[go: up one dir, main page]

TWI847848B - Memory device and manufacturing method thereof - Google Patents

Memory device and manufacturing method thereof Download PDF

Info

Publication number
TWI847848B
TWI847848B TW112131576A TW112131576A TWI847848B TW I847848 B TWI847848 B TW I847848B TW 112131576 A TW112131576 A TW 112131576A TW 112131576 A TW112131576 A TW 112131576A TW I847848 B TWI847848 B TW I847848B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric
blocking
conductive layer
memory device
Prior art date
Application number
TW112131576A
Other languages
Chinese (zh)
Other versions
TW202510335A (en
Inventor
楊智凱
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW112131576A priority Critical patent/TWI847848B/en
Application granted granted Critical
Publication of TWI847848B publication Critical patent/TWI847848B/en
Publication of TW202510335A publication Critical patent/TW202510335A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory device includes a substrate, a bottom source structure, gate layers, dielectric layers, a contact structure and a plurality of support pillar structures. The bottom source structure is located over the substrate. The bottom source structure includes a bottom electrode layer, a dielectric stack structure and a blocking structure. The gate layers and the dielectric layers are alternately stacked over the bottom source structure. The contact structure penetrates through the gate layers and the dielectric layers and extends to the bottom source structure. The support pillar structure penetrates through the gate layers and the dielectric layers and extends to the bottom source structure. The dielectric stack structure of the bottom source structure surrounds each of the support pillar structures. The blocking structure of the bottom source structure is located between one of the support pillar structures and the contact structure.

Description

記憶體裝置及其製造方法Memory device and manufacturing method thereof

本揭露內容是有關於一種記憶體裝置及一種記憶體裝置的製造方法。The present disclosure relates to a memory device and a method for manufacturing the memory device.

在半導體工業中,記憶體裝置的結構不斷改變,且記憶體裝置的儲存容量不斷增加。記憶體裝置被應用於許多產品(例如MP3播放器、數位相機及電腦檔案等)的儲存元件中。隨著這些應用的增加,記憶體裝置的需求集中在小尺寸與大儲存容量上。為了滿足此條件,需要具有高元件密度、小尺寸及堅固結構的記憶體裝置及其製造方法。因此,在記憶體裝置的製造中提供堅固的製程是重要的。In the semiconductor industry, the structure of memory devices is constantly changing, and the storage capacity of memory devices is constantly increasing. Memory devices are used in storage components of many products (such as MP3 players, digital cameras, and computer files). As these applications increase, the demand for memory devices focuses on small size and large storage capacity. In order to meet this condition, a memory device with high component density, small size and robust structure and a method for manufacturing the same are required. Therefore, it is important to provide a robust process in the manufacture of memory devices.

本揭露之一技術態樣為一種記憶體裝置。One technical aspect of the present disclosure is a memory device.

根據本揭露一些實施方式,一種記憶體裝置包括基板、底源極結構、複數個閘極層及複數個介電層、接觸結構以及複數個支柱結構。底源極結構設置於基板上。底源極結構包括底電極層、介電堆疊結構及阻擋結構。閘極層及介電層交錯堆疊於底源極結構上。接觸結構穿過閘極層及介電層並延伸到底源極結構。支柱結構穿過閘極層及介電層並延伸到底源極結構。底源極結構的介電堆疊結構包圍支柱結構的每一者,且底源極結構的阻擋結構設置於支柱結構的其中一者與接觸結構之間。According to some embodiments of the present disclosure, a memory device includes a substrate, a bottom source structure, a plurality of gate layers and a plurality of dielectric layers, a contact structure, and a plurality of pillar structures. The bottom source structure is disposed on the substrate. The bottom source structure includes a bottom electrode layer, a dielectric stack structure, and a blocking structure. The gate layer and the dielectric layer are alternately stacked on the bottom source structure. The contact structure passes through the gate layer and the dielectric layer and extends to the bottom source structure. The pillar structure passes through the gate layer and the dielectric layer and extends to the bottom source structure. The dielectric stack structure of the bottom source structure surrounds each of the pillar structures, and the barrier structure of the bottom source structure is disposed between one of the pillar structures and the contact structure.

在本揭露一些實施方式中,阻擋結構接觸介電堆疊結構與接觸結構。In some embodiments of the present disclosure, the blocking structure contacts the dielectric stack structure and the contact structure.

在本揭露一些實施方式中,底源極結構更包括第一導電層與設置於第一導電層上的第二導電層。阻擋結構設置於第一導電層與第二導電層之間。In some embodiments of the present disclosure, the bottom-source structure further includes a first conductive layer and a second conductive layer disposed on the first conductive layer. The blocking structure is disposed between the first conductive layer and the second conductive layer.

在本揭露一些實施方式中,接觸結構沿著第一方向延伸,且阻擋結構的第一部分鄰接接觸結構沿著第一方向的區段。In some embodiments of the present disclosure, the contact structure extends along a first direction, and the first portion of the blocking structure is adjacent to a section of the contact structure along the first direction.

在本揭露一些實施方式中,阻擋結構更包括第二部分。阻擋結構的第二部分沿著垂直第一方向的第二方向延伸。In some embodiments of the present disclosure, the blocking structure further includes a second portion. The second portion of the blocking structure extends along a second direction perpendicular to the first direction.

在本揭露一些實施方式中,記憶體裝置更包括記憶體結構。記憶體結構穿過在陣列區域上方的閘極層及介電層。接觸結構沿著在陣列區域與包括支柱結構的階梯區域上方的第一方向延伸。In some embodiments of the present disclosure, the memory device further includes a memory structure. The memory structure passes through a gate layer and a dielectric layer above the array region. The contact structure extends along a first direction above the array region and the step region including the pillar structure.

本揭露之另一技術態樣為一種記憶體裝置。Another technical aspect of the present disclosure is a memory device.

根據本揭露一些實施方式,一種記憶體裝置包括基板、底源極結構、複數個閘極層及複數個介電層、接觸結構以及支柱結構。底源極結構設置於基板上。底源極結構包括底電極層及介電堆疊結構。閘極層及介電層交錯堆疊於底源極結構上。接觸結構穿過閘極層及介電層並延伸到底源極結構。支柱結構穿過閘極層及介電層並延伸到底源極結構。底源極結構的介電堆疊結構側向地位於接觸結構的下部分與支柱結構的下部分之間。According to some embodiments of the present disclosure, a memory device includes a substrate, a bottom source structure, a plurality of gate layers and a plurality of dielectric layers, a contact structure and a pillar structure. The bottom source structure is disposed on the substrate. The bottom source structure includes a bottom electrode layer and a dielectric stack structure. The gate layer and the dielectric layer are stacked alternately on the bottom source structure. The contact structure passes through the gate layer and the dielectric layer and extends to the bottom source structure. The pillar structure passes through the gate layer and the dielectric layer and extends to the bottom source structure. The dielectric stack structure of the bottom source structure is laterally located between the lower portion of the contact structure and the lower portion of the pillar structure.

在本揭露一些實施方式中,底源極結構更包括阻擋結構。阻擋結構側向地鄰接介電堆疊結構。In some embodiments of the present disclosure, the bottom source structure further includes a blocking structure. The blocking structure is laterally adjacent to the dielectric stack structure.

在本揭露一些實施方式中,支柱結構的底面在介電堆疊結構的底面下方。In some embodiments of the present disclosure, a bottom surface of the pillar structure is below a bottom surface of the dielectric stack structure.

本揭露之另一技術態樣為一種記憶體裝置的製造方法。Another technical aspect of the present disclosure is a method for manufacturing a memory device.

根據本揭露一些實施方式,一種記憶體裝置的製造方法包括依序形成第一導電層、介電堆疊結構及第二導電層於基板上,其中基板具有陣列區域與階梯區域。形成阻擋層於第二導電層上,其中在階梯區域上方的阻擋層更穿過第二導電層與介電堆疊結構。形成複數個介電層與複數個犧牲材料層交錯堆疊於阻擋層上。形成記憶體結構向下穿過陣列區域上方的介電層、犧牲材料層、阻擋層、第二導電層及介電堆疊結構,其中記憶體結構包括記憶體元件與在記憶體元件上的通道層。形成支柱結構向下穿過階梯區域上方的介電層、犧牲材料層、阻擋層、第二導電層及介電堆疊結構。形成狹縫溝槽向下穿過陣列區域與階梯區域上方的介電層及犧牲材料層。從狹縫溝槽蝕刻陣列區域上方的阻擋層與第二導電層,以暴露介電堆疊結構。蝕刻該陣列區域上方的介電堆疊結構與記憶體結構的記憶體元件,以暴露記憶體結構的通道層。形成底電極層電性連接記憶體結構的通道層。將犧牲材料層替換為複數個閘極層。形成接觸結構於狹縫溝槽中。According to some embodiments of the present disclosure, a method for manufacturing a memory device includes sequentially forming a first conductive layer, a dielectric stack structure, and a second conductive layer on a substrate, wherein the substrate has an array region and a step region. Forming a blocking layer on the second conductive layer, wherein the blocking layer above the step region further passes through the second conductive layer and the dielectric stack structure. Forming a plurality of dielectric layers and a plurality of sacrificial material layers alternately stacked on the blocking layer. A memory structure is formed downward through the dielectric layer, sacrificial material layer, blocking layer, second conductive layer and dielectric stack structure above the array region, wherein the memory structure includes a memory element and a channel layer above the memory element. A pillar structure is formed downward through the dielectric layer, sacrificial material layer, blocking layer, second conductive layer and dielectric stack structure above the step region. A slit trench is formed downward through the dielectric layer and sacrificial material layer above the array region and the step region. The blocking layer and second conductive layer above the array region are etched from the slit trench to expose the dielectric stack structure. The dielectric stack structure and the memory element of the memory structure above the array region are etched to expose the channel layer of the memory structure. A bottom electrode layer is formed to electrically connect the channel layer of the memory structure. The sacrificial material layer is replaced with a plurality of gate layers. A contact structure is formed in the slit trench.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的,因此不應用以限制本揭露。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。另外,為了便於讀者觀看,圖式中各元件的尺寸並非依實際比例繪示。The following will disclose multiple embodiments of the present disclosure with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these practical details are not necessary and therefore should not be used to limit the present disclosure. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner. In addition, in order to facilitate the reader's viewing, the size of each component in the drawings is not drawn according to the actual scale.

本文所用「約」、「近似」或「實質上」應通常是指給定值或範圍的百分之十以內,且更優選地為百分之五以內。在此給出的數值是近似的,意味著若沒有明確說明,則術語「約」、「近似」或「實質上」的涵意可被推斷出來。As used herein, "about", "approximately" or "substantially" shall generally refer to within 10% of a given value or range, and more preferably within 5%. The numerical values given herein are approximate, meaning that if not explicitly stated, the meaning of the term "about", "approximately" or "substantially" can be inferred.

在本揭露的實施方式中,提供一種記憶體裝置及其製造方法。應理解到,為了便於描述,術語「上視圖」在本揭露中可以是泛指記憶體裝置之第二導電層(即,第1B圖中線段A-A的剖面位置)的剖面圖,以突顯本揭露的技術特徵。此外,第1A圖、第2A圖、第3A圖、第4A圖、第5A圖、第6A圖、第7A圖、第8A圖、第9A圖、第10A圖、第11A圖、第12A圖、第13A圖以及第14A圖繪示根據本揭露一些實施方式之記憶體裝置的佈局的上視圖,且為了簡化起見,一些元件不繪示在這些上視圖中。第1A至1B圖、第2A至2B圖、第3A至3B圖、第4A至4B圖、第5A至5B圖、第6A至6B圖、第7A至7B圖、第8A至8B圖、第9A至9B圖、第10A至10B圖、第11A至11B圖、第12A至12B圖、第13A至13B圖以及第14A至14C圖繪示根據本揭露一些實施方式之記憶體裝置100的製造方法在不同階段的視圖。In the embodiments of the present disclosure, a memory device and a method for manufacturing the same are provided. It should be understood that, for ease of description, the term "top view" in the present disclosure may generally refer to a cross-sectional view of the second conductive layer of the memory device (i.e., the cross-sectional position of the line segment A-A in FIG. 1B ) to highlight the technical features of the present disclosure. In addition, FIG. 1A , FIG. 2A , FIG. 3A , FIG. 4A , FIG. 5A , FIG. 6A , FIG. 7A , FIG. 8A , FIG. 9A , FIG. 10A , FIG. 11A , FIG. 12A , FIG. 13A , and FIG. 14A illustrate top views of the layout of the memory device according to some embodiments of the present disclosure, and for the sake of simplicity, some components are not illustrated in these top views. Figures 1A-1B, 2A-2B, 3A-3B, 4A-4B, 5A-5B, 6A-6B, 7A-7B, 8A-8B, 9A-9B, 10A-10B, 11A-11B, 12A-12B, 13A-13B, and 14A-14C show views of a method of manufacturing a memory device 100 at different stages according to some embodiments of the present disclosure.

第1A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第1B圖繪示第1A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第1A圖與第1B圖,提供基板110。基板110具有陣列區域AR與階梯區域SR,其中記憶體陣列形成於基板110的陣列區域AR上方。階梯區域SR鄰接陣列區域AR。FIG. 1A shows a top view of a step of manufacturing the memory device 100, and FIG. 1B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1' and line segment S1-S1' in FIG. 1A, respectively. Referring to FIG. 1A and FIG. 1B, a substrate 110 is provided. The substrate 110 has an array region AR and a step region SR, wherein a memory array is formed above the array region AR of the substrate 110. The step region SR is adjacent to the array region AR.

在基板110上形成隔離層120。然後,依序在基板110上形成第一導電層130、介電堆疊結構DS、第二導電層170以及隔離層180。在一些實施方式中,第一導電層130、介電堆疊結構DS以及第二導電層170被稱為底堆疊結構。在一些其他的實施方式中,第一導電層130、介電堆疊結構DS、第二導電層170以及隔離層180被稱為底堆疊結構。底堆疊結構沿著由第一方向D1與第二方向D2定義的平面延伸,其中第一方向D1垂直於第二方向D2。隔離層120接觸基板110。第一導電層130接觸隔離層120。介電堆疊結構DS接觸第一導電層130。第二導電層170接觸介電堆疊結構DS。隔離層180接觸第二導電層170。在一些實施方式中,形成介電堆疊結構DS包含依序形成第一介電層140、第二介電層150以及第三介電層160。第一介電層140接觸第一導電層130,且第三介電層160接觸第二導電層170。An isolation layer 120 is formed on the substrate 110. Then, a first conductive layer 130, a dielectric stack structure DS, a second conductive layer 170, and an isolation layer 180 are sequentially formed on the substrate 110. In some embodiments, the first conductive layer 130, the dielectric stack structure DS, and the second conductive layer 170 are referred to as a bottom stack structure. In some other embodiments, the first conductive layer 130, the dielectric stack structure DS, the second conductive layer 170, and the isolation layer 180 are referred to as a bottom stack structure. The bottom stack structure extends along a plane defined by a first direction D1 and a second direction D2, wherein the first direction D1 is perpendicular to the second direction D2. The isolation layer 120 contacts the substrate 110. The first conductive layer 130 contacts the isolation layer 120. The dielectric stack structure DS contacts the first conductive layer 130. The second conductive layer 170 contacts the dielectric stack structure DS. The isolation layer 180 contacts the second conductive layer 170. In some embodiments, forming the dielectric stack structure DS includes sequentially forming a first dielectric layer 140, a second dielectric layer 150, and a third dielectric layer 160. The first dielectric layer 140 contacts the first conductive layer 130, and the third dielectric layer 160 contacts the second conductive layer 170.

在基板110上形成隔離層180之後,形成開口O1向下穿過隔離層180、第二導電層170以及介電堆疊結構DS的第三介電層160,並暴露介電堆疊結構DS的第二介電層150。在一些實施方式中,形成開口O1更包含蝕刻第二介電層150的一部分,使得第二介電層150的暴露表面153位於第二介電層150的頂面151(或第三介電層160的底面)下方。在一些實施方式中,在隔離層180上形成圖案化光阻,其中圖案化光阻可以透過適當的沉積、顯影及/或蝕刻技術形成。接著,使用圖案化光阻作為蝕刻遮罩,對未被圖案化光阻覆蓋的隔離層180、第二導電層170以及介電堆疊結構DS的第三介電層160進行蝕刻,以形成開口O1。在形成開口O1之後,可以透過使用光阻剝離製程(例如,灰化製程)以去除圖案化光阻。After forming the isolation layer 180 on the substrate 110, an opening O1 is formed downward through the isolation layer 180, the second conductive layer 170, and the third dielectric layer 160 of the dielectric stack structure DS, and exposes the second dielectric layer 150 of the dielectric stack structure DS. In some embodiments, forming the opening O1 further includes etching a portion of the second dielectric layer 150 so that the exposed surface 153 of the second dielectric layer 150 is located below the top surface 151 of the second dielectric layer 150 (or the bottom surface of the third dielectric layer 160). In some embodiments, a patterned photoresist is formed on the isolation layer 180, wherein the patterned photoresist can be formed by appropriate deposition, development and/or etching techniques. Next, the isolation layer 180, the second conductive layer 170, and the third dielectric layer 160 of the dielectric stack structure DS that are not covered by the patterned photoresist are etched using the patterned photoresist as an etching mask to form an opening O1. After the opening O1 is formed, the patterned photoresist can be removed by using a photoresist stripping process (e.g., an ashing process).

如第1A圖所示,開口O1設置於階梯區域SR上方,並且與陣列區域AR分隔。開口O1可包含第一部分O1a以及垂直第一部分O1a的第二部分O1b。具體而言,第一部分O1a沿著第一方向D1延伸,且第二部分O1b沿著第二方向D2延伸。第一部分O1a連接至第二部分O1b。開口O1在上視圖中具有梳子形狀的輪廓。As shown in FIG. 1A , the opening O1 is disposed above the step region SR and is separated from the array region AR. The opening O1 may include a first portion O1a and a second portion O1b perpendicular to the first portion O1a. Specifically, the first portion O1a extends along a first direction D1, and the second portion O1b extends along a second direction D2. The first portion O1a is connected to the second portion O1b. The opening O1 has a comb-shaped outline in a top view.

在一些實施方式中,基板110是半導體基板,例如矽基板、矽鍺基板、碳化矽基板,或類似物。基板110可包含具有導電接觸、電晶體或其他類似部件的互連結構。在一些實施方式中,隔離層120包含氧化物(例如,氧化矽)。在一些實施方式中,第一導電層130與第二導電層170包含相同的材料。例如,第一導電層130與第二導電層170包含半導體材料(例如,多晶矽)。在一些實施方式中,第一介電層140是第一氧化物層、第二介電層150是氮化物層,並且第三介電層160是第二氧化物層。在一些實施方式中,隔離層180包含氧化物(例如,氧化矽)。在一些實施方式中,隔離層120與隔離層180包含相同的材料(例如,氧化物)。In some embodiments, substrate 110 is a semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, a silicon carbide substrate, or the like. Substrate 110 may include an interconnect structure having conductive contacts, transistors, or other similar components. In some embodiments, isolation layer 120 includes an oxide (e.g., silicon oxide). In some embodiments, first conductive layer 130 and second conductive layer 170 include the same material. For example, first conductive layer 130 and second conductive layer 170 include a semiconductor material (e.g., polysilicon). In some embodiments, first dielectric layer 140 is a first oxide layer, second dielectric layer 150 is a nitride layer, and third dielectric layer 160 is a second oxide layer. In some embodiments, the isolation layer 180 includes an oxide (eg, silicon oxide). In some embodiments, the isolation layer 120 and the isolation layer 180 include the same material (eg, oxide).

第2A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第2B圖繪示第1A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。第3A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第3B圖繪示第3A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第2A圖、第2B圖、第3A圖及第3B圖,在形成開口O1之後,蝕刻介電堆疊結構DS以側向擴展開口O1位於第二導電層170下方的一部分P1。參閱第2A圖與第2B圖,對第二介電層150執行第一蝕刻製程,使得第三介電層160的底面165被暴露。在一些實施方式中,第一蝕刻製程是乾式蝕刻製程、濕式蝕刻製程或其組合。在一些實施方式中,由於第二介電層150與第一介電層140(或第三介電層160)具有不同的蝕刻選擇性,因此在第一蝕刻製程期間,第二介電層150被蝕刻而第一介電層140(或第三介電層160)保持實質上完整(未蝕刻)。也就是說,第一介電層140、第三介電層160、第二導電層170以及隔離層180對第一蝕刻製程具有比第二介電層150更高的抗蝕刻性。FIG. 2A is a top view showing a step of manufacturing the memory device 100, and FIG. 2B is a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 1A, respectively. FIG. 3A is a top view showing a step of manufacturing the memory device 100, and FIG. 3B is a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 3A, respectively. 2A, 2B, 3A, and 3B, after the opening O1 is formed, the dielectric stack structure DS is etched to laterally expand a portion P1 of the opening O1 below the second conductive layer 170. Referring to FIG. 2A and FIG. 2B, a first etching process is performed on the second dielectric layer 150 so that the bottom surface 165 of the third dielectric layer 160 is exposed. In some embodiments, the first etching process is a dry etching process, a wet etching process, or a combination thereof. In some embodiments, since the second dielectric layer 150 and the first dielectric layer 140 (or the third dielectric layer 160) have different etching selectivities, during the first etching process, the second dielectric layer 150 is etched while the first dielectric layer 140 (or the third dielectric layer 160) remains substantially intact (not etched). In other words, the first dielectric layer 140, the third dielectric layer 160, the second conductive layer 170, and the isolation layer 180 have higher etching resistance to the first etching process than the second dielectric layer 150.

如第2A圖、第2B圖、第3A圖以及第3B圖所示,在執行第一蝕刻製程之後,執行第二蝕刻製程以暴露第二導電層170的底面175與第一導電層130的頂面131。詳細來說,執行第二蝕刻製程包含蝕刻介電堆疊結構DS的第三介電層160與第一介電層140。在一些實施方式中,執行第二蝕刻製程更包含蝕刻隔離層180,使得暴露第二導電層170的頂面171被暴露。在第二蝕刻製程期間,由於第一介電層140、第三介電層160及隔離層180由相同的材料(例如,氧化物)製成,因此第一介電層140、第三介電層160及隔離層180可以同時被蝕刻。在執行第二蝕刻製程之後,開口O1暴露第一介電層140的側壁147、第二介電層150的側壁157及第三介電層160的側壁167。側壁147、側壁157及側壁167實質上彼此對齊。作為第一蝕刻製程與第二蝕刻製程的結果,開口O1在第二導電層170中具有第一寬度W1,並且在介電堆疊結構DS中具有第二寬度W2。開口O1的第二寬度W2大於開口O1的第一寬度W1。在一些實施方式中,第二蝕刻製程是乾式蝕刻製程、濕式蝕刻製程或其組合。在一些實施方式中,由於第一介電層140(或第三介電層160)與第二介電層150具有不同的蝕刻選擇性,因此在第二蝕刻製程期間,第一介電層140(或第三介電層160)被蝕刻而第二介電層150保持實質上完整(未蝕刻)。也就是說,第二介電層150與第二導電層170對第二蝕刻製程具有比第一介電層140、第三介電層160及隔離層180更高的抗蝕刻性。在一些實施方式中,第二蝕刻製程的蝕刻物不同於第一蝕刻製程的蝕刻物。As shown in FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B, after performing the first etching process, a second etching process is performed to expose the bottom surface 175 of the second conductive layer 170 and the top surface 131 of the first conductive layer 130. In detail, performing the second etching process includes etching the third dielectric layer 160 and the first dielectric layer 140 of the dielectric stack structure DS. In some embodiments, performing the second etching process further includes etching the isolation layer 180, so that the top surface 171 of the second conductive layer 170 is exposed. During the second etching process, since the first dielectric layer 140, the third dielectric layer 160 and the isolation layer 180 are made of the same material (e.g., oxide), the first dielectric layer 140, the third dielectric layer 160 and the isolation layer 180 can be etched simultaneously. After performing the second etching process, the opening O1 exposes the sidewall 147 of the first dielectric layer 140, the sidewall 157 of the second dielectric layer 150 and the sidewall 167 of the third dielectric layer 160. The sidewall 147, the sidewall 157 and the sidewall 167 are substantially aligned with each other. As a result of the first etching process and the second etching process, the opening O1 has a first width W1 in the second conductive layer 170 and a second width W2 in the dielectric stack structure DS. The second width W2 of the opening O1 is greater than the first width W1 of the opening O1. In some embodiments, the second etching process is a dry etching process, a wet etching process, or a combination thereof. In some embodiments, since the first dielectric layer 140 (or the third dielectric layer 160) and the second dielectric layer 150 have different etching selectivities, during the second etching process, the first dielectric layer 140 (or the third dielectric layer 160) is etched while the second dielectric layer 150 remains substantially intact (not etched). That is, the second dielectric layer 150 and the second conductive layer 170 have higher resistance to the second etching process than the first dielectric layer 140, the third dielectric layer 160 and the isolation layer 180. In some embodiments, the etchant of the second etching process is different from the etchant of the first etching process.

第4A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第4B圖繪示第4A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第4A圖與第4B圖,在執行第二蝕刻製程之後,在開口O1中以及第二導電層170上方填充導電材料以形成阻擋層190。換句話說,第二導電層170被阻擋層190覆蓋。阻擋層190具有在階梯區域SR上方且穿過第二導電層170與介電堆疊結構DS的部分195’。在一些實施方式中,由於導電結構填充開口O1,因此在第二導電層170與介電堆疊結構DS中的阻擋層190繼承開口O1的幾何形狀。換句話說,在第二導電層170中的阻擋層190具有第一寬度W1,而在介電堆疊結構DS中的阻擋層190具有大於第一寬度W1的第二寬度W2。FIG. 4A shows a top view of a step of manufacturing the memory device 100, and FIG. 4B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR, respectively, taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 4A. Referring to FIG. 4A and FIG. 4B, after performing the second etching process, a conductive material is filled in the opening O1 and above the second conductive layer 170 to form a blocking layer 190. In other words, the second conductive layer 170 is covered by the blocking layer 190. The blocking layer 190 has a portion 195′ above the step region SR and passing through the second conductive layer 170 and the dielectric stack structure DS. In some embodiments, since the conductive structure fills the opening O1, the blocking layer 190 in the second conductive layer 170 and the dielectric stack structure DS inherits the geometric shape of the opening O1. In other words, the blocking layer 190 in the second conductive layer 170 has a first width W1, and the blocking layer 190 in the dielectric stack structure DS has a second width W2 greater than the first width W1.

在一些實施方式中,如第3A圖、第3B圖、第4A圖以及第4B圖所示,在第二導電層170中的開口O1的第一寬度W1大於介電堆疊結構DS的厚度T1。因此,開口O1可以完全被導電材料填充,故阻擋層190沒有空隙。若在第二導電層170中的開口O1的第一寬度W1小於介電堆疊結構DS的厚度T1,則在第二導電層170中的開口O1會過早地被導電材料密封,從而空隙可能會在介電堆疊結構DS中的阻擋層190的一部分內被形成。在一些實施方式中,在第二導電層170中的開口O1的第一寬度W1(或阻擋層190的第一寬度)在從約50奈米至約200奈米的範圍間。若第一寬度W1小於50奈米,則在介電堆疊結構DS中的阻擋層190會具有空隙。若第一寬度W1大於200奈米,則在第二導電層170上方的阻擋層190會太厚。In some embodiments, as shown in FIGS. 3A , 3B, 4A, and 4B, the first width W1 of the opening O1 in the second conductive layer 170 is greater than the thickness T1 of the dielectric stack structure DS. Therefore, the opening O1 can be completely filled with the conductive material, so there is no void in the blocking layer 190. If the first width W1 of the opening O1 in the second conductive layer 170 is less than the thickness T1 of the dielectric stack structure DS, the opening O1 in the second conductive layer 170 will be sealed by the conductive material prematurely, so that a void may be formed in a portion of the blocking layer 190 in the dielectric stack structure DS. In some embodiments, the first width W1 of the opening O1 in the second conductive layer 170 (or the first width of the blocking layer 190) is in a range from about 50 nm to about 200 nm. If the first width W1 is less than 50 nm, the blocking layer 190 in the dielectric stack structure DS may have a gap. If the first width W1 is greater than 200 nm, the blocking layer 190 above the second conductive layer 170 may be too thick.

在一些實施方式中,在第二導電層170上方的阻擋層190的厚度T2大於在第二導電層170中的開口Ol的第一寬度Wl的一半。因此,開口Ol可以被導電材料填滿,故阻擋層190沒有空隙。在一些實施方式中,在第二導電層170上方的阻擋層190的厚度T2在約50奈米至約300奈米的範圍間。若阻擋層190的厚度T2小於50奈米,則在介電堆疊結構DS中的阻擋層190會具有空隙。若阻擋層190的厚度T2大於300奈米,則阻擋層190的電性能會較差。In some embodiments, the thickness T2 of the blocking layer 190 above the second conductive layer 170 is greater than half of the first width W1 of the opening Ol in the second conductive layer 170. Therefore, the opening Ol can be filled with conductive material, so there is no gap in the blocking layer 190. In some embodiments, the thickness T2 of the blocking layer 190 above the second conductive layer 170 is in the range of about 50 nanometers to about 300 nanometers. If the thickness T2 of the blocking layer 190 is less than 50 nanometers, the blocking layer 190 in the dielectric stack structure DS will have a gap. If the thickness T2 of the blocking layer 190 is greater than 300 nanometers, the electrical performance of the blocking layer 190 will be poor.

在一些實施方式中,透過使用化學氣相沉積、原子層沉積、物理氣相沉積或其他適當的沉積製程來執行在開口O1中填充導電材料以形成阻擋層190。在一些實施方式中,阻擋層190與第二導電層170包含相同的材料。例如,阻擋層190與第二導電層170包含半導體材料(例如,多晶矽)。在一些實施方式中,阻擋層190與第一導電層130包含相同的材料。例如,阻擋層190與第一導電層130包含半導體材料(例如,多晶矽)。In some embodiments, the blocking layer 190 is formed by filling the opening O1 with a conductive material using chemical vapor deposition, atomic layer deposition, physical vapor deposition, or other suitable deposition processes. In some embodiments, the blocking layer 190 and the second conductive layer 170 include the same material. For example, the blocking layer 190 and the second conductive layer 170 include a semiconductor material (e.g., polysilicon). In some embodiments, the blocking layer 190 and the first conductive layer 130 include the same material. For example, the blocking layer 190 and the first conductive layer 130 include a semiconductor material (e.g., polysilicon).

第5A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第5B圖繪示第5A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第5A圖與第5B圖,複數個介電層210與複數個犧牲材料層220交錯堆疊在阻擋層190上方。介電層210與犧牲材料層220交替排列在阻擋層190上方,並且介電層210最靠近阻擋層190的最底層直接接觸阻擋層190。在一些實施方式中,介電層210與犧牲材料層220包含不同的材料。例如,介電層210包含氧化物(例如,氧化矽),而犧牲材料層220包含氮化物(例如,氮化矽)。FIG. 5A shows a top view of a step of manufacturing the memory device 100, and FIG. 5B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along the line segment A1-A1′ and the line segment S1-S1′ in FIG. 5A, respectively. Referring to FIG. 5A and FIG. 5B, a plurality of dielectric layers 210 and a plurality of sacrificial material layers 220 are alternately stacked above the blocking layer 190. The dielectric layers 210 and the sacrificial material layers 220 are alternately arranged above the blocking layer 190, and the bottommost layer of the dielectric layer 210 closest to the blocking layer 190 directly contacts the blocking layer 190. In some embodiments, the dielectric layer 210 and the sacrificial material layer 220 include different materials. For example, the dielectric layer 210 includes an oxide (eg, silicon oxide) and the sacrificial material layer 220 includes a nitride (eg, silicon nitride).

第6A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第6B圖繪示第6A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第6A圖與第6B圖,在形成介電層210與犧牲材料層220之後,形成複數個記憶體結構MS向下穿過在陣列區域AR上方的介電層210、犧牲材料層220、阻擋層190、第二導電層170以及介電堆疊結構DS。在一些實施方式中,記憶體結構MS的每一者具有嵌入在第一導電層130中的部分。記憶體結構MS的每一者包含通道結構CH與位於通道結構CH上的導電插塞260。通道結構CH的每一者包含記憶體元件230、通道層240及介電填充結構250。記憶體元件230接觸犧牲材料層220、阻擋層190、第二導電層170、介電堆疊結構DS以及第一導電層130。通道層240接觸記憶體元件230,並且通道層240位於記憶體元件230與介電填充結構250之間。在一些實施方式中,記憶體元件230包含阻擋層232、記憶儲存層234以及穿隧層236。阻擋層232設置於介電層210的側壁、犧牲材料層220的側壁、阻擋層190的側壁、第二導電層170的側壁、介電堆疊結構DS的側壁、第一導電層130的側壁以及第一導電層130的表面上。記憶儲存層234設置於阻擋層232上,且穿隧層236設置於記憶儲存層234上。阻擋層232與穿隧層236可以包含氧化物(例如,氧化矽)或其他適當的介電材料,並且記憶儲存層234可以包含氮化物(例如,氮化矽)或其他能夠捕捉電子的材料。因此,記憶體元件230可以是氧化物層、氮化物層與氧化物層的三層結構。通道層240可包含多晶矽或其他適當的半導體材料。介電填充結構250可包含氧化物(例如,氧化矽)或其他適當的介電材料。導電插塞260可包含多晶矽或其他適當的半導體材料。導電插塞260與通道層240可以包含相同的材料,例如半導體材料或多晶矽。FIG. 6A shows a top view of a step of manufacturing the memory device 100, and FIG. 6B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 6A, respectively. Referring to FIG. 6A and FIG. 6B, after forming the dielectric layer 210 and the sacrificial material layer 220, a plurality of memory structures MS are formed downwardly through the dielectric layer 210, the sacrificial material layer 220, the blocking layer 190, the second conductive layer 170, and the dielectric stack structure DS above the array region AR. In some embodiments, each of the memory structures MS has a portion embedded in the first conductive layer 130. Each of the memory structures MS includes a channel structure CH and a conductive plug 260 located on the channel structure CH. Each of the channel structures CH includes a memory element 230, a channel layer 240, and a dielectric filling structure 250. The memory element 230 contacts the sacrificial material layer 220, the blocking layer 190, the second conductive layer 170, the dielectric stack structure DS, and the first conductive layer 130. The channel layer 240 contacts the memory element 230, and the channel layer 240 is located between the memory element 230 and the dielectric filling structure 250. In some embodiments, the memory element 230 includes a blocking layer 232, a memory storage layer 234, and a tunneling layer 236. The blocking layer 232 is disposed on the sidewalls of the dielectric layer 210, the sidewalls of the sacrificial material layer 220, the sidewalls of the blocking layer 190, the sidewalls of the second conductive layer 170, the sidewalls of the dielectric stack structure DS, the sidewalls of the first conductive layer 130, and the surface of the first conductive layer 130. The memory storage layer 234 is disposed on the blocking layer 232, and the tunneling layer 236 is disposed on the memory storage layer 234. The blocking layer 232 and the tunneling layer 236 may include oxide (e.g., silicon oxide) or other suitable dielectric materials, and the memory storage layer 234 may include nitride (e.g., silicon nitride) or other materials capable of capturing electrons. Therefore, the memory element 230 may be a three-layer structure of an oxide layer, a nitride layer, and an oxide layer. The channel layer 240 may include polysilicon or other suitable semiconductor materials. The dielectric filling structure 250 may include oxide (e.g., silicon oxide) or other suitable dielectric materials. The conductive plug 260 may include polysilicon or other suitable semiconductor materials. The conductive plug 260 and the channel layer 240 may include the same material, such as a semiconductor material or polysilicon.

在一些實施方式中,形成記憶體結構MS包含以下步驟。形成複數個開口O2向下穿過在陣列區域AR上方的介電層210、犧牲材料層220、阻擋層190、第二導電層170以及介電堆疊結構DS,使得第一導電層130被暴露。記憶體元件230(包含阻擋層232、記憶儲存層234以及穿隧層236)形成於開口O2的相對側壁上,但開口O2仍未被記憶體元件230完全填充。然後,在記憶體元件230的側壁與底部上形成通道層240,但開口O2仍未被通道層240完全填充。之後,在開口O2中填充介電材料,以在通道層240上形成介電填充結構250。如此一來,形成包含記憶體元件230、通道層240以及介電填充結構250的通道結構CH。在形成通道結構CH(即,記憶體元件230、通道層240以及介電填充結構250)之後,凹陷空間260S以暴露通道結構CH的頂面。因此,通道結構CH的頂面在介電層210的最頂層的頂面211下方。然後,在空間260S中填充導電材料,以在通道結構CH上形成導電插塞260。換句話說,導電插塞260的頂面261與介電層210的最頂層的頂面211實質上共面。如此一來,包含通道結構CH(包含記憶體元件230、通道層240及介電填充結構250)與導電插塞260的記憶體結構MS形成在開口O2中。In some embodiments, forming the memory structure MS includes the following steps: A plurality of openings O2 are formed downward through the dielectric layer 210, the sacrificial material layer 220, the blocking layer 190, the second conductive layer 170, and the dielectric stack structure DS above the array region AR, so that the first conductive layer 130 is exposed. A memory element 230 (including a blocking layer 232, a memory storage layer 234, and a tunneling layer 236) is formed on opposite sidewalls of the opening O2, but the opening O2 is not yet completely filled with the memory element 230. Then, a channel layer 240 is formed on the sidewalls and bottom of the memory element 230, but the opening O2 is not yet completely filled with the channel layer 240. Thereafter, a dielectric material is filled in the opening O2 to form a dielectric filling structure 250 on the channel layer 240. In this way, a channel structure CH including the memory element 230, the channel layer 240, and the dielectric filling structure 250 is formed. After the channel structure CH (i.e., the memory element 230, the channel layer 240, and the dielectric filling structure 250) is formed, the space 260S is recessed to expose the top surface of the channel structure CH. Therefore, the top surface of the channel structure CH is below the top surface 211 of the topmost layer of the dielectric layer 210. Then, a conductive material is filled in the space 260S to form a conductive plug 260 on the channel structure CH. In other words, the top surface 261 of the conductive plug 260 is substantially coplanar with the top surface 211 of the topmost layer of the dielectric layer 210. Thus, the memory structure MS including the channel structure CH (including the memory element 230, the channel layer 240 and the dielectric filling structure 250) and the conductive plug 260 is formed in the opening O2.

對於階梯區域SR,形成複數個支柱結構270向下穿過在階梯區域SR上方的介電層210、犧牲材料層220、阻擋層190、第二導電層170及介電堆疊結構DS。詳細來說,先蝕刻在階梯區域SR上方的介電層210、犧牲材料層220、阻擋層190、第二導電層170及介電堆疊結構DS,以形成暴露第一導電層130的孔洞H1。然後,在孔洞H1中填充介電材料,以形成支柱結構270。在一些實施方式中,支柱結構270的每一者具有嵌入在第一導電層130中的一部分。在一些實施方式中,支柱結構270包含氧化物(例如,氧化矽)或其他適當的介電材料。在一些實施方式中,形成記憶體結構MS是在形成支柱結構270之前執行的。在一些實施方式中,如第6A圖所示,記憶體結構MS的每一者在上視圖中具有圓形輪廓,並且支柱結構270的每一者在上視圖中具有圓形輪廓。在一些實施方式中,如第6A圖所示,支柱結構270的每一者的直徑大於記憶體結構MS的每一者的直徑。For the step region SR, a plurality of pillar structures 270 are formed to pass downward through the dielectric layer 210, the sacrificial material layer 220, the blocking layer 190, the second conductive layer 170, and the dielectric stack structure DS above the step region SR. In detail, the dielectric layer 210, the sacrificial material layer 220, the blocking layer 190, the second conductive layer 170, and the dielectric stack structure DS above the step region SR are first etched to form a hole H1 exposing the first conductive layer 130. Then, a dielectric material is filled in the hole H1 to form the pillar structures 270. In some embodiments, each of the pillar structures 270 has a portion embedded in the first conductive layer 130. In some embodiments, pillar structures 270 include oxide (e.g., silicon oxide) or other suitable dielectric materials. In some embodiments, forming memory structures MS is performed before forming pillar structures 270. In some embodiments, as shown in FIG. 6A , each of memory structures MS has a circular outline in a top view, and each of pillar structures 270 has a circular outline in a top view. In some embodiments, as shown in FIG. 6A , each of pillar structures 270 has a diameter greater than a diameter of each of memory structures MS.

此後,在介電層210的最頂層上形成隔離層280。在一些實施方式中,支柱結構270與隔離層280可以使用單一沉積製程一起形成。換句話說,支柱結構270與隔離層280包含相同的材料。在一些實施方式中,支柱結構270與隔離層280包含氧化物(例如,氧化矽)或其他適當的介電材料。在一些實施方式中,支柱結構270、隔離層280與介電層210包含相同的材料,例如氧化物。Thereafter, an isolation layer 280 is formed on the topmost layer of the dielectric layer 210. In some embodiments, the pillar structure 270 and the isolation layer 280 can be formed together using a single deposition process. In other words, the pillar structure 270 and the isolation layer 280 include the same material. In some embodiments, the pillar structure 270 and the isolation layer 280 include an oxide (e.g., silicon oxide) or other suitable dielectric material. In some embodiments, the pillar structure 270, the isolation layer 280 and the dielectric layer 210 include the same material, such as an oxide.

第7A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第7B圖繪示第7A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第7A圖與第7B圖,在形成記憶體結構MS與形成支柱結構270之後,蝕刻介電層210與犧牲材料層220,以在陣列區域AR與階梯區域SR上方形成狹縫溝槽ST向下穿過介電層210與犧牲材料層220。在一些實施方式中,形成狹縫溝槽ST更包含蝕刻陣列區域AR與階梯區域SR上方的阻擋層190。FIG. 7A shows a top view of a step of manufacturing the memory device 100, and FIG. 7B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR, respectively, taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 7A. Referring to FIG. 7A and FIG. 7B, after forming the memory structure MS and forming the pillar structure 270, the dielectric layer 210 and the sacrificial material layer 220 are etched to form slit trenches ST above the array region AR and the step region SR and downwardly through the dielectric layer 210 and the sacrificial material layer 220. In some implementations, forming the slit trench ST further includes etching the blocking layer 190 over the array region AR and the step region SR.

在一些實施方式中,如第7A圖所示,狹縫溝槽ST的每一者在陣列區域AR與階梯區域SR之間延伸並且沿著第一方向Dl延伸。在一些實施方式中,如上關於第1A圖所討論的,形成阻擋層190的開口O1包含沿著第一方向D1的第一部分O1a與沿著第二方向D2的第二部分O1b。狹縫溝槽ST與相應開口O1的第一部分O1a平行且重疊。開口O1的第二部分O1b位於記憶體結構MS與支柱結構270之間。In some embodiments, as shown in FIG. 7A , each of the slit trenches ST extends between the array region AR and the step region SR and extends along the first direction D1. In some embodiments, as discussed above with respect to FIG. 1A , the opening O1 forming the blocking layer 190 includes a first portion O1a along the first direction D1 and a second portion O1b along the second direction D2. The slit trenches ST are parallel to and overlap the first portion O1a of the corresponding opening O1. The second portion O1b of the opening O1 is located between the memory structure MS and the pillar structure 270.

現在參閱第15圖,第15圖繪示根據本揭露一些實施方式之記憶體裝置100’的上視圖。如第7A圖與第15圖所示,第15圖的記憶體裝置100’與第7A圖的記憶體裝置100實質上相同,不同之處在於形成阻擋層190的開口O1’的輪廓。開口O1’沿著第一方向D1延伸。狹縫溝槽ST分別與相應的開口O1’平行且重疊。開口O1’不具有位於記憶體結構MS與支柱結構270正中間的部分。Referring now to FIG. 15 , FIG. 15 shows a top view of a memory device 100′ according to some embodiments of the present disclosure. As shown in FIGS. 7A and 15 , the memory device 100′ of FIG. 15 is substantially the same as the memory device 100 of FIG. 7A , except for the outline of the opening O1′ that forms the blocking layer 190. The opening O1′ extends along the first direction D1. The slit trenches ST are respectively parallel to and overlap the corresponding openings O1′. The opening O1′ does not have a portion located in the middle of the memory structure MS and the pillar structure 270.

第8A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第8B圖繪示第8A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第8A圖與第8B圖,執行蝕刻製程以進一步延伸(或加深)狹縫溝槽ST。對於陣列區域AR,從狹縫溝槽ST蝕刻阻擋層190與第二導電層170,並且蝕刻製程可以在介電堆疊結構DS的第三介電層160的位置停止,因為第三介電層160可包含對蝕刻製程更高的抗蝕刻性。對於階梯區域SR,去除通過狹縫溝槽ST暴露的阻擋層190的第一部分,而在蝕刻製程完成之後保留在第二導電層170下方未通過狹縫溝槽ST暴露的阻擋層190的第二部分。阻擋層190的剩餘第二部分被稱為阻擋結構195。換句話說,阻擋層190位於第一導電層130與第二導電層170之間的剩餘第二部分被稱為阻擋結構195。阻擋結構195接觸介電堆疊結構DS。在蝕刻陣列區域AR與階梯區域SR上方的阻擋層190之後,在陣列區域AR上方的第一導電層130仍然被介電堆疊結構DS覆蓋,而在階梯區域SR上方的第一導電層130被暴露。在一些實施方式中,蝕刻在階梯區域SR上方的第一導電層130的一部分,使得第一導電層130的暴露表面137在接觸阻擋結構195的第一導電層130的頂面131下方。在一些實施方式中,透過使用乾式蝕刻製程、濕式蝕刻製程或其組合來執行在陣列區域AR與階梯區域SR上方蝕刻阻擋層190。FIG. 8A shows a top view of a step of manufacturing the memory device 100, and FIG. 8B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 8A, respectively. Referring to FIG. 8A and FIG. 8B, an etching process is performed to further extend (or deepen) the slit trench ST. For the array region AR, the blocking layer 190 and the second conductive layer 170 are etched from the slit trench ST, and the etching process may be stopped at the position of the third dielectric layer 160 of the dielectric stack structure DS because the third dielectric layer 160 may include a higher etching resistance to the etching process. For the step region SR, a first portion of the blocking layer 190 exposed by the slit trench ST is removed, and a second portion of the blocking layer 190 not exposed by the slit trench ST remains under the second conductive layer 170 after the etching process is completed. The remaining second portion of the blocking layer 190 is referred to as a blocking structure 195. In other words, the remaining second portion of the blocking layer 190 between the first conductive layer 130 and the second conductive layer 170 is referred to as a blocking structure 195. The blocking structure 195 contacts the dielectric stack structure DS. After etching the blocking layer 190 above the array region AR and the step region SR, the first conductive layer 130 above the array region AR is still covered by the dielectric stack structure DS, while the first conductive layer 130 above the step region SR is exposed. In some embodiments, a portion of the first conductive layer 130 over the step region SR is etched such that an exposed surface 137 of the first conductive layer 130 is below a top surface 131 of the first conductive layer 130 contacting the stopper structure 195. In some embodiments, etching the stopper layer 190 over the array region AR and the step region SR is performed by using a dry etching process, a wet etching process, or a combination thereof.

第9A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第9B圖繪示第9A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第9A圖與第9B圖,保護層290保形地形成在第8A圖與第8B圖的結構上。詳細來說,保護層290形成於隔離層280的頂面281、介電層210的側壁、犧牲材料層220的側壁、阻擋層190的側壁以及第二導電層170的側壁上。在一些實施方式中,對於陣列區域AR,保護層290形成在介電堆疊結構DS的第三介電層160上,並且接觸介電堆疊結構DS的第三介電層160。保護層290配置以防止狹縫溝槽ST的側壁(例如,介電層210的側壁與犧牲材料層220的側壁)在後續蝕刻製程(例如,在第10A圖至第11B圖的介電堆疊結構DS的蝕刻製程)中受到損壞。在一些實施方式中,對於階梯區域SR,保護層290形成於第一導電層130的頂面以及阻擋結構195的側壁上,並且保護層290接觸第一導電層130與阻擋結構195。在一些實施方式中,保護層290包含半導體材料(例如,多晶矽)。在一些實施方式中,保護層290、第二導電層170及/或第一導電層130包含相同的材料。FIG. 9A shows a top view of a step of manufacturing the memory device 100, and FIG. 9B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 9A, respectively. Referring to FIG. 9A and FIG. 9B, a protective layer 290 is conformally formed on the structure of FIG. 8A and FIG. 8B. In detail, the protective layer 290 is formed on the top surface 281 of the isolation layer 280, the sidewalls of the dielectric layer 210, the sidewalls of the sacrificial material layer 220, the sidewalls of the blocking layer 190, and the sidewalls of the second conductive layer 170. In some embodiments, for the array region AR, a protection layer 290 is formed on the third dielectric layer 160 of the dielectric stack structure DS and contacts the third dielectric layer 160 of the dielectric stack structure DS. The protection layer 290 is configured to prevent the sidewalls of the slit trench ST (e.g., the sidewalls of the dielectric layer 210 and the sidewalls of the sacrificial material layer 220) from being damaged in a subsequent etching process (e.g., the etching process of the dielectric stack structure DS of FIGS. 10A to 11B). In some embodiments, for the step region SR, the protection layer 290 is formed on the top surface of the first conductive layer 130 and the sidewalls of the blocking structure 195, and the protection layer 290 contacts the first conductive layer 130 and the blocking structure 195. In some embodiments, the protection layer 290 includes a semiconductor material (e.g., polysilicon). In some embodiments, the protection layer 290, the second conductive layer 170, and/or the first conductive layer 130 include the same material.

在形成保護層290之後,蝕刻保護層290的底部分,以暴露在陣列區域AR上方的介電堆疊結構DS且暴露在階梯區域SR上方的第一導電層130。在一些實施方式中,透過使用乾式蝕刻製程、濕式蝕刻製程或其組合來執行蝕刻保護層290。在一些實施方式中,在陣列區域AR上方的介電堆疊結構DS的第三介電層160被蝕刻以暴露下面的介電堆疊結構DS的第二介電層150。在一些實施方式中,介電堆疊結構DS的第二介電層150的一部分被蝕刻,使得第二介電層150的側壁與表面被暴露。由於在階梯區域SR上方的阻擋結構195保護鄰接的介電堆疊結構DS,因此在蝕刻保護層290期間,介電堆疊結構DS不會被暴露(即,被阻擋結構195覆蓋)。此外,在蝕刻介電堆疊結構DS(即,在第10A圖至第11B圖的介電堆疊結構DS的蝕刻製程)期間,支柱結構270的損壞將會被避免或防止,從而避免變形或塌陷問題。After forming the protective layer 290, the bottom portion of the protective layer 290 is etched to expose the dielectric stack structure DS above the array region AR and to expose the first conductive layer 130 above the step region SR. In some embodiments, etching the protective layer 290 is performed by using a dry etching process, a wet etching process, or a combination thereof. In some embodiments, the third dielectric layer 160 of the dielectric stack structure DS above the array region AR is etched to expose the second dielectric layer 150 of the dielectric stack structure DS below. In some embodiments, a portion of the second dielectric layer 150 of the dielectric stack structure DS is etched so that the sidewalls and the surface of the second dielectric layer 150 are exposed. Since the blocking structure 195 above the step region SR protects the adjacent dielectric stack structure DS, the dielectric stack structure DS will not be exposed (i.e., covered by the blocking structure 195) during the etching of the protection layer 290. In addition, during the etching of the dielectric stack structure DS (i.e., during the etching process of the dielectric stack structure DS in FIGS. 10A to 11B), damage to the pillar structure 270 will be avoided or prevented, thereby avoiding deformation or collapse problems.

第10A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第10B圖繪示第10A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第10A圖與第10B圖,去除在陣列區域AR上方的介電堆疊結構DS的第二介電層150的全體,以形成凹槽R1。凹槽R1暴露介電堆疊結構DS的第一介電層140與第三介電層160。在一些實施方式中,如第10B圖所示,凹槽R1連通於狹縫溝槽ST。在一些實施方式中,使用濕式蝕刻製程去除介電堆疊結構DS的第二介電層150,其中濕式蝕刻製程可以使用磷酸溶液或其他適當的酸性蝕刻溶液。FIG. 10A shows a top view of a step of manufacturing the memory device 100, and FIG. 10B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1' and line segment S1-S1' in FIG. 10A, respectively. Referring to FIG. 10A and FIG. 10B, the entire second dielectric layer 150 of the dielectric stack structure DS above the array region AR is removed to form a recess R1. The recess R1 exposes the first dielectric layer 140 and the third dielectric layer 160 of the dielectric stack structure DS. In some embodiments, as shown in FIG. 10B, the recess R1 is connected to the slit trench ST. In some embodiments, a wet etching process is used to remove the second dielectric layer 150 of the dielectric stack structure DS, wherein the wet etching process may use a phosphoric acid solution or other appropriate acidic etching solutions.

第11A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第11B圖繪示第11A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第11A圖與第11B圖,去除在陣列區域AR上方的介電堆疊結構DS的第一介電層140與第三介電層160的全體,以擴展凹槽R1。通過凹槽R1蝕刻記憶體結構MS的記憶體元件230以暴露在陣列區域AR上方的通道層240。凹槽R1更暴露在陣列區域AR上方的第一導電層130與第二導電層170。在一些實施方式中,透過使用乾式蝕刻製程、濕式蝕刻製程或其組合來蝕刻介電堆疊結構DS的第一介電層140與第三介電層160以及記憶體元件230。FIG. 11A shows a top view of a step of manufacturing the memory device 100, and FIG. 11B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1' and line segment S1-S1' in FIG. 11A, respectively. Referring to FIG. 11A and FIG. 11B, the entire first dielectric layer 140 and the third dielectric layer 160 of the dielectric stack structure DS above the array region AR are removed to expand the recess R1. The memory element 230 of the memory structure MS is etched through the recess R1 to expose the channel layer 240 above the array region AR. The recess R1 further exposes the first conductive layer 130 and the second conductive layer 170 above the array region AR. In some embodiments, the first dielectric layer 140 and the third dielectric layer 160 of the dielectric stack structure DS and the memory element 230 are etched by using a dry etching process, a wet etching process or a combination thereof.

第12A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第12B圖繪示第12A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第12A圖與第12B圖,在凹槽R1中填充導電結構300’。此外,在狹縫溝槽ST的側壁上形成導電結構300’,但是狹縫溝槽ST沒有完全被導電結構300’填滿。在一些實施方式中,導電結構300’保形地形成在保護層290上。因此,導電結構300’包含在隔離層280上的第一部分302’及在狹縫溝槽ST的側壁上的第二部分304’。在一些實施方式中,透過使用化學氣相沉積、原子層沉積、物理氣相沉積或其他適當的沉積製程方法來將導電結構300’填充到凹槽R1中。在一些實施方式中,導電結構300’包含半導體材料(例如,多晶矽)。在一些實施方式中,導電結構300’、保護層290、第二導電層170及/或第一導電層130包含相同的材料。FIG. 12A shows a top view of a step of manufacturing the memory device 100, and FIG. 12B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 12A, respectively. Referring to FIG. 12A and FIG. 12B, the conductive structure 300′ is filled in the groove R1. In addition, the conductive structure 300′ is formed on the sidewall of the slit trench ST, but the slit trench ST is not completely filled with the conductive structure 300′. In some embodiments, the conductive structure 300′ is conformally formed on the protective layer 290. Therefore, the conductive structure 300' includes a first portion 302' on the isolation layer 280 and a second portion 304' on the sidewall of the slit trench ST. In some embodiments, the conductive structure 300' is filled into the recess R1 by using chemical vapor deposition, atomic layer deposition, physical vapor deposition or other appropriate deposition process methods. In some embodiments, the conductive structure 300' includes a semiconductor material (e.g., polysilicon). In some embodiments, the conductive structure 300', the protective layer 290, the second conductive layer 170 and/or the first conductive layer 130 include the same material.

第13A圖繪示製造記憶體裝置100的一步驟的上視圖,以及第13B圖繪示第13A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖。參閱第13A圖與第13B圖,圖案化導電結構300’以形成(或定義)電性連接到記憶體結構MS的通道層240的底電極層300。詳細來說,如第12B圖與第13B圖所示,執行蝕刻製程以去除在隔離層280上方的導電結構300’的第一部分302’以及在狹縫溝槽ST的側壁上的導電結構300’的第二部分304’。在一些實施方式中,如第13B圖所示,底電極層300的表面303通過狹縫溝槽ST暴露,並且底電極層300的表面303在第二導電層170的底面175下方。在一些實施方式中,執行蝕刻製程使得在階梯區域SR上方的導電結構300’的全體被去除,從而暴露在階梯區域SR上方的第一導電層130。此外,在陣列區域AR與階梯區域SR上方的保護層290的全體被去除。因此,在陣列區域AR與階梯區域SR上方的隔離層280的頂面281、介電層210的側壁、犧牲材料層220的側壁、阻擋層190的側壁以及第二導電層170的側壁被暴露。在一些實施方式中,與介電堆疊結構DS分隔的阻擋結構195的側壁193被暴露。在一些實施方式中,由於導電結構300’與保護層290包含相同的材料(例如,多晶矽或其他適當的半導體材料),因此可以在單一選擇性蝕刻製程中去除導電結構300’與保護層290。在一些實施方式中,使用濕式蝕刻製程去除導電結構300’與保護層290。在一些實施方式中,第一導電層130、介電堆疊結構DS、第二導電層170、阻擋層190、阻擋結構195以及底電極層300被稱為底源極結構BS。FIG. 13A shows a top view of a step in manufacturing the memory device 100, and FIG. 13B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segment A1-A1′ and line segment S1-S1′ in FIG. 13A, respectively. Referring to FIG. 13A and FIG. 13B, the conductive structure 300′ is patterned to form (or define) a bottom electrode layer 300 electrically connected to the channel layer 240 of the memory structure MS. In detail, as shown in FIG. 12B and FIG. 13B , an etching process is performed to remove a first portion 302′ of the conductive structure 300′ above the isolation layer 280 and a second portion 304′ of the conductive structure 300′ on the sidewall of the slit trench ST. In some embodiments, as shown in FIG. 13B , a surface 303 of the bottom electrode layer 300 is exposed through the slit trench ST, and the surface 303 of the bottom electrode layer 300 is below the bottom surface 175 of the second conductive layer 170. In some embodiments, the etching process is performed so that the entire conductive structure 300′ above the step region SR is removed, thereby exposing the first conductive layer 130 above the step region SR. In addition, the entirety of the protective layer 290 over the array region AR and the step region SR is removed. Therefore, the top surface 281 of the isolation layer 280, the sidewalls of the dielectric layer 210, the sidewalls of the sacrificial material layer 220, the sidewalls of the blocking layer 190, and the sidewalls of the second conductive layer 170 over the array region AR and the step region SR are exposed. In some embodiments, the sidewall 193 of the blocking structure 195 separated from the dielectric stack structure DS is exposed. In some embodiments, since the conductive structure 300' and the protective layer 290 include the same material (e.g., polysilicon or other suitable semiconductor materials), the conductive structure 300' and the protective layer 290 can be removed in a single selective etching process. In some embodiments, a wet etching process is used to remove the conductive structure 300' and the protective layer 290. In some embodiments, the first conductive layer 130, the dielectric stack structure DS, the second conductive layer 170, the blocking layer 190, the blocking structure 195, and the bottom electrode layer 300 are referred to as a bottom source structure BS.

第14A圖繪示製造記憶體裝置100的一步驟的上視圖、第14B圖繪示第2A圖中分別沿線段A1-A1’與線段S1-S1’截取的在陣列區域AR與階梯區域SR上方的記憶體裝置100的剖面圖,以及第14C圖繪示第14A圖中沿線段S2-S2’截取的在階梯區域SR上方的記憶體裝置100的剖面圖。參閱第13A圖、第13B圖以及第14A圖至第14C圖,將犧牲材料層220替換為複數個閘極層330。詳細來說,去除犧牲材料層220的全體以形成凹槽R2,使得凹槽R2連通於狹縫溝槽ST。在一些實施方式中,使用濕式蝕刻製程去除犧牲材料層220,其中濕式蝕刻製程可以使用磷酸溶液或其他適當的酸性蝕刻溶液。在一些實施方式中,支柱結構270提供結構支撐以防止記憶體裝置100在犧牲材料層220的去除期間塌陷。FIG. 14A shows a top view of a step of manufacturing the memory device 100, FIG. 14B shows a cross-sectional view of the memory device 100 above the array region AR and the step region SR taken along line segments A1-A1′ and S1-S1′ in FIG. 2A, respectively, and FIG. 14C shows a cross-sectional view of the memory device 100 above the step region SR taken along line segment S2-S2′ in FIG. 14A. Referring to FIGS. 13A, 13B, and 14A to 14C, the sacrificial material layer 220 is replaced with a plurality of gate layers 330. Specifically, the entirety of the sacrificial material layer 220 is removed to form the recess R2, so that the recess R2 is connected to the slit trench ST. In some embodiments, the sacrificial material layer 220 is removed using a wet etching process, wherein the wet etching process may use a phosphoric acid solution or other appropriate acidic etching solutions. In some embodiments, the pillar structure 270 provides structural support to prevent the memory device 100 from collapsing during the removal of the sacrificial material layer 220.

在去除犧牲材料層220以形成凹槽R2之後,在凹槽R2中填充導電材料,然後執行蝕刻製程以去除多餘的導電材料,以形成閘極層330。閘極層330可被稱為字元線。具體而言,閘極層330可作為記憶體裝置100(特別是垂直NAND記憶體裝置)的控制閘極電極。在一些實施方式中,透過使用化學氣相沉積、原子層沉積、物理氣相沉積、化學鍍製程或其他適當的沉積製程來在凹槽R2中填充導電材料。在一些實施方式中,閘極層330包含金屬(例如,鎢)或其他適當的導電材料。After the sacrificial material layer 220 is removed to form the groove R2, a conductive material is filled in the groove R2, and then an etching process is performed to remove excess conductive material to form a gate layer 330. The gate layer 330 may be referred to as a word line. Specifically, the gate layer 330 may serve as a control gate electrode of the memory device 100 (particularly a vertical NAND memory device). In some embodiments, the conductive material is filled in the groove R2 by using chemical vapor deposition, atomic layer deposition, physical vapor deposition, chemical plating process or other appropriate deposition process. In some implementations, gate layer 330 includes metal (eg, tungsten) or other suitable conductive materials.

在將犧牲材料層220替換為閘極層330之後,在狹縫溝槽ST中形成接觸結構CS。詳細來說,接觸結構CS的每一者包含襯墊層310與電極層320。可以透過使用沉積製程在狹縫溝槽ST中形成襯墊層310,然後在狹縫溝槽ST中填充導電材料以形成電極層320。形成襯墊層310可使用化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程或其他適當的沉積製程。襯墊層310包含氧化物(例如,氧化矽)或其他適當的介電材料。在一些實施方式中,襯墊層310、隔離層280及/或介電層210包含相同的材料(例如,氧化物)。在一些實施方式中,形成電極層320使用化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程或其他適當的沉積製程。電極層320可包含半導體材料(例如,多晶矽)、金屬或其他適當的導電材料。在一些實施方式中,電極層320、導電插塞260、底電極層300、第一導電層130、第二導電層170及/或阻擋層190(或阻擋結構195)包含相同的材料,例如多晶矽。After the sacrificial material layer 220 is replaced with the gate layer 330, a contact structure CS is formed in the slit trench ST. In detail, each of the contact structures CS includes a liner layer 310 and an electrode layer 320. The liner layer 310 may be formed in the slit trench ST by using a deposition process, and then a conductive material is filled in the slit trench ST to form the electrode layer 320. The formation of the liner layer 310 may use a chemical vapor deposition process, an atomic layer deposition process, a physical vapor deposition process, or other appropriate deposition processes. The liner layer 310 includes an oxide (e.g., silicon oxide) or other suitable dielectric material. In some embodiments, the liner layer 310, the isolation layer 280, and/or the dielectric layer 210 include the same material (e.g., oxide). In some embodiments, the electrode layer 320 is formed using a chemical vapor deposition process, an atomic layer deposition process, a physical vapor deposition process, or other suitable deposition process. The electrode layer 320 may include a semiconductor material (e.g., polysilicon), a metal, or other suitable conductive material. In some embodiments, the electrode layer 320, the conductive plug 260, the bottom electrode layer 300, the first conductive layer 130, the second conductive layer 170 and/or the blocking layer 190 (or the blocking structure 195) include the same material, such as polysilicon.

在一些實施方式中,執行平坦化製程(例如,化學機械研磨製程)以去除襯墊層310及/或電極層320的多餘材料。例如,隔離層280作為蝕刻停止層以執行平坦化製程,使得每個接觸結構CS的頂面(即,電極層320的頂面321與襯墊層310的頂面311)與隔離層280的頂面281實質上共面。In some embodiments, a planarization process (e.g., a chemical mechanical polishing process) is performed to remove excess materials of the liner layer 310 and/or the electrode layer 320. For example, the isolation layer 280 is used as an etch stop layer to perform the planarization process so that the top surface of each contact structure CS (i.e., the top surface 321 of the electrode layer 320 and the top surface 311 of the liner layer 310) is substantially coplanar with the top surface 281 of the isolation layer 280.

在一些實施方式中,接觸結構CS設置於閘極層330的側壁、介電層210的側壁、阻擋層190的側壁及第二導電層170的側壁上。換句話說,接觸結構CS向下穿過閘極層330、介電層210、阻擋層190及第二導電層170。此外,對於階梯區域SR,接觸結構CS的每一者具有嵌入在第一導電層130中的一部分。在一些實施方式中,襯墊層310配置以分隔電極層320與閘極層330,以避免電極層320與閘極層330之間的電性接觸。接觸結構CS的電極層320電性連接到陣列區域AR上方的底電極層300,並且接觸結構CS的電極層320電性連接到階梯區域SR上方的第一導電層130。In some embodiments, the contact structure CS is disposed on the sidewalls of the gate layer 330, the sidewalls of the dielectric layer 210, the sidewalls of the blocking layer 190, and the sidewalls of the second conductive layer 170. In other words, the contact structure CS passes down through the gate layer 330, the dielectric layer 210, the blocking layer 190, and the second conductive layer 170. In addition, for the step region SR, each of the contact structures CS has a portion embedded in the first conductive layer 130. In some embodiments, the liner layer 310 is configured to separate the electrode layer 320 and the gate layer 330 to avoid electrical contact between the electrode layer 320 and the gate layer 330. The electrode layer 320 of the contact structure CS is electrically connected to the bottom electrode layer 300 above the array region AR, and the electrode layer 320 of the contact structure CS is electrically connected to the first conductive layer 130 above the step region SR.

在一些實施方式中,記憶體裝置100包含基板110、底源極結構BS、閘極層330、介電層210、接觸結構CS以及支柱結構270。閘極層330與介電層210交錯堆疊在底源極結構BS上方。接觸結構CS向下穿過閘極層330與介電層210並延伸到底源極結構BS。支柱結構270向下穿過閘極層330與介電層210並延伸到底源極結構BS。底源極結構BS設置於基板110上方,並且底源極結構BS包含底電極層300、第一導電層130、介電堆疊結構DS、第二導電層170、阻擋層190以及阻擋結構195。第14C圖繪示第14A圖中沿線段S2-S2’截取的在階梯區域SR上方的記憶體裝置100的剖面圖。在一些實施方式中,如第14C圖所示,介電堆疊結構DS沿第二方向D2側向地位於相鄰的兩個支柱結構270之間。底源極結構BS的阻擋結構195沿第二方向D2側向地位於支柱結構270的其中一者與接觸結構CS的其中一者之間。換句話說,對於階梯區域SR,介電堆疊結構DS包圍支柱結構270的每一者,並且阻擋結構195包圍接觸結構CS的每一者。In some embodiments, the memory device 100 includes a substrate 110, a bottom source structure BS, a gate layer 330, a dielectric layer 210, a contact structure CS, and a pillar structure 270. The gate layer 330 and the dielectric layer 210 are stacked alternately above the bottom source structure BS. The contact structure CS passes through the gate layer 330 and the dielectric layer 210 downward and extends to the bottom source structure BS. The pillar structure 270 passes through the gate layer 330 and the dielectric layer 210 downward and extends to the bottom source structure BS. The bottom source structure BS is disposed above the substrate 110, and the bottom source structure BS includes a bottom electrode layer 300, a first conductive layer 130, a dielectric stack structure DS, a second conductive layer 170, a blocking layer 190, and a blocking structure 195. FIG. 14C shows a cross-sectional view of the memory device 100 above the step region SR taken along the line segment S2-S2' in FIG. 14A. In some embodiments, as shown in FIG. 14C, the dielectric stack structure DS is laterally located between two adjacent pillar structures 270 along the second direction D2. The blocking structure 195 of the bottom source structure BS is laterally located between one of the pillar structures 270 and one of the contact structures CS along the second direction D2. In other words, for the step region SR, the dielectric stack structure DS surrounds each of the pillar structures 270, and the blocking structure 195 surrounds each of the contact structures CS.

在一些實施方式中,如第14C圖所示,接觸結構CS的每一者包含上部分CSU與下部分CSL。對於階梯區域SR,上部分CSU設置於隔離層280、介電層210及閘極層330中,而下部分CSL設置於阻擋層190、第二導電層170、阻擋結構195及第一導電層130中。對於階梯區域SR,下部分CSL接觸阻擋結構195並且被阻擋結構195包圍。具體而言,對於階梯區域SR,接觸結構CS的每一者的下部分CSL的兩個相對側壁接觸阻擋結構195。In some embodiments, as shown in FIG. 14C , each of the contact structures CS includes an upper portion CSU and a lower portion CSL. For the step region SR, the upper portion CSU is disposed in the isolation layer 280, the dielectric layer 210, and the gate layer 330, and the lower portion CSL is disposed in the blocking layer 190, the second conductive layer 170, the blocking structure 195, and the first conductive layer 130. For the step region SR, the lower portion CSL contacts the blocking structure 195 and is surrounded by the blocking structure 195. Specifically, for the step region SR, two opposite sidewalls of the lower portion CSL of each of the contact structures CS contact the blocking structure 195.

在一些實施方式中,如第14C圖所示,支柱結構270的每一者包含上部分270U與下部分270L。上部分270U設置於介電層210與閘極層330中,而下部分270L設置於阻擋層190、第二導電層170、介電堆疊結構DS及第一導電層130中。下部分270L接觸介電堆疊結構DS並且被介電堆疊結構DS包圍。支柱結構270的每一者具有在隔離層280的頂面281下方的頂面271以及在第一導電層130的頂面131下方的底面275。在一些實施方式中,支柱結構270的底面275在介電堆疊結構DS的底面DS2下方。在一些實施方式中,底源極結構BS的介電堆疊結構DS沿第二方向D2側向地位於接觸結構CS的其中一者的下部分CSL與支柱結構270的其中一者的下部分270L之間。In some embodiments, as shown in FIG. 14C , each of the pillar structures 270 includes an upper portion 270U and a lower portion 270L. The upper portion 270U is disposed in the dielectric layer 210 and the gate layer 330, and the lower portion 270L is disposed in the blocking layer 190, the second conductive layer 170, the dielectric stack structure DS, and the first conductive layer 130. The lower portion 270L contacts the dielectric stack structure DS and is surrounded by the dielectric stack structure DS. Each of the pillar structures 270 has a top surface 271 below the top surface 281 of the isolation layer 280 and a bottom surface 275 below the top surface 131 of the first conductive layer 130. In some embodiments, the bottom surface 275 of the pillar structure 270 is below the bottom surface DS2 of the dielectric stack structure DS. In some embodiments, the dielectric stack structure DS of the bottom-source structure BS is laterally located between the lower portion CSL of one of the contact structures CS and the lower portion 270L of one of the pillar structures 270 along the second direction D2.

在一些實施方式中,如第14B圖與第14C圖所示,介電堆疊結構DS沿著垂直第一方向D1與第二方向D2所定義的平面的方向垂直地位於第一導電層130與第二導電層170之間。阻擋結構195沿著垂直第一方向D1與第二方向D2所定義的平面的方向垂直地位於第一導電層130與第二導電層170之間。阻擋結構195沿著第二方向D2側向地鄰接介電堆疊結構DS。在一些實施方式中,對於階梯區域SR,阻擋結構195的每一者接觸介電堆疊結構DS的側壁DS1與接觸結構CS的其中一者的側壁。具體而言,對於階梯區域SR,阻擋結構195的每一者的兩個相對側壁分別接觸介電堆疊結構DS與接觸結構CS的其中一者的下部分CSL。在一些實施方式中,對於階梯區域SR,阻擋結構195的每一者接觸接觸結構CS的其中一者的下部分CSL,並且與支柱結構270的其中一者的下部分270L分隔。換句話說,阻擋結構195與支柱結構270被介電堆疊結構DS分隔。在一些實施方式中,介電堆疊結構DS接觸阻擋結構195的其中一者與支柱結構270的其中一者。在一些實施方式中,如第14B圖所示,介電堆疊結構DS接觸支柱結構270的每一者的下部分270L,並且與接觸結構CS的每一者的下部分CSL分隔。換句話說,介電堆疊結構DS與接觸結構CS被阻擋結構195分隔。介電堆疊結構DS側向地鄰接阻擋結構195。In some embodiments, as shown in FIG. 14B and FIG. 14C , the dielectric stack structure DS is vertically disposed between the first conductive layer 130 and the second conductive layer 170 along a direction perpendicular to a plane defined by the first direction D1 and the second direction D2. The blocking structure 195 is vertically disposed between the first conductive layer 130 and the second conductive layer 170 along a direction perpendicular to a plane defined by the first direction D1 and the second direction D2. The blocking structure 195 is laterally adjacent to the dielectric stack structure DS along the second direction D2. In some embodiments, for the step region SR, each of the blocking structures 195 contacts a sidewall DS1 of the dielectric stack structure DS and a sidewall of one of the contact structures CS. Specifically, for the step region SR, two opposite side walls of each of the blocking structures 195 contact the dielectric stack structure DS and the lower portion CSL of one of the contact structures CS, respectively. In some embodiments, for the step region SR, each of the blocking structures 195 contacts the lower portion CSL of one of the contact structures CS and is separated from the lower portion 270L of one of the pillar structures 270. In other words, the blocking structure 195 and the pillar structure 270 are separated by the dielectric stack structure DS. In some embodiments, the dielectric stack structure DS contacts one of the blocking structures 195 and one of the pillar structures 270. In some embodiments, as shown in FIG. 14B , the dielectric stack structure DS contacts the lower portion 270L of each of the pillar structures 270 and is separated from the lower portion CSL of each of the contact structures CS. In other words, the dielectric stack structure DS is separated from the contact structure CS by the blocking structure 195. The dielectric stack structure DS is laterally adjacent to the blocking structure 195.

在一些實施方式中,如第14B圖所示,記憶體裝置100更包含在陣列區域AR上方的記憶體結構MS。記憶體結構MS向下穿過在陣列區域AR上方的介電層210、閘極層330、阻擋層190及第二導電層170。記憶體結構MS與支柱結構270分隔。換句話說,記憶體結構MS設置於基板110的陣列區域AR上方,而支柱結構270設置於基板110的階梯區域SR上方。底源極結構BS的底電極層300電性連接到記憶體結構MS與接觸結構CS。In some embodiments, as shown in FIG. 14B , the memory device 100 further includes a memory structure MS above the array region AR. The memory structure MS passes downward through the dielectric layer 210, the gate layer 330, the blocking layer 190, and the second conductive layer 170 above the array region AR. The memory structure MS is separated from the pillar structure 270. In other words, the memory structure MS is disposed above the array region AR of the substrate 110, and the pillar structure 270 is disposed above the step region SR of the substrate 110. The bottom electrode layer 300 of the bottom source structure BS is electrically connected to the memory structure MS and the contact structure CS.

在一些實施方式中,如第14A圖所示,記憶體結構MS沿第二方向D2呈多行排列,其中記憶體結構MS可視為垂直NAND記憶體串。接觸結構CS沿著在陣列區域AR與階梯區域SR上方的第一方向D1延伸。陣列區域AR包含記憶體結構MS,且階梯區域SR包含支柱結構270。接觸結構CS配置以將記憶體裝置100劃分為多個區塊。例如,位於兩個相鄰的接觸結構CS之間的記憶體結構MS與支柱結構270被視為一個區塊。在一些實施方式中,如第7A圖與第14A圖所示,阻擋結構195繼承開口O1的幾何形狀。具體而言,阻擋結構195包含對應於開口O1的第一部分O1a的第一部分195a以及對應於開口O1的第二部分O1b的第二部分195b。亦即,阻擋結構195的第一部分195a的輪廓實質相同於開口O1的第一部分O1a的輪廓,且阻擋結構195的第二部分195b的輪廓實質相同於開口O1的第二部分O1b的輪廓。在一些實施方式中,如第7A圖與第14A圖所示,阻擋結構195的第一部分195a設置於鄰接接觸結構CS沿著第一方向D1的區段。阻擋結構195的第二部分195b沿著垂直第一方向D1的第二方向D2延伸。In some embodiments, as shown in FIG. 14A , the memory structures MS are arranged in multiple rows along the second direction D2, wherein the memory structures MS can be considered as vertical NAND memory strings. The contact structure CS extends along the first direction D1 above the array region AR and the step region SR. The array region AR includes the memory structure MS, and the step region SR includes the pillar structure 270. The contact structure CS is configured to divide the memory device 100 into a plurality of blocks. For example, the memory structure MS and the pillar structure 270 located between two adjacent contact structures CS are considered as one block. In some embodiments, as shown in FIG. 7A and FIG. 14A , the blocking structure 195 inherits the geometry of the opening O1. Specifically, the blocking structure 195 includes a first portion 195a corresponding to the first portion O1a of the opening O1 and a second portion 195b corresponding to the second portion O1b of the opening O1. That is, the profile of the first portion 195a of the blocking structure 195 is substantially the same as the profile of the first portion O1a of the opening O1, and the profile of the second portion 195b of the blocking structure 195 is substantially the same as the profile of the second portion O1b of the opening O1. In some embodiments, as shown in FIG. 7A and FIG. 14A, the first portion 195a of the blocking structure 195 is disposed adjacent to the section of the contact structure CS along the first direction D1. The second portion 195b of the blocking structure 195 extends along the second direction D2 perpendicular to the first direction D1.

根據本揭露上述實施方式,由於介電堆疊結構包圍支柱結構的每一者且阻擋結構設置於支柱結構的其中一者與接觸結構之間,可避免或防止支柱結構在蝕刻製程(例如,蝕刻介電堆疊以暴露記憶體結構的通道層)期間的損壞,從而避免變形或塌陷問題。According to the above-mentioned embodiments of the present disclosure, since the dielectric stack structure surrounds each of the pillar structures and the blocking structure is disposed between one of the pillar structures and the contact structure, damage to the pillar structure during an etching process (e.g., etching the dielectric stack to expose the channel layer of the memory structure) can be avoided or prevented, thereby avoiding deformation or collapse problems.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above implementation form, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be determined by the scope of the attached patent application.

100,100’:記憶體裝置 110:基板 120:隔離層 130:第一導電層 131,151,171,211,261,271,281,311,321:頂面 137,153,303:表面 147,157,167,193,DS1:側壁 140:第一介電層 150:第二介電層 160:第三介電層 165,175,275,DS2:底面 170:第二導電層 180:隔離層 190:阻擋層 195:阻擋結構 195’:部分 210:介電層 220:犧牲材料層 230:記憶體元件 232:阻擋層 234:記憶儲存層 236:穿隧層 240:通道層 250:介電填充結構 260:導電插塞 260S:空間 270:支柱結構 270U,CSU:上部分 270L,CSL:下部分 280:隔離層 290:保護層 300:底電極層 300’:導電結構 302’:第一部分 304’:第二部分 310:襯墊層 320:電極層 330:閘極層 AR:陣列區域 BS:底源極結構 CH:通道結構 CS:接觸結構 D1:第一方向 D2:第二方向 DS:介電堆疊結構 H1:孔洞 MS:記憶體結構 O1,O1’,O2:開口 O1a,195a:第一部分 O1b,195b:第二部分 P1:部分 R1,R2:凹槽 T1,T2:厚度 SR:階梯區域 ST:狹縫溝槽 W1:第一寬度 W2:第二寬度 A1-A1’,S1-S1’,S2-S2’:線段 100,100’: memory device 110: substrate 120: isolation layer 130: first conductive layer 131,151,171,211,261,271,281,311,321: top surface 137,153,303: surface 147,157,167,193,DS1: side wall 140: first dielectric layer 150: second dielectric layer 160: third dielectric layer 165,175,275,DS2: bottom surface 170: second conductive layer 180: isolation layer 190: blocking layer 195: blocking structure 195’: part 210: Dielectric layer 220: Sacrificial material layer 230: Memory element 232: Blocking layer 234: Memory storage layer 236: Tunneling layer 240: Channel layer 250: Dielectric filling structure 260: Conductive plug 260S: Space 270: Pillar structure 270U, CSU: Upper part 270L, CSL: Lower part 280: Isolation layer 290: Protective layer 300: Bottom electrode layer 300’: Conductive structure 302’: First part 304’: Second part 310: Pad layer 320: Electrode layer 330: Gate layer AR: Array region BS: Bottom source structure CH: Channel structure CS: Contact structure D1: First direction D2: Second direction DS: Dielectric stack structure H1: Hole MS: Memory structure O1, O1’, O2: Opening O1a, 195a: First part O1b, 195b: Second part P1: Part R1, R2: Groove T1, T2: Thickness SR: Step region ST: Slit trench W1: First width W2: Second width A1-A1’, S1-S1’, S2-S2’: Line segment

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1A圖、第2A圖、第3A圖、第4A圖、第5A圖、第6A圖、第7A圖、第8A圖、第9A圖、第10A圖、第11A圖、第12A圖、第13A圖以及第14A圖繪示根據本揭露一些實施方式之記憶體裝置的製造方法在不同階段的上視圖。 第1B圖、第2B圖、第3B圖、第4B圖、第5B圖、第6B圖、第7B圖、第8B圖、第9B圖、第10B圖、第11B圖、第12B圖、第13B圖以及第14B圖繪示根據本揭露一些實施方式之記憶體裝置的製造方法在不同階段的剖面圖。 第14C圖是第14A圖中沿線段S2-S2截取的剖面圖。 第15圖繪示根據本揭露一些實施方式之記憶體裝置的上視圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more clearly understandable, the attached drawings are described as follows: Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12A, 13A and 14A show top views of the manufacturing method of the memory device according to some embodiments of the present disclosure at different stages. FIG. 1B, FIG. 2B, FIG. 3B, FIG. 4B, FIG. 5B, FIG. 6B, FIG. 7B, FIG. 8B, FIG. 9B, FIG. 10B, FIG. 11B, FIG. 12B, FIG. 13B, and FIG. 14B illustrate cross-sectional views at different stages of a method for manufacturing a memory device according to some embodiments of the present disclosure. FIG. 14C is a cross-sectional view taken along line segment S2-S2 in FIG. 14A. FIG. 15 illustrates a top view of a memory device according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

100:記憶體裝置 100: Memory device

110:基板 110: Substrate

120:隔離層 120: Isolation layer

130:第一導電層 130: First conductive layer

131,271,281,311,321:頂面 131,271,281,311,321: Top

140:第一介電層 140: First dielectric layer

150:第二介電層 150: Second dielectric layer

160:第三介電層 160: Third dielectric layer

170:第二導電層 170: Second conductive layer

190:阻擋層 190: barrier layer

195:阻擋結構 195: Blocking structure

210:介電層 210: Dielectric layer

230:記憶體元件 230:Memory device

232:阻擋層 232: barrier layer

234:記憶儲存層 234: Memory storage layer

236:穿隧層 236: Tunneling layer

240:通道層 240: Channel layer

250:介電填充結構 250: Dielectric filling structure

260:導電插塞 260: Conductive plug

270:支柱結構 270: Pillar structure

270U,CSU:上部分 270U,CSU:Upper part

270L,CSL:下部分 270L,CSL:lower part

275:底面 275: Bottom

280:隔離層 280: Isolation layer

300:底電極層 300: Bottom electrode layer

310:襯墊層 310: Pad layer

320:電極層 320:Electrode layer

330:閘極層 330: Gate layer

AR:陣列區域 AR: Array Area

BS:底源極結構 BS: Bottom source structure

CH:通道結構 CH: Channel structure

CS:接觸結構 CS: Contact structure

D1:第一方向 D1: First direction

D2:第二方向 D2: Second direction

DS:介電堆疊結構 DS: Dielectric stack structure

MS:記憶體結構 MS: memory structure

O1:開口 O1: Opening

R2:凹槽 R2: Groove

SR:階梯區域 SR: Stairway area

ST:狹縫溝槽 ST: Slit groove

Claims (10)

一種記憶體裝置,包含: 一基板; 一底源極結構,設置於該基板上,其中該底源極結構包含一底電極層、一介電堆疊結構及一阻擋結構; 複數個閘極層及複數個介電層,交錯堆疊於該底源極結構上; 一接觸結構,穿過該些閘極層及該些介電層並延伸到該底源極結構;以及 複數個支柱結構,穿過該些閘極層及該些介電層並延伸到該底源極結構,其中該底源極結構的該介電堆疊結構包圍該些支柱結構的每一者,且其中該底源極結構的該阻擋結構設置於該些支柱結構的其中一者與該接觸結構之間。 A memory device comprises: a substrate; a bottom source structure disposed on the substrate, wherein the bottom source structure comprises a bottom electrode layer, a dielectric stack structure and a blocking structure; a plurality of gate layers and a plurality of dielectric layers stacked alternately on the bottom source structure; a contact structure passing through the gate layers and the dielectric layers and extending to the bottom source structure; and A plurality of pillar structures pass through the gate layers and the dielectric layers and extend to the bottom source structure, wherein the dielectric stack structure of the bottom source structure surrounds each of the pillar structures, and wherein the blocking structure of the bottom source structure is disposed between one of the pillar structures and the contact structure. 如請求項1所述之記憶體裝置,其中該阻擋結構接觸該介電堆疊結構與該接觸結構。A memory device as described in claim 1, wherein the blocking structure contacts the dielectric stack structure and the contact structure. 如請求項1所述之記憶體裝置,其中該底源極結構更包含一第一導電層與設置於該第一導電層上的一第二導電層,且該阻擋結構設置於該第一導電層與該第二導電層之間。The memory device as described in claim 1, wherein the bottom-source structure further includes a first conductive layer and a second conductive layer disposed on the first conductive layer, and the blocking structure is disposed between the first conductive layer and the second conductive layer. 如請求項1所述之記憶體裝置,其中該接觸結構沿著一第一方向延伸,且該阻擋結構的一第一部分鄰接該接觸結構沿著該第一方向的一區段。A memory device as described in claim 1, wherein the contact structure extends along a first direction, and a first portion of the blocking structure is adjacent to a section of the contact structure along the first direction. 如請求項4所述之記憶體裝置,其中該阻擋結構更包含一第二部分,該阻擋結構的該第二部分沿著垂直該第一方向的一第二方向延伸。A memory device as described in claim 4, wherein the blocking structure further includes a second portion, and the second portion of the blocking structure extends along a second direction perpendicular to the first direction. 如請求項4所述之記憶體裝置,更包含: 一記憶體結構,穿過在一陣列區域上方的該些閘極層及該些介電層,其中該接觸結構沿著在該陣列區域與包含該些支柱結構的一階梯區域上方的該第一方向延伸。 The memory device as described in claim 4 further comprises: A memory structure passing through the gate layers and the dielectric layers above an array region, wherein the contact structure extends along the first direction above the array region and a step region including the pillar structures. 一種記憶體裝置,包含: 一基板; 一底源極結構,設置於該基板上,其中該底源極結構包含一底電極層及一介電堆疊結構; 複數個閘極層及複數個介電層,交錯堆疊於該底源極結構上; 一接觸結構,穿過該些閘極層及該些介電層並延伸到該底源極結構;以及 一支柱結構,穿過該些閘極層及該些介電層並延伸到該底源極結構,其中該底源極結構的該介電堆疊結構側向地位於該接觸結構的一下部分與該支柱結構的一下部分之間。 A memory device comprises: a substrate; a bottom source structure disposed on the substrate, wherein the bottom source structure comprises a bottom electrode layer and a dielectric stack structure; a plurality of gate layers and a plurality of dielectric layers stacked alternately on the bottom source structure; a contact structure passing through the gate layers and the dielectric layers and extending to the bottom source structure; and a pillar structure passing through the gate layers and the dielectric layers and extending to the bottom source structure, wherein the dielectric stack structure of the bottom source structure is laterally located between a lower portion of the contact structure and a lower portion of the pillar structure. 如請求項7所述之記憶體裝置,其中該底源極結構更包含一阻擋結構,該阻擋結構側向地鄰接該介電堆疊結構。A memory device as described in claim 7, wherein the bottom source structure further includes a blocking structure, which is laterally adjacent to the dielectric stack structure. 如請求項7所述之記憶體裝置,其中該支柱結構的一底面在該介電堆疊結構的一底面下方。A memory device as described in claim 7, wherein a bottom surface of the pillar structure is below a bottom surface of the dielectric stack structure. 一種記憶體裝置之製造方法,包含: 依序形成一第一導電層、一介電堆疊結構及一第二導電層於一基板上,其中該基板具有一陣列區域與一階梯區域; 形成一阻擋層於該第二導電層上,其中在該階梯區域上方的該阻擋層更穿過該第二導電層與該介電堆疊結構; 形成複數個介電層與複數個犧牲材料層交錯堆疊於該阻擋層上; 形成一記憶體結構向下穿過該陣列區域上方的該些介電層、該些犧牲材料層、該阻擋層、該第二導電層及該介電堆疊結構,其中該記憶體結構包含一記憶體元件與在該記憶體元件上的一通道層; 形成一支柱結構向下穿過該階梯區域上方的該些介電層、該些犧牲材料層、該阻擋層、該第二導電層及該介電堆疊結構; 形成一狹縫溝槽向下穿過該陣列區域與該階梯區域上方的該些介電層及該些犧牲材料層; 從該狹縫溝槽蝕刻該陣列區域上方的該阻擋層與該第二導電層,以暴露該介電堆疊結構; 蝕刻該陣列區域上方的該介電堆疊結構與該記憶體結構的該記憶體元件,以暴露該記憶體結構的該通道層; 形成一底電極層電性連接該記憶體結構的該通道層; 將該些犧牲材料層替換為複數個閘極層;以及 形成一接觸結構於該狹縫溝槽中。 A method for manufacturing a memory device, comprising: Sequentially forming a first conductive layer, a dielectric stack structure and a second conductive layer on a substrate, wherein the substrate has an array region and a step region; Forming a blocking layer on the second conductive layer, wherein the blocking layer above the step region further passes through the second conductive layer and the dielectric stack structure; Forming a plurality of dielectric layers and a plurality of sacrificial material layers alternately stacked on the blocking layer; Forming a memory structure downward through the dielectric layers, the sacrificial material layers, the blocking layer, the second conductive layer and the dielectric stack structure above the array region, wherein the memory structure includes a memory element and a channel layer on the memory element; Forming a pillar structure downward through the dielectric layers, the sacrificial material layers, the blocking layer, the second conductive layer and the dielectric stack structure above the step region; Forming a slit trench downward through the dielectric layers and the sacrificial material layers above the array region and the step region; Etching the blocking layer and the second conductive layer above the array region from the slit trench to expose the dielectric stack structure; Etching the dielectric stack structure and the memory element of the memory structure above the array region to expose the channel layer of the memory structure; Forming a bottom electrode layer electrically connected to the channel layer of the memory structure; Replacing the sacrificial material layers with a plurality of gate layers; and Forming a contact structure in the slit trench.
TW112131576A 2023-08-22 2023-08-22 Memory device and manufacturing method thereof TWI847848B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112131576A TWI847848B (en) 2023-08-22 2023-08-22 Memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112131576A TWI847848B (en) 2023-08-22 2023-08-22 Memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI847848B true TWI847848B (en) 2024-07-01
TW202510335A TW202510335A (en) 2025-03-01

Family

ID=92929390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112131576A TWI847848B (en) 2023-08-22 2023-08-22 Memory device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI847848B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462829A (en) * 2017-06-19 2019-11-15 闪迪技术有限公司 Three dimensional memory device and its manufacturing method with discrete direct source electrode band contact
TW202207375A (en) * 2020-07-31 2022-02-16 大陸商長江存儲科技有限責任公司 Methods for forming three-dimensional memory devices with supporting structure for staircase region
TW202211447A (en) * 2020-09-04 2022-03-16 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices and method for forming the same
CN115955841A (en) * 2021-10-06 2023-04-11 旺宏电子股份有限公司 Semiconductor memory element, integrated circuit chip and method for manufacturing vertical memory structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462829A (en) * 2017-06-19 2019-11-15 闪迪技术有限公司 Three dimensional memory device and its manufacturing method with discrete direct source electrode band contact
TW202207375A (en) * 2020-07-31 2022-02-16 大陸商長江存儲科技有限責任公司 Methods for forming three-dimensional memory devices with supporting structure for staircase region
TW202211447A (en) * 2020-09-04 2022-03-16 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices and method for forming the same
CN115955841A (en) * 2021-10-06 2023-04-11 旺宏电子股份有限公司 Semiconductor memory element, integrated circuit chip and method for manufacturing vertical memory structure

Also Published As

Publication number Publication date
TW202510335A (en) 2025-03-01

Similar Documents

Publication Publication Date Title
CN110534524B (en) Vertical semiconductor device
CN110875327A (en) Three-dimensional semiconductor memory device, method of manufacturing the same, and integrated circuit device
CN103579125B (en) Nonvolatile semiconductor memory member and its manufacture method
KR20110092514A (en) A semiconductor device and a method of manufacturing the semiconductor device, in which the width of the bit line wiring is expanded and its level is lowered on the bit line contact.
TW201843816A (en) Semiconductor device and method for manufacturing same
JP4901898B2 (en) Manufacturing method of semiconductor device
TWI541984B (en) Semiconductor structure and manufacturing method of the same
CN109003979B (en) Vertical memory and manufacturing method thereof
US9397044B2 (en) Semiconductor device and method for forming the same
US9853052B1 (en) Semiconductor device and method for manufacturing same
TWI847848B (en) Memory device and manufacturing method thereof
TWI606575B (en) Self-aligned multi-patterned semiconductor device and its process
CN110021581B (en) Semiconductor device including conductive pattern and method of manufacturing the same
US9455265B2 (en) Semiconductor 3D stacked structure and manufacturing method of the same
US20250071999A1 (en) Memory device and manufacturing method thereof
CN117896983A (en) Memory element and method of manufacturing the same
US8119475B2 (en) Method of forming gate of semiconductor device
TWI827499B (en) Memory device and manufacturing method thereof
TWI878047B (en) Memory device and manufacturing method thereof
JP2015056478A (en) Semiconductor device and method of manufacturing semiconductor device
TWI883829B (en) Memory device and method of fabricating the same
JP2010272703A (en) Nonvolatile memory structure and manufacturing process
JP2015060873A (en) Semiconductor device and manufacturing method thereof
US20240349506A1 (en) Memory device and manufacturing method thereof
TWI723645B (en) Three dimensional memory device