[go: up one dir, main page]

TWI846051B - Polyamic acid composition and polyimide prepared therefrom - Google Patents

Polyamic acid composition and polyimide prepared therefrom Download PDF

Info

Publication number
TWI846051B
TWI846051B TW111134115A TW111134115A TWI846051B TW I846051 B TWI846051 B TW I846051B TW 111134115 A TW111134115 A TW 111134115A TW 111134115 A TW111134115 A TW 111134115A TW I846051 B TWI846051 B TW I846051B
Authority
TW
Taiwan
Prior art keywords
dianhydride
bis
composition
polyimide
curing
Prior art date
Application number
TW111134115A
Other languages
Chinese (zh)
Other versions
TW202311435A (en
Inventor
黃仁煥
Original Assignee
南韓商Pi尖端素材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Pi尖端素材股份有限公司 filed Critical 南韓商Pi尖端素材股份有限公司
Publication of TW202311435A publication Critical patent/TW202311435A/en
Application granted granted Critical
Publication of TWI846051B publication Critical patent/TWI846051B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明涉及一種聚醯胺酸組合物及由其製備的聚醯亞胺,其在具有高透明度的同時具有優異的導電性。The present invention relates to a polyamic acid composition and a polyimide prepared therefrom, which has high transparency and excellent electrical conductivity.

Description

聚醯胺酸組合物及由其製備的聚醯亞胺Polyamic acid composition and polyimide prepared therefrom

本發明涉及一種聚醯胺酸組合物及由其製備的聚醯亞胺。The present invention relates to a polyamic acid composition and a polyimide prepared therefrom.

一般而言,聚醯亞胺(polyimide, PI)樹脂是指由芳香族二酐與芳香族二胺或芳香族二異氰酸酯溶液聚合製備聚醯胺酸衍生物後,經通過固化的醯亞胺化而製成的高耐熱樹脂。 聚醯亞胺是一種基於剛性芳香主鏈的具有熱穩定性的高分子材料,基於醯亞胺環的化學穩定性,具有優異的強度、耐化學性、耐候性及耐熱性等機械特性。此外,聚醯亞胺因其絕緣特性、低介電常數等優異的電氣特性而作為可應用於電子、通信、光學等廣泛工業領域的高功能高分子材料備受關注。 近年來,隨着各種電子設備的薄型化、輕量化及小型化,為了使用輕質、柔性優異、耐熱的聚醯亞胺作為電子設備的組件,已經進行了用於賦予導電性的許多研究。 作為對聚醯亞胺賦予導電性的方法,已知在聚醯亞胺前體中分散碳系導電材料的方法,但是,將分散有碳系導電材料的聚醯亞胺前體固化而得的聚醯亞胺具有低透射率,因此不適合於顯示行業等要求透明性的領域,還存在需要過量的導電材料的缺點。 Generally speaking, polyimide (PI) resin refers to a high heat-resistant resin made by preparing a polyamide derivative by solution polymerization of aromatic dianhydride and aromatic diamine or aromatic diisocyanate, and then curing it through imidization. Polyimide is a heat-stable polymer material based on a rigid aromatic main chain. Based on the chemical stability of the imide ring, it has excellent mechanical properties such as strength, chemical resistance, weather resistance and heat resistance. In addition, polyimide has attracted much attention as a high-functional polymer material that can be applied to a wide range of industrial fields such as electronics, communications, and optics due to its excellent electrical properties such as insulation properties and low dielectric constant. In recent years, with the thinning, lightening and miniaturization of various electronic devices, many studies have been conducted to impart conductivity to lightweight, highly flexible and heat-resistant polyimide as a component of electronic devices. As a method for imparting conductivity to polyimide, a method of dispersing a carbon-based conductive material in a polyimide precursor is known. However, the polyimide obtained by curing the polyimide precursor in which the carbon-based conductive material is dispersed has a low transmittance and is therefore not suitable for fields requiring transparency such as the display industry. There is also a disadvantage that an excessive amount of conductive material is required.

發明所欲解決之問題 本發明的目的在於提供具有高透明度和低表面電阻的聚醯胺酸組合物和聚醯亞胺薄膜。 解決問題之技術手段 聚醯亞胺樹脂在由芳族二酐與芳族二胺或芳族二異氰酸酯聚合製備聚醯胺酸衍生物後,經通過固化的醯亞胺化製備而成。 聚醯亞胺基於剛性芳香主鏈,因此具有優異的熱穩定性。但是,與芳香族主鏈所帶來的高熱穩定性相反,透明性降低很多,因此,在電子材料領域,尤其是要求高透明性的顯示領域的使用受到限制。尤其,最近進行向聚醯亞胺賦予導電性來應用於電子工業領域中的研究,但是提高添加有導電材料的聚醯亞胺的透明性更加困難。 根據本發明的聚醯胺酸組合物通過將包含二酐單體和二胺單體作為聚合單元的聚合物和相容性優異的共軛導電高分子包括在聚醯胺酸組合物中,可以提供在具有高透射率的同時具有優異導電性的聚醯亞胺。 另外,在根據本發明的聚醯胺酸組合物中,共軛導電高分子與溶劑的作用效果優異,因此共軛導電高分子的分散性優異,通過將該共軛導電高分子固化而製備的聚醯亞胺包含少含量的共軛導電高分子並具有優異的導電性。 尤其,根據本發明的聚醯胺酸組合物具有如上所述的高透明度和導電性,還保持聚醯亞胺特有的優異的熱特性和機械特性。 本發明涉及一種聚醯胺酸組合物。上述聚醯胺酸組合物包含具有衍生自二酐單體和二胺單體的聚合物單元的聚合物和共軛導電高分子。 上述共軛導電高分子統稱具有以一個單鍵為中心由原子價電子形成多鍵的結構的高分子。具體而言,上述共軛導電高分子可以是具有雙鍵和單鍵或三鍵和單鍵交替連接的化學結構的高分子。 根據本發明的共軛導電高分子的實例可以包括聚芴(polyfluorene)、聚苯(polyphenylene)、聚芘(polypyrene)、聚薁(polyazulene)、聚萘(polynaphthalene)、聚乙炔(polyacetylene)、聚噻吩(polythiophene)、聚(3,4-乙烯二氧噻吩)(PEDOT)、聚(對苯硫醚)(poly(p-phenylene sulfide)、聚吡咯(polypyrrole)、聚咔唑(polycarbazole)、聚吲哚(polyindole)、聚氮雜卓(polyazepine)或聚苯胺(polyaniline)。 當構成根據本發明的聚醯胺酸組合物的聚合物的聚合單元的二酐單體和二胺單體包括芳族二酐單體和/或芳族二胺單體時,從相容性的觀點來看,共軛導電高分子可以包括芳環或雜原子。上述共軛導電高分子的實例包括選自由聚噻吩(polythiophene)、聚(3,4-乙烯二氧噻吩)(PEDOT)、聚(對苯硫醚)(poly(p-phenylene sulfide)、聚吡咯(polypyrrole)、聚咔唑(polycarbazole)、聚吲哚(polyindole)、聚氮雜卓(polyazepine)及聚苯胺(polyaniline)組成的組中的至少一種。 另外,根據本發明的聚醯胺酸組合物的包括二酐單體和二胺單體的聚合物包括氮原子,因此從分散性和相容性的觀點考慮,上述共軛導電高分子的雜原子優選為氮,因此,根據本發明的共軛導電高分子可以為選自由聚吡咯(polypyrrole)、聚咔唑(polycarbazole)、聚吲哚(polyindole)、聚氮雜卓(polyazepine)及聚苯胺(polyaniline)組成的組中的至少一種。尤其,從提高固化後的聚醯亞胺的透明性的觀點出發,在芳香環中含有氮原子的低分子量的聚吡咯是優選的。 根據本發明的共軛導電高分子的膜電導率(乾燥鑄膜電導率,Dried Cast Film Conductivity)可以為0.005S/cm以上。例如,上述共軛導電高分子的膜電導率可以為0.006 S/cm以上、0.007S/cm以上、0.008S/cm以上、0.009S/cm以上、或0.01S/cm以上。當共軛導電高分子的膜電導率滿足如上所述的膜電導率時,包含上述共軛導電高分子的聚醯胺酸組合物可以具有提高的電導率。 此時,基於聚醯胺酸組合物的總重量,上述共軛導電高分子的含量可以為0.01重量%至1重量%。具體而言,上述共軛導電高分子的含量可以為0.05重量%至1重量%、0.05重量%至0.9重量%、0.1重量%至1重量%、0.1重量%至0.7重量%、0.2重量%至1重量%、0.2重量%至0.9重量%、0.2重量%至0.7重量%、0.3重量%至1重量%、0.3重量%至0.9重量%、0.3重量%至0.7重量%、0.4重量%至0.7重量%或0.4重量%至0.6重量%。當根據本發明的聚醯胺酸組合物以如上所述的含量包含共軛導電高分子時,具有優異的透明度和優異的導電性。 根據本發明的聚醯胺酸組合物在固化後按照ASTM D257測得的表面電阻可以為1.0×10 13Ω/□以下。此外,根據本發明的聚醯胺酸組合物在固化後在380nm至780nm波長下的10μm厚度的平均透光率可以為50%以上。本發明中記載的各種物理性能的具體測定方法和測定條件在下面將描述的實驗例中詳細說明。 具體而言,根據本發明的聚醯胺酸組合物在固化後在380nm至780nm波長下的10μm厚度的平均透光率可以為50%以上。例如,上述透光率可以為52%以上、54%以上、56%以上、58%以上、60%以上、62%以上、64%以上、66%以上、68%以上、70%以上、75%以上、80%以上、82%以上、84%以上、或85%以上,其上限不受特別限制,可以為90%以下。可以使用紫外/可見分光光度計(UV-Vis Spectrophotometer)來測定上述透光率。 此外,根據本發明的聚醯胺酸組合物的按照ASTM D257測得的表面電阻可以為1.0×10 13Ω/□以下。例如,上述表面電阻可以為6.0×10 12Ω/□以下、2.0×10 12Ω/□以下、5.0×10 11Ω/□以下或2.0×10 11Ω/□以下,具體而言,上述表面電阻可以為1.0×10 11至1.0×10 13Ω/□、1.0×10 11至6.0×10 12Ω/□、1.0×10 11至2.0×10 12Ω/□或1.0×10 11至1.0×10 12Ω/□。 本發明通過同時滿足如上所述的透光率和表面電阻,可以提供具有高透明度和優異導電性的聚醯胺酸組合物。 可用於製備聚醯胺酸溶液的二酐單體可以為芳香族四羧酸二酐,上述芳香族四羧酸二酐的實例可以包括均苯四甲酸二酐(或PMDA)、3,3',4,4'-聯苯四羧酸二酐(或BPDA)、2,3,3',4'-聯苯四甲酸二酐(或a-BPDA)、氧二苯二甲酸二酐(或ODPA)、二苯碸-3,4,3',4'-四羧酸二酐(或DSDA)、雙(3,4-二羧基苯基)硫醚二酐、2,2-雙(3,4-二羧基苯基)-1,1,1,3,3,3-六氟丙烷二酐、2,3,3',4'-二苯甲酮四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐(或BTDA)、雙(3,4-二羧基苯基)甲烷二酐、2,2-雙(3,4-二羧基苯基)丙烷二酐、對亞苯基雙(偏苯三酸單酯酸酐)、對亞聯苯雙(偏苯三酸單酯酸酐)、間三聯苯-3,4,3',4'-四羧酸二酐、對三聯苯-3,4,3',4'-四羧酸二酐、1,3-雙(3,4-二羧基苯氧基)苯二酐、1,4-雙(3,4-二羧基苯氧基)苯二酐、1,4-雙(3,4-二羧基苯氧基)聯苯二酐、2,2-雙[(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、2,3,6,7-萘四甲酸二酐、1,4,5,8-萘四甲酸二酐或4,4'-(2,2-六氟異亞丙基)二鄰苯二甲酸二酐等。 根據需要,上述二酐單體可以單獨使用或兩種以上組合使用,例如,可以包括選自由均苯四酸二酐(PMDA)、3,3',4,4'-聯苯四甲酸二酐(s-BPDA)、2,3,3',4'-聯苯四甲酸二酐(a-BPDA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)、氧二苯二甲酸二酐(ODPA)、4,4-(六氟異亞丙基)二苯二甲酸酐(6-FDA)及對苯撐雙(偏苯三酸酐)(TAHQ)組成的組中的至少一種。 在本發明的一個實施方式中,上述二酐單體可以包括具有一個苯環的二酐單體和具有兩個或更多個苯環的二酐單體。上述具有一個苯環的二酐單體和上述具有兩個或更多個苯環的二酐單體分別可以以20摩爾%至60摩爾%和40摩爾%至90摩爾%;25摩爾%至55摩爾%和45摩爾%至80摩爾%;或35摩爾%至53摩爾%和48摩爾%至75摩爾%的摩爾比被包含。在本發明中,通過含有上述二酐單體,在具有優異的黏合力的同時,能夠實現所期望的水平的機械性能。 此外,可用於製備聚醯胺酸溶液的二胺單體為芳香族二胺,可分類如下並舉例說明。 1)作為如1,4-二氨基苯(或對苯二胺,PDA)、1,3-二氨基苯、2,4-二氨基甲苯、2,6-二氨基甲苯或3,5-二氨基苯甲酸(或DABA)等的在結構中具有一個苯核的二胺,具有相對剛性的結構的二胺; 2)如4,4'-二氨基二苯甲烷(亞甲基二胺)、3,3'-二甲基-4,4'-二氨基聯苯、2,2'-二甲基-4,4'-二氨基聯苯、2,2'-雙(三氟甲基)-4,4'-二氨基聯苯、3,3'-二甲基-4,4'-二氨基二苯甲烷、3,3'-二羧基-4,4'-二氨基二苯甲烷、3,3',5,5'-四甲基-4,4'-二氨基二苯甲烷、雙(4-氨基苯基)硫醚、4,4'-二氨基苯甲醯苯胺、3,3'-二氯聯苯胺、3,3'-二甲基聯苯胺(或鄰聯苯胺)、2,2'-二甲基聯苯胺(或間甲苯胺)、3,3'-二甲氧基聯苯胺、2,2'-二甲氧基聯苯胺、3,3'-二氨基二苯醚、3,4'-二氨基二苯醚、4,4'-二氨基二苯醚(或氧雙苯胺、ODA)、3,3'-二氨基二苯硫醚、3,4'-二氨基二苯硫醚、4,4'-二氨基二苯硫醚、3,3'-二氨基二苯碸、3,4'-二氨基二苯碸、4,4'-二氨基二苯碸、3,3'-二氨基二苯甲酮、4,4'-二氨基二苯甲酮、3,3'-二氨基-4,4'-二氯二苯甲酮、3,3'-二氨基-4,4'-二甲氧基二苯甲酮、3,3'-二氨基二苯甲烷、3,4'-二氨基二苯甲烷、4,4'-二氨基二苯基甲烷、2,2-雙(3-氨基苯基)丙烷、2,2-雙(4-氨基苯基)丙烷、2,2-雙(3-氨基苯基)-1,1,1,3,3, 3-六氟丙烷、2,2-雙(4-氨基苯基)-1,1,1,3,3,3-六氟丙烷、3,3'-二氨基二苯亞碸、3,4'-二氨基二苯亞碸或4,4'-二氨基二苯亞碸等的在結構中具有兩個苯核的二胺; 3)如1,3-雙(3-氨基苯基)苯、1,3-雙(4-氨基苯基)苯、1,4-雙(3-氨基苯基)苯、1,4-雙(4-氨基)苯基)苯、1,3-雙(4-氨基苯氧基)苯、1,4-雙(3-氨基苯氧基)苯(或TPE-Q)、1,4-雙(4-氨基苯氧基)苯(或TPE-Q)、1,3-雙(3-氨基苯氧基)-4-三氟甲基苯、3,3'-二氨基-4-(4-苯基)苯氧基二苯甲酮、3,3'-二氨基-4,4'-二(4-苯基苯氧基)二苯甲酮、1,3-雙(3-氨基苯硫醚)苯、1,3-雙(4-氨基苯硫醚)苯、1,4-雙(4-氨基苯硫醚)苯、1,3-雙(3-氨基苯碸)苯、1,3-雙(4-氨基苯碸)苯、1,4-雙(4-氨基苯碸)苯、1,3-雙[2-(4-氨基苯基)異丙基]苯、1,4-雙[2-(3-氨基苯基)異丙基]苯或1,4-雙[2-(4-氨基苯基)異丙基]苯等的在結構中具有三個苯核的二胺; 4)如3,3'-雙(3-氨基苯氧基)聯苯、3,3'-雙(4-氨基苯氧基)聯苯、4,4'-雙(3-氨基苯氧基)聯苯、4,4'-雙(4-氨基苯氧基)聯苯,雙[3-(3-氨基苯氧基)苯基]醚,雙[3-(4-氨基苯氧基)苯基]醚,雙[4-(3-氨基苯氧基)苯基]醚,雙[4-(4-氨基苯氧基)苯基]醚,雙[3-(3-氨基苯氧基)苯基]酮,雙[3-(4-氨基苯氧基)cy)苯基]酮,雙[4-(3-氨基苯氧基)苯基]酮,雙[4-(4-氨基苯氧基)苯基]酮,雙[3-(3-氨基苯氧基)苯基]硫化物,雙[3-(4-氨基苯氧基)苯基]硫化物,雙[4-(3-氨基苯氧基)苯基]硫化物,雙[4-(4-氨基苯氧基)苯基]硫化物、雙[3-(3-氨基苯氧基)苯基]碸、雙[3-(4-氨基苯氧基)苯基]碸、雙[4-(3-氨基苯氧基)苯基]碸、雙[4-(4-氨基苯氧基)cy)苯基]碸、雙[3-(3-氨基苯氧基)苯基]甲烷、雙[3-(4-氨基苯氧基)苯基]甲烷、雙[4-(3-氨基苯氧基)苯基]甲烷、雙[4-(4-氨基苯氧基)苯基]甲烷、2,2-雙[3-(3-氨基苯氧基)苯基]丙烷、2,2-雙[3-(4-氨基苯氧基)苯基]丙烷、2,2-雙[4-(3-氨基苯氧基)苯基]丙烷、2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、2,2-雙[3-(3-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷,2,2-雙[3-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、2,2-雙[4-(3-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷或2,2-雙[4-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷等的在結構中具有四個苯核的二胺。 在一個示例中,根據本發明的二胺單體可以包括選自由1,4-二氨基苯(PPD)、1,3-二氨基苯(MPD)、2,4-二氨基甲苯、2,6-二氨基甲苯、4,4'-二氨基二苯醚(ODA)、4,4'-亞甲基二胺(MDA)、4,4-二氨基苯醯替苯胺(4,4-DABA)、N,N-雙(4-氨基苯基)苯-1,4-二甲醯胺(BPTPA)、2,2-二甲基聯苯胺(M-TOLIDINE)、2,2-雙(三氟甲基)聯苯胺(TFDB)、1,4-雙氨基苯氧基苯(TPE-Q)、雙氨基苯氧基苯(TPE-R)、2,2-雙氨基苯氧基苯基丙烷(BAPP)及2,2-雙氨基苯氧基苯基六氟丙烷(HFBAPP)組成的組中的至少一種。 根據本發明的聚醯胺酸組合物包括溶劑,上述溶劑可以是有機溶劑。與上述聚醯亞胺前體相容性好的溶劑可以為選自由N,N-二乙基乙醯胺(DEAC)、N,N-二甲基丙醯胺(DMPA)、3-甲氧基-N,N-二甲基丙醯胺(KJCMPA)、N-甲基-2吡咯烷酮(NMP)、γ-丁內酯(GBL)及二甘醇二甲醚(Diglyme)組成的組中的至少一種。 具體而言,從根據本發明的共軛導電高分子的分散性的觀點來看,優選為選自由N,N-二乙基乙醯胺(DEAC)、N,N-二甲基丙醯胺(DMPA)及N-甲基-2吡咯烷酮(NMP)組成的組中的至少一種。N,N-二乙基乙醯胺(DEAC)或N,N-二甲基丙醯胺(DMPA)極性較弱,因此,當單獨使用這些中的任何一種或增加其混合量時,可以提高共軛導電高分子的分散性。尤其,當混合具有環的N-甲基-2吡咯烷酮(NMP)和極性相對較弱的N,N-二乙基乙醯胺(DEAC)或N,N-二甲基丙醯胺(DMPA)時,共軛導電高分子的分散性得到提高,從而可以提高導電性和透明度。此時,相對於總溶劑的N-甲基-2吡咯烷酮(NMP)和N,N-二乙基乙醯胺(DEAC)或N,N-二甲基丙醯胺(DMPA)的摩爾比可以為3:7至7:3,例如,上述N-甲基-2吡咯烷酮(NMP)和N,N-二乙基乙醯胺(DEAC)或N,N-二甲基丙醯胺(DMPA)的摩爾比可以為6:4至4:6或4.5:5.5至5.5:4.5。 另外,本發明的聚醯胺酸組合物的溶劑的沸點可以為150℃以上。例如,聚醯胺酸組合物的溶劑的沸點可以為160℃以上或170℃以上。具體而言,上述溶劑的沸點的下限例如可以為155℃、160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃、200℃或201℃以上,上限例如可以為500℃、450℃、300℃、280℃、270℃、250℃、240℃、230℃、220℃、210℃或205℃以下。通過具有如上所述的沸點,在固化時可以容易地分離水和溶劑。 另一方面,為了提高滑動性、導熱性、導電性、耐電暈性、環硬度等薄膜的各種特性,本發明的聚醯胺酸組合物可以包括填料。添加的填料不受特別限制,例如可以舉出二氧化硅、氧化鈦、氧化鋁、氮化硅、氮化硼、磷酸氫鈣、磷酸鈣、雲母等。 上述填料的粒徑不受特別限制,可以取決於被改性膜的特性和添加的填料的種類。上述平均粒徑可為0.05μm至20μm、0.1μm至10μm、0.1μm至5μm或0.1μm至3μm。在本說明書中,除非另有說明,平均粒徑可以是根據D50粒度分析測定的平均粒徑。在本發明中,通過調節上述粒徑範圍,可以充分地保持改性效果,而不損害表面特性且不降低機械特性。 另外,在本發明中填料的添加量也不受特別限制,可以取決於被改性的膜特性、填料粒徑等。在本發明中,基於100重量份的組合物,上述填料的添加量可以為0.01重量份至10重量份、0.01重量份至5重量份或0.02重量份至1重量份。在本發明中,通過調節上述含量,可以充分地保持改性效果,而不降低薄膜的機械特性。添加上述填料的方法不受特別限制,而可以使用本領域公知的方法。 根據本發明的聚醯胺酸組合物的固含量可以為5重量%至30重量%。上述固含量可以為7重量%以上、9重量%以上、10重量%以上、13重量%以上、15重量%以上、17重量%以上,上限例如可以為30重量%以下、26重量%以下、24重量%以下、20重量%以下或19重量%以下。本發明通過將上述聚醯胺酸組合物的固含量調節在較高水平,在將固化後的物理性能保持在期望水平的同時控制黏度增加,並防止在固化過程中去除大量溶劑所需的製造成本和工藝時間的增加。 此外,本發明提供一種聚醯胺酸組合物的製備方法。根據本發明的聚醯胺酸組合物的製備方法包括聚合二酐單體和二胺單體的步驟。 作為上述二酐單體和二胺單體的聚合方法,可以使用溶液聚合等現有的聚醯亞胺前體聚合方法。 例如,上述方法的實例包括:(1)將二胺單體的全部量放入溶劑中,然後以與二胺單體實質上等摩爾地添加二酐單體進行聚合的方法; (2)將二酐單體的全部量放入溶劑中,然後以與二酐單體大致等摩爾的比例添加二胺單體進行聚合的方法; (3)將二胺單體中的一部分成分放入溶劑中後,相對於反應成分混合二酐單體的一部分成分,然後添加剩餘的二胺單體成分,並連續添加剩餘的二酐單體成分,使二胺單體和二酐單體實質上等摩爾的聚合方法; (4)將二酐單體放入溶劑中後,相對於反應成分混合二胺單體的一部分成分,然後添加其他二酐單體成分,並連續添加剩餘的二胺單體成分,使二胺單體和二酐單體實質上等摩爾的聚合方法等。 此外,根據本發明的聚醯胺酸組合物的製備方法可以包括如下步驟:將二胺單體與溶劑混合以製備混合物;在上述混合物中混合共軛導電高分子;及在上述混合物中混合二酐單體。 通過按上述順序混合二胺單體、共軛導電高分子和二酐單體,提高共軛導電高分子的分散性,從而提高所製備的聚醯胺酸組合物和固化其而得的聚醯亞胺的導電性和透明性。 此時,基於組合物的總重量,上述共軛導電高分子的含量可以為0.01重量%至1重量%。具體而言,上述共軛導電高分子的含量可以為0.05重量%至1重量%、0.05重量%至0.9重量%、0.1重量%至1重量%、0.1重量%至0.7重量%、0.2重量%至1重量%、0.2重量%至0.9重量%、0.2重量%至0.7重量%、0.3重量%至1重量%、0.3重量%至0.9重量%、0.3重量%至0.7重量%、0.4重量%至0.7重量%或0.4重量%至0.6重量%。當根據本發明的聚醯胺酸組合物以如上所述的含量包含共軛導電高分子時,具有優異的透明度和優異的導電性。 根據本發明的聚醯胺酸組合物在固化後的熱膨脹係數(CTE)可以為10ppm/℃以下。例如,上述CTE的上限可以為9ppm/℃、8ppm/℃、7ppm/℃、6ppm/℃、5ppm/℃或4ppm/℃以下,下限可以為0.1ppm/℃、1ppm/℃、2.0ppm/℃或3ppm/℃以上。在一個示例中,上述熱膨脹係數可以是在100℃至450℃下測定的。對於上述CTE,可以使用TA公司的熱機械分析儀(thermomechanical analyzer)Q400型號,將聚醯亞胺製成薄膜後,將其切成2mm寬度和10mm長度的尺寸,並在氮氣氣氛下施加0.05N的張力,以10℃/分鐘的速度將溫度從室溫升高到500℃,然後再次以10℃/分鐘的速度冷卻,同時可以測定在100℃至450℃區間的斜率。 在一個示例中,根據本發明的聚醯胺酸組合物在固化後的玻璃化轉變溫度可以為400℃以上,例如,上述玻璃化轉變溫度的下限可以為403℃以上、405℃以上、410℃以上、420℃以上、430℃以上、440℃以上或450℃以上。上限可以為600℃以下。對於通過固化聚醯胺酸組合物製備的聚醯亞胺,可以使用TMA以10℃/分鐘的條件測定上述玻璃化轉變溫度。 根據本發明的聚醯胺酸組合物在固化後的1重量%熱分解溫度可以為500℃以上。上述熱分解溫度可以使用TA公司的熱重分析(thermogravimetric analysis)Q50型號來測定。在一個實施方式中,將通過固化上述聚醯胺酸獲得的聚醯亞胺在氮氣氣氛中以10℃/分鐘的速度升溫至150℃,然後保持等溫30分鐘以去除水分。此後,可以以10℃/分鐘的速度將溫度升高至600℃以測定發生1%重量損失的溫度。例如,上述熱分解溫度的下限可以為505℃以上、510℃以上、520℃以上、530℃以上、540℃以上、550℃以上、560℃以上或570℃以上。例如,上限可以為800℃、750℃、700℃、650℃或630℃以下。 根據本發明的聚醯胺酸組合物在固化後的120Hz下的介電常數可以為3.8F/m以上。例如,聚醯胺酸組合物在固化後在120Hz下的介電常數可以為3.9F/m以上、4.0F/m以上、4.1F/m以上、4.2F/m以上或4.3F/m以上,上限可以為5.0以下。在本發明中通過具有上述範圍的介電常數,在電子器件或電子工業領域中使用聚醯胺酸組合物或由其製備的聚醯胺酸時,可以賦予足夠的抗靜電效果。 另外,上述聚醯胺酸組合物在固化後的伸長率(Elongation)可以為10%以上,例如,可以為11%以上、12%以上、15%以上、20%以上或25%以上。上限不受特別限制,但可以為40%以下。至於上述伸長率,可以在將聚醯胺酸組合物固化成聚醯亞胺薄膜並切割成10mm寬度和40mm長度的尺寸後,通過ASTM D-882方法使用Instron公司的Instron5564 UTM設備來測定伸長率。 另外,本發明的聚醯胺酸組合物在固化後的彈性模量可以為5.0GPa以上。上述彈性模量的下限例如可以為6.0GPa以上、7.0GPa以上、8.0GPa以上或9.0GPa以上。上限不受特別限制,可以為15GPa以下。 另外,本聚醯胺酸組合物在固化後的抗拉強度可以為180MPa以上。例如,上述抗拉強度的下限可以為190MPa以上、200MPa以上、300MPa以上、400MPa以上、410MPa以上、420MPa以上或440MPa以上,上限例如可以為550MPa以下或530MPa以下。至於上述彈性模量和抗拉強度,可以在將上述聚醯胺酸組合物固化成聚醯亞胺薄膜並切割成10mm寬度和40mm長度的尺寸後,通過ASTM D-882方法使用Instron公司的Instron5564 UTM設備來測定彈性模量和抗拉強度。此時,可以在50mm/分鐘的十字頭速度(Cross Head Speed)條件下進行測定。 上述聚醯胺酸組合物可以為具有低黏度特性的組合物。本發明的聚醯胺酸組合物在23℃溫度和1s -1的剪切速度條件下測定的黏度可以為10,000cP以下、5,000cP以下、4,000cP以下、3,500cP以下、3,300cP以下、3,200cP以下或3,100cP以下。其下限不受特別限制,但可以為500cP以上或1,000cP以上。例如,上述黏度可以使用Haake公司的Rheostress 600型號進行測定,且可以在1/s的剪切速度、23℃的溫度及1mm的板間隙條件下進行測定。本發明可以通過調節上述黏度範圍來提供具有優異工藝性的前體組合物。 此外,本發明提供一種聚醯亞胺的製備方法,其包括在支撐體上形成根據上述聚醯胺酸組合物的製備方法製備的聚醯胺酸組合物的薄膜並進行乾燥,以製備凝膠,將上述凝膠固化的步驟。 具體而言,本發明的聚醯亞胺的製備方法可以包括在支持體上形成上述聚醯胺酸組合物的薄膜、乾燥該薄膜而製備薄膜狀凝膠、固化上述凝膠的步驟。 固化上述凝膠的步驟可以通過如下工藝執行,即,將形成在上述支撐體上的聚醯胺酸組合物在20℃至120℃的溫度下乾燥5分鐘至60分鐘以製備凝膠膜,將上述凝膠膜的溫度以1℃/分鐘至8℃/分鐘的速度升高至30℃至500℃,在450℃至500℃下熱處理5分鐘至60分鐘,以1℃/分鐘至8℃/分鐘的速度冷卻至20℃至120℃。 將上述凝膠膜固化的步驟可以在30℃至500℃下進行。例如,對上述凝膠膜進行固化的步驟可以在30℃至400℃、30℃至300℃、30℃至200℃、30℃至100℃、100℃至500℃、100℃至300℃、200℃至500℃或400℃至500℃下進行。 上述聚醯亞胺薄膜的厚度可以為5μm至20μm。例如,上述聚醯亞胺薄膜的厚度可以為5μm至18μm、6μm至16μm、7μm至14μm、8μm至12μm或9μm至11μm。 例如,上述支撐體可以是無機基板,無機基板的實例可以包括玻璃基板和金屬基板,但優選使用玻璃基板,作為上述玻璃基板可以使用鈉鈣玻璃、硼硅酸鹽玻璃、無鹼玻璃等,但不限於此。 由於根據本發明的聚醯亞胺具有優異的耐熱性、透明度和導電性,因此可以被廣泛用作需要上述特性且對靜電問題敏感的電子電氣設備、平板顯示行業、半導體、太陽能電池行業等的需要高耐熱性的高科技核心機械部件。具體而言,可有用地用於高K(High-K)晶體管、氧化物-TFT用聚醯亞胺基板、LTPS-TFT用聚醯亞胺基板。 對照先前技術之功效 根據本發明的聚醯胺酸組合物及由其製備的聚醯亞胺在具有高透明度的同時具有優異的導電性。尤其,根據本發明的聚醯胺酸組合物及由其製備的聚醯亞胺在具有如上所述的高透明度和導電性的同時,還保持聚醯亞胺特有的優異的熱特性和機械特性。 Problem to be solved by the invention The purpose of the present invention is to provide a polyamide composition and a polyimide film having high transparency and low surface resistance. Technical means for solving the problem The polyimide resin is prepared by preparing a polyamide derivative by polymerization of aromatic dianhydride and aromatic diamine or aromatic diisocyanate, and then curing and imidization. Polyimide is based on a rigid aromatic main chain and therefore has excellent thermal stability. However, in contrast to the high thermal stability brought about by the aromatic main chain, the transparency is greatly reduced, and therefore, the use in the field of electronic materials, especially in the field of displays requiring high transparency, is limited. In particular, research has recently been conducted on imparting conductivity to polyimide for application in the field of the electronics industry, but it is more difficult to improve the transparency of polyimide added with conductive materials. The polyamic acid composition according to the present invention can provide a polyimide having high transmittance and excellent conductivity by including a polymer containing a dianhydride monomer and a diamine monomer as polymerization units and a conjugated conductive polymer with excellent compatibility in the polyamic acid composition. In addition, in the polyamic acid composition according to the present invention, the conjugated conductive polymer has an excellent effect on the solvent, so the dispersibility of the conjugated conductive polymer is excellent, and the polyimide prepared by curing the conjugated conductive polymer contains a small amount of the conjugated conductive polymer and has excellent conductivity. In particular, the polyamic acid composition according to the present invention has high transparency and conductivity as described above, and also maintains excellent thermal and mechanical properties unique to polyimide. The present invention relates to a polyamine composition. The polyamine composition comprises a polymer having polymer units derived from a dianhydride monomer and a diamine monomer and a conjugated conductive polymer. The conjugated conductive polymer is generally referred to as a polymer having a structure in which multiple bonds are formed by atomic valence electrons with a single bond as the center. Specifically, the conjugated conductive polymer can be a polymer having a chemical structure in which double bonds and single bonds or triple bonds and single bonds are alternately connected. Examples of the conjugated conductive polymer according to the present invention may include polyfluorene, polyphenylene, polypyrene, polyazulene, polynaphthalene, polyacetylene, polythiophene, poly(3,4-ethylenedioxythiophene) (PEDOT), poly(p-phenylene sulfide), polypyrrole, polycarbazole, polyindole, polyazepine or polyaniline. When the dianhydride monomer and the diamine monomer of the polymerized unit constituting the polymer of the polyamic acid composition according to the present invention include an aromatic dianhydride monomer and/or an aromatic diamine monomer, the conjugated conductive polymer may include an aromatic ring or a heteroatom from the viewpoint of compatibility. Examples of the above-mentioned conjugated conductive polymer include at least one selected from the group consisting of polythiophene, poly(3,4-ethylenedioxythiophene) (PEDOT), poly(p-phenylene sulfide), polypyrrole, polycarbazole, polyindole, polyazepine and polyaniline. In addition, the polymer including the dianhydride monomer and the diamine monomer of the polyamide composition according to the present invention includes nitrogen atoms. Therefore, from the viewpoint of dispersibility and compatibility, the impurity atom of the above-mentioned conjugated conductive polymer is preferably nitrogen. Therefore, the conjugated conductive polymer according to the present invention can be at least one selected from the group consisting of polypyrrole, polycarbazole, polyindole, polyazepine and polyaniline. In particular, from the viewpoint of improving the transparency of the cured polyimide, low molecular weight polypyrrole containing nitrogen atoms in the aromatic ring is preferred. The film conductivity (Dried Cast Film Conductivity, Dried Cast Film) of the conjugated conductive polymer according to the present invention is The conductivity of the conjugated conductive polymer may be 0.005 S/cm or more. For example, the membrane conductivity of the conjugated conductive polymer may be 0.006 S/cm or more, 0.007 S/cm or more, 0.008 S/cm or more, 0.009 S/cm or more, or 0.01 S/cm or more. When the membrane conductivity of the conjugated conductive polymer satisfies the membrane conductivity as described above, the polyamine composition containing the conjugated conductive polymer may have improved conductivity. At this time, the content of the conjugated conductive polymer may be 0.01 wt % to 1 wt % based on the total weight of the polyamine composition. Specifically, the content of the conjugated conductive polymer may be 0.05 wt % to 1 wt %, 0.05 wt % to 0.9 wt %, 0.1 wt % to 1 wt %, 0.1 wt % to 0.7 wt %, 0.2 wt % to 1 wt %, 0.2 wt % to 0.9 wt %, 0.2 wt % to 0.7 wt %, 0.3 wt % to 1 wt %, 0.3 wt % to 0.9 wt %, 0.3 wt % to 0.7 wt %, 0.4 wt % to 0.7 wt % or 0.4 wt % to 0.6 wt %. When the polyamide composition according to the present invention contains the conjugated conductive polymer in the above content, it has excellent transparency and excellent conductivity. The surface resistance of the polyamide composition according to the present invention measured according to ASTM D257 after curing may be 1.0×10 13 Ω/□ or less. In addition, the average light transmittance of the polyamine composition of the present invention at a thickness of 10 μm at a wavelength of 380 nm to 780 nm after curing can be more than 50%. The specific measurement methods and measurement conditions of the various physical properties recorded in the present invention are described in detail in the experimental examples described below. Specifically, the average light transmittance of the polyamine composition of the present invention at a thickness of 10 μm at a wavelength of 380 nm to 780 nm after curing can be more than 50%. For example, the above-mentioned light transmittance can be more than 52%, more than 54%, more than 56%, more than 58%, more than 60%, more than 62%, more than 64%, more than 66%, more than 68%, more than 70%, more than 75%, more than 80%, more than 82%, more than 84%, or more than 85%, and its upper limit is not particularly limited and can be less than 90%. The light transmittance can be measured using a UV-Vis spectrophotometer. In addition, the surface resistance of the polyamine composition according to the present invention measured in accordance with ASTM D257 can be 1.0×10 13 Ω/□ or less. For example, the surface resistance may be 6.0×10 12 Ω/□ or less, 2.0×10 12 Ω/□ or less, 5.0×10 11 Ω/□ or less, or 2.0×10 11 Ω/□ or less. Specifically, the surface resistance may be 1.0×10 11 to 1.0×10 13 Ω/□, 1.0×10 11 to 6.0×10 12 Ω/□, 1.0×10 11 to 2.0×10 12 Ω/□, or 1.0×10 11 to 1.0×10 12 Ω/□. The present invention can provide a polyamide composition having high transparency and excellent conductivity by satisfying the above-mentioned transmittance and surface resistance at the same time. The dianhydride monomer that can be used to prepare the polyamide solution can be an aromatic tetracarboxylic dianhydride. Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride (or PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (or BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (or a-BPDA), oxyphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride (or DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (or BTDA), bis(3,4 -dicarboxyphenyl)methane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, p-phenylene bis(trimellitic acid monoester anhydride), p-biphenylene bis(trimellitic acid monoester anhydride), m-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, p-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, 1,3-bis(3,4-dicarboxyphenoxy)phthalic dianhydride, 1, 4-bis(3,4-dicarboxyphenoxy)phthalic anhydride, 1,4-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, 2,2-bis[(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA), 2,3,6,7-naphthalenetetracarboxylic anhydride, 1,4,5,8-naphthalenetetracarboxylic anhydride or 4,4'-(2,2-hexafluoroisopropylidene)diphthalic anhydride, etc. As required, the above-mentioned dianhydride monomers can be used alone or in combination of two or more, for example, they can include at least one selected from the group consisting of pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), oxyphthalic dianhydride (ODPA), 4,4-(hexafluoroisopropylidene)phthalic anhydride (6-FDA) and p-phenylenebis(trimellitic anhydride) (TAHQ). In one embodiment of the present invention, the above-mentioned dianhydride monomers can include dianhydride monomers having one benzene ring and dianhydride monomers having two or more benzene rings. The above-mentioned dianhydride monomer having one benzene ring and the above-mentioned dianhydride monomer having two or more benzene rings can be contained in a molar ratio of 20 mol% to 60 mol% and 40 mol% to 90 mol%; 25 mol% to 55 mol% and 45 mol% to 80 mol%; or 35 mol% to 53 mol% and 48 mol% to 75 mol%. In the present invention, by containing the above-mentioned dianhydride monomer, the desired level of mechanical properties can be achieved while having excellent adhesion. In addition, the diamine monomer that can be used to prepare the polyamide solution is an aromatic diamine, which can be classified as follows and illustrated by examples. 1) A diamine having a benzene nucleus in the structure, such as 1,4-diaminobenzene (or p-phenylenediamine, PDA), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene or 3,5-diaminobenzoic acid (or DABA); 2) A diamine having a relatively rigid structure, such as 4,4'-diaminodiphenylmethane (methylenediamine), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3', 5,5'-Tetramethyl-4,4'-diaminodiphenylmethane, bis(4-aminophenyl) sulfide, 4,4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (or o-benzidine), 2,2'-dimethylbenzidine (or m-toluidine), 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 3,3'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether (or oxydiphenylamine, ODA), 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3 diamines having two benzene nuclei in their structure, such as 2,4'-diamino-4,4'-dichlorobenzophenone, 3,3'-diamino-4,4'-dimethoxybenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis(3-aminophenyl)propane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone or 4,4'-diaminodiphenylsulfone; 3) such as 1,3-bis(3-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(3-aminophenyl)benzene, 1,4-bis(4-amino)phenyl)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene (or TPE-Q), 1,4-bis(4-aminophenoxy)benzene (or TPE-Q), 1,3-bis(3-aminophenoxy)-4-trifluoromethylbenzene, 3,3'-diamino-4-(4-phenyl)phenoxybenzophenone, 3,3'-diamino-4,4' - diamines having three benzene nuclei in the structure, such as bis(4-phenylphenoxy)benzophenone, 1,3-bis(3-aminophenylene sulfide)benzene, 1,3-bis(4-aminophenylene sulfide)benzene, 1,4-bis(4-aminophenylene sulfide)benzene, 1,3-bis(3-aminophenylsulfone)benzene, 1,3-bis(4-aminophenylsulfone)benzene, 1,4-bis(4-aminophenylsulfone)benzene, 1,3-bis[2-(4-aminophenylsulfone)isopropyl]benzene, 1,4-bis[2-(3-aminophenyl)isopropyl]benzene or 1,4-bis[2-(4-aminophenyl)isopropyl]benzene; 4) such as 3,3'-bis(3-aminophenoxy)biphenyl, 3,3'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, bis[3-(3-aminophenoxy)phenyl]ether, bis[3-(4-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, bis[3-(3-aminophenoxy)phenyl]ketone, bis[3-(4-aminophenoxy)c y) phenyl] ketone, bis[4-(3-aminophenoxy)phenyl] ketone, bis[4-(4-aminophenoxy)phenyl] ketone, bis[3-(3-aminophenoxy)phenyl] sulfide, bis[3-(4-aminophenoxy)phenyl] sulfide, bis[4-(3-aminophenoxy)phenyl] sulfide, bis[4-(4-aminophenoxy)phenyl] sulfide, bis[3-(3-aminophenoxy)phenyl] sulfide, bis[4-(4-aminophenoxy)phenyl] sulfide, bis[3-(3-aminophenoxy)phenyl] sulfide, bis[3-(4-aminophenoxy)phenyl] sulfide, bis[4-(3-aminophenoxy)phenyl] sulfide, bis[3-(3-aminophenoxy)phenyl]methane, bis[3-(4-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(4-aminophenoxy)phenyl]methane, 2,2-bis[3-(3-aminophenoxy)phenyl]propane, 2,2-bis[3-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, )phenyl]propane (BAPP), 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane or 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane. In one example, the diamine monomer according to the present invention may include a monomer selected from 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminodiphenyl ether (ODA), 4,4'-methylenediamine (MDA), 4,4-diaminobenzanilide (4,4-DABA), N,N-bis(4-aminophenyl)benzene-1,4 At least one of the group consisting of trifluoromethylbenzidine (TPE-Q), 2,2-dimethylbenzidine (TOLIDINE), 2,2-bis(trifluoromethyl)benzidine (TFDB), 1,4-bisaminophenoxybenzene (TPE-R), 2,2-bisaminophenoxyphenylpropane (BAPP) and 2,2-bisaminophenoxyphenylhexafluoropropane (HFBAPP). The polyamine composition according to the present invention includes a solvent, and the solvent may be an organic solvent. The solvent having good compatibility with the polyimide precursor may be at least one selected from the group consisting of N,N-diethylacetamide (DEAC), N,N-dimethylpropionamide (DMPA), 3-methoxy-N,N-dimethylpropionamide (KJCMPA), N-methyl-2-pyrrolidone (NMP), γ-butyrolactone (GBL) and diglyme. Specifically, from the viewpoint of the dispersibility of the conjugated conductive polymer according to the present invention, it is preferably at least one selected from the group consisting of N,N-diethylacetamide (DEAC), N,N-dimethylpropionamide (DMPA) and N-methyl-2-pyrrolidone (NMP). N,N-diethylacetamide (DEAC) or N,N-dimethylpropionamide (DMPA) has a weak polarity, so when any one of these is used alone or the mixing amount thereof is increased, the dispersibility of the conjugated conductive polymer can be improved. In particular, when N-methyl-2-pyrrolidone (NMP) having a ring and N,N-diethylacetamide (DEAC) or N,N-dimethylpropionamide (DMPA) having a relatively weak polarity are mixed, the dispersibility of the conjugated conductive polymer is improved, thereby improving the conductivity and transparency. At this time, the molar ratio of N-methyl-2-pyrrolidone (NMP) and N,N-diethylacetamide (DEAC) or N,N-dimethylpropionamide (DMPA) relative to the total solvent can be 3:7 to 7:3, for example, the molar ratio of the above-mentioned N-methyl-2-pyrrolidone (NMP) and N,N-diethylacetamide (DEAC) or N,N-dimethylpropionamide (DMPA) can be 6:4 to 4:6 or 4.5:5.5 to 5.5:4.5. In addition, the boiling point of the solvent of the polyamine composition of the present invention can be above 150°C. For example, the boiling point of the solvent of the polyamine composition can be above 160°C or above 170°C. Specifically, the lower limit of the boiling point of the above-mentioned solvent can be, for example, 155°C, 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, 200°C or 201°C, and the upper limit can be, for example, 500°C, 450°C, 300°C, 280°C, 270°C, 250°C, 240°C, 230°C, 220°C, 210°C or 205°C or less. By having such a boiling point, water and solvent can be easily separated during curing. On the other hand, in order to improve various properties of the film such as slip, thermal conductivity, electrical conductivity, corona resistance, ring hardness, etc., the polyamide composition of the present invention can include a filler. The added filler is not particularly limited, for example, silicon dioxide, titanium oxide, aluminum oxide, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, etc. can be cited. The particle size of the above filler is not particularly limited, and may depend on the characteristics of the modified film and the type of added filler. The above average particle size may be 0.05μm to 20μm, 0.1μm to 10μm, 0.1μm to 5μm or 0.1μm to 3μm. In this specification, unless otherwise specified, the average particle size may be the average particle size measured according to the D50 particle size analysis. In the present invention, by adjusting the above particle size range, the modification effect can be fully maintained without damaging the surface characteristics and reducing the mechanical properties. In addition, in the present invention, the amount of filler added is not particularly limited, and may depend on the modified film characteristics, filler particle size, etc. In the present invention, based on 100 parts by weight of the composition, the addition amount of the above-mentioned filler can be 0.01 to 10 parts by weight, 0.01 to 5 parts by weight or 0.02 to 1 part by weight. In the present invention, by adjusting the above-mentioned content, the modification effect can be fully maintained without reducing the mechanical properties of the film. The method of adding the above-mentioned filler is not particularly limited, and methods known in the art can be used. The solid content of the polyamine composition according to the present invention can be 5% by weight to 30% by weight. The above-mentioned solid content can be more than 7% by weight, more than 9% by weight, more than 10% by weight, more than 13% by weight, more than 15% by weight, more than 17% by weight, and the upper limit can be, for example, less than 30% by weight, less than 26% by weight, less than 24% by weight, less than 20% by weight or less than 19% by weight. The present invention controls the viscosity increase while maintaining the physical properties after curing at a desired level by adjusting the solid content of the above-mentioned polyamine composition at a higher level, and prevents the increase in manufacturing costs and process time required to remove a large amount of solvent during the curing process. In addition, the present invention provides a method for preparing a polyamine composition. The method for preparing the polyamine composition according to the present invention includes the steps of polymerizing a dianhydride monomer and a diamine monomer. As the polymerization method of the above-mentioned dianhydride monomer and diamine monomer, an existing polyimide precursor polymerization method such as solution polymerization can be used. For example, examples of the above method include: (1) a method in which the entire amount of diamine monomer is placed in a solvent, and then a dianhydride monomer is added in a substantially equimolar ratio to the diamine monomer to carry out polymerization; (2) a method in which the entire amount of dianhydride monomer is placed in a solvent, and then a diamine monomer is added in a substantially equimolar ratio to the dianhydride monomer to carry out polymerization; (3) a method in which a portion of the diamine monomer is placed in a solvent, a portion of the dianhydride monomer is mixed with the reaction components, and then the remaining diamine monomer is added, and the remaining dianhydride monomer is continuously added to make the diamine monomer and the dianhydride monomer substantially equimolar; (4) After the dianhydride monomer is placed in a solvent, a portion of the diamine monomer is mixed with the reaction components, and then other dianhydride monomer components are added, and the remaining diamine monomer components are continuously added to make the diamine monomer and the dianhydride monomer substantially equal in molar polymerization. In addition, the preparation method of the polyamide composition according to the present invention may include the following steps: mixing the diamine monomer with a solvent to prepare a mixture; mixing a conjugated conductive polymer in the above mixture; and mixing the dianhydride monomer in the above mixture. By mixing the diamine monomer, the conjugated conductive polymer and the dianhydride monomer in the above order, the dispersibility of the conjugated conductive polymer is improved, thereby improving the conductivity and transparency of the prepared polyamide composition and the polyimide obtained by curing it. At this time, based on the total weight of the composition, the content of the conjugated conductive polymer may be 0.01 wt % to 1 wt %. Specifically, the content of the conjugated conductive polymer may be 0.05 wt % to 1 wt %, 0.05 wt % to 0.9 wt %, 0.1 wt % to 1 wt %, 0.1 wt % to 0.7 wt %, 0.2 wt % to 1 wt %, 0.2 wt % to 0.9 wt %, 0.2 wt % to 0.7 wt %, 0.3 wt % to 1 wt %, 0.3 wt % to 0.9 wt %, 0.3 wt % to 0.7 wt %, 0.4 wt % to 0.7 wt %, or 0.4 wt % to 0.6 wt %. When the polyamide composition according to the present invention contains the conjugated conductive polymer in the above content, it has excellent transparency and excellent conductivity. The coefficient of thermal expansion (CTE) of the polyamide composition according to the present invention after curing may be 10 ppm/°C or less. For example, the upper limit of the CTE may be 9 ppm/°C, 8 ppm/°C, 7 ppm/°C, 6 ppm/°C, 5 ppm/°C or 4 ppm/°C or less, and the lower limit may be 0.1 ppm/°C, 1 ppm/°C, 2.0 ppm/°C or 3 ppm/°C or more. In one example, the coefficient of thermal expansion may be measured at 100°C to 450°C. For the CTE, a thermomechanical analyzer Q400 from TA can be used. After the polyimide is made into a film, it is cut into a size of 2 mm width and 10 mm length, and a tension of 0.05 N is applied in a nitrogen atmosphere. The temperature is raised from room temperature to 500° C. at a rate of 10° C./min, and then cooled again at a rate of 10° C./min., and the slope in the range of 100° C. to 450° C. can be measured. In one example, the glass transition temperature of the polyamide composition according to the present invention after curing can be 400° C. or more. For example, the lower limit of the glass transition temperature can be 403° C. or more, 405° C. or more, 410° C. or more, 420° C. or more, 430° C. or more, 440° C. or more, or 450° C. or more. The upper limit can be 600° C. or less. For the polyimide prepared by curing the polyamic acid composition, the above-mentioned glass transition temperature can be measured using TMA at 10°C/minute. The 1 wt% thermal decomposition temperature of the polyamic acid composition according to the present invention after curing can be above 500°C. The above-mentioned thermal decomposition temperature can be measured using TA's thermogravimetric analysis (thermogravimetric analysis) Q50 model. In one embodiment, the polyimide obtained by curing the above-mentioned polyamic acid is heated to 150°C at a rate of 10°C/minute in a nitrogen atmosphere, and then kept isothermal for 30 minutes to remove moisture. Thereafter, the temperature can be raised to 600°C at a rate of 10°C/minute to determine the temperature at which 1% weight loss occurs. For example, the lower limit of the thermal decomposition temperature may be 505°C or more, 510°C or more, 520°C or more, 530°C or more, 540°C or more, 550°C or more, 560°C or more, or 570°C or more. For example, the upper limit may be 800°C, 750°C, 700°C, 650°C, or less than 630°C. The dielectric constant of the polyamine composition according to the present invention at 120 Hz after curing may be 3.8 F/m or more. For example, the dielectric constant of the polyamine composition at 120 Hz after curing may be 3.9 F/m or more, 4.0 F/m or more, 4.1 F/m or more, 4.2 F/m or more, or 4.3 F/m or more, and the upper limit may be 5.0 or less. In the present invention, by having the dielectric constant of the above range, when using the polyamide composition or the polyamide prepared therefrom in electronic devices or the electronic industry, sufficient antistatic effect can be given. In addition, the elongation (Elongation) of the above-mentioned polyamide composition after curing can be more than 10%, for example, can be more than 11%, more than 12%, more than 15%, more than 20% or more than 25%. The upper limit is not particularly limited, but can be less than 40%. As for the above-mentioned elongation, the polyamide composition can be cured into a polyimide film and cut into a size of 10mm width and 40mm length, and the elongation can be measured by the Instron5564 UTM equipment of Instron company by ASTM D-882 method. In addition, the elastic modulus of the polyamine composition of the present invention after curing can be 5.0GPa or more. The lower limit of the above-mentioned elastic modulus can be, for example, 6.0GPa or more, 7.0GPa or more, 8.0GPa or more, or 9.0GPa or more. The upper limit is not particularly limited and can be 15GPa or less. In addition, the tensile strength of the polyamine composition after curing can be 180MPa or more. For example, the lower limit of the above-mentioned tensile strength can be 190MPa or more, 200MPa or more, 300MPa or more, 400MPa or more, 410MPa or more, 420MPa or more, or 440MPa or more, and the upper limit can be, for example, 550MPa or less, or 530MPa or less. As for the above-mentioned elastic modulus and tensile strength, the above-mentioned polyamide composition can be cured into a polyimide film and cut into a size of 10 mm width and 40 mm length, and the elastic modulus and tensile strength can be measured by using the Instron5564 UTM equipment of Instron Company by ASTM D-882 method. At this time, it can be measured under the condition of a cross head speed (Cross Head Speed) of 50 mm/minute. The above-mentioned polyamide composition can be a composition with low viscosity characteristics. The viscosity of the polyamide composition of the present invention measured under the conditions of a temperature of 23°C and a shear rate of 1s -1 can be 10,000 cP or less, 5,000 cP or less, 4,000 cP or less, 3,500 cP or less, 3,300 cP or less, 3,200 cP or less or 3,100 cP or less. The lower limit is not particularly limited, but may be 500 cP or more or 1,000 cP or more. For example, the above viscosity can be measured using Rheostress 600 model of Haake Company, and can be measured under the conditions of a shear rate of 1/s, a temperature of 23°C and a plate gap of 1 mm. The present invention can provide a precursor composition with excellent processability by adjusting the above viscosity range. In addition, the present invention provides a method for preparing polyimide, which includes forming a thin film of a polyamic acid composition prepared according to the above method for preparing a polyamic acid composition on a support and drying it to prepare a gel, and solidifying the above gel. Specifically, the method for preparing polyimide of the present invention may include the steps of forming a film of the polyamic acid composition on a support, drying the film to prepare a film-like gel, and curing the gel. The step of curing the gel may be performed by drying the polyamic acid composition formed on the support at a temperature of 20°C to 120°C for 5 minutes to 60 minutes to prepare a gel film, raising the temperature of the gel film to 30°C to 500°C at a rate of 1°C/min to 8°C/min, heat-treating at 450°C to 500°C for 5 minutes to 60 minutes, and cooling to 20°C to 120°C at a rate of 1°C/min to 8°C/min. The step of curing the gel film may be performed at 30° C. to 500° C. For example, the step of curing the gel film may be performed at 30° C. to 400° C., 30° C. to 300° C., 30° C. to 200° C., 30° C. to 100° C., 100° C. to 500° C., 100° C. to 300° C., 200° C. to 500° C., or 400° C. to 500° C. The thickness of the polyimide film may be 5 μm to 20 μm. For example, the thickness of the polyimide film may be 5 μm to 18 μm, 6 μm to 16 μm, 7 μm to 14 μm, 8 μm to 12 μm, or 9 μm to 11 μm. For example, the support may be an inorganic substrate. Examples of the inorganic substrate may include a glass substrate and a metal substrate, but a glass substrate is preferably used. As the glass substrate, sodium calcium glass, borosilicate glass, alkali-free glass, etc. may be used, but are not limited thereto. Since the polyimide according to the present invention has excellent heat resistance, transparency, and conductivity, it can be widely used as a high-tech core mechanical component requiring high heat resistance in electronic and electrical equipment that requires the above characteristics and is sensitive to electrostatic problems, flat panel display industry, semiconductor, solar cell industry, etc. Specifically, it can be usefully used for high-K transistors, polyimide substrates for oxide-TFTs, and polyimide substrates for LTPS-TFTs. Compared with the effects of the prior art, the polyamic acid composition according to the present invention and the polyimide prepared therefrom have high transparency and excellent conductivity. In particular, the polyamic acid composition according to the present invention and the polyimide prepared therefrom have high transparency and conductivity as described above, while also maintaining the excellent thermal and mechanical properties unique to polyimide.

以下,通過本發明的實施例和非本發明的比較例更詳細地說明本發明,但本發明的範圍不受以下實施例的限制。 聚醯胺酸組合物的製備 實施例 1在配備有攪拌器和氮氣注入排出管的500ml反應器中注入氮氣的同時添加N,N-二甲基丙醯胺(DMPA)作為溶劑。 將反應器的溫度設定為50℃後,添加對苯二胺(PPD)作為二胺單體,然後,相對於組合物的總重量添加0.1重量%的膜電導率(乾燥鑄膜電導率,Dried Cast Film Conductivity)為0.006S/cm的聚吡咯作為導電高分子,使其完全溶解。然後,添加100摩爾%的聯苯四甲酸二酐(BPDA)作為二酐單體,繼續攪拌120分鐘,製備聚合的聚醯胺酸組合物。 實施例 2 9除了如下表1所示調節單體成分及含量比例、溶劑成分及含量比例之外,以與實施例1相同的方法製備聚醯胺酸組合物。 比較例 1 7除了如下表1所示調節導電高分子的成分及含量之外,以與實施例1相同的方法製備聚醯胺酸溶液。 用於測定物理性能的聚醯亞胺的製備 通過1,500rpm以上的高速旋轉從上述實施例和比較例中製備的聚醯胺酸溶液中去除氣泡。之後,使用旋塗機將消泡的聚醯胺酸溶液塗布到玻璃基板上。之後,通過在氮氣氣氛中在120℃的溫度下乾燥30分鐘來製備凝膠膜,將上述凝膠膜的溫度以2℃/分鐘的速度升高到450℃,在450℃下進行熱處理60分鐘後,以2℃/min的速度冷卻至30℃,得到10μm的聚醯亞胺薄膜。 此後,通過浸漬(dipping)在蒸餾水中將聚醯亞胺膜從玻璃基板上剝離。使用以下方法測定製備的聚醯亞胺膜的物理性能,其結果示於下表2和表3中。 實驗例 1- 黏度對於在實施例和比較例中製備的聚醯胺酸溶液,使用Haake公司的Rheostress 600型號來在1/s的剪切速度、23℃的溫度及1mm的板間隙條件下測定黏度。 實驗例 2- 厚度測定使用由Anritsu公司的電動膜厚測試儀(Electric Film thickness tester)測定製備的聚醯亞胺薄膜的厚度。 實驗例 3- 透光率對於將實施例和比較例的聚醯胺酸溶液固化而製備的10μm的聚醯亞胺薄膜,使用珀金埃爾默(Perkin Elmer)公司的紫外/可見分光光度計(UV-Vis Spectrophotometer)中的Lambda 465型來在透射模式下測定470nm的透射率。 實驗例 4 :介電常數測定使用由Keysight公司的SPDR測定裝置測定在上述實施例和比較例中製備的聚醯亞胺薄膜在120Hz下的介電常數。 實驗例 5- 表面電阻根據ASTM D257使用KEYSIGHT/B2987A來測定表面電阻。具體而言,對於110mm×110mm的聚醯亞胺薄膜樣品在溫度為23±3℃、電源電壓為300V、負載規模為5kgf、充電時間為60秒的條件下進行測定。 實驗例 6-CTE使用TA公司的熱機械分析儀(thermomechanical analyzer)Q400型號,將聚醯亞胺製成薄膜後,將其切成2mm寬度和10mm長度的尺寸,並在氮氣氣氛下施加0.05N的張力,以10℃/分鐘的速度將溫度從室溫升高到500℃,然後再次以10℃/分鐘的速度冷卻,測定在100℃至玻璃化轉變溫度區間的斜率。 實驗例 7- 玻璃化轉變溫度對於通過固化實施例和比較例的聚醯胺酸溶液製備的聚醯亞胺薄膜,將使用TMA在10℃/分鐘的條件下急劇膨脹的地點作為起始點(On-set point)進行測定。 實驗例 8- 重量百分比的熱分解溫度 (Td)使用TA公司的熱重分析(thermogravimetric analysis) Q50型號,在氮氣氛中以10℃/min的速率將聚醯亞胺薄膜的溫度升高到150℃,然後保持等溫30分鐘除去水分。此後,以10℃/分鐘的速度將溫度升高至600℃以測定發生1%重量損失的溫度。 實驗例 9- 伸長率測定可以在將實施例和比較例的聚醯胺酸溶液固化而製備的聚醯亞胺薄膜切割成10mm寬度和40mm長度的尺寸後,通過ASTM D-882方法使用Instron公司的Instron5564 UTM設備來測定伸長率。 實驗例 10- 彈性模量和抗拉強度測定可以在將實施例和比較例的聚醯胺酸溶液固化而製備的聚醯亞胺薄膜並切割成10mm寬度和40mm長度的尺寸後,通過ASTM D-882方法使用Instron公司的Instron5564 UTM設備來測定彈性模量和抗拉強度。此時,可以在50mm/分鐘的十字頭速度條件下進行測定。 The present invention is described in more detail below through the examples of the present invention and the comparative examples not of the present invention, but the scope of the present invention is not limited to the following examples. < Preparation of polyamine composition > Example 1 In a 500 ml reactor equipped with a stirrer and a nitrogen injection and discharge pipe, nitrogen is injected while adding N,N-dimethylacrylamide (DMPA) as a solvent. After setting the temperature of the reactor to 50°C, p-phenylenediamine (PPD) is added as a diamine monomer, and then, 0.1 wt% of polypyrrole with a membrane conductivity (Dried Cast Film Conductivity) of 0.006 S/cm is added as a conductive polymer relative to the total weight of the composition to completely dissolve it. Then, 100 mol% of biphenyltetracarboxylic dianhydride (BPDA) was added as a dianhydride monomer, and stirring was continued for 120 minutes to prepare a polymerized polyamine composition. Examples 2 to 9 prepared polyamine compositions in the same manner as Example 1, except that the monomer components and content ratios, and the solvent components and content ratios were adjusted as shown in Table 1 below. Comparative Examples 1 to 7 prepared polyamine solutions in the same manner as Example 1, except that the components and content of the conductive polymer were adjusted as shown in Table 1 below. < Preparation of polyimide for measuring physical properties > Bubbles were removed from the polyimide solutions prepared in the above-mentioned examples and comparative examples by high-speed rotation at 1,500 rpm or more. Thereafter, the defoamed polyimide solution was applied to a glass substrate using a spin coater. Thereafter, a gel film was prepared by drying at 120°C for 30 minutes in a nitrogen atmosphere, the temperature of the gel film was increased to 450°C at a rate of 2°C/min, and after heat treatment at 450°C for 60 minutes, it was cooled to 30°C at a rate of 2°C/min to obtain a 10μm polyimide film. Thereafter, the polyimide film was peeled off from the glass substrate by dipping in distilled water. The physical properties of the prepared polyimide films were measured using the following methods, and the results are shown in Tables 2 and 3 below. Experimental Example 1 - Viscosity For the polyamide solutions prepared in the Examples and Comparative Examples, the viscosity was measured using a Rheostress 600 model from Haake at a shear rate of 1/s, a temperature of 23°C, and a plate gap of 1 mm. Experimental Example 2 - Thickness Measurement The thickness of the prepared polyimide film was measured using an Electric Film Thickness Tester from Anritsu. Experimental Example 3 - Light Transmittance For the 10 μm polyimide film prepared by curing the polyamide solution of the embodiment and the comparative example, the transmittance at 470 nm was measured in the transmission mode using Lambda 465 of the UV-Vis Spectrophotometer of Perkin Elmer. Experimental Example 4 : Dielectric Constant Determination The dielectric constant of the polyimide film prepared in the above-mentioned embodiment and the comparative example was measured at 120 Hz using the SPDR measuring device of Keysight. Experimental Example 5 - Surface Resistivity The surface resistance was measured using KEYSIGHT/B2987A according to ASTM D257. Specifically, a 110mm×110mm polyimide film sample was measured at a temperature of 23±3°C, a power supply voltage of 300V, a load scale of 5kgf, and a charging time of 60 seconds. Experimental Example 6-CTE Using TA's thermomechanical analyzer Q400, after polyimide was made into a film, it was cut into a size of 2 mm width and 10 mm length, and a tension of 0.05N was applied in a nitrogen atmosphere, and the temperature was raised from room temperature to 500°C at a rate of 10°C/min, and then cooled again at a rate of 10°C/min, and the slope in the range from 100°C to the glass transition temperature was measured. Experimental Example 7- Glass transition temperature For the polyimide film prepared by curing the polyamide acid solution of the example and the comparative example, the point where TMA rapidly expanded under the condition of 10°C/min was used as the starting point (On-set point) for measurement. Experimental Example 8- Thermal Decomposition Temperature (Td) of Weight Percentage Using a thermogravimetric analysis (thermogravimetric analysis) Q50 model of TA Company, the temperature of the polyimide film was raised to 150°C at a rate of 10°C/min in a nitrogen atmosphere, and then kept isothermally for 30 minutes to remove moisture. Thereafter, the temperature was raised to 600°C at a rate of 10°C/min to determine the temperature at which 1% weight loss occurred. Experimental Example 9- Elongation Determination After the polyimide film prepared by curing the polyamide solution of the embodiment and the comparative example was cut into a size of 10 mm width and 40 mm length, the elongation was measured using the Instron 5564 UTM equipment of Instron Company by the ASTM D-882 method. Experimental Example 10 - Determination of elastic modulus and tensile strength The polyimide film prepared by curing the polyamide solution of the embodiment and the comparative example and cutting it into a size of 10 mm width and 40 mm length can be measured for elastic modulus and tensile strength using the Instron 5564 UTM equipment of Instron Company by the ASTM D-882 method. At this time, the measurement can be carried out under the condition of a crosshead speed of 50 mm/min.

Claims (10)

一種聚醯胺酸組合物,包括:具有衍生自二酐單體和二胺單體的聚合單元的聚合物;及共軛導電高分子,其為聚吡咯(polypyrrole),在固化後按照ASTM D257測得的表面電阻為1.0×1013Ω/□以下。 A polyamine composition comprises: a polymer having polymerized units derived from dianhydride monomers and diamine monomers; and a conjugated conductive polymer, which is polypyrrole, and has a surface resistance of 1.0×10 13 Ω/□ or less measured according to ASTM D257 after curing. 如請求項1之聚醯胺酸組合物,其中,基於聚醯胺酸組合物的總重量,上述共軛導電高分子的含量為0.01重量%至1重量%。 As in claim 1, the polyamine composition, wherein the content of the above-mentioned conjugated conductive polymer is 0.01 wt% to 1 wt% based on the total weight of the polyamine composition. 如請求項1之聚醯胺酸組合物,其中,二胺單體包括選自由1,4-二氨基苯、1,3-二氨基苯、2,4-二氨基甲苯、2,6-二氨基甲苯、4,4'-二氨基二苯醚、4,4'-亞甲基二胺、4,4-二氨基苯醯替苯胺、N,N-雙(4-氨基苯基)苯-1,4-二甲醯胺、2,2-二甲基聯苯胺、2,2-雙(三氟甲基)聯苯胺、1,4-雙氨基苯氧基苯、雙氨基苯氧基苯、2,2-雙氨基苯氧基苯基丙烷及2,2-雙氨基苯氧基苯基六氟丙烷組成的組中的至少一種。 The polyamide composition of claim 1, wherein the diamine monomer includes at least one selected from the group consisting of 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminodiphenyl ether, 4,4'-methylenediamine, 4,4-diaminophenylaniline, N,N-bis(4-aminophenyl)benzene-1,4-diformamide, 2,2-dimethylbenzidine, 2,2-bis(trifluoromethyl)benzidine, 1,4-bisaminophenoxybenzene, bisaminophenoxybenzene, 2,2-bisaminophenoxyphenylpropane and 2,2-bisaminophenoxyphenylhexafluoropropane. 如請求項1之聚醯胺酸組合物,其中,二酐單體包括選自由均苯四甲酸二酐、3,3',4,4'-聯苯四甲酸二酐、2,3,3',4'-聯苯四甲酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、氧二苯二甲酸二酐、4,4-(六氟異亞丙基)二苯二甲酸酐及對苯撐雙(偏苯三酸酐)組成的組中的至少一種。 As in claim 1, the polyamine composition, wherein the dianhydride monomer includes at least one selected from the group consisting of pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, oxyphthalic dianhydride, 4,4-(hexafluoroisopropylidene)phthalic anhydride and terephthalic bis(trimellitic anhydride). 如請求項1之聚醯胺酸組合物,其中,進 一步包括選自由N,N-二乙基乙醯胺、N,N-二甲基丙醯胺、3-甲氧基-N,N-二甲基丙醯胺、N-甲基-2吡咯烷酮、γ-丁內酯及二甘醇二甲醚組成的組中的至少一種溶劑。 The polyamine composition of claim 1, further comprising at least one solvent selected from the group consisting of N,N-diethylacetamide, N,N-dimethylpropionamide, 3-methoxy-N,N-dimethylpropionamide, N-methyl-2-pyrrolidone, γ-butyrolactone and diethylene glycol dimethyl ether. 如請求項1之聚醯胺酸組合物,其中,固含量為5重量%至30重量%。 The polyamine composition of claim 1, wherein the solid content is 5% to 30% by weight. 如請求項1之聚醯胺酸組合物,其中,在固化後的熱膨脹係數為10ppm/℃以下。 The polyamide composition of claim 1, wherein the thermal expansion coefficient after curing is less than 10ppm/℃. 如請求項1之聚醯胺酸組合物,其中,在固化後在120Hz下的介電常數為3.8F/m以上。 The polyamide composition of claim 1, wherein the dielectric constant at 120 Hz after curing is greater than 3.8 F/m. 一種如請求項1之聚醯胺酸組合物的製備方法,包括如下步驟:將二胺單體與溶劑混合以製備混合物;在上述混合物中混合共軛導電高分子;及在上述混合物中混合二酐單體。 A method for preparing a polyamide composition as claimed in claim 1, comprising the following steps: mixing a diamine monomer with a solvent to prepare a mixture; mixing a conjugated conductive polymer into the mixture; and mixing a dianhydride monomer into the mixture. 一種聚醯亞胺,其包括如請求項1之聚醯胺酸組合物的固化物。 A polyimide, which includes a cured product of the polyamide composition as claimed in claim 1.
TW111134115A 2021-09-09 2022-09-08 Polyamic acid composition and polyimide prepared therefrom TWI846051B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0120405 2021-09-09
KR1020210120405A KR102636258B1 (en) 2021-09-09 2021-09-09 Polyamic acid composition and polyimide prepared therefrom

Publications (2)

Publication Number Publication Date
TW202311435A TW202311435A (en) 2023-03-16
TWI846051B true TWI846051B (en) 2024-06-21

Family

ID=85506736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111134115A TWI846051B (en) 2021-09-09 2022-09-08 Polyamic acid composition and polyimide prepared therefrom

Country Status (4)

Country Link
KR (1) KR102636258B1 (en)
CN (1) CN117916321A (en)
TW (1) TWI846051B (en)
WO (1) WO2023038321A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124623A (en) * 2009-05-19 2010-11-29 한국화학연구원 High dielectric polyimide-polyaniline composites and its preparation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127686A1 (en) * 2004-12-15 2006-06-15 Meloni Paul A Thermally conductive polyimide film composites having high thermal conductivity useful in an electronic device
JP5789844B2 (en) * 2011-11-30 2015-10-07 国立大学法人 千葉大学 Polycarbazole derivative-containing composition and transparent conductor comprising the composition
TWI473838B (en) * 2013-11-13 2015-02-21 財團法人工業技術研究院 Polyamic acid, polyimide, and method for manufacturing graphite sheet
KR102251518B1 (en) * 2015-02-11 2021-05-12 코오롱인더스트리 주식회사 Polyamic acid, And Polyimide Resin And Polyimide Film
KR102347633B1 (en) * 2019-11-07 2022-01-10 피아이첨단소재 주식회사 Polyimide film with improved dielectric properties and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124623A (en) * 2009-05-19 2010-11-29 한국화학연구원 High dielectric polyimide-polyaniline composites and its preparation

Also Published As

Publication number Publication date
KR20230037272A (en) 2023-03-16
WO2023038321A1 (en) 2023-03-16
CN117916321A (en) 2024-04-19
TW202311435A (en) 2023-03-16
KR102636258B1 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
TWI773889B (en) Polyimide precursor composition for improving adhesion property of polyimide film, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
KR20200051261A (en) Ultra-Thin Polyimide Film with Improved Dimensional Stability and Method for Preparing the Same
TWI723360B (en) Polyimide precursor composition comprising crosslinkable dianhydride compound and antioxidant, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
JP7442613B2 (en) Polyamic acid composition, method for producing polyamic acid composition, and polyimide containing the same
KR102472537B1 (en) Polyamic acid composition and polyimide comprising the same
CN114096588B (en) Polyimide and method for producing the same
TWI846051B (en) Polyamic acid composition and polyimide prepared therefrom
KR102114093B1 (en) Polyimide Precursor Composition Comprising Crosslinkable Dianhydride Compound and Antioxidant, and Polyimide Film Prepared Therefrom
CN116568736A (en) Polyamic acid composition and polyimide containing same
KR102224506B1 (en) Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
TWI866349B (en) Polyamic acid composition
KR102472532B1 (en) Polyamic acid composition and polyimide comprising the same
TWI847885B (en) Black polyimide film and the manufacturing method thereof
KR102097406B1 (en) Polyimide precursor composition, method for preparing the same and polyimide
KR102451827B1 (en) Polyamic acid composition and polyimide comprising the same
KR102451825B1 (en) Polyamic acid composition and polyimide comprising the same
EP4509547A1 (en) Polyimide precursor
EP4357392A1 (en) Polyamic acid varnish
KR20230153923A (en) Polyimide precursor