成並輸出有關於角度位置的絕對數位訊號或增量數位訊號,並且將這些訊號使用於將馬達控制為伺服馬達。對於控制重視系統冗餘性的產業用機器人等機器中所使用的旋轉編碼器,賦與有使用其他正常的磁性感測器之備援控制功能(fail-safe function,故障安全功能),以在該旋轉編碼器在動作中故障的情況下,仍然可以安全地繼續進行該機器的動作。 A rotary encoder is used to detect the angular position and rotational speed of a rotating shaft driven by a rotary motor. In particular, in the case of a motor such as a brushless DC motor, an absolute digital signal or an incremental digital signal related to the angular position is generated and output according to the angular position or rotational speed of the rotating shaft detected by a magnetic sensor, and these signals are used to control the motor as a servo motor. For rotary encoders used in industrial robots and other machines where system redundancy is important, a backup control function (fail-safe function) using other normal magnetic sensors is given so that the machine can continue to operate safely even if the rotary encoder fails during operation.
專利文獻1所揭示的旋轉角度檢測裝置具備3個以上的旋轉角感測器,並且具備旋轉角度導出部,前述旋轉角感測器使用了磁通檢測部為MR元件或霍爾元件等的磁性檢測元件,前述旋轉角度導出部是依據判定為異常的旋轉角感測器以外的前述旋轉角感測器的旋轉,來算出輸出軸的旋轉角度。
The rotation angle detection device disclosed in
在專利文獻2中揭示有如下發明:在具備GMR感測器與AMR感測器的馬達的旋轉角檢測裝置中,在一般時是藉由GMR感測器的輸出來補正AMR感測器的輸出並求出機械角θ,在GMR感測器故障的情況下,僅以AMR感測器的輸出來檢測機械角θ並執行備援控制。微電腦具備計數器,當判定為
由GMR感測器的輸出進行偏移補正的時間點時,則在計數器中先將計數值記錄為1,當GMR感測器故障時,則依據此計數值,對AMR感測器的輸出值進行偏移補正。
專利文獻3所揭示之具備光學式或磁性的角度檢測部的編碼器具備:電池、鈕扣型電池、乾電池等一次電池、及可充電的二次電池。並且,揭示有如下發明:此二次電池是藉由利用了韋根(Wiegand)金屬線等感磁性金屬線的電氣訊號產生單元來充電,即使在搭載編碼器裝置的裝置的主電源未投入的狀態(緊急狀態、備援狀態)下,仍然可檢測旋轉軸的旋轉位置資訊的至少一部分(例如多旋轉資訊)。
The encoder with an optical or magnetic angle detection unit disclosed in
專利文獻1:日本特開2022-164402號公報 Patent document 1: Japanese Patent Publication No. 2022-164402
專利文獻2:日本特開2022-105702號公報 Patent document 2: Japanese Patent Publication No. 2022-105702
專利文獻3:日本特開2016-109554號公報 Patent document 3: Japanese Patent Publication No. 2016-109554
專利文獻1的發明,當旋轉角度檢測裝置的1個旋轉角感測器已被判定為異常的情況下,可以僅依據其他正常的旋轉角感測器的旋轉來算出輸出軸的旋轉角度。因此,以此旋轉角度檢測裝置所控制的各種產業用機械等,有即使1個旋轉角感測器為異常,仍然可以安全地繼續運作之優點。另一方面,在專利文獻1的發明中,必須採用具有相同種類、相同特性的感測器來作為3個以上的旋轉角感測器,在採用了高精確度的旋轉角感測器的情況下,會有整體的成本上升的可能性。根據各種產業用機械等的用途,也會有必須以更低價且故障較少的旋轉角感測器來進行備援控制的領域。
The invention of
專利文獻2的發明,由於GMR感測器與AMR感測器是以180度間隔來配置,因此GMR感測器的輸出與AMR感測器的輸出會產生偏移。因此,當GMR感測器故障時,依據此計數值對AMR感測器的輸出值進行偏移補正。但是,此偏移量是因GMR感測器與AMR感測器以180度間隔配置之特殊的結構而產生的偏移。此外,在專利文獻2中並未記載有當GMR感測器故障時要進行上述偏移補正以外的補正之內容。
In the invention of
在專利文獻3的發明中,電力供給系統具備電源切換器(電源選擇部、選擇部),此電源切換器是構成為切換(選擇)從一次電池與二次電池的哪一個來對位置檢測系統供給電力,前述二次電池是藉由電氣訊號產生單元來充電。但是,當電源切換器故障時,會有無法適當地將電源供給至位置檢測系統的可能性。
In the invention of
本發明的一個課題在於提供一種磁性旋轉編碼器及其備援控制方法,在一般時是利用第一磁性感測器的輸出訊號來生成高精確度的旋轉角度資訊,作為前述第一磁性感測器故障時的備援控制用的位置資訊,可以一邊利用精確度比前述第一磁性感測器更低且低價的第二磁性感測器的輸出訊號,一邊生成比較高精確度的旋轉角度資訊。 One of the topics of the present invention is to provide a magnetic rotary encoder and a backup control method thereof. Generally, the output signal of the first magnetic sensor is used to generate high-precision rotation angle information. As the position information for backup control when the first magnetic sensor fails, the output signal of the second magnetic sensor with lower accuracy and lower price than the first magnetic sensor can be used to generate relatively high-precision rotation angle information.
本發明的其他課題在於提供一種磁性旋轉編碼器,前述磁性旋轉編碼器具備備援控制功能,前述備援控制功能是適當地記錄馬達的旋轉軸的旋轉角度的資訊,當下一次馬達啟動時可以適當地提供必要的資訊。 Another subject of the present invention is to provide a magnetic rotary encoder, which has a backup control function. The backup control function is to properly record the information of the rotation angle of the motor's rotating shaft, so that the necessary information can be properly provided when the motor is started next time.
依據本發明的1個態樣,旋轉編碼器具備:磁鐵,固定於旋轉軸;第一磁性感測器訊號的處理單元,對相向於前述磁鐵而配置的第1磁性感測器的輸出即第1類比訊號進行類比數位(AD)轉換,依據前述第1磁性感測器的輸 出的類比數位轉換資料,生成和前述旋轉軸的旋轉角度、旋轉方向相關之第1數位資料,前述第1數位資料包含絕對訊號與增量訊號之2個系統的資訊;及第二磁性感測器訊號的處理單元,對相向於前述磁鐵而配置的第2磁性感測器的輸出即第2類比訊號進行類比數位轉換,依據前述第2磁性感測器的輸出的類比數位轉換資料,生成和前述旋轉軸的前述旋轉角度、前述旋轉方向相關之第2數位資料,前述第2數位資料包含絕對訊號與增量訊號之2個系統的資訊,前述第2磁性感測器的解析度比前述第1磁性感測器差,前述第二磁性感測器訊號的處理單元具有對前述第一磁性感測器訊號的處理單元進行備援的故障安全功能,前述第二磁性感測器訊號的處理單元具備以下之功能:依據前述第1磁性感測器的前述第1類比訊號的資料,校正前述第2磁性感測器的前述第2類比訊號並進行前述類比數位轉換,並依據前述第1磁性感測器的前述第1數位資料來校正前述第2磁性感測器的輸出的前述類比數位轉換資料,來生成前述第2數位資料,並且,記錄前述第2類比訊號的校正歷程、及前述第2數位資料的校正歷程,前述旋轉編碼器的前述故障安全功能是構成為:當前述第1磁性感測器及/或前述第一磁性感測器訊號的處理單元故障時,依據前述第2類比訊號的校正歷程,校正前述第2磁性感測器的前述第2類比訊號,並且依據前述第2數位資料的校正歷程,校正前述第2磁性感測器的前述第2數位資料。 According to one aspect of the present invention, a rotary encoder comprises: a magnet fixed to a rotating shaft; a first magnetic sensor signal processing unit, which performs analog-to-digital (AD) conversion on a first analog signal outputted by a first magnetic sensor disposed opposite to the magnet, and generates first digital data related to a rotation angle and a rotation direction of the rotating shaft based on the analog-to-digital conversion data of the output of the first magnetic sensor, wherein the first digital data includes information of two systems, namely, an absolute signal and an incremental signal; and a second The magnetic sensor signal processing unit performs analog-to-digital conversion on the output of the second magnetic sensor disposed opposite to the magnet, that is, the second analog signal, and generates second digital data related to the rotation angle and the rotation direction of the rotation axis based on the analog-to-digital conversion data of the output of the second magnetic sensor. The second digital data includes information of two systems, namely, an absolute signal and an incremental signal. The resolution of the second magnetic sensor is lower than that of the first magnetic sensor. The second magnetic sensor signal The processing unit of the first magnetic sensor signal has a fail-safe function of backing up the processing unit of the first magnetic sensor signal, and the processing unit of the second magnetic sensor signal has the following functions: based on the data of the first analog signal of the first magnetic sensor, correct the second analog signal of the second magnetic sensor and perform the analog-to-digital conversion, and correct the analog-to-digital conversion data output by the second magnetic sensor based on the first digital data of the first magnetic sensor to generate the first analog signal of the second magnetic sensor. 2 digital data, and record the calibration history of the aforementioned second analog signal and the calibration history of the aforementioned second digital data. The aforementioned fail-safe function of the aforementioned rotary encoder is constituted as follows: when the aforementioned first magnetic sensor and/or the aforementioned first magnetic sensor signal processing unit fails, the aforementioned second analog signal of the aforementioned second magnetic sensor is calibrated according to the calibration history of the aforementioned second analog signal, and the aforementioned second digital data of the aforementioned second magnetic sensor is calibrated according to the calibration history of the aforementioned second digital data.
根據本發明的一個態樣,可以提供一種旋轉編碼器,其可以利用雖然精確度比第1磁性感測器差但低價的第2磁性感測器,來生成比較高精確度的位置資訊,可以進行信賴性高的備援控制。 According to one aspect of the present invention, a rotary encoder can be provided, which can generate position information with relatively high accuracy by using a second magnetic sensor which is less accurate than the first magnetic sensor but is inexpensive, and can perform backup control with high reliability.
根據本發明的其他態樣,前述第1磁性感測器是在對應於前述旋 轉軸的軸心的位置上,配置在印刷基板之上,前述第2磁性感測器是和前述印刷基板之上的前述第1磁性感測器在相同的面,且在以前述旋轉軸的軸心為中心的1個圓周上以120度間隔來配置,在前述印刷基板之上配置有1個溫度感測器。 According to another aspect of the present invention, the first magnetic sensor is arranged on the printed circuit board at a position corresponding to the axis of the rotating shaft, the second magnetic sensor is arranged on the same plane as the first magnetic sensor on the printed circuit board at intervals of 120 degrees on a circle centered on the axis of the rotating shaft, and a temperature sensor is arranged on the printed circuit board.
前述旋轉編碼器具備輸出電壓被控制在預定的電力之主電源、巴克豪森效應(Barkhausen effect)發電電源、及副電池,來作為電源單元,前述巴克豪森效應發電電源及前述副電池是當失去前述主電源時進行備援的電源,前述巴克豪森效應發電電源具備巴克豪森效應元件,前述巴克豪森效應元件是在前述印刷基板上設置成位於前述第1磁性感測器的背側,並且利用前述磁鐵的旋轉磁場來發電,前述副電池具有藉由前述主電源及前述巴克豪森效應發電電源來充電的電容器。 The rotary encoder has a main power source whose output voltage is controlled to a predetermined power, a Barkhausen effect power source, and an auxiliary battery as a power source unit. The Barkhausen effect power source and the auxiliary battery are power sources for backup when the main power source is lost. The Barkhausen effect power source has a Barkhausen effect element. The Barkhausen effect element is arranged on the printed circuit board to be located on the back side of the first magnetic sensor and generates electricity using the rotating magnetic field of the magnet. The auxiliary battery has a capacitor charged by the main power source and the Barkhausen effect power source.
根據此態樣,可以提供一種具備備援控制功能的磁性旋轉編碼器,前述備援控制功能是在前述第1磁性感測器及前述第2磁性感測器的任一個故障的情況下,更進一步地在停電時,會適當地記錄馬達的旋轉軸的旋轉角度的資訊,當下一次馬達啟動時可以適當地提供必要的資訊。 According to this aspect, a magnetic rotary encoder with a backup control function can be provided. The backup control function is to appropriately record the rotation angle information of the motor's rotating shaft when either the first magnetic sensor or the second magnetic sensor fails, and further when there is a power outage, so that necessary information can be appropriately provided when the motor is started next time.
根據本發明的另外其他態樣,監控前述第1類比訊號、前述第2類比訊號、前述第1數位資料、前述第2數位資料,在前述各資料的監控的結果中,當判定為前述第1磁性感測器或前述第一磁性感測器訊號的處理單元有異常的情況下,在前述第二磁性感測器訊號的處理單元中,依據前述第2磁性感測器的前述第2類比訊號,生成校正完畢類比訊號,並且依據前述校正完畢類比訊號與前述第2數位資料的校正用資料,來生成校正完畢的前述第2數位資料。 According to another aspect of the present invention, the first analog signal, the second analog signal, the first digital data, and the second digital data are monitored. In the monitoring results of the above-mentioned data, when it is determined that the above-mentioned first magnetic sensor or the processing unit of the above-mentioned first magnetic sensor signal is abnormal, in the processing unit of the above-mentioned second magnetic sensor signal, a calibrated analog signal is generated according to the above-mentioned second analog signal of the above-mentioned second magnetic sensor, and the calibrated second digital data is generated according to the above-mentioned calibrated analog signal and the calibration data of the above-mentioned second digital data.
根據此態樣,即使在前述第1磁性感測器故障的情況下,仍然可以進行信賴性高的備援控制。 According to this aspect, even in the event of a failure of the aforementioned first magnetic sensor, highly reliable backup control can still be performed.
10:旋轉編碼器 10: Rotary encoder
11:磁性感測器單元 11: Magnetic sensor unit
110:磁鐵 110: Magnet
111:第1磁性感測器 111: Magnetic sensor No. 1
1111,1112:磁性感測器 1111,1112: Magnetic sensor
112:第2磁性感測器 112: Second magnetic sensor
113:溫度感測器 113: Temperature sensor
115:巴克豪森效應發電單元 115: Barkhausen effect power generation unit
12:電源單元 12: Power unit
121:主電源 121: Main power supply
1211:主電源部 1211: Main power supply unit
122:巴克豪森效應發電電源 122: Barkhausen effect power source
1221,1231:二極體 1221,1231:Diode
1222:全波波形電路 1222: Full-wave waveform circuit
1223:平滑電路 1223: Smoothing circuit
123:副電池 123: Auxiliary battery
1230:元件 1230: Components
1232:電流限制電路 1232: Current limiting circuit
1233:電容器 1233:Capacitor
1234:電壓限制電路 1234: Voltage limiting circuit
1235:PWM控制部 1235: PWM control unit
1236:MOSFET 1236:MOSFET
1237:電阻 1237:Resistance
124:輸出端子 124: Output terminal
13:溫度感測器 13: Temperature sensor
130:編碼器輸出控制單元 130: Encoder output control unit
14:系統控制單元 14: System control unit
141:初始設定部 141: Initial settings section
142:設定部 142: Setting Department
143:故障安全控制用資料 143: Data for fault safety control
144:編碼器輸入輸出控制單元 144: Encoder input and output control unit
145:故障安全控制單元 145: Fail-safe control unit
146:輸出切換單元 146: Output switching unit
147:串列/並列訊號發送接收單元 147: Serial/parallel signal sending and receiving unit
15:第一磁性感測器訊號的處理單元 15: Processing unit for the first magnetic sensor signal
151:第一磁性感測器的類比訊號(sin、cos)、振幅檢測部 151: Analog signal (sin, cos), amplitude detection unit of the first magnetic sensor
152:類比數位轉換器 152:Analog-to-digital converter
1521:ADC-1(sin) 1521:ADC-1(sin)
1522:ADC-2(cos) 1522:ADC-2(cos)
1523:EEPROM-1 1523:EEPROM-1
153:數位訊號處理部 153: Digital signal processing department
1531:第一磁性感測器的數位訊號、頻率/旋轉方向檢測部 1531: Digital signal, frequency/rotation direction detection unit of the first magnetic sensor
1532:第一磁性感測器的絕對訊號生成單元 1532: Absolute signal generating unit of the first magnetic sensor
1533:第一磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元 1533: Incremental A, B, Z, (U, V, W) signal generation unit of the first magnetic sensor
16:第二磁性感測器訊號的處理單元 16: Second magnetic sensor signal processing unit
160:類比訊號處理部 160: Analog signal processing unit
161:第二磁性感測器的類比訊號的失真補正、振幅、同步補正部 161: Distortion correction, amplitude and synchronization correction unit of the analog signal of the second magnetic sensor
162:類比數位轉換器 162:Analog-to-digital converter
1621:ADC-3 1621:ADC-3
1622:ADC-4 1622:ADC-4
1623:ADC-5 1623:ADC-5
1624:EEPROM-5 1624:EEPROM-5
163:數位訊號處理部 163: Digital signal processing department
1631:第二磁性感測器的數位訊號檢測、頻率/旋轉方向補正部 1631: Digital signal detection and frequency/rotation direction correction unit of the second magnetic sensor
1632:第二磁性感測器的絕對訊號生成單元 1632: Absolute signal generating unit of the second magnetic sensor
1633:第二磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元 1633: Incremental A, B, Z, (U, V, W) signal generation unit of the second magnetic sensor
164:故障安全、訊號補正部 164: Failure safety, signal correction department
165:EEPROM-4 165:EEPROM-4
166:EEPROM-6 166:EEPROM-6
17:印刷基板 17: Printed circuit board
18:FPGA 18:FPGA
40:伺服控制裝置 40: Servo control device
50:馬達 50: Motor
510:旋轉軸 510: Rotation axis
H1,H2,H3:霍爾元件 H1, H2, H3: Hall element
O-O:軸心(軸線) O-O: axis (axis)
S700,S701,S702,S703,S704,S711,S721,S722,S731,S732,S733,S734,S740,S741,S900,S901,S902,S903,S904,S911,S921,S922,S931,S932,S933,S934,S940,S942,S1000,S1001,S1002,S1003,S1004,S1005,S1006,S1007,S1010,S1011,S1012,S1013,S1014,S1020,S1021,S1022,S1023,S1024,S1030,S1031,S1032,S1101,S1102,S1103,S1104,S1105,S1106,S1107,S1108,S1109,S1110,S1111,S1112,S1113,S1114,S1124,S1201,S1202,S1203,S1204,S1205,S1206,S1207,S1208,S1209,S1210,S1211,S1212,S1213:步驟 S700,S701,S702,S703,S704,S711,S721,S722,S731,S732,S733,S734,S740,S741,S900,S901,S902,S903,S904,S911,S921,S922,S931,S932,S9 33, S934,S940,S942,S1000,S1001,S1002,S1003,S1004,S1005,S1006,S1007,S1010,S1011,S1012,S1013,S1014, S1020,S1021,S1022,S1023,S1024,S1030,S1031,S1032,S1101,S1102,S1103,S1104,S1105,S1106,S1107,S1108,S1109,S1110,S1111,S1112,S1113,S1114,S1124,S1201,S1202, S1203, S1204, S1205, S1206, S1207, S1208, S1209, S1210, S1211, S1212, S1213: Steps
t0,t1,t2,t3,t4,t5:時刻 t0,t1,t2,t3,t4,t5: time
Vcc:電壓 Vcc: voltage
Φa,Φb:磁通 Φa,Φb: magnetic flux
圖1是顯示本發明的第1實施例之旋轉編碼器的構成例的功能方塊圖。 FIG1 is a functional block diagram showing an example of the configuration of a rotary encoder of the first embodiment of the present invention.
圖2是顯示具備第1實施例的旋轉編碼器之伺服控制系統的構成例的圖。 FIG2 is a diagram showing an example of the configuration of a servo control system having a rotary encoder according to the first embodiment.
圖3是顯示第1實施例的旋轉編碼器中的磁性感測器及電源單元的構成例的縱剖面圖。 FIG3 is a longitudinal cross-sectional view showing an example of the configuration of a magnetic sensor and a power supply unit in the rotary encoder of the first embodiment.
圖4是顯示第1實施例中的電源單元的電路的構成例的圖。 FIG4 is a diagram showing an example of the circuit configuration of the power supply unit in the first embodiment.
圖5是顯示前述電源單元的動作的時序圖,且是顯示在主電源的電源從正常的狀態到停電的情況下之電源與旋轉編碼器的輸出訊號的關係的一例的圖。 FIG5 is a timing diagram showing the operation of the power supply unit, and is a diagram showing an example of the relationship between the power supply and the output signal of the rotary encoder when the power supply of the main power supply changes from a normal state to a power outage.
圖6是顯示電源單元的電路的其他構成例的圖。 FIG6 is a diagram showing another example of the circuit configuration of the power supply unit.
圖7是顯示第一磁性感測器訊號的數位化、絕對化的處理的圖。 Figure 7 is a diagram showing the digitization and absolute processing of the first magnetic sensor signal.
圖8是顯示第1實施例中的第一磁性感測器訊號的處理單元中的訊號處理的流程圖。 FIG8 is a flow chart showing the signal processing in the processing unit of the first magnetic sensor signal in the first embodiment.
圖9是顯示依據於圖8的訊號處理之A相、B相的訊號與依據這些訊號生成的增量Z相、U相、V相、W相的訊號的例子的圖。 FIG9 is a diagram showing an example of the A-phase and B-phase signals processed according to the signal in FIG8 and the incremental Z-phase, U-phase, V-phase, and W-phase signals generated according to these signals.
圖10是顯示第二磁性感測器訊號的數位化、絕對化的處理的圖。 Figure 10 is a diagram showing the digitization and absolute processing of the second magnetic sensor signal.
圖11是顯示第1實施例中的第二磁性感測器訊號的處理單元中的訊號處理的流程圖。 FIG11 is a flow chart showing the signal processing in the processing unit of the second magnetic sensor signal in the first embodiment.
圖12是顯示第1實施例中的故障安全控制單元的處理的流程圖。 FIG12 is a flowchart showing the processing of the fail-safe control unit in the first embodiment.
圖13是顯示一般運作時的第二磁性感測器訊號的處理單元的資料處理的流程圖。 FIG13 is a flow chart showing the data processing of the processing unit of the second magnetic sensor signal during normal operation.
圖14是顯示故障安全模式時的第二磁性感測器訊號的處理單元的資料處理的流程圖。 FIG14 is a flow chart showing the data processing of the processing unit of the second magnetic sensor signal in the fail-safe mode.
以下,一邊參照圖式一邊說明本發明的第1實施例。 The first embodiment of the present invention is described below with reference to the drawings.
首先,一邊參照圖1~圖3一邊說明本發明的第1實施例之旋轉編碼器整體的構成及功能。 First, the overall structure and function of the rotary encoder of the first embodiment of the present invention will be described with reference to Figures 1 to 3.
圖1是顯示旋轉編碼器的構成例的功能方塊圖,圖2是顯示具備此旋轉編碼器的伺服控制系統的構成例的圖。 FIG1 is a functional block diagram showing an example of the configuration of a rotary encoder, and FIG2 is a diagram showing an example of the configuration of a servo control system having the rotary encoder.
旋轉編碼器10具備磁性感測器單元11、電源單元12、溫度感測器13、系統控制單元14、第一磁性感測器訊號的處理單元15、第二磁性感測器訊號的處理單元16。
The
旋轉編碼器10更具備各1極磁化為N、S的1個平板狀的磁鐵110。此平板狀的磁鐵例如為肥粒鐵磁鐵,並且如圖3所示地固定於馬達50的旋轉軸510的一端面。另外,亦可採用釹磁鐵或釤鈷磁鐵等稀土磁鐵,來取代肥粒鐵磁鐵。
The
磁性感測器單元11具備第1磁性感測器111與第2磁性感測器112,第1磁性感測器111具有溫度感測器113。
The
第1磁性感測器111是以1對磁性感測器(Sin、Cos)來構成,並且在旋轉軸510的軸方向上配置在和磁鐵110相向的位置。亦即,第1磁性感測器111是在對應於旋轉軸510的軸心O-O的位置上,配置在印刷基板17上。
The first
作為本發明所使用的第1磁性感測器111,是採用可得到高精確度的解析度的感測器,第2磁性感測器較理想的是雖然解析度比第1磁性感測器差,但構造較簡單且不易故障的磁性感測器。
The first
在第1實施例中,採用TMR感測器來作為第1磁性感測器111,並且採用以120度間隔配置的3個霍爾元件(H1、H2、H3)來作為第2磁性感測器112。霍爾元件是使用例如GaAs的元件。另外,TMR感測器內置有溫度感測器,其輸出是被溫度補償的輸出。
In the first embodiment, a TMR sensor is used as the first
電源單元12包含主電源121、巴克豪森效應發電電源122、副電池123。巴克豪森效應發電電源122及副電池123是在失去主電源的電源時作為將電力供給至旋轉編碼器10的電源來發揮功能。在磁鐵110的附近設置有巴克豪森效應發電單元115。此巴克豪森效應發電單元115是固定在印刷基板17上第1磁性感測器111的背面的位置(參照圖3)。此巴克豪森效應發電單元115具有複合磁性線及線圈。此複合磁性線是以軸線O-O為中心,並且配置在正交於此軸線的方向上。巴克豪森效應發電單元115是伴隨於旋轉軸510的旋轉且伴隨於平板狀的磁鐵110的磁通Φb,來生成巴克豪森效應所產生的電力,並且將此輸出供給至巴克豪森效應發電電源122。
The
系統控制單元14具備以下功能:當第1磁性感測器111及第一磁性感測器訊號的處理單元15正常地發揮功能時,輸出第一磁性感測器訊號的處理單元15的資訊,來作為旋轉編碼器10的輸出,當第1磁性感測器111及第一磁性感測器訊號的處理單元15發生異常時,輸出第二磁性感測器訊號的處理單元16的資訊,來作為旋轉編碼器10的輸出。
The
系統控制單元14的初始設定部141具有設定部142及故障安全控制用資料143的保持功能,前述設定部142是依照透過使用者介面輸入的條件,來設定馬達的種類、極數、旋轉軸的原點或旋轉編碼器的輸出條件等。在故障安全控制用資料143中為了例如資料的校正,包含和三角函數相關的資料或和一次函數相關的資料等,前述和三角函數相關的資料是使用在依據第1磁性感測器的類比輸出來校正第2磁性感測器的類比輸出,前述和一次函數相關的資料是使用在依據第1磁性感測器的數位輸出來校正第2磁性感測器的數位。
The
編碼器輸入輸出控制單元144具有依照初始設定的條件來控制旋轉編碼器10的輸入輸出之功能。故障安全控制單元145是進行當磁性感測器等故障時執行的故障安全模式的控制。輸出切換單元146具有因應於旋轉編碼器
的運作狀態來切換旋轉編碼器的輸出之功能。串列/並列訊號發送接收單元147具有在旋轉編碼器10與伺服控制裝置40之間,將各種資訊轉換成並列訊號或串列訊號並進行發送接收的功能。
The encoder input/
本發明的旋轉編碼器10可以應用於需要絕對資料及增量A、B、Z的資料的各種旋轉電機。
The
以下,更具體地說明將本發明應用於以無刷DC馬達為對象的旋轉編碼器之構成。 The following is a more detailed description of the application of the present invention to the structure of a rotary encoder targeting a brushless DC motor.
第一磁性感測器訊號的處理單元15是對相向於磁鐵110而配置的第1磁性感測器的輸出即第1類比訊號進行類比數位轉換,依據第1磁性感測器的輸出的類比數位轉換資料,來生成和旋轉軸的旋轉角度、旋轉方向相關的第1數位資料。亦即,第一磁性感測器訊號的處理單元15具備以下功能:有關於旋轉軸的旋轉角度資訊,以高精確度的方式,生成以預定的條件將第1磁性感測器111的類比輸出量化之高解析度(例如,27位元/旋轉)的絕對訊號與增量訊號之2個系統的資訊,來作為第1數位資料。從旋轉編碼器,作為第1數位資料,例如增量A、B、Z、(U、V、W)訊號會被轉換成串列傳送用的發送資料(BUS),並透過通訊電纜來發送至伺服控制裝置。
The first magnetic sensor
又,第二磁性感測器訊號的處理單元16是對相向於磁鐵110而配置的第2磁性感測器的輸出即第2類比訊號進行類比數位轉換,依據前述第2磁性感測器的輸出的類比數位轉換資料,來生成和前述旋轉軸的旋轉角度、旋轉方向相關的第2數位資料。亦即,第二磁性感測器訊號的處理單元16具備以下功能:有關於旋轉軸的旋轉角度資訊,以高精確度的方式,生成比較高解析度(例如,21位元/旋轉)的絕對訊號與增量訊號之2個系統的資訊,來作為第2數位資料,前述比較高解析度的資訊是依據對第一磁性感測器訊號的處理單元所生成的訊號的補正歷程,來補正第2磁性感測器112的類比輸出並以預定的條件量
化之資訊。
Furthermore, the second magnetic sensor
第一磁性感測器訊號的處理單元15具備第1類比訊號的處理部即類比訊號(sin、cos)、振幅檢測部151、類比數位轉換器152、及數位訊號處理部153。
The first magnetic sensor
類比訊號(sin、cos)、振幅檢測部151是將第1磁性感測器111的第1類比訊號(sin訊號、cos訊號)的取樣資料作為時間序列資料來接收,並算出旋轉數,並且將這些類比訊號的旋轉角(機械角)與類比訊號的振幅、及旋轉軸的旋轉數Nx、溫度感測器13的資料建立關係來暫時記錄在記憶體中。同時,第1磁性感測器111的類比訊號的取樣資料是輸入到例如64位元的類比數位轉換器152(ADC-1(sin)1521、ADC-2(cos)1522)而被轉換為數位值,該等轉換值是作為時間序列資料而被記錄在EEPROM-1(1523)。
The analog signal (sin, cos) and amplitude detection unit 151 receives the sampled data of the first analog signal (sin signal, cos signal) of the first
數位訊號處理部153的第一磁性感測器的絕對訊號生成單元1532是從EEPROM-1取得旋轉軸的類比數位轉換的資料,來生成旋轉軸的旋轉角度的絕對訊號,並作為時間序列資料來記錄在EEPROM-2。
The absolute
又,第一磁性感測器的數位訊號、頻率/旋轉方向檢測部1531是從EEPROM-1取得數位值,算出其頻率,並且將該頻率和旋轉方向的資料一起記錄在EEPROM-2。
Furthermore, the digital signal of the first magnetic sensor, the frequency/rotation
另一方面,第一磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元1533是從EEPROM-2取得旋轉軸的旋轉角度的絕對訊號的數位值來作為第1數位資料,生成增量A、B、Z、(U、V、W)訊號,並且作為時間序列資料記錄在EEPROM-3。
On the other hand, the incremental A, B, Z, (U, V, W)
第二磁性感測器訊號的處理單元16具備類比訊號處理部160、類比數位轉換器162、及數位訊號處理部163。
The second magnetic sensor
第二磁性感測器的類比訊號的失真補正、振幅、同步補正部161是將第2磁性感測器112的第2類比訊號(H1的sin訊號、H2的sin訊號、H3的sin訊號)的取樣資
料作為時間序列資料來接收,並且進行對應於對各霍爾元件(H1、H2、H3)的軸心O-O的偏心之失真補正,算出旋轉數,並記錄在記憶體中。
The distortion correction, amplitude and synchronization correction unit 161 of the analog signal of the second magnetic sensor receives the sampling data of the second analog signal (sin signal of H1, sin signal of H2, sin signal of H3) of the second
另一方面,從第一磁性感測器訊號的處理單元15的類比訊號(sin、cos)、振幅檢測部151,取得第1磁性感測器111的第1類比訊號的旋轉角(機械角)與類比訊號的振幅、及旋轉數Nx、溫度感測器13的資料。並且,將這些資料建立關係並暫時地記錄在記憶體中。
On the other hand, the analog signal (sin, cos) of the first magnetic sensor
此外,依據第1類比訊號的旋轉角(機械角)與振幅、及旋轉數Nx、溫度感測器13的資料,對第2磁性感測器112的第2類比訊號的每旋轉1圈的資料,進行振幅補正、同步補正,亦即進行資料的校正,並且將校正完畢的類比資料和補正歷程一起記錄在EEPROM-4(165)。
In addition, based on the rotation angle (mechanical angle) and amplitude of the first analog signal, the number of rotations Nx, and the data of the temperature sensor 13, the data of each rotation of the second analog signal of the second
另外,關於第2類比訊號,雖然亦可對和各霍爾元件(H1、H2、H3)對應的各訊號,個別地和第1類比訊號進行振幅補正、同步補正,但是為了處理的高速化,所期望的是一次進行振幅補正、同步補正。 In addition, regarding the second analog signal, although it is also possible to perform amplitude correction and synchronization correction on each signal corresponding to each Hall element (H1, H2, H3) and the first analog signal individually, in order to speed up the processing, it is desirable to perform amplitude correction and synchronization correction at one time.
又,只要在第2類比訊號的資料的校正中,利用已和溫度感測器13的資料建立關係的三角函數的近似式,就不需要在每旋轉1圈的資料進行資料的校正,而能夠以預定的角度範圍或取樣單位等來進行。亦即,可以依據第1磁性感測器111的第1類比訊號的資料,來直接校正第2磁性感測器112的任意的旋轉角度中的第2類比訊號的資料,前述第1磁性感測器111是依據事先設定的三角函數的近似式與溫度感測器13的關係的資料,而位於對應的位置關係。
Furthermore, as long as the approximate expression of the trigonometric function that has been related to the data of the temperature sensor 13 is used in the correction of the data of the second analog signal, it is not necessary to calibrate the data for each rotation, but it can be performed in a predetermined angle range or sampling unit. That is, the data of the second analog signal of the second
校正完畢的類比資料是被輸入至例如64位元的類比數位轉換器162(ADC-3~5(1621-1623))而被轉換成數位值,該等轉換值會作為時間序列資料而被記錄在EEPROM-5(1624)。 The calibrated analog data is input to, for example, a 64-bit analog-to-digital converter 162 (ADC-3~5 (1621-1623)) and converted into digital values. The converted values are recorded in EEPROM-5 (1624) as time series data.
在第1磁性感測器111或第一磁性感測器訊號的處理單元15故障之「故障安全模式」中,故障安全、訊號補正部164是依據EEPROM-4(165)所記錄的補正歷
程,來進行第二磁性感測器的第2類比訊號的振幅、同步補正,並將其結果作為校正完畢的類比資料來記錄在EEPROM-4(165)。
In the "fail-safe mode" when the first
數位訊號處理部163的第二磁性感測器的絕對訊號生成單元1632是從EEPROM-5取得旋轉軸每旋轉1圈的類比數位轉換的資料,來生成旋轉軸的旋轉角度的絕對訊號,並作為時間序列的(暫定的)絕對資料來記錄在記憶體中。此(暫定的)絕對資料是在第二磁性感測器的數位訊號檢測、頻率/旋轉方向補正部1631中被校正。亦即,第二磁性感測器的數位訊號檢測、頻率/旋轉方向補正部1631是取得第一磁性感測器的數位訊號、頻率/旋轉方向檢測部1531所生成的第一磁性感測器的每旋轉1圈的數位訊號的頻率/旋轉方向的資料,並進行第二磁性感測器的時間序列的絕對資料的同步、旋轉方向的補正,並且將其結果作為第2數位資料,亦即作為第二磁性感測器的(正式的)絕對資料來記錄在EEPROM-7。又,絕對資料的補正歷程會記錄在EEPROM-6(166)。
The absolute
另外,只要將一次函數的近似式利用於資料的校正,就不需要在每旋轉1圈的資料進行資料的校正,而可以在預定的角度範圍進行。亦即,可以依據第1磁性感測器111的第1數位資料,來校正第2磁性感測器112的任意的旋轉角度中的第2數位資料,前述第1磁性感測器111是依據事先設定的一次函數的近似式與溫度感測器13的資料,而位於對應的位置關係。
In addition, as long as the linear function approximation is used for data correction, it is not necessary to perform data correction for each rotation, but it can be performed within a predetermined angle range. That is, the second digital data of the second
另一方面,第二磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元1633是從EEPROM-7取得校正完畢的旋轉軸的旋轉角度的絕對訊號的數位值,生成增量A、B、Z、(U、V、W)訊號,並且作為時間序列資料記錄在EEPROM-8。
On the other hand, the incremental A, B, Z, (U, V, W)
在「故障安全模式」中,對從EEPROM-5取得的旋轉軸的每旋轉1圈的類比數位轉換的資料,依據EEPROM-6所記錄的絕對資料的補正歷程,進行第二磁性感測器的絕對資料的頻率/旋轉方向的補正,並且將其結果作為校正完畢數位 值、補正歷程來記錄在EEPROM-6。 In "fail-safe mode", the frequency/rotation direction correction of the absolute data of the second magnetic sensor is performed based on the correction process of the absolute data recorded in EEPROM-6 for the analog-to-digital conversion data of each rotation of the rotating shaft obtained from EEPROM-5, and the result is recorded in EEPROM-6 as the calibrated digital value and correction process.
另外,圖1所示的各功能方塊是作為一例而顯示的功能方塊。各功能方塊的區分是任意的,且當然亦可用共通的程式來實現上述複數個功能方塊、或者以不同的複數個程式或IC電路來實現特定的上述功能方塊。 In addition, each functional block shown in FIG1 is a functional block shown as an example. The division of each functional block is arbitrary, and of course, a common program can be used to implement the above-mentioned multiple functional blocks, or a different multiple program or IC circuit can be used to implement a specific functional block.
或者,也可以在具備CPU或記憶體的微電腦中,組裝用於執行上述各功能的程式,藉此來實現上述各功能。 Alternatively, the above functions can be realized by assembling a program for executing the above functions in a microcomputer equipped with a CPU or memory.
如圖2所示,旋轉編碼器10是和伺服控制裝置40、馬達50一起構成伺服控制系統。
As shown in FIG2 , the
旋轉編碼器10的大部分,亦即除了磁性感測器單元11的平板狀的磁鐵110以外的部分、電源單元12、溫度感測器13、系統控制單元14、第一磁性感測器訊號的處理單元15、及第二磁性感測器訊號的處理單元16是形成或組裝在印刷基板17上。此印刷基板是固定於馬達50的殼體(圖示省略)。
Most of the
特別是,系統控制單元14、第一磁性感測器訊號的處理單元15、第二磁性感測器訊號的處理單元16是以專用的FPGA18(Field Programmable Gate Array,現場可程式閘陣列)、或以ASIC(Application Specific Integrated Circuit,應用特定積體電路)、或以使用了通用的單晶片微電腦的IC電路的晶片來實現,並且形成在印刷基板17上。
In particular, the
另外,系統控制單元14、第一磁性感測器訊號的處理單元15、及第二磁性感測器訊號的處理單元16是在功能上被分割的區塊,這些功能是藉由FPGA或ASIC的數位訊號處理單元、SSC介面、增量介面等中的程式的描述來實現。
In addition, the
另外,在FPGA中包含ROM、RAM、及至少1個可重寫(覆寫)的非揮發性記憶體,並且透過匯流排和CPU連接。又,作為可重寫(覆寫)的非揮發性的記憶體,只要採用EEPROM或FRAM(Ferroelectric Random Access Memory,(註冊商標))等即可。在以下的說明中是將像這樣的記憶體簡單地記載為EEPROM。 In addition, the FPGA includes ROM, RAM, and at least one rewritable (overwritten) non-volatile memory, and is connected to the CPU via a bus. Moreover, as a rewritable (overwritten) non-volatile memory, EEPROM or FRAM (Ferroelectric Random Access Memory, (registered trademark)) can be used. In the following description, such a memory is simply recorded as EEPROM.
構成第1磁性感測器111的1對磁阻效應元件是以所輸出的類比訊號的相位互相錯開90度的方式,在旋轉軸的旋轉方向上隔著預定的間隔來配置。作為第1磁性感測器111,可使用TMR(Tunnel magnetoresistance effect,穿隧磁阻效應)元件。第1磁性感測器111是伴隨於旋轉軸510的旋轉來感測平板狀的磁鐵110的磁通Φa並輸出正弦波、餘弦波。
A pair of magnetoresistance elements constituting the first
另外,磁鐵110的N極區域與S極區域的邊界線上的一端之位置是旋轉軸上的圓周方向上的特定位置,亦即相當於A相的脈衝的起升時間點之原點位置(Z0)。
In addition, the position of one end of the boundary line between the N-pole region and the S-pole region of the
第2磁性感測器112的3個霍爾元件是在第1磁性感測器111的半徑方向外側,等間隔地配置在印刷基板17上。亦可使用霍爾IC來取代此霍爾元件。在以下,將霍爾元件或霍爾IC簡單地記載為「霍爾元件」。
The three Hall elements of the second
接著,針對第1實施例中的電源單元的電路的構成例,一邊參照圖4一邊進行說明。 Next, the circuit configuration example of the power supply unit in the first embodiment will be described with reference to FIG. 4.
電源單元12的主電源121具備主電源部1211,前述主電源部1211是例如將從商用電源供給的電力轉換成直流電源,並且控制在預定的直流電壓Vcc,例如5V。此主電源部1211是經過二極體1221將電力供給至輸出端子124。
The
巴克豪森效應發電電源122是從巴克豪森效應發電單元115按旋轉軸的每旋轉1圈以180度間隔輸出正負的脈衝狀的波形。將此電力透過全波波形電路1222、平滑電路1223、二極體1231,將預定的電壓Vcc的直流電力供給至輸出端子124。
The Barkhausen
副電池123具備電流限制電路1232、電容器1233、電壓限制電路1234,並且將預定的電壓Vcc的直流電力供給至輸出端子124。電容器1233是從主電源121與巴克豪森效應發電電源122之雙方個別地供給電力。當失去主電源的電源,且旋轉軸也停止旋轉的狀態下,電容器1233是作為將電力供給至旋轉編碼器10的電
源來發揮功能。電流限制電路1232是控制成:當馬達的旋轉數較高,且由巴克豪森效應發電單元115發電的電力量較多的情況下,藉由限制供給至電容器1233的電流,使容許範圍的電荷累積在電容器1233中。亦可採用例如電雙層電容器來作為電容器1233。為了緩和電壓降低,亦可將複數個電容器並聯連接來構成電容器1233。
The
連接於電源單元12的輸出端子124的電源線是構成為電氣上獨立的3個系統的線,並且對系統控制單元14、第一磁性感測器訊號的處理單元15、第二磁性感測器訊號的處理單元16、及磁性感測器單元11的各感測器供給電力。
The power line connected to the
圖5是顯示電源單元的動作的時序圖,且是顯示在主電源的電源從正常的狀態到停電的情況下之電源與旋轉編碼器的輸出訊號的關係的一例的圖。 FIG5 is a timing diagram showing the operation of the power supply unit, and is a diagram showing an example of the relationship between the power supply and the output signal of the rotary encoder when the power supply of the main power supply changes from a normal state to a power outage.
當主電源的主電源部1211在時刻t1例如停電或因故障而無法供給電力時,電力會從伴隨於旋轉軸的旋轉而發電的巴克豪森效應發電電源122供給至旋轉編碼器10。
When the
停電後,當旋轉軸的旋轉數隨著時間的經過降低時,巴克豪森效應發電的輸出會變小,而變得無法在時刻t2供給預定的電壓Vcc的直流電力。當變成此狀態時,藉由副電池123的電容器1233所累積的電荷,將電壓Vcc的電力供給至旋轉編碼器10。
After a power outage, when the number of rotations of the rotating shaft decreases over time, the output of the Barkhausen effect power generation will decrease, and it will become impossible to supply the DC power of the predetermined voltage Vcc at time t2. When this state is reached, the power of the voltage Vcc is supplied to the
藉此,旋轉編碼器10可以長時間,例如在旋轉軸的旋轉完全停止的時刻t3之前,生成並記錄旋轉軸的旋轉角度的資訊。
Thus, the
此外,當旋轉軸因停電停止後,藉由外力例如人力透過機械手臂強制地旋轉了旋轉軸的情況下,會藉由巴克豪森效應發電的輸出與電容器1233所累積的電荷,在時刻t4~t5之間,對旋轉編碼器10供給電力。因此,當旋轉軸因停電停止後以外力使旋轉軸旋轉的狀態下,也會記錄旋轉軸的旋轉角度的資訊。
In addition, when the rotating shaft stops due to a power outage, if the rotating shaft is forcibly rotated by an external force such as human power through a robot arm, the output of the Barkhausen effect power generation and the charge accumulated in the
接著,圖6是顯示電源單元的電路的其他構成例的圖。取代於圖4的電流限制電路1232,採用以PWM控制部1235控制的MOSFET1236,對從巴克豪森效應發電單元115供給至電容器1233的電流進行PWM控制。符號1237是電流檢測用的電阻。電容器1233是從主電源121與巴克豪森效應發電電源122之雙方個別地供給電力。在此例中,因應於電容器1233的充電電壓或電流的檢測值,來進行MOSFET1236的PWM控制,並且控制成使累積於電容器1233的電荷成為最佳值。
Next, FIG. 6 is a diagram showing another example of the circuit configuration of the power supply unit. Instead of the current limiting
在此例中,旋轉編碼器10也可以長時間,例如在旋轉軸的旋轉停止以前、或在之後的外力驅動時之前,生成並記錄旋轉軸的旋轉角度的資訊。
In this example, the
接著,一邊參照圖7、圖8、圖9,一邊說明第一磁性感測器訊號的處理單元15中的第一磁性感測器訊號的數位化、絕對化的處理。
Next, the digitization and absolute processing of the first magnetic sensor signal in the first magnetic sensor
第一磁性感測器訊號的處理單元15是從初始設定值取得馬達的極數、旋轉軸的原點的資訊(S701)。
The first magnetic sensor
如圖7之(A)所示,從第1磁性感測器(TMR感測器)111,對應於旋轉軸的旋轉1圈,分別以SIN波、COS波來輸出360度(機械角)、各1週期量的第1類比訊號。這些第1類比訊號的旋轉角(機械角)與振幅、及旋轉數Nx的資料是藉由第一磁性感測器訊號的處理單元15的類比訊號(sin、cos)、振幅檢測部151,和溫度感測器13的溫度Ta建立關係來記錄在記憶體。一般而言,由於霍爾元件和TMR感測器相較之下較容易大幅地受到氣體環境的溫度的影響,因此需要像這樣的處理。
As shown in (A) of FIG7 , the first magnetic sensor (TMR sensor) 111
在此,當假設從第1磁性感測器(TMR感測器)輸出的第1類比訊號為正確的正弦波之情況下,若將時刻t、位置x中的位移y1(亦即振幅)設為y1(x,t),則y1(x,t)是以下式來表示。 Here, assuming that the first analog signal output from the first magnetic sensor (TMR sensor) is a correct sine wave, if the displacement y1 (i.e., amplitude) at time t and position x is set to y1(x, t), then y1(x, t) is expressed by the following formula.
y1(x,t)=Asin2π(t/T-x/λ) (1) y1(x,t)=Asin2π(t/T-x/λ) (1)
其中,T為週期,λ為波長,A為常數。 Among them, T is the period, λ is the wavelength, and A is a constant.
從第1磁性感測器輸出的實際的類比訊號是已經過了溫度補償,可以考慮為近似於上述式(1)。 The actual analog signal output from the first magnetic sensor has been temperature compensated and can be considered to be approximately equal to the above equation (1).
因此,可以事先取得以和基板的溫度Ta的關係來表示第1磁性感測器輸出的實際類比訊號的SIN波、COS波之三角函數的近似式y1(x,t,Ta),並先保持作為初始設定資料。可以使用此三角函數的近似式,生成上述第1類比訊號的旋轉角(機械角)與振幅、及旋轉數Nx的資料。藉此,可以從低速旋轉區到高速旋轉區涵蓋廣範圍地生成精確度高的第2類比訊號的校正用資料。 Therefore, the trigonometric function approximation y1(x, t, Ta) of the SIN wave and COS wave of the actual analog signal output by the first magnetic sensor in relation to the temperature Ta of the substrate can be obtained in advance and retained as initial setting data. The approximation of this trigonometric function can be used to generate data on the rotation angle (mechanical angle) and amplitude of the first analog signal, as well as the number of rotations Nx. In this way, highly accurate calibration data for the second analog signal can be generated over a wide range from the low-speed rotation area to the high-speed rotation area.
如圖7之(B)所示,類比訊號(sin訊號、cos訊號)是被輸入至類比數位轉換器152,被量化且藉由內插處理轉換成已多分割的數位訊號,並且轉換成包含A相、B相的資訊的數位值,該等轉換值是和旋轉數Nx、溫度Ta建立關係而記錄至EEPROM-1。
As shown in (B) of FIG. 7 , the analog signal (sin signal, cos signal) is input to the analog-to-
如圖8的流程圖所示,第一磁性感測器訊號的處理單元15是從EEPROM-1取得第一磁性感測器訊號(Sin、Cos波)的類比數位轉換的資料(S702)。第一磁性感測器訊號的處理單元15進一步依據第1類比訊號(sin訊號、cos訊號)的類比數位轉換資料,因應於需要藉由時間分割等來對數位波形進行內插,並且變更為顯示自原點起的絕對位置之例如27位元的旋轉角度的資料,且算出為絕對值(S703)。然後,對絕對值進行記憶體的定址,並記錄在記憶體(S704)。
As shown in the flowchart of FIG8 , the first magnetic sensor
亦即,如圖7之(C)所示,藉由第一磁性感測器的數位訊號、頻率/旋轉方向檢測部1531,依據EEPROM-1的數位值來算出旋轉軸的每正反旋轉1圈的頻率,生成每正反旋轉1圈的絕對值,並且和旋轉數Nx、溫度Ta、及旋轉方向的資料一起記錄於EEPROM-2。
That is, as shown in FIG7 (C), the frequency/rotation
在此,當假設從第1磁性感測器輸出的第1類比訊號為正確的正弦波的情況下,若將依據EEPROM-1的數位值得到的絕對值設為y2(x,t)時,則y2(x,t)可以用和溫度Ta有關係的一次函數來表示。 Here, assuming that the first analog signal output from the first magnetic sensor is a correct sine wave, if the absolute value obtained from the digital value of EEPROM-1 is set to y2(x, t), then y2(x, t) can be expressed as a linear function related to the temperature Ta.
亦即,依據於從第1磁性感測器輸出的實際類比訊號之如圖7(C)所示的絕對值也可以用上述一次函數來近似。因此,可以因應於溫度Ta事先取得依據於第1磁性感測器所輸出的實際類比訊號的SIN波、COS波之絕對值的近似式,並先作為初始設定資料來保持。可以使用此絕對值的近似式,來生成上述每正反旋轉1圈的絕對值。藉此,可以從低速旋轉區到高速旋轉區涵蓋廣範圍地生成精確度高的絕對資料的校正用資料。 That is, the absolute value shown in FIG. 7(C) based on the actual analog signal output from the first magnetic sensor can also be approximated by the above-mentioned linear function. Therefore, the approximate formula of the absolute value of the SIN wave and COS wave based on the actual analog signal output from the first magnetic sensor can be obtained in advance according to the temperature Ta, and first maintained as the initial setting data. The approximate formula of the absolute value can be used to generate the absolute value for each forward and reverse rotation. In this way, calibration data with high-precision absolute data can be generated over a wide range from the low-speed rotation area to the high-speed rotation area.
此外,在第一磁性感測器的數位訊號、頻率/旋轉方向檢測部1531中,是從原點資訊與絕對值來生成包含旋轉方向、旋轉角度、旋轉數的多旋轉資訊並記錄於EEPROM-2(S711)。
In addition, in the digital signal and frequency/rotation
第一磁性感測器的絕對訊號生成單元1532是從原點資訊與絕對值算出旋轉數(S721),生成多旋轉絕對資訊,並且作為多旋轉絕對資料記錄在EEPROM-2(S722)。
The absolute
又,第一磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元1533是從類比數位轉換資料與絕對值並依據圖7之(B)所示的A相、B相的資訊,來算出A相、B相的資料(S731),並算出和A相、B相的起升同步的Z相的寬度的資料(S732)。此外,依據A相、B相、Z相的寬度的資料,生成如圖9所示的U、V、W相的資料(S733),對A相、B相、Z相、U、V、W相的資料進行定址,並且作為增量資料記錄在EEPROM-3(S734)。
Furthermore, the incremental A, B, Z, (U, V, W)
接著,一邊參照圖10與圖11,一邊說明第1實施例中的第二磁性感測器訊號的處理單元中的訊號處理。 Next, the signal processing in the second magnetic sensor signal processing unit in the first embodiment is explained with reference to Figures 10 and 11.
從構成第2磁性感測器的各霍爾元件H1~H3,可以得到如圖10之(A)中以實線所示之作為第2類比訊號按旋轉1圈當中的每180度起升或降下的sin訊號(H1~H3)、H2的sin訊號、H3的sin訊號)波形。此波形是顯示依據於設置位置的失真補正完畢的資料。作為第二磁性感測器的霍爾元件的位置的誤差、元件的特 性的偏差、環境溫度等所造成的變動較大。圖10之(A)所示的虛線是顯示對應的第1磁性感測器的輸出。 From each Hall element H1~H3 constituting the second magnetic sensor, a sin signal (H1~H3, H2 sin signal, H3 sin signal) waveform can be obtained as shown by the solid line in Figure 10 (A) as the second analog signal, which rises or falls every 180 degrees during one rotation. This waveform shows the data after the distortion compensation is completed according to the setting position. The position error of the Hall element as the second magnetic sensor, the deviation of the element characteristics, the ambient temperature, etc. cause a large change. The dotted line shown in Figure 10 (A) shows the output of the corresponding first magnetic sensor.
霍爾元件的類比輸出的資料是和旋轉數Nx及溫度Ta的資料建立關係而記錄於記憶體。針對這個和溫度Ta的資料建立關係的霍爾元件的類比輸出的資料,也可以和上述式(1)同樣地以近似式來表現。 The data of the analog output of the Hall element is recorded in the memory by establishing a relationship with the data of the rotation number Nx and the temperature Ta. The data of the analog output of the Hall element that is established in a relationship with the data of the temperature Ta can also be expressed by an approximate formula in the same way as the above formula (1).
並且,從第一磁性感測器訊號的處理單元15的第1類比訊號(sin、cos)、振幅檢測部151取得第1磁性感測器111的類比訊號的旋轉角(機械角)與振幅、及旋轉數Nx、溫度感測器13的資料。並且,依據第1類比訊號的旋轉角(機械角)與振幅、及旋轉數Nx、溫度感測器13的溫度Ta的資料,對第2磁性感測器112的第2類比訊號每旋轉1圈的資料,進行振幅補正、同步補正,亦即進行資料的校正,並且將校正完畢的類比資料和旋轉數Nx及溫度Ta的資料建立關係,和補正歷程一起記錄在EEPROM-4(165)。圖10之(B)顯示校正完畢的第2磁性感測器112的類比資料的例子。
Furthermore, the first analog signal (sin, cos) of the first magnetic sensor
此校正歷程也可以如前述地以表示第1類比訊號的SIN波、COS波的三角函數的近似式y2(x,tTa)來表現校正完畢的類比資料y2。 This calibration process can also be expressed as the aforementioned analog data y2 after calibration using the approximate formula y2(x,tTa) representing the trigonometric function of the SIN wave and COS wave of the first analog signal.
此校正完畢的類比資料是被輸入至類比數位轉換器162(ADC-3~5)而被轉換成數位值,該等轉換值會作為時間序列資料而被記錄在EEPROM-5。 The calibrated analog data is input to the analog-to-digital converter 162 (ADC-3~5) and converted into digital values. These converted values are recorded in EEPROM-5 as time series data.
圖10之(C)是顯示將第2磁性感測器112的訊號轉換成包含A相、B相的資訊的數位值之數位轉換完畢的資料的例子。
FIG10(C) shows an example of data after digital conversion of the signal of the second
圖10之(D)是顯示依據於第二磁性感測器訊號的輸出之(暫定的)絕對值的例子。在以實線所示的(暫定的)絕對值中,包含有取決於第二磁性感測器的特性之相位誤差等。(另外,為了容易理解,誤差是擴張地記載)。特別是,可設想到在無法充分消除因第2類比訊號的階段中的溫度Ta的影響所造成的誤差之狀態下,進行數位轉換的情形。圖10之(D)所示的虛線是顯示依據於對應的第1磁性感 測器的輸出之絕對值。 FIG10(D) shows an example of a (provisional) absolute value based on the output of the second magnetic sensor signal. The (provisional) absolute value shown by the solid line includes phase errors and the like depending on the characteristics of the second magnetic sensor. (In addition, the errors are exaggerated for easy understanding). In particular, it is conceivable that digital conversion is performed in a state where the error caused by the influence of the temperature Ta in the second analog signal stage cannot be fully eliminated. The dotted line shown in FIG10(D) shows the absolute value based on the output of the corresponding first magnetic sensor.
在第二磁性感測器訊號的處理單元16的數位訊號檢測、頻率/旋轉方向補正部1631中,從原點資訊與絕對值來生成包含旋轉方向、旋轉角度、旋轉數的多旋轉資訊並記錄於EEPROM-7(圖11的S911)。
In the digital signal detection and frequency/rotation
亦即,第二磁性感測器的數位訊號檢測、頻率/旋轉方向補正部1631是取得第一磁性感測器的數位訊號、頻率/旋轉方向檢測部1531所生成的第一磁性感測器的每旋轉1圈的數位訊號的頻率/旋轉方向的資料,並對第二磁性感測器的時間序列的(暫定的)絕對資料進行同步、旋轉方向的補正,並且將其結果作為第二磁性感測器的(正式的)絕對資料來記錄在EEPROM-7。又,絕對資料的補正歷程是記錄在EEPROM-6。
That is, the digital signal detection and frequency/rotation
圖10之(E)是顯示依據於第二磁性感測器訊號的輸出之(正式的)絕對值的例子。圖10之(E)的絕對值也是如前述地可以用一次函數來近似。 FIG10(E) shows an example of the (formal) absolute value of the output based on the second magnetic sensor signal. The absolute value of FIG10(E) can also be approximated by a linear function as mentioned above.
在圖11中,第二磁性感測器訊號的處理單元16是從初始設定值取得馬達的極數、旋轉軸的原點的資訊(S901)。從初始設定值也可以取得用於資料校正的三角函數的近似式或一次函數的資料。
In FIG. 11 , the second magnetic sensor
第二磁性感測器訊號的處理單元16接著是從EEPROM-6取得第二磁性感測器訊號(Sin波)的校正完畢的類比數位轉換資料(S902)。此外,依據類比數位轉換資料,因應於需要藉由時間分割等對數位波形進行內插,並且轉換成顯示自原點起的絕對位置之例如23位元的旋轉角度的資料,並算出(暫定的)絕對值(S903)。然後,對此(暫定的)絕對值進行記憶體的定址,並記錄在記憶體(S904)。
The second magnetic sensor
數位訊號處理部163的第二磁性感測器的絕對訊號生成單元1632是從原點資訊與絕對值算出旋轉數(S921),生成多旋轉絕對資訊,並且作為多旋轉絕對資料記錄在EEPROM-7(S922)。
The absolute
數位訊號處理部163的第二磁性感測器的增量A、B、Z、(U、
V、W)訊號生成單元1633是從類比數位轉換資料與絕對值來算出A相、B相的資料(S931),並算出和A相、B相的起升同步的Z相的寬度的資料(S932),並且依據A相、B相、Z相的寬度的資料,生成U、V、W相的資料(S933),對A相、B相、Z相、U、V、W相的資料進行定址,作為增量資料來記錄在EEPROM-8(S934)。
The incremental A, B, Z, (U,
V, W)
接著,一邊參照圖12,一邊說明第1實施例中的故障安全控制單元145的處理。
Next, the processing of the fail-
首先,從初始設定部取得和EEPEOM1~3、4~8的資料的正常判定相關的資訊(S1001)。接著,監控EEPEOM1~3的每旋轉1圈的資料(S1002)。又,監控EEPEOM4~8的每旋轉1圈的資料(S1003)。另外,資料的監控亦可不是每旋轉1圈,例如亦可為預定的時間週期。 First, obtain information related to the normal determination of the data of EEPEOM1~3, 4~8 from the initial setting unit (S1001). Then, monitor the data of each rotation of EEPEOM1~3 (S1002). Also, monitor the data of each rotation of EEPEOM4~8 (S1003). In addition, the data can be monitored not every rotation, but also at a predetermined time period.
接著,判定全部資料是否正常(S1004),在正常的情況下,進行一般運作(S1005),並持續進行直到運作結束(S1006、S1007)。如果在S1004中並不是全部資料都正常的情況下,接著判定EEPEOM1~3的資料是否正常(S1010),在正常的情況下,進行第二磁性感測器或第二磁性感測器訊號的處理單元的異常顯示(S1011),並以EEPEOM1~3的資料進行準一般運作(S1012),並且持續進行直到運作結束(S1013、S1014)。如果在S1010中EEPEOM1~3的資料並不是正常的情況下,接著判定EEPEOM4~8的資料是否正常(S1020),在正常的情況下,進行第一磁性感測器或第一磁性感測器訊號的處理單元的異常顯示(S1021),並以EEPEOM4~8的資料進行故障安全模式運作(S1022),並且持續進行直到運作結束(S1023、S1024)。如果在S1020中EEPEOM4~8的資料並不是正常的情況下,則進行編碼器錯誤顯示(S1030),並且進行運作結束處理(S1031、S1032)。 Next, determine whether all data are normal (S1004). If they are normal, perform normal operation (S1005) and continue until the operation is completed (S1006, S1007). If not all data are normal in S1004, then determine whether the data of EEPEOM1~3 are normal (S1010). If they are normal, perform abnormal display of the second magnetic sensor or the processing unit of the second magnetic sensor signal (S1011), and perform quasi-normal operation with the data of EEPEOM1~3 (S1012), and continue until the operation is completed (S1013, S1014). If the data of EEPEOM1~3 is not normal in S1010, then determine whether the data of EEPEOM4~8 is normal (S1020). If it is normal, perform an abnormal display of the first magnetic sensor or the processing unit of the first magnetic sensor signal (S1021), and perform a fail-safe mode operation with the data of EEPEOM4~8 (S1022), and continue until the operation ends (S1023, S1024). If the data of EEPEOM4~8 is not normal in S1020, perform an encoder error display (S1030), and perform the operation end processing (S1031, S1032).
接著,一邊參照圖13一邊說明旋轉編碼器的一般運作時之第二磁性感測器訊號的處理單元的資料處理(S1101)。 Next, the data processing (S1101) of the processing unit for the second magnetic sensor signal during the normal operation of the rotary encoder will be described with reference to FIG. 13.
第二磁性感測器訊號的處理單元是從一般運作時的第二磁性感測器的資料處理初始設定值,取得馬達的極數、旋轉軸的原點的資訊(S1012)。並且,取得第二磁性感測器的第2類比訊號的資料,並進行失真補正處理(S1103)。此外,取得和第二磁性感測器的訊號有同步關係的第一磁性感測器的第1類比訊號的資料(S1104)。 The processing unit of the second magnetic sensor signal processes the initial setting value from the data of the second magnetic sensor during normal operation, and obtains the information of the pole number of the motor and the origin of the rotation axis (S1012). In addition, the data of the second analog signal of the second magnetic sensor is obtained and distortion correction processing is performed (S1103). In addition, the data of the first analog signal of the first magnetic sensor that has a synchronous relationship with the signal of the second magnetic sensor is obtained (S1104).
接著,依據對應的第一磁性感測器的第1類比訊號的資料的振幅,來校正第二磁性感測器的第2類比訊號的資料的振幅(S1105)。並且,將第二磁性感測器的校正完畢類比訊號資料記錄在EEPROM-4(S1106)。此外,將類比訊號補正歷程記錄在EEPROM-4(S1107)。接著,以類比數位轉換器162對校正完畢類比訊號資料進行類比數位轉換,並且將該第2數位資料記錄在EEPROM-5(S1108)。 Next, the amplitude of the second analog signal data of the second magnetic sensor is corrected according to the amplitude of the first analog signal data of the corresponding first magnetic sensor (S1105). And, the corrected analog signal data of the second magnetic sensor is recorded in EEPROM-4 (S1106). In addition, the analog signal correction process is recorded in EEPROM-4 (S1107). Then, the corrected analog signal data is converted from analog to digital by the analog-to-digital converter 162, and the second digital data is recorded in EEPROM-5 (S1108).
接著,從EEPROM-5取得第二磁性感測器的第2數位資料(S1109),並且依據對應的第一磁性感測器的第1數位資料的旋轉角度、旋轉方向,來校正第二磁性感測器的第2數位資料的旋轉角度、旋轉方向(S1110)。並且,將第二磁性感測器的校正完畢數位資料記錄在EEPROM-6(S1111)。又,將第2數位資料的補正歷程記錄在EEPROM-6(S1112)。重複以上的處理直到運作結束為止。 Next, the second digital data of the second magnetic sensor is obtained from EEPROM-5 (S1109), and the rotation angle and rotation direction of the second digital data of the second magnetic sensor are corrected according to the rotation angle and rotation direction of the first digital data of the corresponding first magnetic sensor (S1110). In addition, the corrected digital data of the second magnetic sensor is recorded in EEPROM-6 (S1111). In addition, the correction history of the second digital data is recorded in EEPROM-6 (S1112). Repeat the above processing until the operation is completed.
接著,一邊參照圖14一邊說明旋轉編碼器的故障安全模式時之第二磁性感測器訊號的處理單元的資料處理(S1201)。 Next, the data processing (S1201) of the processing unit for the second magnetic sensor signal in the fail-safe mode of the rotary encoder is described with reference to FIG. 14.
首先,從初始設定值取得馬達的極數、旋轉軸的原點的資訊、故障安全控制用資料(S1202)。接著,取得第二磁性感測器的第2類比訊號的資料(S1203)。此外,從EEPROM-4取得類比訊號的補正歷程的資料(S1204)。並且,依據故障安全控制用資料及類比訊號的補正歷程,來校正第二磁性感測器的第2類比訊號的資料的失真、振幅(S1205)。又,將第二磁性感測器的校正完畢類比訊號資料記錄在EEPROM-4(S1206)。此外,以類比數位轉換器162對校正完畢類比訊號資料進行類比數位轉換,並且將第2數位資料記錄在EEPROM-5(S1207)。 First, the pole number of the motor, the information of the origin of the rotation axis, and the data for fail-safe control are obtained from the initial setting value (S1202). Then, the data of the second analog signal of the second magnetic sensor is obtained (S1203). In addition, the data of the correction process of the analog signal is obtained from EEPROM-4 (S1204). And, according to the data for fail-safe control and the correction process of the analog signal, the distortion and amplitude of the data of the second analog signal of the second magnetic sensor are corrected (S1205). In addition, the corrected analog signal data of the second magnetic sensor is recorded in EEPROM-4 (S1206). In addition, the analog-to-digital converter 162 performs analog-to-digital conversion on the corrected analog signal data, and the second digital data is recorded in EEPROM-5 (S1207).
接著,從EEPROM-5取得第二磁性感測器的第2數位資料(S1208)。另一方面,從EEPROM-6取得數位資料補正歷程的資料(S1209)。並且,依據故障安全控制用資料、(數位資料)補正歷程的各資料,來校正第二磁性感測器的第2數位資料的旋轉角度、旋轉方向(S1210)。此外,將第二磁性感測器的校正完畢數位資料記錄在EEPROM-6(S1211)。重複以上的處理直到運作結束為止。 Next, the second digital data of the second magnetic sensor is obtained from EEPROM-5 (S1208). On the other hand, the data of the digital data correction process is obtained from EEPROM-6 (S1209). And, according to the data for fail-safe control and the data of the (digital data) correction process, the rotation angle and rotation direction of the second digital data of the second magnetic sensor are corrected (S1210). In addition, the corrected digital data of the second magnetic sensor is recorded in EEPROM-6 (S1211). Repeat the above processing until the operation is completed.
根據本發明的實施例,可以提供一種旋轉編碼器,前述旋轉編碼器是依據第1磁性感測器的第1數位資料來校正第2磁性感測器的第2數位資料,並且可以依據這些校正歷程,在備援控制時校正前述第2磁性感測器的第2數位資料,因此可以一邊採用雖然精確度不高但低價的第2磁性感測器,一邊進行信賴性高的備援控制。 According to an embodiment of the present invention, a rotary encoder can be provided, wherein the rotary encoder corrects the second digital data of the second magnetic sensor based on the first digital data of the first magnetic sensor, and can correct the second digital data of the second magnetic sensor during backup control based on these correction processes, so that a low-cost second magnetic sensor with low accuracy can be used while performing backup control with high reliability.
另外,作為本發明的實施例,亦可取代霍爾元件而採用AMR(Anisotropic magnetoresistance effect,異向性磁阻效應)元件來作為第2磁性感測器。或者,亦可採用GMR(Giant magnetoresistance effect,巨大磁阻效應)元件。這些AMR感測器或GMR感測器也是和霍爾元件的例子相同地在以第1磁性感測器為中心的1個圓周上等間隔地配置。 In addition, as an embodiment of the present invention, an AMR (Anisotropic magnetoresistance effect) element may be used as the second magnetic sensor instead of the Hall element. Alternatively, a GMR (Giant magnetoresistance effect) element may be used. These AMR sensors or GMR sensors are also arranged at equal intervals on a circle centered on the first magnetic sensor, similar to the example of the Hall element.
本發明也可以採用於其他種類的馬達,例如步進馬達。又,可以廣泛地應用於同步型馬達、感應馬達等各種馬達。又,也可以將本發明應用在使用了這些馬達的伺服控制裝置。 The present invention can also be used in other types of motors, such as stepper motors. In addition, it can be widely applied to various motors such as synchronous motors and induction motors. In addition, the present invention can also be applied to servo control devices using these motors.
10:旋轉編碼器 11:磁性感測器單元 110:磁鐵 111:第1磁性感測器 112:第2磁性感測器 113:溫度感測器 115:巴克豪森效應發電單元 12:電源單元 121:主電源 122:巴克豪森效應發電電源 123:副電池 13:溫度感測器 14:系統控制單元 141:初始設定部 142:設定部 143:故障安全控制用資料 144:編碼器輸入輸出控制單元 145:故障安全控制單元 146:輸出切換單元 147:串列/並列訊號發送接收單元 15:第一磁性感測器訊號的處理單元 151:第一磁性感測器的類比訊號(sin、cos)、振幅檢測部 152:類比數位轉換器 1521:ADC-1(sin) 1522:ADC-2(cos) 1523:EEPROM-1 153:數位訊號處理部 1531:第一磁性感測器的數位訊號、頻率/旋轉方向檢測部 1532:第一磁性感測器的絕對訊號生成單元 1533:第一磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元 16:第二磁性感測器訊號的處理單元 160:類比訊號處理部 161:第二磁性感測器的類比訊號的失真補正、振幅、同步補正部 162:類比數位轉換器 1621:ADC-3 1622:ADC-4 1623:ADC-5 1624:EEPROM-5 163:數位訊號處理部 1631:第二磁性感測器的數位訊號檢測、頻率/旋轉方向補正部 1632:第二磁性感測器的絕對訊號生成單元 1633:第二磁性感測器的增量A、B、Z、(U、V、W)訊號生成單元 164:故障安全、訊號補正部 165:EEPROM-4 166:EEPROM-6 10: Rotary encoder 11: Magnetic sensor unit 110: Magnet 111: First magnetic sensor 112: Second magnetic sensor 113: Temperature sensor 115: Barkhausen effect power generation unit 12: Power supply unit 121: Main power supply 122: Barkhausen effect power generation power supply 123: Auxiliary battery 13: Temperature sensor 14: System control unit 141: Initial setting unit 142: Setting unit 143: Fail-safe control data 144: Encoder input/output control unit 145: Fail-safe control unit 146: Output switching unit 147: Serial/parallel signal transmission and reception unit 15: Processing unit for the signal of the first magnetic sensor 151: Analog signal (sin, cos), amplitude detection unit of the first magnetic sensor 152: Analog-to-digital converter 1521: ADC-1 (sin) 1522: ADC-2 (cos) 1523: EEPROM-1 153: Digital signal processing unit 1531: Digital signal, frequency/rotation direction detection unit of the first magnetic sensor 1532: Absolute signal generation unit of the first magnetic sensor 1533: Incremental A, B, Z, (U, V, W) signal generation unit of the first magnetic sensor 16: Processing unit for the signal of the second magnetic sensor 160: Analog signal processing unit 161: Distortion correction, amplitude, and synchronization correction of analog signals of the second magnetic sensor 162: Analog-to-digital converter 1621: ADC-3 1622: ADC-4 1623: ADC-5 1624: EEPROM-5 163: Digital signal processing unit 1631: Digital signal detection, frequency/rotation direction correction unit of the second magnetic sensor 1632: Absolute signal generation unit of the second magnetic sensor 1633: Incremental A, B, Z, (U, V, W) signal generation unit of the second magnetic sensor 164: Fail-safe, signal correction unit 165: EEPROM-4 166: EEPROM-6
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/046581 WO2024134705A1 (en) | 2022-12-19 | 2022-12-19 | Magnetic rotary encoder and backup control method therefor |
WOPCT/JP2022/046581 | 2022-12-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202426863A TW202426863A (en) | 2024-07-01 |
TWI849769B true TWI849769B (en) | 2024-07-21 |
Family
ID=91588032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112106731A TWI849769B (en) | 2022-12-19 | 2023-02-23 | Magnetic rotary encoder and backup control method thereof |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI849769B (en) |
WO (1) | WO2024134705A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101576396A (en) * | 2008-06-02 | 2009-11-11 | 上海源致信息技术有限公司 | Absolute magnetic-electric rotary encoder with low cost, high accuracy and multiple circles |
US20150015245A1 (en) * | 2012-04-17 | 2015-01-15 | Mitsubishi Electric Corporation | Multi-rotation encoder |
TW201802436A (en) * | 2016-03-10 | 2018-01-16 | 日本電產三協股份有限公司 | Rotary encoder and angle correction method of rotary encoder |
TW201825871A (en) * | 2016-09-21 | 2018-07-16 | 日商日本電產三協股份有限公司 | Rotary encoder and absolute angle position detecting method of rotary encoder |
WO2022003761A1 (en) * | 2020-06-29 | 2022-01-06 | 株式会社五十嵐電機製作所 | Rotary encoder responsive to battery loss and servo control device using same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5759312U (en) * | 1980-09-25 | 1982-04-08 | ||
DE19855358A1 (en) * | 1998-12-01 | 2000-06-08 | Bosch Gmbh Robert | Path-measuring device, especially for brake pedal movement in vehicle has at least one analog sensor and at least one incremental sensor to output analog and pulse train signals of path, respectively |
US7365503B2 (en) * | 2005-06-09 | 2008-04-29 | Ford Motor Company | Hall Effect sensor temperature compensator |
EP2960666B1 (en) * | 2014-06-25 | 2017-01-25 | Nxp B.V. | Sensor system with a three half-bridge configuration |
US10890464B2 (en) * | 2016-03-22 | 2021-01-12 | Panasonic Intellectual Property Management Co., Ltd. | Rotation detecting device and correction method therefor |
JP7163842B2 (en) * | 2019-03-28 | 2022-11-01 | 株式会社デンソー | detection unit |
-
2022
- 2022-12-19 WO PCT/JP2022/046581 patent/WO2024134705A1/en active Application Filing
-
2023
- 2023-02-23 TW TW112106731A patent/TWI849769B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101576396A (en) * | 2008-06-02 | 2009-11-11 | 上海源致信息技术有限公司 | Absolute magnetic-electric rotary encoder with low cost, high accuracy and multiple circles |
US20150015245A1 (en) * | 2012-04-17 | 2015-01-15 | Mitsubishi Electric Corporation | Multi-rotation encoder |
TW201802436A (en) * | 2016-03-10 | 2018-01-16 | 日本電產三協股份有限公司 | Rotary encoder and angle correction method of rotary encoder |
TW201825871A (en) * | 2016-09-21 | 2018-07-16 | 日商日本電產三協股份有限公司 | Rotary encoder and absolute angle position detecting method of rotary encoder |
WO2022003761A1 (en) * | 2020-06-29 | 2022-01-06 | 株式会社五十嵐電機製作所 | Rotary encoder responsive to battery loss and servo control device using same |
Also Published As
Publication number | Publication date |
---|---|
TW202426863A (en) | 2024-07-01 |
WO2024134705A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6578499B1 (en) | General-purpose rotary encoder and servo motor using the same | |
US7049776B2 (en) | Rotor-position sensor assembly and method for detecting a rotor position | |
US9909853B2 (en) | Calibration and monitoring of an angle measuring system for electrical machines | |
CN111801883B (en) | Position estimation method, position estimation device, and motor module | |
JP6842736B1 (en) | General-purpose rotary encoder | |
KR102769489B1 (en) | Magnetic sensor system for motor control | |
KR20180032178A (en) | Rotary encoder and absolute angle position detecting method of rotary encoder | |
TWI849769B (en) | Magnetic rotary encoder and backup control method thereof | |
JP6966143B1 (en) | Battery-less rotary encoder and servo control device using it | |
JPH0662322U (en) | Absolute encoder device | |
KR101098238B1 (en) | Initiation System And Method for Robot Operational Motor | |
JP2020134505A (en) | General-purpose type rotary encoder | |
JPH07303390A (en) | Servomotor system | |
JP7393577B1 (en) | Rotary encoder and servo control device using it | |
JP7494366B1 (en) | Rotary encoder and servo controller including the same | |
JP2810695B2 (en) | Zero detection method for incremental magnetic encoder | |
JP2600912B2 (en) | Motor drive system | |
JP6945914B1 (en) | Rotary encoder and control accuracy switching servo control device using it | |
Granig et al. | Integrated GMR angle sensor for electrical commutated motors including features for safety critical applications | |
JP2024160509A (en) | Rotary encoder and servo control device using the same | |
CN119492409A (en) | Magnetic encoder | |
JP2025038611A (en) | Rotary encoder and servo controller including the same |