[go: up one dir, main page]

TWI849657B - Six degrees of freedom aligning equipment and calibration thereof - Google Patents

Six degrees of freedom aligning equipment and calibration thereof Download PDF

Info

Publication number
TWI849657B
TWI849657B TW111150654A TW111150654A TWI849657B TW I849657 B TWI849657 B TW I849657B TW 111150654 A TW111150654 A TW 111150654A TW 111150654 A TW111150654 A TW 111150654A TW I849657 B TWI849657 B TW I849657B
Authority
TW
Taiwan
Prior art keywords
freedom
axis
probe
error
degree
Prior art date
Application number
TW111150654A
Other languages
Chinese (zh)
Other versions
TW202426858A (en
Inventor
林裕軒
李明龍
李季倫
高俊淳
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW111150654A priority Critical patent/TWI849657B/en
Publication of TW202426858A publication Critical patent/TW202426858A/en
Application granted granted Critical
Publication of TWI849657B publication Critical patent/TWI849657B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

A six degrees of freedom aligning equipment includes an optical probe assembly and a correction module. The optical probe assembly includes a low-distortion image probe and a ranging probe arranged adjacent to each other. The calibration module is electrically connected to the optical probe assembly and a motion platform, and the motion platform is movably arranged within the field of view of each probe of the optical probe assembly. The calibration module is used to calculate the error of six degrees of freedom between each probe and the precision six-axis platform through a calibration with calibration patterns configured on the precision six-axis platform and each probe of the optical probe assembly respectively, adjusts the pose of the precision six-axis platform to the corrected pose corresponding to each probe, and save six degrees of freedom coordinate parameters corresponding the corrected pose.

Description

六自由度對位設備與其校正方法Six-degree-of-freedom alignment device and correction method thereof

本發明係有關於六自由度對位設備與其校正方法,尤其是指一種用於電子產品組裝的六自由度對位設備與其校正方法。The present invention relates to a six-degree-of-freedom alignment device and a calibration method thereof, and more particularly to a six-degree-of-freedom alignment device and a calibration method thereof for assembling electronic products.

隨著工業進步以及對電子產品組裝的精度要求提升,許多電子產品的組裝過程皆導入六自由度對位設備,以在將組成電子產品的各個零件進行組裝前,先對前述各個零件進行對位。具體來說,六自由度對位設備是包含光學探頭組的一種光機裝置,主要是用於將前述各個元件的姿態調整至正確的姿態(包含位置及旋轉)。With the advancement of industry and the increasing precision requirements for electronic product assembly, many electronic product assembly processes have introduced six-degree-of-freedom alignment equipment to align the various components that make up the electronic product before assembling them. Specifically, the six-degree-of-freedom alignment equipment is an optical-mechanical device that includes an optical probe assembly, which is mainly used to adjust the posture of the aforementioned components to the correct posture (including position and rotation).

由於六自由度對位設備的對位結果將影響到電子產品的組裝品質,甚至是影響到電子產品的功能,因此確保六自由度對位設備的對位結果為無誤差是最重要的;換言之,若六自由度對位設備的對位結果有誤差,則除了電子產品的組裝品質不佳外,更有可能造成電子產品的功能無法正常運作。Since the alignment results of the 6-DOF alignment equipment will affect the assembly quality and even the functions of electronic products, it is most important to ensure that the alignment results of the 6-DOF alignment equipment are error-free. In other words, if the alignment results of the 6-DOF alignment equipment have errors, in addition to the poor assembly quality of the electronic product, it is more likely to cause the electronic product's functions to not operate normally.

本發明為解決先前技術之問題,提供一種六自由度對位設備,包含一種六自由度對位設備,包含光學探頭組以及校正模組。光學探頭組包含彼此鄰近設置的低失真影像探頭以及測距探頭。校正模組電性連接光學探頭組以及運動平台,且運動平台可移動地設置於光學探頭組中各個探頭的視野範圍內。校正模組用以透過設置於運動平台上具有複數校正圖案的校正片以及光學探頭組中各個探頭,分別計算出各個探頭與運動平台之間的六自由度誤差,並根據六自由度誤差將運動平台的姿態調整成對應各個探頭的校正後姿態,以及儲存對應校正後姿態的六自由度座標參數。In order to solve the problems of the prior art, the present invention provides a six-degree-of-freedom alignment device, including a six-degree-of-freedom alignment device, including an optical probe group and a correction module. The optical probe group includes a low-distortion image probe and a ranging probe arranged adjacent to each other. The correction module is electrically connected to the optical probe group and the motion platform, and the motion platform can be movably arranged within the field of view of each probe in the optical probe group. The correction module is used to calculate the six-degree-of-freedom error between each probe and the motion platform through a correction sheet with a plurality of correction patterns arranged on the motion platform and each probe in the optical probe group, and adjust the posture of the motion platform to a corrected posture corresponding to each probe according to the six-degree-of-freedom error, and store the six-degree-of-freedom coordinate parameters corresponding to the corrected posture.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為低失真影像探頭與運動平台之間的六自由度誤差包含第一x軸平移誤差、第一y軸平移誤差、第一x軸旋轉誤差、第一y軸旋轉誤差、第一z軸旋轉誤差以及第一z軸對焦誤差,且對應的六自由度座標參數包含第一x軸平移自由度座標值、第一y軸平移自由度座標值、第一z軸平移自由度座標值、第一x軸旋轉自由度座標值、第一y軸旋轉自由度座標值以及第一z軸旋轉自由度座標值。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is that the six-degree-of-freedom error between the low-distortion image probe and the motion platform includes a first x-axis translation error, a first y-axis translation error, a first x-axis rotation error, a first y-axis rotation error, a first z-axis rotation error and a first z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a first x-axis translational degree-of-freedom coordinate value, a first y-axis translational degree-of-freedom coordinate value, a first z-axis translational degree-of-freedom coordinate value, a first x-axis rotational degree-of-freedom coordinate value, a first y-axis rotational degree-of-freedom coordinate value and a first z-axis rotational degree-of-freedom coordinate value.

於一實施例中,測距探頭與運動平台之間的六自由度誤差包含第二x軸平移誤差、第二y軸平移誤差、第二x軸旋轉誤差、第二y軸旋轉誤差以及第二z軸對焦誤差,且對應的六自由度座標參數包含第二x軸平移自由度座標值、第二y軸平移自由度座標值、第二z軸平移自由度座標值、第二x軸旋轉自由度座標值以及第二y軸旋轉自由度座標值。In one embodiment, the six-degree-of-freedom error between the ranging probe and the motion platform includes a second x-axis translation error, a second y-axis translation error, a second x-axis rotation error, a second y-axis rotation error, and a second z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a second x-axis translational degree of freedom coordinate value, a second y-axis translational degree of freedom coordinate value, a second z-axis translational degree of freedom coordinate value, a second x-axis rotational degree of freedom coordinate value, and a second y-axis rotational degree of freedom coordinate value.

於一實施例中,校正圖案包含十字校正圖案、棋盤格校正圖案、實心圓校正圖案以及全反射面校正圖案,其中第一z軸旋轉誤差以及第三z軸平移誤差係透過十字校正圖案以及對應的探頭而被計算出來;第一x軸旋轉誤差、第一y軸旋轉誤差以及第一z軸對焦誤差係透過棋盤格校正圖以案及對應的探頭而被計算出來;第一x軸平移誤差、第一y軸平移誤差、第二x軸平移誤差、第二y軸平移誤差、第三x軸平移誤差以及第三y軸平移誤差係透過實心圓校正圖案以及對應的探頭而被計算出來;以及第二x軸旋轉誤差以及第二y軸旋轉誤差係透過全反射面校正圖案以及對應的探頭而被計算出來。In one embodiment, the calibration pattern includes a cross calibration pattern, a checkerboard calibration pattern, a solid circle calibration pattern, and a total reflection surface calibration pattern, wherein the first z-axis rotation error and the third z-axis translation error are calculated through the cross calibration pattern and the corresponding probe; the first x-axis rotation error, the first y-axis rotation error, and the first z-axis focus error are calculated through the checkerboard calibration pattern and the corresponding The first x-axis translation error, the first y-axis translation error, the second x-axis translation error, the second y-axis translation error, the third x-axis translation error and the third y-axis translation error are calculated through the solid circle calibration pattern and the corresponding probe; and the second x-axis rotation error and the second y-axis rotation error are calculated through the total reflection surface calibration pattern and the corresponding probe.

於一實施例中,光學探頭組更包含光準直探頭,與低失真影像探頭以及測距探頭鄰近設置,且光準直探頭與運動平台之間的六自由度誤差包含第三x軸平移誤差、第三y軸平移誤差、第三x軸旋轉誤差、第三y軸旋轉誤差、第三z軸旋轉誤差以及第三z軸對焦誤差,且對應的六自由度座標參數包含第三x軸平移自由度座標值、第三y軸平移自由度座標值、第三z軸平移自由度座標值、第三x軸旋轉自由度座標值、第三y軸旋轉自由度座標值以及第三z軸旋轉自由度座標值。In one embodiment, the optical probe group further includes a light collimating probe, which is arranged adjacent to the low-distortion image probe and the ranging probe, and the six-degree-of-freedom errors between the light collimating probe and the motion platform include a third x-axis translation error, a third y-axis translation error, a third x-axis rotation error, a third y-axis rotation error, a third z-axis rotation error, and a third z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a third x-axis translational degree of freedom coordinate value, a third y-axis translational degree of freedom coordinate value, a third z-axis translational degree of freedom coordinate value, a third x-axis rotational degree of freedom coordinate value, a third y-axis rotational degree of freedom coordinate value, and a third z-axis rotational degree of freedom coordinate value.

於一實施例中,第四z軸對焦誤差係透過棋盤格校正圖以案及對應的探頭而被計算出來;第四x軸平移誤差以及第四y軸平移誤差係透過實心圓校正圖案以及對應的探頭而被計算出來;以及第四x軸旋轉誤差、第四y軸旋轉誤差以及第四z軸旋轉誤差係透過全反射面校正圖案以及對應的探頭而被計算出來。In one embodiment, the fourth z-axis focus error is calculated through a checkerboard correction pattern and a corresponding probe; the fourth x-axis translation error and the fourth y-axis translation error are calculated through a solid circle correction pattern and a corresponding probe; and the fourth x-axis rotation error, the fourth y-axis rotation error and the fourth z-axis rotation error are calculated through a total reflection surface correction pattern and a corresponding probe.

於一實施例中,對位設備,其中運動平台用以承載校正片,校正模組用以透過校正片與低失真影像探頭來計算出校正片與運動平台之間的第四x軸平移誤差、第四y軸平移誤差以及第四z軸平移誤差,並根據第四x軸平移誤差、第四y軸平移誤差以及第四z軸平移誤差將運動平台的姿態調整成校正後姿態,以及儲存對應校正後姿態的第四x軸平移自由度座標值、第四y軸平移自由度座標值以及第四z軸平移自由度座標值。In one embodiment, a positioning device is provided, wherein a motion platform is used to carry a correction plate, and a correction module is used to calculate a fourth x-axis translation error, a fourth y-axis translation error, and a fourth z-axis translation error between the correction plate and the motion platform through the correction plate and a low-distortion image probe, and adjust the posture of the motion platform to a corrected posture according to the fourth x-axis translation error, the fourth y-axis translation error, and the fourth z-axis translation error, and store the fourth x-axis translation degree of freedom coordinate value, the fourth y-axis translation degree of freedom coordinate value, and the fourth z-axis translation degree of freedom coordinate value corresponding to the corrected posture.

本發明為解決先前技術之問題,提供一種如前述六自由度對位設備的校正方法,包含以下步驟:S111、校正模組移動運動平台以使校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成影像;S112、校正模組根據影像中的校正圖案計算出低失真影像探頭與運動平台之間的六自由度誤差;S113、校正模組根據步驟S112的六自由度誤差將運動平台的姿態調整成對應低失真影像探頭的校正後姿態;S114、校正模組儲存步驟S113中對應校正後姿態的六軸自由座標參數;S115、校正模組移動運動平台以使校正片的校正圖案出現在測距探頭的視野範圍內並進行感測而產生感測資訊;S116、校正模組根據感測資訊計算出測距探頭與運動平台之間的六自由度誤差;S117、校正模組根據步驟S116的六自由度誤差將運動平台的姿態調整成對應測距探頭的校正後姿態;以及S118、校正模組儲存步驟S117中對應校正後姿態的六軸自由座標參數。 The present invention is to solve the problems of the prior art and provides a calibration method for the aforementioned six-degree-of-freedom alignment device, comprising the following steps: S111, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the low-distortion image probe and is photographed into an image; S112, the calibration module calculates the six-degree-of-freedom error between the low-distortion image probe and the motion platform according to the calibration pattern in the image; S113, the calibration module adjusts the posture of the motion platform to a calibrated posture corresponding to the low-distortion image probe according to the six-degree-of-freedom error in step S112; S114, the calibration module stores the six-degree-of-freedom error in step S112; The six-axis free coordinate parameters corresponding to the corrected posture in step S113; S115, the correction module moves the motion platform so that the correction pattern of the correction sheet appears within the field of view of the ranging probe and performs sensing to generate sensing information; S116, the correction module calculates the six-degree-of-freedom error between the ranging probe and the motion platform according to the sensing information; S117, the correction module adjusts the posture of the motion platform to the corrected posture corresponding to the ranging probe according to the six-degree-of-freedom error in step S116; and S118, the correction module stores the six-axis free coordinate parameters corresponding to the corrected posture in step S117.

於一實施例中,在步驟S118之後更包含以下步驟:S119、校正模組移動運動平台以使校正片的校正圖案出現在光準直探頭的視野範圍內並拍攝成一影像;S120、校正模組根據影像中的校正圖案計算出光準直探頭與運動平台之間的六自由度誤差;S121、校正模組根據步驟S120的六自由度誤差將運動平台的姿態調整成對應光準直探頭的校正後姿態;以及S122、校正模組儲存步驟S121中對應校正後姿態的六軸自由座標參數。 In one embodiment, after step S118, the following steps are further included: S119, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the light collimating probe and captures an image; S120, the calibration module calculates the six-degree-of-freedom error between the light collimating probe and the motion platform according to the calibration pattern in the image; S121, the calibration module adjusts the posture of the motion platform to the calibrated posture corresponding to the light collimating probe according to the six-degree-of-freedom error in step S120; and S122, the calibration module stores the six-axis free coordinate parameters corresponding to the calibrated posture in step S121.

於一實施例中,在步驟S114與步驟S115之間,更包含以下步驟:S114a、校正模組移動運動平台以使校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成一影像;S114b、校正模組根據影像中的校正圖案來計算出校正片與承載部之間的六自由度誤差;S114c、校正模組根據步驟S114b的六自由度誤差將運動平台的姿態調整成一校正後姿態;以及S114d、校正模組儲存步驟S114c中對應校正後姿態的六軸自由座標參數。 In one embodiment, between step S114 and step S115, the following steps are further included: S114a, the calibration module moves the motion platform so that the calibration pattern of the calibration sheet appears within the field of view of the low-distortion image probe and is photographed into an image; S114b, the calibration module calculates the six-degree-of-freedom error between the calibration sheet and the carrier according to the calibration pattern in the image; S114c, the calibration module adjusts the posture of the motion platform to a calibrated posture according to the six-degree-of-freedom error in step S114b; and S114d, the calibration module stores the six-axis free coordinate parameters corresponding to the calibrated posture in step S114c.

綜上所述,本發明所提供之六自由度對位設備與其校正方法可透過校正模組、具有複數校正圖案的校正片以及光學探頭組中各個探頭,即可對光學探頭組中各個探頭分別與運動平台之間相對姿態自動進行校正,以將兩者之間相對姿態校正為正確的。In summary, the six-degree-of-freedom alignment device and its correction method provided by the present invention can automatically calibrate the relative posture between each probe in the optical probe group and the motion platform through the correction module, the correction sheet with multiple correction patterns, and each probe in the optical probe group, so as to correct the relative posture between the two.

下面將結合示意圖對本發明的具體實施方式進行更詳細的描述。根據下列描述和申請專利範圍,本發明的優點和特徵將更清楚。需說明的是,圖式均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。The specific implementation of the present invention will be described in more detail below in conjunction with schematic diagrams. The advantages and features of the present invention will become clearer based on the following description and the scope of the patent application. It should be noted that the drawings are all in a very simplified form and are not in exact proportions, and are only used to conveniently and clearly assist in explaining the embodiments of the present invention.

請參閱第1圖以及第2圖,第1圖係根據本發明之六自由度對位設備、運動平台以及校正片之立體圖,第2圖係顯示本發明之校正片之示意圖。如第1圖所示,一種六自由度對位設備100包含光學探頭組110以及校正模組130。Please refer to Figure 1 and Figure 2. Figure 1 is a three-dimensional diagram of the six-degree-of-freedom alignment device, motion platform and calibration plate according to the present invention, and Figure 2 is a schematic diagram showing the calibration plate of the present invention. As shown in Figure 1, a six-degree-of-freedom alignment device 100 includes an optical probe set 110 and a calibration module 130.

光學探頭組110包含低失真影像探頭111、測距探頭112、光準直探頭113以及殼體114,其中低失真影像探頭111、測距探頭112以及光準直探頭113係彼此鄰近設置,殼體114用以容置及固定低失真影像探頭111、測距探頭112以及光準直探頭113。應注意的是,低失真影像探頭111、測距探頭112以及光準直探頭113的相對位置僅為例示,並不以此為限。The optical probe assembly 110 includes a low-distortion imaging probe 111, a distance measuring probe 112, a light collimating probe 113, and a housing 114, wherein the low-distortion imaging probe 111, the distance measuring probe 112, and the light collimating probe 113 are disposed adjacent to each other, and the housing 114 is used to accommodate and fix the low-distortion imaging probe 111, the distance measuring probe 112, and the light collimating probe 113. It should be noted that the relative positions of the low-distortion imaging probe 111, the distance measuring probe 112, and the light collimating probe 113 are merely illustrative and are not limited thereto.

低失真影像探頭111可用以拍攝2D影像,測距探頭112可用於測量單點的能量,以及光準直探頭113可用於拍攝2D影像。於本實施例中,低失真影像探頭111可為搭配物方遠心鏡頭或雙側遠心鏡頭的面型相機,測距探頭112可為彩色共焦探頭或IR干涉式測距探頭,以及光準直探頭113可為自準直儀,但並不以此為限。The low-distortion image probe 111 can be used to capture 2D images, the distance measuring probe 112 can be used to measure the energy of a single point, and the light collimating probe 113 can be used to capture 2D images. In this embodiment, the low-distortion image probe 111 can be a face camera with an object telecentric lens or a binocular telecentric lens, the distance measuring probe 112 can be a color confocal probe or an IR interferometric distance measuring probe, and the light collimating probe 113 can be an autocollimator, but the present invention is not limited thereto.

校正模組130電性連接光學探頭組110以及運動平台300。運動平台300可移動地設置於光學探頭組110中各個探頭111~113的視野範圍內。具體來說,運動平台300可用於承載物體,且可帶動所承載的物體進行六自由度中至少一自由度的平移及旋轉。當欲利用光學探頭組110中各個探頭111~113對運動平台300的姿態進行校正時,運動平台300要分別移動至光學探頭組110中各個探頭111~131的視野範圍內,以進行後續校正流程。於本實施例中,運動平台300可為六軸運動平台,例如史都華平台(Hexapod);於其他實施例中,運動平台300亦可為二軸運動平台或三軸運動平台,但不以此為限。為便於說明,以下的運動平台300將以六軸運動平台為例。 The calibration module 130 is electrically connected to the optical probe assembly 110 and the motion platform 300. The motion platform 300 can be movably disposed within the field of view of each probe 111-113 in the optical probe assembly 110. Specifically, the motion platform 300 can be used to carry an object, and can drive the carried object to perform translation and rotation in at least one degree of freedom among the six degrees of freedom. When the posture of the motion platform 300 is to be calibrated using each probe 111-113 in the optical probe assembly 110, the motion platform 300 must be moved to the field of view of each probe 111-131 in the optical probe assembly 110, respectively, to perform the subsequent calibration process. In this embodiment, the motion platform 300 may be a six-axis motion platform, such as a Hexapod; in other embodiments, the motion platform 300 may also be a two-axis motion platform or a three-axis motion platform, but is not limited thereto. For ease of explanation, the following motion platform 300 will be taken as an example of a six-axis motion platform.

校正模組130用以透過設置於運動平台300上具有複數校正圖案的校正片200以及光學探頭組110中各個探頭111~113,分別計算出各個探頭111~113與運動平台300之間的六自由度誤差,並根據六自由度誤差將運動平台300的姿態調整成對應各個探頭111~113的校正後姿態,以及儲存對應校正後姿態的六自由度座標參數。 The calibration module 130 is used to calculate the six-degree-of-freedom error between each probe 111-113 and the motion platform 300 through the calibration sheet 200 with multiple calibration patterns disposed on the motion platform 300 and each probe 111-113 in the optical probe set 110, and adjust the posture of the motion platform 300 to the calibrated posture corresponding to each probe 111-113 according to the six-degree-of-freedom error, and store the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture.

具體來說,校正模組130電性連接光學探頭組110的低失真影像探頭111、測距探頭112以及光準直探頭113,用以分別控制低失真影像探頭111、測距探頭112以及光準直探頭113的作動。校正模組130電性連接運動平台300內部的馬達(圖未示),用以控制運動平台300進行六自由度中至少一自由度的平移及旋轉。於本實施例中,校正模組130可為具有處理、控制以及儲存功能的電子裝置,例如電腦,但並不以此為限。 Specifically, the calibration module 130 is electrically connected to the low-distortion image probe 111, the distance measuring probe 112, and the light collimating probe 113 of the optical probe set 110, so as to control the movements of the low-distortion image probe 111, the distance measuring probe 112, and the light collimating probe 113, respectively. The calibration module 130 is electrically connected to the motor (not shown) inside the motion platform 300, so as to control the motion platform 300 to perform translation and rotation of at least one of the six degrees of freedom. In this embodiment, the calibration module 130 may be an electronic device with processing, control, and storage functions, such as a computer, but is not limited thereto.

接著說明校正片200。如第2圖所示,校正片200的校正圖案包含十字校正圖案210、棋盤格校正圖案220、實心圓校正圖案230以及全反射面校正圖案240。 Next, the calibration sheet 200 is described. As shown in FIG. 2 , the calibration pattern of the calibration sheet 200 includes a cross calibration pattern 210, a checkerboard calibration pattern 220, a solid circle calibration pattern 230, and a total reflection surface calibration pattern 240.

具體來說,十字校正圖案210的中心與校正片200中心重疊,且十字校正圖案210的縱向線段以及橫向線段自中心延伸,以將校正片200分成左上區域AUL、左下區域ALL、右上AUR區域以及右下ALR區域。棋盤格校正圖案220設置於校正片200的左上區域AUL,其中棋盤格校正圖案200包含第一方格圖案221以及第二方格圖案222,且兩者係棋盤狀交錯排列,兩者的反射率相差至少十倍。實心圓校正圖案230設置於校正片200的右下區域ALR,其中實心圓校正圖案230包含圓外圖案231以及實心圓圖案232,圓外圖案231包圍實心圓圖案232,且兩者的反射率相差至少十倍。全反射面校正圖案240可以是校正片200的左下區域ALL或右上區域AUR,其中全反射面校正圖案240的反射率接近100%。Specifically, the center of the cross correction pattern 210 overlaps with the center of the correction sheet 200, and the longitudinal line segments and the transverse line segments of the cross correction pattern 210 extend from the center to divide the correction sheet 200 into an upper left area AUL, a lower left area ALL, an upper right area AUR, and a lower right area ALR. The checkerboard correction pattern 220 is disposed in the upper left area AUL of the correction sheet 200, wherein the checkerboard correction pattern 200 includes a first square pattern 221 and a second square pattern 222, and the two are arranged in a checkerboard shape, and the reflectivity of the two differs by at least ten times. The solid circle correction pattern 230 is disposed in the lower right area ALR of the correction sheet 200, wherein the solid circle correction pattern 230 includes an outer circle pattern 231 and a solid circle pattern 232, wherein the outer circle pattern 231 surrounds the solid circle pattern 232, and the reflectivity of the two differs by at least ten times. The total reflection surface correction pattern 240 can be the lower left area ALL or the upper right area AUR of the correction sheet 200, wherein the reflectivity of the total reflection surface correction pattern 240 is close to 100%.

在本實施例中,校正片200可為石英光罩片,且校正片200上的各個校正圖案210~240係藉由塗佈在石英光罩片上的反射材料所形成。詳細來說,有塗佈反射材料的部分可定義為光反射區域,可反射大部分的入射光,例如校正片200的全反射面校正圖案240、棋盤格校正圖案200的第二方格圖案222、實心圓校正圖案230的實心圓圖案232以及全反射面校正圖案240;以及未塗佈反射材料的部分可定義為光透射區域,可透射大部分的入射光,例如十字校正圖案210、棋盤格校正圖案200的第一方格圖案221以及實心圓校正圖案230的圓外圖案231。為便於說明以及理解,有塗佈反射材料的部分以灰色表示,未塗佈反射材料的部分以白色表示。In this embodiment, the calibration sheet 200 may be a quartz mask sheet, and each calibration pattern 210-240 on the calibration sheet 200 is formed by a reflective material coated on the quartz mask sheet. Specifically, the portion coated with the reflective material may be defined as a light reflection area that reflects most of the incident light, such as the total reflection surface calibration pattern 240 of the calibration sheet 200, the second square pattern 222 of the checkerboard calibration pattern 200, the solid circle pattern 232 of the solid circle calibration pattern 230, and the total reflection surface calibration pattern 240; and the portion not coated with the reflective material may be defined as a light transmission area that transmits most of the incident light, such as the cross calibration pattern 210, the first square pattern 221 of the checkerboard calibration pattern 200, and the outer circle pattern 231 of the solid circle calibration pattern 230. For ease of explanation and understanding, the portion coated with the reflective material is indicated in gray, and the portion not coated with the reflective material is indicated in white.

應注意的是,校正片200的十字校正圖案210、棋盤格校正圖案220、實心圓校正圖案230以及全反射面校正圖案240的配置(包含數量與位置)將依據不同的校正需求而不同的設計,而不以第2圖所示的配置為限。It should be noted that the configuration (including quantity and position) of the cross correction pattern 210, checkerboard correction pattern 220, solid circle correction pattern 230 and total reflection surface correction pattern 240 of the correction sheet 200 will be designed differently according to different correction requirements and is not limited to the configuration shown in FIG. 2 .

在說明完本發明的六自由度對位設備100、校正片200以及運動平台300後,即可進一步說明如何透過校正片200來對六自由度對位設備100進行校正,尤其是對光學探頭組110中各個探頭111~131分別與運動平台300之間相對姿態進行校正,以將兩者之間相對姿態校正為正確的。After explaining the six-degree-of-freedom alignment device 100, the correction plate 200 and the motion platform 300 of the present invention, it can be further explained how to calibrate the six-degree-of-freedom alignment device 100 through the correction plate 200, especially to calibrate the relative posture between each probe 111~131 in the optical probe group 110 and the motion platform 300, so as to calibrate the relative posture between the two to be correct.

在光學探頭組110中各個探頭111~131分別與運動平台300之間相對姿態的校正方法大致上是先透過校正片200將光學探頭組110中各個探頭111~131分別與運動平台300之間的六自由度誤差計算出來,透過補償六自由度誤差後便可將運動平台300的姿態調整成對應各個探頭111~113的姿態,最後再儲存對應姿態的六自由度座標參數,進而完成校正。The method for calibrating the relative posture between each probe 111~131 in the optical probe group 110 and the motion platform 300 is generally to first calculate the six-degree-of-freedom error between each probe 111~131 in the optical probe group 110 and the motion platform 300 through the correction sheet 200, and then adjust the posture of the motion platform 300 to the posture corresponding to each probe 111~113 after compensating the six-degree-of-freedom error. Finally, the six-degree-of-freedom coordinate parameters of the corresponding posture are stored to complete the calibration.

請參閱第1圖以及第3A~3C圖,第3A~3C圖係顯示本發明之校正方法之流程圖。為便於說明六自由度對位設備100、校正片200以及運動平台300之間的相對關係,需引進六自由度的概念。六自由度是指物體在三維空間中運動的自由度,以第1圖所示的三維笛卡爾座標系為例,包含在x軸方向平移的自由度x(簡稱為x軸平移自由度)、在y軸方向平移的自由度y(簡稱為y軸平移自由度)、在z軸方向平移的自由度z(簡稱為z軸平移自由度)、繞x軸旋轉的自由度θx(簡稱為x軸旋轉自由度)、繞y軸旋轉的自由度θy(簡稱為y軸旋轉自由度)以及繞z軸旋轉的自由度θz(簡稱為z軸旋轉自由度)。Please refer to Figure 1 and Figures 3A to 3C. Figures 3A to 3C are flowcharts showing the calibration method of the present invention. In order to facilitate the description of the relative relationship between the six-degree-of-freedom alignment device 100, the calibration sheet 200 and the motion platform 300, the concept of six degrees of freedom needs to be introduced. The six degrees of freedom refer to the degrees of freedom of an object moving in three-dimensional space. Taking the three-dimensional Cartesian coordinate system shown in Figure 1 as an example, it includes the degree of freedom x for translation in the x-axis direction (abbreviated as the x-axis translational degree of freedom), the degree of freedom y for translation in the y-axis direction (abbreviated as the y-axis translational degree of freedom), the degree of freedom z for translation in the z-axis direction (abbreviated as the z-axis translational degree of freedom), the degree of freedom θx for rotation around the x-axis (abbreviated as the x-axis rotational degree of freedom), the degree of freedom θy for rotation around the y-axis (abbreviated as the y-axis rotational degree of freedom), and the degree of freedom θz for rotation around the z-axis (abbreviated as the z-axis rotational degree of freedom).

藉此,在第1圖所示的空間中,六自由度對位設備100的光學探頭組110、校正片200以及與運動平台300的姿態可以六自由度來定義,並以座標來表示。以運動平台300為例,其六自由度座標參數包含x軸平移自由度x 0、y軸平移自由度y 0、z軸平移自由度z 0、x軸旋轉自由度θx 0、y軸旋轉自由度θy 0以及z軸旋轉自由度θz 0,對應的姿態可表示為座標(x 0,y 0,z 0,θx 0,θy 0,θz 0)。為便於說明以及理解,以下將運動平台的初始姿態設定為(0,0,0,0,0,0)。 Thus, in the space shown in FIG. 1 , the postures of the optical probe assembly 110, the correction plate 200 and the motion platform 300 of the six-degree-of-freedom alignment device 100 can be defined by six degrees of freedom and expressed by coordinates. Taking the motion platform 300 as an example, its six-degree-of-freedom coordinate parameters include x-axis translational freedom x 0 , y-axis translational freedom y 0 , z-axis translational freedom z 0 , x-axis rotational freedom θx 0 , y-axis rotational freedom θy 0 and z-axis rotational freedom θz 0 , and the corresponding posture can be expressed as coordinates (x 0 , y 0 , z 0 , θx 0 , θy 0 , θz 0 ). For ease of explanation and understanding, the initial posture of the motion platform is set to (0, 0, 0, 0, 0, 0 ) below.

回到第3A圖以及第3B圖,其為六自由度對位設備100的校正方法,包含步驟S111~S122,其中步驟S111~S114係低失真影像探頭111與運動平台300之間相對姿態的校正、步驟S115~S118係測距探頭112與運動平台300之間相對姿態的校正,以及步驟S119~S122係光準直探頭113與運動平台300之間相對姿態的校正。應特別說明的是,在進行前述校正時,為了將低失真影像探頭111、測距探頭112以及光準直探頭113分別與運動平台300之間相對姿態校正為正確的,作法可以是調整低失真影像探頭111、測距探頭112、光準直探頭113以及運動平台300之至少一者的姿態。為便於說明,於本實施例中,低失真影像探頭111、測距探頭112以及光準直探頭113運動平台300的姿態都不會改變,而是調整運動平台300的姿態。Returning to FIG. 3A and FIG. 3B , it is a calibration method for the six-degree-of-freedom alignment device 100, including steps S111 to S122, wherein steps S111 to S114 are calibrations of the relative posture between the low-distortion imaging probe 111 and the motion platform 300, steps S115 to S118 are calibrations of the relative posture between the ranging probe 112 and the motion platform 300, and steps S119 to S122 are calibrations of the relative posture between the light collimation probe 113 and the motion platform 300. It should be particularly noted that, when performing the aforementioned calibration, in order to calibrate the relative postures between the low-distortion image probe 111, the distance measuring probe 112, and the light collimating probe 113 and the motion platform 300 to be correct, the method may be to adjust the posture of at least one of the low-distortion image probe 111, the distance measuring probe 112, the light collimating probe 113, and the motion platform 300. For ease of explanation, in this embodiment, the postures of the low-distortion image probe 111, the distance measuring probe 112, and the light collimating probe 113 and the motion platform 300 will not be changed, but the posture of the motion platform 300 is adjusted.

以下參考步驟S111~S114以說明低失真影像探頭111與運動平台300之間相對姿態的校正。The following refers to steps S111 to S114 to illustrate the calibration of the relative posture between the low-distortion image probe 111 and the motion platform 300.

首先,說明相對於低失真影像探頭111,運動平台300姿態中x軸平移自由度以及y軸平移自由度之校正。First, the correction of the x-axis translational degree of freedom and the y-axis translational degree of freedom in the posture of the motion platform 300 relative to the low-distortion image probe 111 is described.

在步驟S111中,校正模組移動運動平台以使校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成影像。並請同時參閱第1圖以及第4圖,第4圖係顯示本發明低失真影像探頭所拍攝的包含實心圓校正圖案的影像之示意圖。具體來說,如第1圖以及第4圖所示,校正模組130移動運動平台300以使校正片200的實心圓校正圖案230出現在低失真影像探頭111的視野範圍內,校正模組130再控制低失真影像探頭111進行拍攝,並產生包含實心圓校正圖案230的影像IM。In step S111, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the low-distortion image probe and is captured as an image. Please also refer to FIG. 1 and FIG. 4, FIG. 4 is a schematic diagram showing an image including a solid circle calibration pattern captured by the low-distortion image probe of the present invention. Specifically, as shown in FIG. 1 and FIG. 4, the calibration module 130 moves the motion platform 300 so that the solid circle calibration pattern 230 of the calibration film 200 appears within the field of view of the low-distortion image probe 111, and the calibration module 130 then controls the low-distortion image probe 111 to capture and generate an image IM including the solid circle calibration pattern 230.

在步驟S112中,校正模組根據影像中的實心圓校正圖案計算出低失真影像探頭與運動平台之間的六自由度誤差。具體來說,如第4圖所示,校正模組130透過影像辨識技術,辨識出實心圓校正圖案230的實心圓圖案232的圓心C1位置;再透過影像處理技術,計算出圓心C1位置與影像IM中低失真影像探頭111的視野中心CF之位置在x軸方向與y軸方向上的誤差,即在x軸方向上的誤差為第一x軸平移誤差∆x 1,在y軸方向上的誤差為第一y軸平移誤差∆y 1In step S112, the calibration module calculates the six-degree-of-freedom error between the low-distortion image probe and the motion platform according to the solid circle calibration pattern in the image. Specifically, as shown in FIG. 4, the calibration module 130 identifies the position of the center C1 of the solid circle pattern 232 of the solid circle calibration pattern 230 through image recognition technology; and then calculates the error between the position of the center C1 and the position of the field of view center CF of the low-distortion image probe 111 in the image IM in the x-axis direction and the y-axis direction through image processing technology, that is, the error in the x-axis direction is the first x-axis translation error ∆x 1 , and the error in the y-axis direction is the first y-axis translation error ∆y 1 .

在步驟S113中,校正模組根據步驟S112的六自由度誤差將運動平台的姿態調整成對應低失真影像探頭的校正後姿態。具體來說,校正模組130可根據第一x軸平移誤差∆x 1以及第一y軸平移誤差∆y 1將運動平台300的姿態從初始姿態(0,0,0,0,0,0,0)調整成對應低失真影像探頭111的校正後姿態(x 1,y 1,0,0,0,0)。此時,在低失真影像探頭111的視野範圍內,實心圓校正圖案230的實心圓圖案232的圓心C1將與低失真影像探頭111的視野中心CF重疊。 In step S113, the calibration module adjusts the posture of the motion platform to a calibrated posture corresponding to the low-distortion image probe according to the six-degree-of-freedom error of step S112. Specifically, the calibration module 130 can adjust the posture of the motion platform 300 from the initial posture (0,0,0,0,0,0,0) to a calibrated posture (x 1 ,y 1 ,0,0,0,0) corresponding to the low-distortion image probe 111 according to the first x-axis translation error ∆x 1 and the first y- axis translation error ∆y 1. At this time, within the field of view of the low-distortion image probe 111, the center C1 of the solid circle pattern 232 of the solid circle calibration pattern 230 will overlap with the field of view center CF of the low-distortion image probe 111.

在步驟S114中,校正模組儲存步驟S113中對應姿態的六自由度座標參數。具體來說,校正模組130儲存對應校正後姿態(x 1,y 1,0,0,0,0)的六自由度座標參數中的第一x軸平移自由度座標值x 1以及第一y軸平移自由度座標值y 1In step S114, the correction module 130 stores the six-degree-of-freedom coordinate parameters corresponding to the posture in step S113. Specifically, the correction module 130 stores the first x-axis translational degree-of-freedom coordinate value x1 and the first y-axis translational degree-of-freedom coordinate value y1 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x1 , y1, 0,0,0,0).

藉此,完成相對於低失真影像探頭111,運動平台300姿態中x軸平移自由度以及y軸平移自由度之校正。Thereby, the x-axis translational freedom and the y-axis translational freedom of the motion platform 300 are calibrated relative to the low-distortion image probe 111 .

接著,說明相對於低失真影像探頭111,運動平台300的姿態中x軸旋轉自由度、y軸旋轉自由度之校正以及z軸平移自由度之校正。Next, the correction of the x-axis rotational freedom, the y-axis rotational freedom, and the z-axis translational freedom in the posture of the motion platform 300 relative to the low-distortion image probe 111 is described.

回到步驟S111,並請同時參閱第1圖、第5A圖以及第5B圖,第5A圖係顯示本發明之低失真影像探頭所拍攝的包含棋盤格校正圖案的影像之示意圖,第5B圖係顯示本發明之包含棋盤格校正圖案的影像中四個角落區域以及中間區域在進行高度掃描時的空間頻率響應(Spatial Frequency Response, SFR)之示意圖。Returning to step S111, please refer to FIG. 1, FIG. 5A and FIG. 5B simultaneously. FIG. 5A is a schematic diagram showing an image including a checkerboard correction pattern captured by the low-distortion image probe of the present invention, and FIG. 5B is a schematic diagram showing the spatial frequency response (Spatial Frequency Response, SFR) of the four corner areas and the middle area of the image including the checkerboard correction pattern during height scanning of the present invention.

具體來說,校正模組130先移動運動平台300以使校正片200的棋盤格校正圖案220出現在低失真影像探頭111的視野範圍內;接著,校正模組130控制運動平台300帶動棋盤格校正圖案220沿著z軸方向移動,同時校正模組130控制低失真影像探頭110連續對在不同z值下的校正片200之棋盤格校正圖案220拍攝多張影像IM,其中多張影像IM的其中一張如第5A圖所示。 Specifically, the correction module 130 first moves the motion platform 300 so that the checkerboard correction pattern 220 of the correction film 200 appears within the field of view of the low-distortion image probe 111; then, the correction module 130 controls the motion platform 300 to drive the checkerboard correction pattern 220 to move along the z-axis direction, and at the same time, the correction module 130 controls the low-distortion image probe 110 to continuously shoot multiple images IM of the checkerboard correction pattern 220 of the correction film 200 at different z values, one of which is shown in Figure 5A.

參考步驟S112,具體來說,校正模組130可計算在不同z值下棋盤格校正圖案220的第一區域A1、第二區域A2、第四區域A3、第三區域A4以及中間區域A5的空間頻率響應值(下稱SFR值),並分別產生第5B圖所示之對應的空間頻率響應圖,其中橫軸代表z值、縱軸代表SFR值。應特別說明的是,SFR值與影像清晰度成正比,也就是說,當SFR值最大時,則影像清晰度最高,表示此時的棋盤格校正圖案220的對應區域是位於低失真影像探頭111的焦平面。 Referring to step S112, specifically, the correction module 130 can calculate the spatial frequency response values (hereinafter referred to as SFR values) of the first area A1, the second area A2, the fourth area A3, the third area A4 and the middle area A5 of the checkerboard correction pattern 220 at different z values, and respectively generate the corresponding spatial frequency response graphs shown in FIG. 5B, wherein the horizontal axis represents the z value and the vertical axis represents the SFR value. It should be particularly noted that the SFR value is proportional to the image clarity, that is, when the SFR value is the largest, the image clarity is the highest, indicating that the corresponding area of the checkerboard correction pattern 220 at this time is located at the focal plane of the low-distortion image probe 111.

如第5B圖所示,第一區域A1、第二區域A2、第三區域A3、第四區域A4以及第五區域A5的空間頻率響應圖分別位於左上角、左下角、右上角、右下角以及中間。由前述空間頻率響應圖可得知,第一區域A1、第二區域A2、第三區域A3、第四區域A4以及第五區域A5分別在z值為第一對焦高度Z1、第二對焦高度Z2、第三對焦高度Z3、第四對焦高度Z4以及第五對焦高度Z5時具有最大的SFR值。 As shown in Figure 5B, the spatial frequency response diagrams of the first area A1, the second area A2, the third area A3, the fourth area A4 and the fifth area A5 are located at the upper left corner, the lower left corner, the upper right corner, the lower right corner and the middle, respectively. From the aforementioned spatial frequency response diagrams, it can be seen that the first area A1, the second area A2, the third area A3, the fourth area A4 and the fifth area A5 have the largest SFR value when the z value is the first focus height Z1, the second focus height Z2, the third focus height Z3, the fourth focus height Z4 and the fifth focus height Z5, respectively.

透過第一對焦高度Z1、第二對焦高度Z2、第三對焦高度Z3以及第四對焦高度Z4即可進一步計算出第一x軸旋轉誤差△θ x1以及第一y軸旋轉誤差△θ y1,而透過第一對焦高度Z5則可以進一步計算出第一z軸對焦誤差,具體計算方式說明如下: The first x-axis rotation error △θ x 1 and the first y-axis rotation error △θ y 1 can be further calculated through the first focusing height Z1, the second focusing height Z2, the third focusing height Z3 and the fourth focusing height Z4, and the first z-axis focusing error can be further calculated through the first focusing height Z5. The specific calculation method is as follows:

首先,說明第一x軸旋轉誤差△θ x1以及第一y軸旋轉誤差∆θy 1的計算。 First, the calculation of the first x-axis rotation error △θ x 1 and the first y-axis rotation error ∆θ y 1 is explained.

當第一對焦高度Z1、第二對焦高度Z2、第三對焦高度Z3以及第四對焦高度Z4為相等時,具有棋盤格校正圖案220的校正片200相對於低失真影像探頭110無傾斜;當第一對焦高度Z1、第二對焦高度Z2、第三對焦高度Z3以及第四對焦高度Z4為相異時,具有棋盤格校正圖案220的校正片200相對於低失真影像探頭110有傾斜,此時可利用棋盤格校正圖案220搭配三角函數公式,即可計算出承載校正片200的運動平台300與低失真影像探頭110之間在xy平面上的傾斜誤差,包含第一x軸旋轉誤差∆θx 1以及第一y軸旋轉誤差∆θy 1When the first focus height Z1, the second focus height Z2, the third focus height Z3 and the fourth focus height Z4 are equal, the calibration sheet 200 having the checkerboard calibration pattern 220 is not tilted relative to the low-distortion image probe 110; when the first focus height Z1, the second focus height Z2, the third focus height Z3 and the fourth focus height Z4 are different, the calibration sheet 200 having the checkerboard calibration pattern 220 is tilted relative to the low-distortion image probe 110. At this time, the checkerboard calibration pattern 220 can be used in combination with trigonometric function formulas to calculate the tilt error between the motion platform 300 carrying the calibration sheet 200 and the low-distortion image probe 110 on the xy plane, including the first x-axis rotation error ∆θx 1 and the first y-axis rotation error ∆θy 1 .

進一步地,第一x軸旋轉誤差∆θx 1之示意圖位於第5B圖中第一區域A1的空間頻率響應圖與第三區域A3的空間頻率響應圖之中間。當第一區域A1對應的第一對焦高度Z1與第三區域A3對應的第三對焦高度Z3相異時,利用兩者的差值(即Z3-Z1)以及第一區域A1與第三區域A3之間的距離W1搭配三角函數公式,即可計算出第一x軸旋轉誤差∆θx 1Furthermore, the schematic diagram of the first x-axis rotation error ∆θx 1 is located in the middle of the spatial frequency response diagram of the first area A1 and the spatial frequency response diagram of the third area A3 in FIG. 5B. When the first focus height Z1 corresponding to the first area A1 and the third focus height Z3 corresponding to the third area A3 are different, the first x-axis rotation error ∆θx 1 can be calculated by using the difference between the two (i.e., Z3-Z1) and the distance W1 between the first area A1 and the third area A3 in combination with the trigonometric function formula.

同理,第一y軸旋轉誤差∆θy 1之示意圖位於第5B圖中第一區域A1的空間頻率響應圖與第二區域A2的空間頻率響應圖之中間。當第一區域A1對應的第一對焦高度Z1與第二區域A2對應的第二對焦高度Z2相異時,利用兩者的差值(Z2-Z1)以及第一區域A1與第二區域A2之間的距離W2並搭配三角函數公式,即可計算出第一y軸旋轉誤差∆θy 1Similarly, the schematic diagram of the first y-axis rotation error ∆θy 1 is located in the middle of the spatial frequency response diagram of the first area A1 and the spatial frequency response diagram of the second area A2 in Figure 5B. When the first focus height Z1 corresponding to the first area A1 and the second focus height Z2 corresponding to the second area A2 are different, the first y-axis rotation error ∆θy 1 can be calculated by using the difference (Z2-Z1) between the two and the distance W2 between the first area A1 and the second area A2 in combination with trigonometric formulas.

接著,說明第一z軸對焦誤差∆z 1的計算。 Next, the calculation of the first z-axis focus error ∆z 1 is explained.

請再次參考第5B圖的中間區域A5的空間頻率圖,中間區域A5的初始z值為初始高度Z0,對應的SFR值並非最大,表示位於初始高度Z0的中間區域A5並非位於低失真影像探頭111的焦平面;隨著將中間區域A5的Z值由初始高度Z0移動至第五對焦高度Z5,對應的SFR值為最大,表示位於第五對焦高度Z5的中間區域A5係位於低失真影像探頭111的焦平面,而這也是期望的校正結果。為此,即可利用初始高度Z0與第五對焦高度Z5的差值,即可計算出第一z軸對焦誤差∆z 1Please refer to the spatial frequency diagram of the middle area A5 in FIG. 5B again. The initial z value of the middle area A5 is the initial height Z0, and the corresponding SFR value is not the maximum, indicating that the middle area A5 at the initial height Z0 is not located in the focal plane of the low-distortion imaging probe 111. As the Z value of the middle area A5 is moved from the initial height Z0 to the fifth focusing height Z5, the corresponding SFR value is the maximum, indicating that the middle area A5 at the fifth focusing height Z5 is located in the focal plane of the low-distortion imaging probe 111, which is also the desired correction result. Therefore, the difference between the initial height Z0 and the fifth focusing height Z5 can be used to calculate the first z-axis focusing error ∆z 1 .

藉此,第一x軸旋轉誤差∆θx 1、第一y軸旋轉誤差∆θy 1以及第一z軸對焦誤差∆z 1皆被計算出來。 Thereby, the first x-axis rotation error ∆θx 1 , the first y-axis rotation error ∆θy 1 , and the first z-axis focus error ∆z 1 are all calculated.

參考步驟S113,具體來說,校正模組130可根據第一x軸旋轉誤差∆θx 1、第一y軸旋轉誤差∆θy 1以及第一z軸對焦誤差∆z 1將運動平台300的姿態從前述校正後姿態(x 1,y 1,0,0,0,0)調整成對應低失真影像探頭111的校正後姿態(x 1,y 1,z 1,θx 1,θy 1,0)。此時,校正片200的平面將與低失真影像探頭111的焦平面重疊。 Referring to step S113, specifically, the calibration module 130 may adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , 0, 0 , 0 ) to the calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , 0) corresponding to the low-distortion image probe 111 according to the first x-axis rotation error ∆θx 1 , the first y- axis rotation error ∆θy 1 , and the first z-axis focus error ∆z 1. At this time, the plane of the calibration sheet 200 will overlap with the focal plane of the low-distortion image probe 111.

參考步驟S114,具體來說,校正模組130儲存對應校正後姿態(x 1,y 1,z 1,θx 1,θy 1,0)的六自由度座標參數中的第一x軸旋轉自由度座標值θx 1、第一y軸旋轉自由度座標值θy 1以及第一z軸平移自由度座標值z 1Referring to step S114, specifically, the correction module 130 stores the first x-axis rotational degree of freedom coordinate value θx1 , the first y-axis rotational degree of freedom coordinate value θy1 , and the first z-axis translational degree of freedom coordinate value z1 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x1 , y1 , z1 , θx1, θy1 , 0) .

藉此,完成相對於低失真影像探頭111,運動平台300姿態中x軸旋轉自由度、y軸旋轉自由度之校正以及z軸平移自由度之校正。Thereby, the correction of the x-axis rotational freedom, the y-axis rotational freedom and the z-axis translational freedom in the posture of the motion platform 300 is completed relative to the low-distortion image probe 111.

最後,說明相對於低失真影像探頭111,運動平台300的姿態中z軸旋轉自由度之校正。Finally, the correction of the z-axis rotational degree of freedom in the posture of the motion platform 300 relative to the low-distortion image probe 111 is described.

回到步驟S111,並請同時參閱第1圖以及第6圖,第6圖係顯示本發明之低失真影像探頭所拍攝的三張包含不同位置十字校正圖案的影像之示意圖。Returning to step S111, please refer to FIG. 1 and FIG. 6 at the same time. FIG. 6 is a schematic diagram showing three images containing cross correction patterns at different positions taken by the low-distortion imaging probe of the present invention.

具體來說,如第6圖所示,校正模組130移動運動平台300以使校正片200的十字校正圖案210出現在低失真影像探頭111的視野範圍內;接著,校正模組130控制運動平台300以使十字校正圖案210先位在視野範圍內的第一位置L1,再沿著正y軸正方向移動至第二位置L2,最後沿著x軸負方向移動至第三位置L3。當十字校正圖案210分別位在第一位置L1、第二位置L2以及第三位置L3時,校正模組130控制低失真影像探頭111將其分別拍攝成影像IM1、影像IM2以及影像IM3。Specifically, as shown in FIG. 6 , the calibration module 130 moves the motion platform 300 so that the cross calibration pattern 210 of the calibration film 200 appears within the field of view of the low-distortion image probe 111; then, the calibration module 130 controls the motion platform 300 so that the cross calibration pattern 210 is first located at the first position L1 within the field of view, then moves along the positive direction of the positive y-axis to the second position L2, and finally moves along the negative direction of the x-axis to the third position L3. When the cross calibration pattern 210 is located at the first position L1, the second position L2, and the third position L3, the calibration module 130 controls the low-distortion image probe 111 to capture it as images IM1, IM2, and IM3, respectively.

參考步驟S112,具體來說,校正模組130可根據影像IM1的十字校正圖案210與影像IM2的十字校正圖案210之x座標的差值、y座標的差值與兩點間的距離,以及根據影像IM2的十字校正圖案210與影像IM3的十字校正圖案210之x座標的差值、y座標的差值與兩點間的距離,計算出第一z軸旋轉誤差∆θz 1Referring to step S112, specifically, the correction module 130 can calculate the first z-axis rotation error ∆θz 1 according to the difference in x-coordinates, y-coordinates and the distance between the cross correction pattern 210 of the image IM1 and the cross correction pattern 210 of the image IM2, and according to the difference in x-coordinates, y-coordinates and the distance between the cross correction pattern 210 of the image IM2 and the cross correction pattern 210 of the image IM3.

參考步驟S113,具體來說,校正模組130可根據第一z軸旋轉誤差∆θz 1將運動平台300的姿態從前述校正後姿態(x 1,y 1,z 1,θx 1,θy 1,0)調整成對應低失真影像探頭111的校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1)。此時,運動平台300的x/y軸與低失真影像探頭111的x/y軸平行。 Referring to step S113, specifically, the calibration module 130 may adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , 0) to the calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ) corresponding to the low-distortion image probe 111 according to the first z-axis rotation error ∆θz 1. At this time, the x/y axis of the motion platform 300 is parallel to the x/y axis of the low-distortion image probe 111.

參考步驟S114,具體來說,校正模組130儲存對應校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1)的六自由度座標參數中的第一z軸旋轉自由度座標值θz 1Referring to step S114, specifically, the calibration module 130 stores the first z-axis rotational degree of freedom coordinate value θz 1 among the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ).

藉此,完成相對於低失真影像探頭111,運動平台300的姿態中z軸旋轉自由度之校正。Thereby, the z-axis rotational freedom of the motion platform 300 is corrected relative to the low-distortion image probe 111 .

由上述可知,透過低失真影像探頭111以及校正片200上的校正圖案之校正,運動平台300的姿態已由初始姿態(0,0,0,0,0,0)調整成校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1),進而完成低失真影像探頭111與運動平台300之間的校正。 From the above, it can be seen that through the calibration of the low-distortion image probe 111 and the calibration pattern on the calibration sheet 200, the posture of the motion platform 300 has been adjusted from the initial posture (0,0,0,0,0,0) to the calibrated posture (x 1 ,y 1 ,z 1 ,θx 1 ,θy 1 ,θz 1 ), thereby completing the calibration between the low-distortion image probe 111 and the motion platform 300.

以下參考步驟S115~S118以說明低失真影像探頭111與運動平台300之間相對姿態的校正。The following refers to steps S115 to S118 to illustrate the calibration of the relative posture between the low-distortion image probe 111 and the motion platform 300.

首先,說明相對於測距探頭112,運動平台300的姿態中x軸旋轉自由度以及y軸旋轉自由度之校正。First, the correction of the x-axis rotational degree of freedom and the y-axis rotational degree of freedom in the posture of the motion platform 300 relative to the ranging probe 112 is described.

在步驟S115中,校正模組移動運動平台以使校正片的校正圖案出現在測距探頭的視野範圍內並進行感測而產生感測資訊。並請同時參照第1圖、第7A圖以及第7B圖,第7A圖係顯示本發明之運動平台與校正片透過測距探頭沿著x軸方向進行感測後的姿態之示意圖,第7B圖係顯示本發明之運動平台與校正片透過測距探頭沿著y軸方向進行感測後的姿態之示意圖。In step S115, the calibration module moves the motion platform so that the calibration pattern of the calibration sheet appears within the field of view of the ranging probe and performs sensing to generate sensing information. Please refer to FIG. 1, FIG. 7A and FIG. 7B at the same time. FIG. 7A is a schematic diagram showing the posture of the motion platform and the calibration sheet of the present invention after sensing along the x-axis direction by the ranging probe, and FIG. 7B is a schematic diagram showing the posture of the motion platform and the calibration sheet of the present invention after sensing along the y-axis direction by the ranging probe.

具體來說,校正模組130先移動運動平台300以使校正片200的全反射面校正圖案240出現在測距探頭112的視野範圍內;接著,校正模組130控制運動平台300帶動全反射面校正圖案240沿著y軸方向移動,同時測距探頭112對全反射面校正圖案240的第一點P1以及第二點P2進行感測,進而分別獲得第一點P1以及第二點P2的感測資訊,其中第一點P1的感測資訊為座標(y 21,z 21),第二點P2的感測資訊為座標(y 22,z 22)。 Specifically, the calibration module 130 first moves the motion platform 300 so that the total reflection surface calibration pattern 240 of the calibration sheet 200 appears within the field of view of the ranging probe 112; then, the calibration module 130 controls the motion platform 300 to drive the total reflection surface calibration pattern 240 to move along the y-axis direction, and at the same time, the ranging probe 112 senses the first point P1 and the second point P2 of the total reflection surface calibration pattern 240, thereby obtaining sensing information of the first point P1 and the second point P2, respectively, wherein the sensing information of the first point P1 is the coordinate (y 21 , z 21 ), and the sensing information of the second point P2 is the coordinate (y 22 , z 22 ).

接著,校正模組130控制運動平台300帶動全反射面校正圖案240沿著x軸方向移動,同時測距探頭112對全反射面校正圖案240的第三點P3以及第四點P4進行感測,進而分別獲得第三點P3以及第四點P4的感測資訊,其中第三點P3的感測資訊為座標(x 23,z 23),第四點P4的感測資訊為座標(x 24,z 24)。 Next, the correction module 130 controls the motion platform 300 to drive the total reflection surface correction pattern 240 to move along the x-axis direction. At the same time, the ranging probe 112 senses the third point P3 and the fourth point P4 of the total reflection surface correction pattern 240, thereby obtaining the sensing information of the third point P3 and the fourth point P4 respectively, wherein the sensing information of the third point P3 is the coordinates (x 23 , z 23 ), and the sensing information of the fourth point P4 is the coordinates (x 24 , z 24 ).

在步驟S116中,校正模組根據感測資訊計算出測距探頭與運動平台之間的六自由度誤差。具體來說,校正模組130可根據第一點P1的座標(y 21,z 21)以及第二點P2的座標(y 22,z 22)並搭配三角函數公式,即可計算出運動平台300與測距探頭112之間的第二x軸旋轉誤差∆θx 2;此外,校正模組130可根據第三點P3的座標(x 23,z 23)以及第四點P4的座標(x 24,z 24)並搭配三角函數公式,即可計算出運動平台300與測距探頭112之間的第二y軸旋轉誤差∆θy 2In step S116, the calibration module calculates the six-degree-of-freedom error between the ranging probe and the motion platform according to the sensing information. Specifically, the calibration module 130 can calculate the second x-axis rotation error ∆θx 2 between the motion platform 300 and the ranging probe 112 according to the coordinates (y 21 , z 21 ) of the first point P1 and the coordinates (y 22 , z 22 ) of the second point P2 in combination with trigonometric formulas. In addition, the calibration module 130 can calculate the second y-axis rotation error ∆θy 2 between the motion platform 300 and the ranging probe 112 according to the coordinates (x 23 , z 23 ) of the third point P3 and the coordinates (x 24 , z 24 ) of the fourth point P4 in combination with trigonometric formulas.

在步驟S117中,校正模組根據步驟S116的六自由度誤差將運動平台的姿態調整成對應測距探頭的校正後姿態。具體來說,校正模組130可根據第二x軸旋轉誤差∆θx 2以及第二y軸旋轉誤差∆θy 2將運動平台300的姿態從前述校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1)調整成對應測距探頭112的校正後姿態(x 1,y 1,z 1,θx 2,θy 2,θz 1)。此時,校正片200的平面與測距探頭112的xy平面平行。 In step S117, the calibration module adjusts the posture of the motion platform to the calibrated posture corresponding to the ranging probe according to the six-degree-of-freedom error in step S116. Specifically, the calibration module 130 can adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ) to the calibrated posture (x 1 , y 1 , z 1 , θx 2 , θy 2 , θz 1 ) corresponding to the ranging probe 112 according to the second x-axis rotation error ∆θx 2 and the second y-axis rotation error ∆θy 2. At this time, the plane of the calibration sheet 200 is parallel to the xy plane of the ranging probe 112.

在步驟S118中,校正模組儲存步驟S117中對應校正後姿態的六軸自由座標參數。具體來說,校正模組130儲存對應校正後姿態(x 1,y 1,z 1,θx 2,θy 2,θz 1)的六自由度座標參數中的第二x軸旋轉自由度座標值θx 2以及第二y軸旋轉自由度座標值θy 2In step S118, the correction module 130 stores the six- axis free coordinate parameters corresponding to the corrected posture in step S117. Specifically, the correction module 130 stores the second x - axis rotational degree of freedom coordinate value θx2 and the second y-axis rotational degree of freedom coordinate value θy2 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x1 , y1 , z1, θx2, θy2, θz1 ).

藉此,完成說明相對於測距探頭112,運動平台300的姿態中x軸旋轉自由度以及y軸旋轉自由度之校正。Thereby, the correction of the x-axis rotational degree of freedom and the y-axis rotational degree of freedom in the posture of the motion platform 300 relative to the ranging probe 112 is completed.

接著,說明相對於測距探頭112,運動平台300的姿態中z軸平移自由度之校正。Next, the correction of the z-axis translational degree of freedom in the posture of the motion platform 300 relative to the ranging probe 112 is described.

回到步驟S115,並請同時參閱第8圖,第8圖係顯示本發明之利用測距探頭找出第二z軸對焦誤差之示意圖。Returning to step S115, please also refer to FIG. 8, which is a schematic diagram showing the use of a ranging probe to find the second z-axis focusing error of the present invention.

具體來說,如第8圖所示,由於測距探頭112的工作點為第五點P5,因此第五點P5在z軸方向上的感測資訊為已知,即座標為(z 25);接著,校正模組130控制測距探頭112對全反射面校正圖案240的第六點P6進行感測,進而獲得第六點P6在z軸方向上的感測資訊,即座標為(z 26)。 Specifically, as shown in FIG. 8 , since the working point of the ranging probe 112 is the fifth point P5, the sensing information of the fifth point P5 in the z-axis direction is known, that is, the coordinate is (z 25 ); then, the calibration module 130 controls the ranging probe 112 to sense the sixth point P6 of the total reflection surface calibration pattern 240, and thereby obtains the sensing information of the sixth point P6 in the z-axis direction, that is, the coordinate is (z 26 ).

參考步驟S116,具體來說,校正模組130可將第五點P5的座標(z 25)以及第六點P6的座標(z 26)相減,即可計算出運動平台300測距探頭112之間在z軸方向上的第二z軸對焦誤差∆z 2Referring to step S116, specifically, the calibration module 130 may subtract the coordinates (z 25 ) of the fifth point P5 from the coordinates (z 26 ) of the sixth point P6 to calculate the second z-axis focusing error ∆z 2 between the ranging probes 112 of the motion platform 300 in the z-axis direction.

參考步驟S117,具體來說,校正模組130可根據第二z軸對焦誤差∆z2將運動平台300姿態從前述校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1)調整成對應測距探頭112的校正後姿態(x 1,y 1,z 2,θx 2,θy 2,θz 1)。此時,校正片200的平面與測距探頭112的焦平面重疊。 Referring to step S117, specifically, the calibration module 130 may adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ) to the calibrated posture (x 1 , y 1 , z 2 , θx 2 , θy 2 , θz 1 ) corresponding to the ranging probe 112 according to the second z-axis focus error ∆z2. At this time, the plane of the calibration sheet 200 overlaps with the focal plane of the ranging probe 112.

參考步驟S118,校正模組130儲存對應校正後姿態(x 1,y 1,z 2,θx 2,θy 2,θz 1)的六自由度座標參數中的第二z軸平移自由度座標值z 2Referring to step S118, the calibration module 130 stores the second z-axis translational degree of freedom coordinate value z 2 in the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture ( x 1 , y 1 , z 2 , θx 2 , θy 2 , θz 1 ).

藉此,完成相對於測距探頭112,運動平台300的姿態中z軸平移自由度之校正。Thereby, the z-axis translational degree of freedom of the motion platform 300 relative to the ranging probe 112 is corrected.

接著,說明相對於測距探頭112,運動平台300的姿態中x軸平移自由度以及y軸平移自由度之校正。Next, the correction of the x-axis translational degree of freedom and the y-axis translational degree of freedom in the posture of the motion platform 300 relative to the ranging probe 112 is described.

回到步驟S115,並請同時參閱第9圖,第9圖係顯示本發明之利用測距探頭與實心圓校正圖案找出第二x軸平移誤差與第二y軸平移誤差之示意圖。Returning to step S115, please also refer to FIG. 9, which is a schematic diagram showing the use of the ranging probe and the solid circle correction pattern of the present invention to find the second x-axis translation error and the second y-axis translation error.

具體來說,校正模組130先移動運動平台300以使測距探頭112的量測點從第一起始點B10沿著與x軸同方向的第一直線掃描路徑SPL1進行掃描,再從第二起始點B20沿著與x軸反方向的第二直線掃描路徑SPL2進行掃描,最後再從第三起始點B30沿著與x軸同方向的第三直線掃描路徑SPL3進行掃描。Specifically, the calibration module 130 first moves the motion platform 300 so that the measuring point of the ranging probe 112 scans from the first starting point B10 along the first straight line scanning path SPL1 in the same direction as the x-axis, and then scans from the second starting point B20 along the second straight line scanning path SPL2 in the opposite direction of the x-axis, and finally scans from the third starting point B30 along the third straight line scanning path SPL3 in the same direction as the x-axis.

在掃描過程中,測距探頭112被設定為僅會收集到校正片200之下表面的反射光訊號,因此在第一直線掃描路徑SPL1、第二直線掃描路徑SPL2以及第三直線掃描路徑SPL3f下的測距探頭112所收集到的反射光訊號可對應到第一訊號強度圖G1、第二訊號強度圖G2以及第三訊號強度圖G3。另外,測距探頭112的量測點位置大概分成兩種,分別是在實心圓校正圖案230的圓外圖案231中,以及在實心圓校正圖案230的實心圓圖案232中。During the scanning process, the ranging probe 112 is set to collect only the reflected light signal from the lower surface of the calibration sheet 200. Therefore, the reflected light signals collected by the ranging probe 112 under the first linear scanning path SPL1, the second linear scanning path SPL2, and the third linear scanning path SPL3f can correspond to the first signal intensity graph G1, the second signal intensity graph G2, and the third signal intensity graph G3. In addition, the measurement point positions of the ranging probe 112 are roughly divided into two types, namely, in the outer circle pattern 231 of the solid circle calibration pattern 230, and in the solid circle pattern 232 of the solid circle calibration pattern 230.

當測距探頭112的量測點位於實心圓校正圖案230的圓外圖案231中時,由於圓外圖案231是屬於校正片200中未塗佈反射材料的部分,因此大部分的入射光可穿透對應圓外圖案231位置的校正片200之上表面與下表面,並在上表面與下表面產生小部分的反射光訊號。因此,測距探頭112會收集到校正片200之下表面產生的反射光訊號。When the measuring point of the distance measuring probe 112 is located in the outer circle pattern 231 of the solid circle calibration pattern 230, since the outer circle pattern 231 is a portion of the calibration plate 200 that is not coated with a reflective material, most of the incident light can penetrate the upper and lower surfaces of the calibration plate 200 corresponding to the position of the outer circle pattern 231, and generate a small portion of reflected light signals on the upper and lower surfaces. Therefore, the distance measuring probe 112 will collect the reflected light signals generated by the lower surface of the calibration plate 200.

當測距探頭112的量測點位於實心圓校正圖案230的實心圓圖案232中時,由於實心圓圖案232是屬於校正片200中有塗佈反射材料的部分,因此大部分的入射光將在對應實心圓圖案232位置的校正片200之上表面被反射而無法穿透至下表面,這也表示校正片200之下表面無反射光訊號。因此,測距探頭112未收集到反射光訊號。When the measuring point of the distance measuring probe 112 is located in the solid circle pattern 232 of the solid circle calibration pattern 230, since the solid circle pattern 232 belongs to the portion of the calibration plate 200 coated with a reflective material, most of the incident light will be reflected on the upper surface of the calibration plate 200 corresponding to the position of the solid circle pattern 232 and cannot penetrate to the lower surface, which also means that there is no reflected light signal on the lower surface of the calibration plate 200. Therefore, the distance measuring probe 112 does not collect the reflected light signal.

進一步說明第一直線掃描路徑SPL1、第二直線掃描路徑SPL2與以及第三直線掃描路徑SPL3的操作細節。在第一直線掃描路徑SPL1中,測距探頭112的量測點從第一起始點B10沿著第一直線掃描路徑SPL1進行掃描並經過第一交界點B11。The operation details of the first straight scanning path SPL1, the second straight scanning path SPL2 and the third straight scanning path SPL3 are further described. In the first straight scanning path SPL1, the measuring point of the ranging probe 112 scans from the first starting point B10 along the first straight scanning path SPL1 and passes through the first intersection point B11.

前述掃描過程可根據測距探頭112的量測點位置分成二階段,分別是第一階段的第一起始點B10至第一交界點B11,以及第二階段的第一交界點B11之後。在第一階段的第一起始點B10至第一交界點B11,由於測距探頭112會收集到校正片200之下表面產生的反射光訊號,因此此時測距探頭112收集的反射光訊號之訊號強度為第一訊號強度I1。第二階段的第一交界點B11之後,測距探頭112未收集到反射光訊號,因此此時測距探頭112收集的反射光訊號之訊號強度將逐漸變為零。The above scanning process can be divided into two stages according to the position of the measuring point of the ranging probe 112, namely, the first stage from the first starting point B10 to the first intersection point B11, and the second stage after the first intersection point B11. In the first stage from the first starting point B10 to the first intersection point B11, since the ranging probe 112 collects the reflected light signal generated by the lower surface of the calibration plate 200, the signal intensity of the reflected light signal collected by the ranging probe 112 at this time is the first signal intensity I1. After the first intersection point B11 of the second stage, the ranging probe 112 does not collect the reflected light signal, so the signal intensity of the reflected light signal collected by the ranging probe 112 at this time will gradually become zero.

同理,第二直線掃描路徑SPL2與第三直線掃描路徑SPL3的操作細節與第一直線掃描路徑SPL1的操作細節相似,故不另贅述。Similarly, the operation details of the second linear scanning path SPL2 and the third linear scanning path SPL3 are similar to the operation details of the first linear scanning path SPL1, so they are not further described.

參考步驟S116,具體來說,校正模組130可根據第一直線掃描路徑SPL1、第二直線掃描路徑SPL2以及第三直線掃描路徑SPL3所獲得的感測資訊可分別繪製出第一訊號強度圖G1、第二訊號強度圖G2以及第三訊號強度圖G3,再透過第一訊號強度圖G1、第二訊號強度圖G2以及第三訊號強度圖G3的第一距離D1、第二距離D2以及第三距離D3,計算出第一交界點B11、第二交界點B21以及第三點B31分別在xy平面上的三個座標,進而求出實心圓圖案232的圓心C1之座標。Referring to step S116, specifically, the calibration module 130 can draw a first signal strength map G1, a second signal strength map G2, and a third signal strength map G3 respectively according to the sensing information obtained from the first linear scanning path SPL1, the second linear scanning path SPL2, and the third linear scanning path SPL3, and then calculate the three coordinates of the first intersection point B11, the second intersection point B21, and the third point B31 on the xy plane respectively through the first distance D1, the second distance D2, and the third distance D3 of the first signal strength map G1, the second signal strength map G2, and the third signal strength map G3, and then calculate the coordinates of the center C1 of the solid circle pattern 232.

詳細來說,先說明第一交界點B11座標的計算方式。由第一訊號強度圖G1可得知,第一起始點B10在x軸方向的位置可對應到第一訊號強度圖G1原點O的x座標值,而第一交界點B11在x軸方向的位置可對應到第一訊號強度圖G1轉折點TP的x座標值。在第一起始點B10的座標為已知的情況下,透過觀察第一訊號強度G1,可得知轉折點TP與原點O在x軸方向上的距離差為第一距離D1,進而可計算出第一交界點B11的座標。In detail, the calculation method of the coordinates of the first junction point B11 is first explained. From the first signal strength graph G1, it can be known that the position of the first starting point B10 in the x-axis direction can correspond to the x-coordinate value of the origin O of the first signal strength graph G1, and the position of the first junction point B11 in the x-axis direction can correspond to the x-coordinate value of the turning point TP of the first signal strength graph G1. When the coordinates of the first starting point B10 are known, by observing the first signal strength G1, it can be known that the distance difference between the turning point TP and the origin O in the x-axis direction is the first distance D1, and then the coordinates of the first junction point B11 can be calculated.

接著,測距探頭112的量測點由第一交界點B11移動至第二起始點B20,過程中測距探頭112的位置資訊皆會被記錄下來,此時在搭配上已知的第一交界點B11座標,因此第二起始點B20的座標即可被計算出來。第二交界點B21座標即可基於第二起始點B20的座標而被計算出來,計算方式可參考第一交界點B11的計算方式,在此不另贅述。Then, the measuring point of the ranging probe 112 moves from the first junction point B11 to the second starting point B20. During the process, the position information of the ranging probe 112 is recorded. At this time, the coordinates of the second starting point B20 can be calculated by combining the known coordinates of the first junction point B11. The coordinates of the second junction point B21 can be calculated based on the coordinates of the second starting point B20. The calculation method can refer to the calculation method of the first junction point B11, which will not be described in detail here.

最後,測距探頭112的量測點由第二交界點B21移動至第三起始點B30,過程中測距探頭112的感位置資訊皆會被記錄下來,此時在搭配上已知的第二交界點B21座標,因此第三起始點B30的座標即可被計算出來。第三交界點B31即可基於第三起始點B30的座標而被計算出來,計算方式可參考第一交界點B11的計算方式,在此不另贅述。Finally, the measuring point of the ranging probe 112 moves from the second junction point B21 to the third starting point B30. During the process, the sensing position information of the ranging probe 112 is recorded. At this time, the coordinates of the third starting point B30 can be calculated by combining the known coordinates of the second junction point B21. The third junction point B31 can be calculated based on the coordinates of the third starting point B30. The calculation method can refer to the calculation method of the first junction point B11, which will not be described in detail here.

在第一交界點B11、第二交界點B21以及第三點B31的在xy平面上的座標被計算出來後,即可進一步計算出實心圓圖案232的圓心C1之座標。因此,校正模組130可根據實心圓圖案232的圓心C1之座標,計算出運動平台300與測距探頭112之間的第二x軸平移誤差∆x 2以及第二y軸平移誤差∆y 2After the coordinates of the first intersection point B11, the second intersection point B21 and the third point B31 on the xy plane are calculated, the coordinates of the center C1 of the solid circle pattern 232 can be further calculated. Therefore, the calibration module 130 can calculate the second x-axis translation error ∆x 2 and the second y-axis translation error ∆y 2 between the motion platform 300 and the ranging probe 112 according to the coordinates of the center C1 of the solid circle pattern 232.

參考步驟S117,校正模組130可根據第二x軸平移誤差∆x 2以及第二y軸平移誤差∆y 2將運動平台300的姿態從前述校正後姿態(x 1,y 1,z 2,θx 2,θy 2,θz 1)調整成對應測距探頭112的校正後姿態(x 2,y 2,z 2,θx 2,θy 2,θz 1)。此時,測距探頭112的量測點與實心圓校正圖案230的實心圓圖案232的圓心C1重疊。 Referring to step S117, the calibration module 130 may adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , z 2 , θx 2 , θy 2 , θz 1 ) to the calibrated posture (x 2 , y 2 , z 2 , θx 2 , θy 2 , θz 1 ) corresponding to the ranging probe 112 according to the second x-axis translation error ∆x 2 and the second y-axis translation error ∆y 2. At this time, the measurement point of the ranging probe 112 overlaps with the center C1 of the solid circle pattern 232 of the solid circle calibration pattern 230.

參考步驟S118,校正模組130儲存對應校正後姿態(x 2,y 2,z 2,θx 2,θy 2,θz 1)的六自由度座標參數中的第二x軸平移自由度座標值x 2以及第二y軸平移自由度座標值y 2Referring to step S118, the calibration module 130 stores the second x-axis translational degree of freedom coordinate value x2 and the second y-axis translational degree of freedom coordinate value y2 in the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture ( x2 , y2, z2, θx2 , θy2, θz1 ).

藉此,完成相對於測距探頭112,運動平台300的姿態中x軸平移自由度以及y軸平移自由度之校正。Thereby, the x-axis translational freedom and the y-axis translational freedom of the posture of the motion platform 300 relative to the ranging probe 112 are calibrated.

由上述可知,透過測距探頭112以及校正片200上的校正圖案之校正,運動平台300的姿態已由前述校正後姿態(x 1,y 1,z1,θx 1,θy 1,θz 1)調整成校正後姿態(x 2,y 2,z 2,θx 2,θy 2,θz 1),進而完成測距探頭112與運動平台300之間的校正。 From the above, it can be seen that through the calibration of the ranging probe 112 and the calibration pattern on the calibration sheet 200, the posture of the motion platform 300 has been adjusted from the aforementioned calibrated posture (x 1 , y 1 , z1, θx 1 , θy 1 , θz 1 ) to the calibrated posture (x 2 , y 2 , z 2 , θx 2 , θy 2 , θz 1 ), thereby completing the calibration between the ranging probe 112 and the motion platform 300.

以下參考步驟S119~S122以說明光準直探頭113與運動平台300之間相對姿態的校正。The following refers to steps S119 to S122 to illustrate the calibration of the relative posture between the light collimating probe 113 and the motion platform 300.

首先,說明相對於光準直探頭113,運動平台300的姿態中x軸旋轉自由度以及y軸旋轉自由度之校正。First, the calibration of the x-axis rotational degree of freedom and the y-axis rotational degree of freedom in the posture of the motion platform 300 relative to the light collimation probe 113 is described.

在步驟S119中,校正模組移動運動平台以使校正片的校正圖案出現在光準直探頭的視野範圍內並拍攝成影像。並請同時參閱第1圖以及第10圖,第10圖係顯示本發明之光準直探頭所拍攝的包含十字相機標靶圖圖形與十字光源標靶圖形之影像之示意圖。In step S119, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the light collimation probe and is photographed as an image. Please also refer to FIG. 1 and FIG. 10, which is a schematic diagram showing an image including a cross camera target pattern and a cross light source target pattern photographed by the light collimation probe of the present invention.

具體來說,如第10圖所示,校正模組130移動運動平台300以使校正片200的全反射面校正圖案240出現在光準直探頭113的視野範圍內;接著,校正模組130控制光準直探頭113投射出十字光源標靶至全反射面校正圖案240上,光準直探頭113拍攝成影像IM,其中影像IM包含光準直探頭113標記的十字相機標靶校正圖案PA1,以及自全反射面校正圖案240反射十字光源的十字光源標靶校正圖案PA2。Specifically, as shown in FIG. 10 , the correction module 130 moves the motion platform 300 so that the total reflection surface correction pattern 240 of the correction plate 200 appears within the field of view of the light collimating probe 113; then, the correction module 130 controls the light collimating probe 113 to project a cross light source target onto the total reflection surface correction pattern 240, and the light collimating probe 113 captures an image IM, wherein the image IM includes a cross camera target correction pattern PA1 marked by the light collimating probe 113, and a cross light source target correction pattern PA2 that reflects a cross light source from the total reflection surface correction pattern 240.

在步驟S120中,校正模組根據影像中的校正圖案計算出光準直探頭與運動平台之間的六自由度誤差。In step S120, the calibration module calculates the six-degree-of-freedom error between the light collimating probe and the motion platform according to the calibration pattern in the image.

具體來說,校正模組130可根據影像IM中的十字相機標靶校正圖案PA1與十字光源標靶校正圖案PA2計算出光準直探頭113與運動平台300之間的第三x軸旋轉誤差∆θx 3以及第三y軸旋轉誤差∆θy 3。詳細來說,當光準直探頭113在xy平面上相對與運動平台300為傾斜時,影像IM中的十字光源標靶校正圖案PA2不會與十字相機標靶校正圖案PA1重疊,而是與十字相機標靶校正圖案PA1分別在x軸方向與y軸方向上分別有有x軸方向誤差Δx 30與y軸方向誤差Δy 30;此外,由於x軸方向誤差Δx 30與y軸方向誤差Δy 30與旋轉誤差有對應關係,因此透過x軸方向誤差Δx 30與y軸方向誤差Δy 30即可計算出第三x軸旋轉誤差∆θ x3以及第三y軸旋轉誤差∆θy 3Specifically, the calibration module 130 can calculate the third x-axis rotation error ∆θx 3 and the third y-axis rotation error ∆θy 3 between the optical collimation probe 113 and the motion platform 300 according to the cross camera target calibration pattern PA1 and the cross light source target calibration pattern PA2 in the image IM. Specifically, when the light collimating probe 113 is tilted relative to the motion platform 300 on the xy plane, the cross light source target calibration pattern PA2 in the image IM does not overlap with the cross camera target calibration pattern PA1, but has an x-axis direction error Δx 30 and a y-axis direction error Δy 30 in the x-axis direction and the y-axis direction respectively with the cross camera target calibration pattern PA1; in addition, since the x-axis direction error Δx 30 and the y-axis direction error Δy 30 have a corresponding relationship with the rotation error, the third x-axis rotation error Δθ x3 and the third y-axis rotation error Δθy 3 can be calculated through the x-axis direction error Δx 30 and the y-axis direction error Δy 30 . .

在步驟S121中,校正模組根據步驟S120的六自由度誤差將運動平台的姿態調整成對應光準直探頭的校正後姿態。具體來說,校正模組130可根據第三x軸旋轉誤差∆θx 3以及第三y軸旋轉誤差∆θy 3將運動平台300的姿態從前述校正後姿態(x 2,y 2,z 2,θx 2,θy 2,θz 1)調整成對應光準直探頭113的校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 1)。此時,校正片200平面與光準直探頭113之光軸垂直。 In step S121, the calibration module adjusts the posture of the motion platform to the calibrated posture corresponding to the optical collimation probe according to the six-degree-of-freedom error of step S120. Specifically, the calibration module 130 can adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 2 , y 2 , z 2 , θx 2 , θy 2 , θz 1 ) to the calibrated posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 1 ) corresponding to the optical collimation probe 113 according to the third x-axis rotation error ∆θx 3 and the third y-axis rotation error ∆θy 3. At this time, the plane of the calibration sheet 200 is perpendicular to the optical axis of the optical collimation probe 113.

在步驟S122中,校正模組儲存步驟S121中對應校正後姿態的六軸自由座標參數。具體來說,校正模組130儲存對應校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 1)的六自由度座標參數中的第三x軸旋轉自由度座標值θx 3以及第三y軸旋轉自由度座標值θy 3In step S122, the correction module stores the six-axis free coordinate parameters corresponding to the corrected posture in step S121. Specifically, the correction module 130 stores the third x - axis rotational degree of freedom coordinate value θx 3 and the third y-axis rotational degree of freedom coordinate value θy 3 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 1 ).

藉此,完成相對於光準直探頭113,運動平台300的姿態中x軸旋轉自由度以及y軸旋轉自由度之校正。Thereby, the x-axis rotational freedom and the y-axis rotational freedom of the motion platform 300 are calibrated relative to the light collimation probe 113 .

接著,說明相對於光準直探頭113,運動平台300的姿態中z軸旋轉自由度之校正。Next, the correction of the z-axis rotational freedom in the posture of the motion platform 300 relative to the light collimation probe 113 is described.

回到步驟119中,並請同時參閱第1圖以及第11圖,第11圖係顯示本發明之光準直探頭所拍攝的三張包含不同位置十字光源標靶校正圖案的影像之示意圖。Returning to step 119, please refer to FIG. 1 and FIG. 11 at the same time. FIG. 11 is a schematic diagram showing three images taken by the light collimation probe of the present invention, which include cross light source target calibration patterns at different positions.

具體來說,如第11圖所示,校正模組130移動運動平台300以使校正片200的全反射面校正圖案240出現在光準直探頭113的視野範圍內;接著,校正模組130控制光準直探頭113投射出十字光源標靶至全反射面校正圖案240上,以使十字光源標靶校正圖案PA2亦會出現在光準直探頭113的視野範圍內並移動。首先,十字光源標靶校正圖案PA2位在第一位置L1,接著控制校正片200繞著x軸方旋轉,以使十字光源標靶校正圖案PA2移動至第二位置L2,再控制校正片200繞著y軸方向旋轉,以使十字光源標靶校正圖案PA2移動至第三位置L3。Specifically, as shown in FIG. 11 , the calibration module 130 moves the motion platform 300 so that the total reflection surface calibration pattern 240 of the calibration plate 200 appears within the field of view of the light collimating probe 113; then, the calibration module 130 controls the light collimating probe 113 to project a cross light source target onto the total reflection surface calibration pattern 240, so that the cross light source target calibration pattern PA2 also appears within the field of view of the light collimating probe 113 and moves. First, the cross light source target calibration pattern PA2 is located at the first position L1, then the calibration plate 200 is controlled to rotate around the x-axis so that the cross light source target calibration pattern PA2 moves to the second position L2, and then the calibration plate 200 is controlled to rotate around the y-axis so that the cross light source target calibration pattern PA2 moves to the third position L3.

當十字光源標靶校正圖案PA2分別位在第一位置L1、第二位置L2以及第三位置L3時,校正模組130控制低失真影像探頭111將其分別拍攝成影像IM1、影像IM2以及影像IM3。When the cross light source target calibration pattern PA2 is located at the first position L1, the second position L2 and the third position L3 respectively, the calibration module 130 controls the low-distortion image probe 111 to capture it into images IM1, IM2 and IM3 respectively.

參考步驟S120,具體來說,校正模組130可根據影像IM1的十字光源標靶校正圖案PA2與影像IM2的十字光源標靶校正圖案PA2之x座標的差值、y座標的差值與兩點間的距離,以及根據影像IM2的十字光源標靶校正圖案PA2與影像IM3的十字校正圖案210之x座標的差值、y座標的差值與兩點間的距離,計算出第三z軸旋轉誤差∆θz 3Referring to step S120, specifically, the calibration module 130 may calculate the third z-axis rotation error ∆θz 3 according to the difference in x-coordinates, the difference in y-coordinates, and the distance between the cross light source target calibration pattern PA2 of the image IM1 and the cross light source target calibration pattern PA2 of the image IM2, and according to the difference in x-coordinates, the difference in y-coordinates, and the distance between the cross light source target calibration pattern PA2 of the image IM2 and the cross calibration pattern 210 of the image IM3.

參考步驟S121,具體來說,校正模組130可根據第三z軸旋轉誤差∆θz 3將運動平台300的姿態從前述校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 1)調整成對應光準直探頭113的校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 3)。此時,運動平台300的x/y軸與光準直探頭113的x/y軸平行。 Referring to step S121, specifically, the calibration module 130 may adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 1 ) to the calibrated posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 3 ) corresponding to the light collimation probe 113 according to the third z-axis rotation error ∆θz 3. At this time, the x/y axis of the motion platform 300 is parallel to the x/y axis of the light collimation probe 113.

參考步驟S122,具體來說,校正模組130儲存對應校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 3)的六自由度座標參數中的第三x軸旋轉自由度座標值θz 3Referring to step S122, specifically, the calibration module 130 stores the third x-axis rotational degree of freedom coordinate value θz 3 of the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 3 ).

藉此,完成相對於光準直探頭113,運動平台300的姿態中z軸旋轉自由度之校正。Thereby, the z-axis rotational freedom of the motion platform 300 relative to the light collimation probe 113 is corrected.

接著,說明相對於光準直探頭113,運動平台300的姿態中z軸平移自由度之校正、x軸平移自由度以及y軸平移自由度。應特別說明的是,關於運動平台300的姿態中z軸平移自由度、x軸平移自由度以及y軸平移自由度之校正原理及執行方法,光準直探頭113與低失真影像探頭111大致相同,差別僅在於光準直探頭113需安裝物鏡,以使棋盤格校正圖案220能夠成像。Next, the correction of the z-axis translational freedom, the x-axis translational freedom, and the y-axis translational freedom in the posture of the motion platform 300 is explained relative to the light collimating probe 113. It should be particularly noted that the correction principle and execution method of the z-axis translational freedom, the x-axis translational freedom, and the y-axis translational freedom in the posture of the motion platform 300 are substantially the same for the light collimating probe 113 and the low-distortion imaging probe 111, the only difference being that the light collimating probe 113 needs to be equipped with an objective lens so that the checkerboard calibration pattern 220 can be imaged.

換言之,光準直探頭113在安裝物鏡後,關於運動平台300的姿態中z軸平移自由度之校正原理及執行方法,即與低失真影像探頭111完全相同,故計算細節不另贅述。In other words, after the objective lens is installed on the light collimating probe 113, the correction principle and execution method of the z-axis translational freedom in the posture of the motion platform 300 are exactly the same as those of the low-distortion imaging probe 111, so the calculation details are not elaborated separately.

藉此,透過步驟S119~S122,校正模組130可計算出光準直探頭113與運動平台300之間的第三z軸平移誤差∆z 3、第三x軸平移誤差∆x 3以及第三y軸平移誤差∆y 3Thus, through steps S119 to S122, the calibration module 130 can calculate the third z-axis translation error ∆z 3 , the third x-axis translation error ∆x 3 , and the third y-axis translation error ∆y 3 between the light collimating probe 113 and the motion platform 300 .

接著,根據第三z軸平移誤差∆z 3、第三x軸平移誤差∆x 3以及第三y軸平移誤差∆y 3將運動平台300的姿態從前述校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 3)調整成對應低失真探頭113的校正後姿態(x 3,y 3,z 3,θx 3,θy 3,θz 3)。此時校正片200平面與安裝物鏡的光準直探頭113之焦平面重疊,且光準直探頭113的相機標靶圖型中心與實心圓校正圖案232的圓心C1重疊。 Next, the posture of the motion platform 300 is adjusted from the aforementioned calibrated posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 3 ) to the calibrated posture (x 3 , y 3 , z 3 , θx 3 , θy 3 , θz 3 ) corresponding to the low-distortion probe 113 according to the third z-axis translation error ∆z 3 , the third x-axis translation error ∆x 3 , and the third y-axis translation error ∆y 3 . At this time , the plane of the calibration sheet 200 overlaps with the focal plane of the light collimating probe 113 mounted with the objective lens, and the center of the camera target pattern of the light collimating probe 113 overlaps with the center C1 of the solid circle calibration pattern 232 .

最後,校正模組130儲存對應校正後姿態(x 3,y 3,z 3,θx 3,θy 3,θz 3)的六自由度座標參數中的第三z軸平移自由度座標值z3以及第三x軸平移自由度座標值x 3以及第三y軸平移自由度座標值y 3Finally, the correction module 130 stores the third z -axis translational degree of freedom coordinate value z3 , the third x-axis translational degree of freedom coordinate value x3, and the third y-axis translational degree of freedom coordinate value y3 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x3 , y3 , z3 , θx3, θy3, θz3 ).

藉此,完成相對於光準直探頭113,運動平台300的姿態中z軸平移自由度之校正、x軸平移自由度以及y軸平移自由度。Thereby, the z-axis translational freedom, the x-axis translational freedom, and the y-axis translational freedom of the motion platform 300 relative to the light collimation probe 113 are corrected.

由上述可知,透過光準直探頭113以及校正片200上的校正圖案之校正,運動平台300的姿態已由前述校正後姿態(x 2,y 2,z 2,θx 3,θy 3,θz 1)調整成校正後姿態(x 3,y 3,z 3,θx 3,θy 3,θz 3),進而完成光準直探頭113與運動平台300之間的校正。 From the above, it can be seen that through the correction of the light collimation probe 113 and the correction pattern on the correction plate 200, the posture of the motion platform 300 has been adjusted from the aforementioned corrected posture (x 2 , y 2 , z 2 , θx 3 , θy 3 , θz 1 ) to the corrected posture (x 3 , y 3 , z 3 , θx 3 , θy 3 , θz 3 ), thereby completing the correction between the light collimation probe 113 and the motion platform 300.

於前述實施例中,由於運動平台300與校正片200之間並無六自由度誤差,因此無需針對運動平台300與校正片200之間的六自由度誤差進行校正。In the aforementioned embodiment, since there is no six-degree-of-freedom error between the motion platform 300 and the calibration piece 200 , there is no need to calibrate the six-degree-of-freedom error between the motion platform 300 and the calibration piece 200 .

然而,於下述實施例中,由於運動平台300與校正片200之間具有六自由度誤差,因此可透過低失真影像探頭111與校正片200來對運動平台300與校正片200之間相對姿態進行校正,以將兩者之間相對姿態校正為正確的。應注意的是,在執行校正片200的六自由度誤差校正時,由於會使用到低失真影像探頭111進行校正,因此需要先完成對應低失真影像探頭111的校正項目後才能執行,也就是在步驟S114完成之後才能執行校正片200的六自由度誤差校正。However, in the following embodiments, since there is a six-degree-of-freedom error between the motion platform 300 and the calibration piece 200, the relative posture between the motion platform 300 and the calibration piece 200 can be corrected through the low-distortion image probe 111 and the calibration piece 200 to correct the relative posture between the two. It should be noted that when performing the six-degree-of-freedom error correction of the calibration piece 200, since the low-distortion image probe 111 will be used for correction, it is necessary to complete the correction items corresponding to the low-distortion image probe 111 before executing it, that is, the six-degree-of-freedom error correction of the calibration piece 200 can be executed after step S114 is completed.

首先,說明相對於校正片200,運動平台300的姿態中x軸平移自由度以及y軸平移自由度之校正。First, the correction of the x-axis translational degree of freedom and the y-axis translational degree of freedom in the posture of the motion platform 300 relative to the correction sheet 200 is described.

如第3C圖所示,在步驟S114a中,校正模組130移動運動平台以使校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成影像。並請同時參閱第1圖以及第12圖,第12圖係顯示本發明之在低失真影像探頭的視野範圍內運動平台帶動實心圓校正圖案以運動平台在xy平面上的原點作為圓心繞著z軸旋轉掃描之示意圖。As shown in FIG. 3C , in step S114a, the calibration module 130 moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the low-distortion image probe and is captured as an image. Please also refer to FIG. 1 and FIG. 12 , which is a schematic diagram showing that the motion platform drives the solid circle calibration pattern within the field of view of the low-distortion image probe of the present invention to rotate and scan around the z-axis with the origin of the motion platform on the xy plane as the center of the circle.

具體來說,校正模組130移動運動平台300以使校正片200的實心圓校正圖案230的實心圓圖案232出現在低失真影像探頭111的視野中心;接著,以運動平台300在xy平面上的原點C2作為圓心,並且帶動實心圓校正圖案230的實心圓圖案232繞著原點C2且沿著圓弧掃描路徑SPA進行掃描;同時,校正模組130控制低失真影像探頭110連續對在位置的校正片200之實心圓校正圖案230拍攝多張影像IM,其中多張影像IM的其中一張如第12圖所示。Specifically, the correction module 130 moves the motion platform 300 so that the solid circle pattern 232 of the solid circle correction pattern 230 of the correction film 200 appears at the center of the field of view of the low-distortion image probe 111; then, the origin C2 of the motion platform 300 on the xy plane is used as the center of the circle, and the solid circle pattern 232 of the solid circle correction pattern 230 is driven to scan around the origin C2 and along the arc scanning path SPA; at the same time, the correction module 130 controls the low-distortion image probe 110 to continuously shoot multiple images IM of the solid circle correction pattern 230 of the correction film 200 in position, one of the multiple images IM is shown in Figure 12.

在步驟S114b中,校正模組根據影像中的校正圖案來計算出校正片與運動平台之間的六自由度誤差。In step S114b, the calibration module calculates the six-degree-of-freedom error between the calibration piece and the motion platform according to the calibration pattern in the image.

具體來說,由於多張影像IM中的實心圓圖案232的圓心C1皆分布在圓弧掃描路徑SPA上,因此校正模組130即可根據多張影像IM3的實心圓圖案232的圓心C1位置擬合出一個圓心為原點C2的圓,並計算出運動平台300的原點C2位置。基於如第12圖所示的實心圓圖案232的圓心C1位置為已知的,再加上已計算出來的運動平台300的原點C2位置,即可計算出第四x軸平移誤差Δx4以及第四y軸平移誤差Δy 4Specifically, since the centers C1 of the solid circle patterns 232 in the multiple images IM are all distributed on the arc scanning path SPA, the calibration module 130 can fit a circle with the center as the origin C2 according to the positions of the centers C1 of the solid circle patterns 232 in the multiple images IM3, and calculate the position of the origin C2 of the motion platform 300. Based on the known position of the center C1 of the solid circle pattern 232 as shown in FIG. 12, plus the calculated position of the origin C2 of the motion platform 300, the fourth x-axis translation error Δx4 and the fourth y-axis translation error Δy4 can be calculated.

在步驟S114c中,校正模組根據步驟S114b的六自由度誤差將運動平台的姿態調整成校正後姿態。具體來說,校正模組130可根據第四x軸平移誤差Δx4以及第四y軸平移誤差Δy 4將運動平台300的姿態從前述校正後姿態(x 1,y 1,z 1,θx 1,θy 1,θz 1)調整成校正後姿態(x 4,y 4,z 1,θx 1,θy 1,θz 1)。此時,運動平台300在xy平面上的原點、實心圓圖案232的圓心C1以及低失真影像探頭111的視野中心重疊。 In step S114c, the calibration module adjusts the posture of the motion platform to the calibrated posture according to the six-degree-of-freedom error of step S114b. Specifically, the calibration module 130 can adjust the posture of the motion platform 300 from the aforementioned calibrated posture (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ) to the calibrated posture (x 4 , y 4 , z 1 , θx 1 , θy 1 , θz 1 ) according to the fourth x-axis translation error Δx4 and the fourth y-axis translation error Δy 4. At this time, the origin of the motion platform 300 on the xy plane, the center C1 of the solid circle pattern 232, and the center of the field of view of the low-distortion image probe 111 overlap.

在步驟S114d中,校正模組儲存步驟S114c中對應校正後姿態的六軸自由座標參數。具體來說,校正模組130儲存對應校正後姿態(x 4,y 4,z 1,θx 1,θy 1,θz 1)的六自由度座標參數中的第四x軸平移自由度座標值x 4以及第四y軸平移自由度座標值y 4In step S114d, the correction module 130 stores the six-axis free coordinate parameters corresponding to the corrected posture in step S114c. Specifically, the correction module 130 stores the fourth x - axis translational degree of freedom coordinate value x4 and the fourth y-axis translational degree of freedom coordinate value y4 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture ( x4 , y4 , z1, θx1 , θy1, θz1 ).

藉此,完成相對於校正片200,運動平台300的姿態中x軸平移自由度以及y軸平移自由度之校正。Thereby, the x-axis translational freedom and the y-axis translational freedom of the motion platform 300 are calibrated relative to the calibration sheet 200 .

接著,說明相對於校正片200,運動平台300的姿態中z軸平移自由度之校正。Next, the correction of the z-axis translational degree of freedom in the posture of the motion platform 300 relative to the correction sheet 200 is described.

回到步驟S114a,並請同時參閱第1圖、第13A圖以及第13B圖,第13A圖係顯示本發明之運動平台帶動十字校正圖案以運動平台的原點作為圓心繞著y軸旋轉之示意圖,第13B圖係顯示本發明之在低失真影像探頭的視野範圍內運動平台帶動十字校正圖案以運動平台的原點作為圓心繞著y軸旋轉之示意圖。Return to step S114a, and please refer to Figure 1, Figure 13A and Figure 13B at the same time. Figure 13A is a schematic diagram showing the motion platform of the present invention driving the cross correction pattern to rotate around the y-axis with the origin of the motion platform as the center of the circle. Figure 13B is a schematic diagram showing the motion platform of the present invention driving the cross correction pattern to rotate around the y-axis with the origin of the motion platform as the center of the circle within the field of view of the low-distortion image probe.

具體來說,為凸顯運動平台300與校正片200(尤其是十字校正圖案210)之間在z軸方向上的誤差(即第四z軸平移誤差Δz 4)以方便後續說明,因此以第13A圖來呈現。如第13A圖所示,校正模組130移動運動平台300以使校正片200的十字校正圖案210出現在低失真影像探頭111的視野範圍內,且十字形圖案210的上表面與低失真影像探頭111的焦平面FP重疊;接著,請一併參考第13B圖的上圖,校正模組130控制低失真影像探頭111對出現在低失真影像探頭111的視野範圍內之十字校正圖案210拍攝成影像IM1,其中十字校正圖案210的中心C210係位於影像IM1的第一位置L1;然後,請一併參考第13B圖的下圖,校正模組130以運動平台300在xy平面上的原點C2作為圓心,控制運動平台300帶動十字校正圖案210繞著運動平台300的原點C2並繞著y軸方向旋轉角度α,校正模組130控制低失真影像探頭111對其拍攝成影像IM2,其中十字校正圖案210的中心C210係位於影像IM2的第二位置L2。 Specifically, in order to highlight the error in the z-axis direction (ie, the fourth z-axis translation error Δz 4 ) between the motion platform 300 and the calibration sheet 200 (especially the cross calibration pattern 210 ) for the convenience of subsequent description, FIG. 13A is presented. As shown in FIG. 13A, the calibration module 130 moves the motion platform 300 so that the cross calibration pattern 210 of the calibration sheet 200 appears within the field of view of the low-distortion imaging probe 111, and the upper surface of the cross calibration pattern 210 overlaps with the focal plane FP of the low-distortion imaging probe 111; then, please refer to the upper figure of FIG. 13B, the calibration module 130 controls the low-distortion imaging probe 111 to capture the cross calibration pattern 210 that appears within the field of view of the low-distortion imaging probe 111 into an image IM1, wherein the cross calibration pattern 210 The center C210 is located at the first position L1 of the image IM1; then, please refer to the lower figure of Figure 13B. The correction module 130 takes the origin C2 of the motion platform 300 on the xy plane as the center of the circle, controls the motion platform 300 to drive the cross correction pattern 210 around the origin C2 of the motion platform 300 and rotates around the y-axis direction by an angle α. The correction module 130 controls the low-distortion image probe 111 to capture it as an image IM2, wherein the center C210 of the cross correction pattern 210 is located at the second position L2 of the image IM2.

在步驟S114b中,具體來說,透過分析第13B圖所示的影像IM1與影像IM2中的十字校正圖案210的圓心C210在x軸方向的位置差異,即可計算出距離a;接著,回到第13A圖,在距離a與角度α為已知的情況下,校正模組130可根據距離a與角度α並搭配三角函數公式,即可計算出第四z軸平移誤差Δz 4=a/sin(α)。 In step S114b, specifically, by analyzing the position difference of the center C210 of the cross correction pattern 210 in the image IM1 and the image IM2 in the x-axis direction shown in FIG. 13B , the distance a can be calculated; then, returning to FIG. 13A , when the distance a and the angle α are known, the correction module 130 can calculate the fourth z-axis translation error Δz 4 =a/sin(α) based on the distance a and the angle α in combination with the trigonometric function formula.

在步驟S114c中,具體來說,校正模組130根據第四z軸平移誤差Δz 4將運動平台300的姿態從前述校正後姿態(x 4,y 4,z 1,θx 1,θy 1,θz 1)調整成校正後姿態(x 4,y 4,z 4,θx 1,θy 1,θz 1)。此時,運動平台300在xy平面上的原點與低失真影像探頭111的焦平面重疊。 In step S114c, specifically, the calibration module 130 adjusts the posture of the motion platform 300 from the aforementioned calibrated posture (x 4 , y 4 , z 1 , θx 1 , θy 1 , θz 1 ) to the calibrated posture (x 4 , y 4 , z 4 , θx 1 , θy 1 , θz 1 ) according to the fourth z-axis translation error Δz 4. At this time , the origin of the motion platform 300 on the xy plane overlaps with the focal plane of the low-distortion image probe 111.

在步驟S114d中,具體來說,校正模組130儲存對應校正後姿態(x 4,y 4,z 4,θx 1,θy 1,θz 1)的六自由度座標參數中的第四z軸平移自由度座標值z 4In step S114d, specifically, the correction module 130 stores the fourth z-axis translational degree of freedom coordinate value z 4 in the six-degree-of-freedom coordinate parameters corresponding to the corrected posture (x 4 , y 4 , z 4 , θx 1 , θy 1 , θz 1 ).

藉此,藉此,完成相對於校正片200,運動平台300的姿態中x軸平移自由度之校正、y軸平移自由度以及z軸平移自由度。Thereby, the correction of the x-axis translational freedom, the y-axis translational freedom and the z-axis translational freedom in the posture of the motion platform 300 relative to the correction sheet 200 is completed.

由上述可得知,在未考慮到運動平台300與校正片之間的六自由度誤差時,相對於低失真影像探頭111,經校正後的運動平台300之姿態為(x 1,y 1,z 1,θx 1,θy 1,θz 1);相對於測距探頭112,經校正後的運動平台300之姿態為(x 2,y 2,z 2,θx 2,θy 2,θz 1);以及相對於光準直探頭113,經校正後的運動平台300之姿態為(x 3,y 3,z 3,θx 3,θy 3,θz 3)。 From the above, it can be seen that when the six-degree-of-freedom error between the motion platform 300 and the calibration film is not taken into account, the posture of the motion platform 300 after correction is (x 1 , y 1 , z 1 , θx 1 , θy 1 , θz 1 ) relative to the low-distortion imaging probe 111; the posture of the motion platform 300 after correction is (x 2 , y 2 , z 2 , θx 2 , θy 2 , θz 1 ) relative to the ranging probe 112; and the posture of the motion platform 300 after correction is (x 3 , y 3 , z 3 , θx 3 , θy 3 , θz 3 ) relative to the light collimation probe 113.

另外,在考慮到運動平台300與校正片之間的六自由度誤差時,相對於低失真影像探頭111,經校正後的運動平台300之姿態為(x 4,y 4,z 4,θx 1,θy 1,θz 1);相對於測距探頭112,經校正後的運動平台300之姿態為(x 4+x 2-x 1,y 4+y 2-y 1,z 4+z 2-z 1,θx 2,θy 2,θz 1);以及相對於光準直探頭113,經校正後的運動平台300之姿態為(x 4+x 3-x 1,y 4+y 3-y 1,z 4+z 3-z 1,θx 3,θy 3,θz 3)。 In addition, when the six-degree-of-freedom error between the motion platform 300 and the calibration film is taken into account, the posture of the motion platform 300 after calibration is (x 4 ,y 4 ,z 4 ,θx 1 ,θy 1 ,θz 1 ) relative to the low-distortion imaging probe 111; the posture of the motion platform 300 after calibration is (x 4 +x 2 -x 1 ,y 4 +y 2 -y 1 ,z 4 +z 2 -z 1 ,θx 2 ,θy 2 ,θz 1 ) relative to the ranging probe 112; and the posture of the motion platform 300 after calibration is (x 4 +x 3 -x 1 ,y 4 +y 3 -y 1 ,z 4 +z 3 -z 1 ,θx 3 ,θy 3 ,θz 3 ).

綜上所述,本發明所提供之六自由度對位設備與其校正方法可透過校正模組、具有複數校正圖案的校正片以及光學探頭組中各個探頭,即可對光學探頭組中各個探頭分別與運動平台之間相對姿態自動進行校正,以將兩者之間相對姿態校正為正確的。In summary, the six-degree-of-freedom alignment device and its correction method provided by the present invention can automatically calibrate the relative posture between each probe in the optical probe group and the motion platform through the correction module, the correction sheet with multiple correction patterns, and each probe in the optical probe group, so as to correct the relative posture between the two.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The above detailed description of the preferred specific embodiments is intended to more clearly describe the features and spirit of the present invention, but is not intended to limit the scope of the present invention by the preferred specific embodiments disclosed above. On the contrary, the purpose is to cover various changes and arrangements with equivalents within the scope of the patent application for the present invention.

100:六自由度對位設備 110:光學探頭組 111:低失真影像探頭 112:測距探頭 113:光準直探頭 114:殼體 130:校正模組 200:校正片 210:十字校正圖案 220:棋盤格校正圖案 221:第一方格圖案 222:第二方格圖案 230:實心圓校正圖案 240:全反射面校正圖案 300:運動平台 A1:第一區域 A2:第二區域 A3:第三區域 A4:第四區域 A5:中間區域 ALL:左下區域 ALR:右下區域 AUL:左上區域 AUR:右上區域 B10:第一起始點 B11:第一交界點 B20:第二起始點 B21:第二交界點 B30:第三起始點 B31:第三交界點 C1:實心圓圖案的圓心 C2:運動平台的原點 C210:十字校正圖案的中心 CF:視野中心 D1:第一距離 D2:第二距離 D3:第三距離 FP:焦平面 G1:第一訊號強度圖 G2:第二訊號強度圖 G3:第三訊號強度圖 IM,IM1,IM2,IM3:影像 L1:第一位置 L2:第二位置 L3:第三位置 P1:第一點 P2:第二點 P3:第三點 P4:第四點 P5:第五點 P6:第六點 PA1:十字相機標靶校正圖案 PA2:十字光源標靶校正圖案 SPA:圓弧掃描路徑 SPL1:第一直線掃描路徑 SPL2:第二直線掃描路徑 SPL3:第三直線掃描路徑 TP:轉折點 W1:第一區域與第三區域之間的距離 W2:第一區域與第二區域之間的距離 Z1:第一對焦高度 Z2:第二對焦高度 Z3:第三對焦高度 Z4:第四對焦高度 Z5:第五對焦高度 a:距離 α:角度 x,y,z:平移的自由度 θx,θy,θz:旋轉的自由度 S111~S122:步驟 100: Six-degree-of-freedom alignment equipment 110: Optical probe set 111: Low-distortion image probe 112: Distance probe 113: Light collimation probe 114: Housing 130: Calibration module 200: Calibration sheet 210: Cross calibration pattern 220: Chessboard calibration pattern 221: First square pattern 222: Second square pattern 230: Solid circle calibration pattern 240: Total reflection surface calibration pattern 300: Motion platform A1: First area A2: Second area A3: Third area A4: Fourth area A5: Middle area ALL: Lower left area ALR: Lower right area AUL: Upper left area AUR: Upper right area B10: First starting point B11: First intersection point B20: Second starting point B21: Second intersection point B30: Third starting point B31: Third intersection point C1: Center of solid circle pattern C2: Origin of motion platform C210: Center of cross calibration pattern CF: Center of field of view D1: First distance D2: Second distance D3: Third distance FP: Focal plane G1: First signal intensity map G2: Second signal intensity map G3: Third signal intensity map IM, IM1, IM2, IM3: Image L1: First position L2: Second position L3: Third position P1: First point P2: Second point P3: Third point P4: Fourth point P5: Fifth point P6: Sixth point PA1: Cross camera target calibration pattern PA2: Cross light source target calibration pattern SPA: arc scanning path SPL1: first straight line scanning path SPL2: second straight line scanning path SPL3: third straight line scanning path TP: turning point W1: distance between the first area and the third area W2: distance between the first area and the second area Z1: first focus height Z2: second focus height Z3: third focus height Z4: fourth focus height Z5: fifth focus height a: distance α: angle x, y, z: degrees of freedom of translation θx, θy, θz: degrees of freedom of rotation S111~S122: steps

第1圖係根據本發明之六自由度對位設備、運動平台以及校正片之立體圖。 第2圖係顯示本發明之校正片之示意圖。 第3A~3C圖係顯示本發明之校正方法之流程圖。 第4圖係顯示本發明之低失真影像探頭所拍攝的包含實心圓校正圖案的影像之示意圖。 第5A圖係顯示本發明之低失真影像探頭所拍攝的包含棋盤格校正圖案的影像之示意圖。 第5B圖係顯示本發明之包含棋盤格校正圖案的影像中四個角落區域以及中間區域在進行高度掃描時的空間頻率響應(Spatial Frequency Response, SFR)之示意圖。 第6圖係顯示本發明之低失真影像探頭所拍攝的三張包含不同位置十字校正圖案的影像之示意圖。 第7A圖係顯示本發明之運動平台與校正片透過測距探頭沿著x軸方向進行感測後的姿態之示意圖。 第7B圖係顯示本發明之運動平台與校正片透過測距探頭沿著y軸方向進行感測後的姿態之示意圖。 第8圖係顯示本發明之利用測距探頭找出第二z軸對焦誤差之示意圖。 第9圖係顯示本發明之利用測距探頭與實心圓校正圖案找出第二x軸平移誤差與第二y軸平移誤差之示意圖。 第10圖係顯示本發明之光準直探頭所拍攝的包含十字相機標靶圖圖形與十字光源標靶圖形之影像之示意圖。 第11圖係顯示本發明之光準直探頭所拍攝的三張包含不同位置十字光源標靶校正圖案的影像之示意圖。 第12圖係顯示本發明之在低失真影像探頭的視野範圍內運動平台帶動實心圓校正圖案以運動平台在xy平面上的原點作為圓心繞著z軸旋轉掃描之示意圖。 第13A圖係顯示本發明之運動平台帶動十字校正圖案以運動平台的原點作為圓心繞著y軸旋轉之示意圖。 第13B圖係顯示本發明之在低失真影像探頭的視野範圍內運動平台帶動十字校正圖案以運動平台的原點作為圓心繞著y軸旋轉之示意圖。 FIG. 1 is a stereoscopic diagram of the six-degree-of-freedom alignment device, motion platform, and calibration film according to the present invention. FIG. 2 is a schematic diagram showing the calibration film of the present invention. FIG. 3A to FIG. 3C are flowcharts showing the calibration method of the present invention. FIG. 4 is a schematic diagram showing an image including a solid circle calibration pattern captured by the low-distortion imaging probe of the present invention. FIG. 5A is a schematic diagram showing an image including a checkerboard calibration pattern captured by the low-distortion imaging probe of the present invention. FIG. 5B is a schematic diagram showing the spatial frequency response (SFR) of the four corner areas and the middle area of the image including the checkerboard calibration pattern during height scanning of the present invention. FIG. 6 is a schematic diagram showing three images including cross correction patterns at different positions taken by the low-distortion image probe of the present invention. FIG. 7A is a schematic diagram showing the posture of the motion platform and the correction plate of the present invention after being sensed by the ranging probe along the x-axis direction. FIG. 7B is a schematic diagram showing the posture of the motion platform and the correction plate of the present invention after being sensed by the ranging probe along the y-axis direction. FIG. 8 is a schematic diagram showing the present invention using the ranging probe to find the second z-axis focus error. FIG. 9 is a schematic diagram showing the present invention using the ranging probe and the solid circle correction pattern to find the second x-axis translation error and the second y-axis translation error. FIG. 10 is a schematic diagram showing an image including a cross camera target pattern and a cross light source target pattern taken by the light collimation probe of the present invention. FIG. 11 is a schematic diagram showing three images including cross light source target correction patterns at different positions taken by the light collimation probe of the present invention. FIG. 12 is a schematic diagram showing a solid circle correction pattern driven by the motion platform within the field of view of the low-distortion image probe of the present invention, which is rotated around the z-axis with the origin of the motion platform on the xy plane as the center of the circle. FIG. 13A is a schematic diagram showing a cross correction pattern driven by the motion platform of the present invention, which is rotated around the y-axis with the origin of the motion platform as the center of the circle. Figure 13B is a schematic diagram showing the present invention, in which the motion platform drives the cross correction pattern to rotate around the y-axis with the origin of the motion platform as the center within the field of view of the low-distortion image probe.

100:六自由度對位設備 110:光學探頭組 111:低失真影像探頭 112:測距探頭 113:光準直探頭 114:殼體 130:校正模組 200:校正片 300:運動平台 x,y,z:平移的自由度 θx,θy,θz:旋轉的自由度 100: Six-degree-of-freedom alignment equipment 110: Optical probe set 111: Low-distortion image probe 112: Distance-measuring probe 113: Optical collimation probe 114: Housing 130: Calibration module 200: Calibration sheet 300: Motion platform x, y, z: Translational degrees of freedom θx, θy, θz: Rotational degrees of freedom

Claims (11)

一種六自由度對位設備,包含: 一光學探頭組,包含彼此鄰近設置的一低失真影像探頭以及一測距探頭;以及 一校正模組,電性連接該光學探頭組以及一運動平台,且可移動地設置於該光學探頭組中各個探頭的視野範圍內,該校正模組用以透過設置於該運動平台上具有複數校正圖案的一校正片以及該光學探頭組中各個探頭,分別計算出各個探頭與該運動平台之間的一六自由度誤差,並根據該六自由度誤差將該運動平台的姿態調整成對應各個探頭的一校正後姿態,以及儲存對應該校正後姿態的一六自由度座標參數。 A six-degree-of-freedom alignment device comprises: an optical probe set, comprising a low-distortion image probe and a distance measuring probe arranged adjacent to each other; and a calibration module, electrically connected to the optical probe set and a motion platform, and movably arranged within the field of view of each probe in the optical probe set, the calibration module is used to calculate a six-degree-of-freedom error between each probe and the motion platform through a calibration sheet having a plurality of calibration patterns arranged on the motion platform and each probe in the optical probe set, and adjust the posture of the motion platform to a calibrated posture corresponding to each probe according to the six-degree-of-freedom error, and store a six-degree-of-freedom coordinate parameter corresponding to the calibrated posture. 如請求項1所述之六自由度對位設備,其中該低失真影像探頭與該運動平台之間的六自由度誤差包含一第一x軸平移誤差、一第一y軸平移誤差、一第一x軸旋轉誤差、一第一y軸旋轉誤差、一第一z軸旋轉誤差以及一第一z軸對焦誤差,且對應的六自由度座標參數包含一第一x軸平移自由度座標值、一第一y軸平移自由度座標值、一第一z軸平移自由度座標值、一第一x軸旋轉自由度座標值、一第一y軸旋轉自由度座標值以及一第一z軸旋轉自由度座標值。A six-degree-of-freedom alignment device as described in claim 1, wherein the six-degree-of-freedom error between the low-distortion image probe and the motion platform includes a first x-axis translation error, a first y-axis translation error, a first x-axis rotation error, a first y-axis rotation error, a first z-axis rotation error and a first z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a first x-axis translational degree-of-freedom coordinate value, a first y-axis translational degree-of-freedom coordinate value, a first z-axis translational degree-of-freedom coordinate value, a first x-axis rotational degree-of-freedom coordinate value, a first y-axis rotational degree-of-freedom coordinate value and a first z-axis rotational degree-of-freedom coordinate value. 如請求項2所述之六自由度對位設備,其中該測距探頭與該運動平台之間的六自由度誤差包含一第二x軸平移誤差、一第二y軸平移誤差、一第二x軸旋轉誤差、一第二y軸旋轉誤差以及一第二z軸對焦誤差,且對應的六自由度座標參數包含一第二x軸平移自由度座標值、一第二y軸平移自由度座標值、一第二z軸平移自由度座標值、一第二x軸旋轉自由度座標值以及一第二y軸旋轉自由度座標值。 The six-degree-of-freedom alignment device as described in claim 2, wherein the six-degree-of-freedom error between the ranging probe and the motion platform includes a second x-axis translation error, a second y-axis translation error, a second x-axis rotation error, a second y-axis rotation error, and a second z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a second x-axis translation freedom coordinate value, a second y-axis translation freedom coordinate value, a second z-axis translation freedom coordinate value, a second x-axis rotation freedom coordinate value, and a second y-axis rotation freedom coordinate value. 如請求項3所述之六自由度對位設備,其中該等校正圖案包含一十字校正圖案、一棋盤格校正圖案、一實心圓校正圖案以及一全反射面校正圖案,以及,該第一z軸旋轉誤差以及該第三z軸平移誤差係透過該十字校正圖案以及對應的探頭而被計算出來;該第一x軸旋轉誤差、該第一y軸旋轉誤差以及該第一z軸對焦誤差係透過該棋盤格校正圖以案及對應的探頭而被計算出來;該第一x軸平移誤差、該第一y軸平移誤差、該第二x軸平移誤差、該第二y軸平移誤差、該第三x軸平移誤差以及該第三y軸平移誤差係透過該實心圓校正圖案以及對應的探頭而被計算出來;以及該第二x軸旋轉誤差以及該第二y軸旋轉誤差係透過該全反射面校正圖案以及對應的探頭而被計算出來。 The six-degree-of-freedom alignment device as described in claim 3, wherein the correction patterns include a cross correction pattern, a chessboard correction pattern, a solid circle correction pattern and a total reflection surface correction pattern, and the first z-axis rotation error and the third z-axis translation error are calculated through the cross correction pattern and the corresponding probe; the first x-axis rotation error, the first y-axis rotation error and the first z-axis focus error are calculated through the chessboard correction pattern. The first x-axis translation error, the first y-axis translation error, the second x-axis translation error, the second y-axis translation error, the third x-axis translation error and the third y-axis translation error are calculated through the solid circle correction pattern and the corresponding probe; and the second x-axis rotation error and the second y-axis rotation error are calculated through the total reflection surface correction pattern and the corresponding probe. 如請求項4所述之六自由度對位設備,其中該光學探頭組更包含一光準直探頭,與該低失真影像探頭以及該測距探頭鄰近設置,且該光準直探頭與該運動平台之間的六自由度誤差包含一第三x軸平移誤差、一第三y軸平移誤差、一第三x軸旋轉誤差、一第三y軸旋轉誤差、一第三z軸旋轉誤差以及一第三z軸對焦誤差,且對應的六自由度座標參數包含一第三x 軸平移自由度座標值、一第三y軸平移自由度座標值、一第三z軸平移自由度座標值、一第三x軸旋轉自由度座標值、一第三y軸旋轉自由度座標值以及一第三z軸旋轉自由度座標值。 The six-degree-of-freedom alignment device as described in claim 4, wherein the optical probe assembly further includes a light collimating probe, which is arranged adjacent to the low-distortion image probe and the ranging probe, and the six-degree-of-freedom error between the light collimating probe and the motion platform includes a third x-axis translation error, a third y-axis translation error, a third x-axis rotation error, a third y-axis rotation error, and a The third z-axis rotation error and the third z-axis focus error, and the corresponding six-degree-of-freedom coordinate parameters include a third x-axis translational degree-of-freedom coordinate value, a third y-axis translational degree-of-freedom coordinate value, a third z-axis translational degree-of-freedom coordinate value, a third x-axis rotational degree-of-freedom coordinate value, a third y-axis rotational degree-of-freedom coordinate value, and a third z-axis rotational degree-of-freedom coordinate value. 如請求項5所述之六自由度對位設備,其中:該第三z軸對焦誤差係透過該棋盤格校正圖以案及對應的探頭而被計算出來;該第三x軸平移誤差以及該第三y軸平移誤差係透過該實心圓校正圖案以及對應的探頭而被計算出來;以及該第三x軸旋轉誤差、該第三y軸旋轉誤差以及該第三z軸旋轉誤差係透過該全反射面校正圖案以及對應的探頭而被計算出來。 The six-degree-of-freedom alignment device as described in claim 5, wherein: the third z-axis focus error is calculated through the checkerboard correction pattern and the corresponding probe; the third x-axis translation error and the third y-axis translation error are calculated through the solid circle correction pattern and the corresponding probe; and the third x-axis rotation error, the third y-axis rotation error and the third z-axis rotation error are calculated through the total reflection surface correction pattern and the corresponding probe. 如請求項1至6中任一項所述之六自由度對位設備,其中該運動平台用以承載該校正片,該校正模組用以透過該校正片與該低失真影像探頭來計算出該校正片與該運動平台之間的一第四x軸平移誤差、一第四y軸平移誤差以及一第四z軸平移誤差,並根據該第四x軸平移誤差、該第四y軸平移誤差以及該第四z軸平移誤差將該運動平台的姿態調整成一校正後姿態,以及儲存對應該校正後姿態的一第四x軸平移自由度座標值、一第四y軸平移自由度座標值以及一第四z軸平移自由度座標值。 A six-degree-of-freedom alignment device as described in any one of claims 1 to 6, wherein the motion platform is used to carry the correction sheet, and the correction module is used to calculate a fourth x-axis translation error, a fourth y-axis translation error, and a fourth z-axis translation error between the correction sheet and the motion platform through the correction sheet and the low-distortion image probe, and adjust the posture of the motion platform to a corrected posture according to the fourth x-axis translation error, the fourth y-axis translation error, and the fourth z-axis translation error, and store a fourth x-axis translation freedom degree coordinate value, a fourth y-axis translation freedom degree coordinate value, and a fourth z-axis translation freedom degree coordinate value corresponding to the corrected posture. 一種如請求項1至4中任一項所述之六自由度對位設備的校正方法,包含以下步驟: S111、該校正模組移動該運動平台以使該校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成一影像;S112、該校正模組根據該影像中的校正圖案計算出該低失真影像探頭與該運動平台之間的六自由度誤差;S113、該校正模組根據步驟S112的六自由度誤差將該運動平台的姿態調整成對應該低失真影像探頭的校正後姿態;S114、該校正模組儲存步驟S113中對應該校正後姿態的六軸自由座標參數;S115、該校正模組移動該運動平台以使該校正片的校正圖案出現在該測距探頭的視野範圍內並進行感測而產生一感測資訊;S116、該校正模組根據該感測資訊計算出該測距探頭與該運動平台之間的六自由度誤差;S117、該校正模組根據步驟S116的六自由度誤差將該運動平台的姿態調整成對應該測距探頭的校正後姿態;以及S118、該校正模組儲存步驟S117中對應該校正後姿態的六軸自由座標參數。 A calibration method for a six-degree-of-freedom alignment device as described in any one of claims 1 to 4, comprising the following steps: S111, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the low-distortion image probe and is photographed as an image; S112, the calibration module calculates the six-degree-of-freedom error between the low-distortion image probe and the motion platform according to the calibration pattern in the image; S113, the calibration module adjusts the posture of the motion platform to a calibrated posture corresponding to the low-distortion image probe according to the six-degree-of-freedom error in step S112; S114, the calibration module stores the six-degree-of-freedom error in step S112; 13, the six-axis free coordinate parameters corresponding to the corrected posture; S115, the correction module moves the motion platform so that the correction pattern of the correction sheet appears within the field of view of the ranging probe and performs sensing to generate sensing information; S116, the correction module calculates the six-degree-of-freedom error between the ranging probe and the motion platform according to the sensing information; S117, the correction module adjusts the posture of the motion platform to the corrected posture corresponding to the ranging probe according to the six-degree-of-freedom error in step S116; and S118, the correction module stores the six-axis free coordinate parameters corresponding to the corrected posture in step S117. 如請求項8所述之校正方法,在步驟S114與步驟S115之間,更包含以下步驟:S114a、該校正模組移動該運動平台以使該校正片的校正圖案出現在該低失真影像探頭的視野範圍內並拍攝成一影像;S114b、該校正模組根據該影像中的校正圖案來計算出該校正片與該承載部之間的六自由度誤差; S114c、該校正模組根據步驟S114b的六自由度誤差將該運動平台的姿態調整成一校正後姿態;以及 S114d、該校正模組儲存步驟S114c中對應該校正後姿態的六軸自由座標參數。 The calibration method as described in claim 8 further includes the following steps between step S114 and step S115: S114a, the calibration module moves the motion platform so that the calibration pattern of the calibration sheet appears within the field of view of the low-distortion imaging probe and is captured as an image; S114b, the calibration module calculates the six-degree-of-freedom error between the calibration sheet and the carrier according to the calibration pattern in the image; S114c, the calibration module adjusts the posture of the motion platform to a calibrated posture according to the six-degree-of-freedom error in step S114b; and S114d, the calibration module stores the six-axis free coordinate parameters corresponding to the calibrated posture in step S114c. 一種如請求項1至7中任一項所述之六自由度對位設備的校正方法,包含以下步驟: S111、該校正模組移動該運動平台以使該校正片的校正圖案出現在低失真影像探頭的視野範圍內並拍攝成一影像; S112、該校正模組根據該影像中的校正圖案計算出該低失真影像探頭與該運動平台之間的六自由度誤差; S113、該校正模組根據步驟S112的六自由度誤差將該運動平台的姿態調整成對應該低失真影像探頭的校正後姿態; S114、該校正模組儲存步驟S113中對應該校正後姿態的六軸自由座標參數; S115、該校正模組移動該運動平台以使該校正片的校正圖案出現在該測距探頭的視野範圍內並進行感測而產生一感測資訊; S116、該校正模組根據該感測資訊計算出該測距探頭與該運動平台之間的六自由度誤差; S117、該校正模組根據步驟S116的六自由度誤差將該運動平台的姿態調整成對應該測距探頭的校正後姿態; S118、該校正模組儲存步驟S117中對應該校正後姿態的六軸自由座標參數; S119、該校正模組移動該運動平台以使該校正片的校正圖案出現在該光準直探頭的視野範圍內並拍攝成一影像; S120、該校正模組根據該影像中的校正圖案計算出該光準直探頭與該運動平台之間的六自由度誤差; S121、該校正模組根據步驟S120的六自由度誤差將該運動平台的姿態調整成對應該光準直探頭的校正後姿態;以及 S122、該校正模組儲存步驟S121中對應該校正後姿態的六軸自由座標參數。 A calibration method for a six-degree-of-freedom alignment device as described in any one of claims 1 to 7, comprising the following steps: S111, the calibration module moves the motion platform so that the calibration pattern of the calibration film appears within the field of view of the low-distortion image probe and is photographed into an image; S112, the calibration module calculates the six-degree-of-freedom error between the low-distortion image probe and the motion platform according to the calibration pattern in the image; S113, the calibration module adjusts the posture of the motion platform to a calibrated posture corresponding to the low-distortion image probe according to the six-degree-of-freedom error in step S112; S114, the calibration module stores the six-axis free coordinate parameters corresponding to the calibrated posture in step S113; S115, the correction module moves the motion platform so that the correction pattern of the correction film appears within the field of view of the ranging probe and performs sensing to generate sensing information; S116, the correction module calculates the six-degree-of-freedom error between the ranging probe and the motion platform according to the sensing information; S117, the correction module adjusts the posture of the motion platform to the corrected posture corresponding to the ranging probe according to the six-degree-of-freedom error in step S116; S118, the correction module stores the six-axis free coordinate parameters corresponding to the corrected posture in step S117; S119, the correction module moves the motion platform so that the correction pattern of the correction film appears within the field of view of the light collimation probe and captures an image; S120, the calibration module calculates the six-degree-of-freedom error between the light collimating probe and the motion platform according to the calibration pattern in the image; S121, the calibration module adjusts the posture of the motion platform to the calibrated posture corresponding to the light collimating probe according to the six-degree-of-freedom error in step S120; and S122, the calibration module stores the six-axis free coordinate parameters corresponding to the calibrated posture in step S121. 如請求項10所述之校正方法,在步驟S114與步驟S115之間,更包含以下步驟: S114a、該校正模組移動該運動平台以使該校正片的校正圖案出現在該低失真影像探頭的視野範圍內並拍攝成一影像; S114b、該校正模組根據該影像中的校正圖案來計算出該校正片與該承載部之間的六自由度誤差; S114c、該校正模組根據步驟S114b的六自由度誤差將該運動平台的姿態調整成一校正後姿態;以及 S114d、該校正模組儲存步驟S114c中對應該校正後姿態的六自由度座標參數。 The calibration method as described in claim 10 further includes the following steps between step S114 and step S115: S114a, the calibration module moves the motion platform so that the calibration pattern of the calibration sheet appears within the field of view of the low-distortion imaging probe and is captured as an image; S114b, the calibration module calculates the six-degree-of-freedom error between the calibration sheet and the carrier according to the calibration pattern in the image; S114c, the calibration module adjusts the posture of the motion platform to a calibrated posture according to the six-degree-of-freedom error in step S114b; and S114d, the calibration module stores the six-degree-of-freedom coordinate parameters corresponding to the calibrated posture in step S114c.
TW111150654A 2022-12-29 2022-12-29 Six degrees of freedom aligning equipment and calibration thereof TWI849657B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111150654A TWI849657B (en) 2022-12-29 2022-12-29 Six degrees of freedom aligning equipment and calibration thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111150654A TWI849657B (en) 2022-12-29 2022-12-29 Six degrees of freedom aligning equipment and calibration thereof

Publications (2)

Publication Number Publication Date
TW202426858A TW202426858A (en) 2024-07-01
TWI849657B true TWI849657B (en) 2024-07-21

Family

ID=92928827

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111150654A TWI849657B (en) 2022-12-29 2022-12-29 Six degrees of freedom aligning equipment and calibration thereof

Country Status (1)

Country Link
TW (1) TWI849657B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252387B2 (en) * 2005-03-21 2007-08-07 Mitsubishi Electric Research Laboratories, Inc. System and method for mechanically adjusting projector pose with six degrees of freedom for image alignment
CN106886227A (en) * 2016-12-26 2017-06-23 中国科学院长春光学精密机械与物理研究所 A kind of six degree of freedom high accuracy adjustment alignment system based on 6RRRPRR
CN112556579A (en) * 2020-12-25 2021-03-26 深圳市中图仪器股份有限公司 Six-degree-of-freedom space coordinate position and attitude measuring device
CN113167581A (en) * 2018-12-13 2021-07-23 莱卡地球系统公开股份有限公司 Measuring method, measuring system and auxiliary measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252387B2 (en) * 2005-03-21 2007-08-07 Mitsubishi Electric Research Laboratories, Inc. System and method for mechanically adjusting projector pose with six degrees of freedom for image alignment
CN106886227A (en) * 2016-12-26 2017-06-23 中国科学院长春光学精密机械与物理研究所 A kind of six degree of freedom high accuracy adjustment alignment system based on 6RRRPRR
CN113167581A (en) * 2018-12-13 2021-07-23 莱卡地球系统公开股份有限公司 Measuring method, measuring system and auxiliary measuring instrument
CN112556579A (en) * 2020-12-25 2021-03-26 深圳市中图仪器股份有限公司 Six-degree-of-freedom space coordinate position and attitude measuring device

Also Published As

Publication number Publication date
TW202426858A (en) 2024-07-01

Similar Documents

Publication Publication Date Title
JP6858211B2 (en) Devices and methods for positioning a multi-aperture optical system with multiple optical channels relative to an image sensor.
US7701592B2 (en) Method and apparatus for combining a targetless optical measurement function and optical projection of information
US20050068523A1 (en) Calibration block and method for 3D scanner
GB2544181A (en) Three-dimensional imager that includes a dichroic camera
JPH05175098A (en) Exposure system
TWI667090B (en) Laser processing device
US20150085108A1 (en) Lasergrammetry system and methods
JP2002365016A (en) Position measuring method using interferometer, interference type position measuring apparatus, exposure apparatus and exposure method
JP2007232649A (en) Method and device for measuring flat plate flatness
US7777874B2 (en) Noncontact surface form measuring apparatus
TWI732484B (en) Camera module manufacturing device and camera module manufacturing method
WO2014073262A1 (en) Apparatus for detecting position of image pickup element
KR20090062027A (en) 3D posture measuring device and 3D posture measuring method using the same
TWI849657B (en) Six degrees of freedom aligning equipment and calibration thereof
CN113465518B (en) Method for eliminating mechanical error generated by installation of laser height measuring mechanism
JPH0970781A (en) Method for calibrating three dimensional position of self sustaining traveling robot
US20230069195A1 (en) Camera module manufacturing device
JPH0581046B2 (en)
CN118293794A (en) Six-degree-of-freedom alignment equipment and correction method thereof
JP3772444B2 (en) Stage device, coordinate measuring device, and position measuring method
CN114594596B (en) Compensation of pupil aberration of objective lens
CN117190854A (en) Measuring system and compensating method for position error of two-dimensional motion platform
CN116105600A (en) Aiming target method based on binocular camera, processing device and laser tracker
CN115511927A (en) An Integrated Calibration Tool for Six-Axis Spatial Allocation of the Entrance Pupil of Optical Instruments
US20050086024A1 (en) Semiconductor wafer location sensing via non contact methods