TWI841366B - Dual-band thin film transistor photodetector - Google Patents
Dual-band thin film transistor photodetector Download PDFInfo
- Publication number
- TWI841366B TWI841366B TW112116154A TW112116154A TWI841366B TW I841366 B TWI841366 B TW I841366B TW 112116154 A TW112116154 A TW 112116154A TW 112116154 A TW112116154 A TW 112116154A TW I841366 B TWI841366 B TW I841366B
- Authority
- TW
- Taiwan
- Prior art keywords
- zinc oxide
- aluminum
- thin film
- film transistor
- benzimidazole
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 53
- 239000010931 gold Substances 0.000 claims abstract description 43
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052737 gold Inorganic materials 0.000 claims abstract description 41
- 239000002105 nanoparticle Substances 0.000 claims abstract description 38
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 63
- -1 zinc oxide aluminum benzimidazole Chemical compound 0.000 claims description 33
- 239000011787 zinc oxide Substances 0.000 claims description 29
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 27
- 239000010408 film Substances 0.000 claims description 14
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 claims description 12
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 2
- 239000002052 molecular layer Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 abstract description 8
- 239000002784 hot electron Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- AXTYOFUMVKNMLR-UHFFFAOYSA-N dioxobismuth Chemical compound O=[Bi]=O AXTYOFUMVKNMLR-UHFFFAOYSA-N 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- JODIJOMWCAXJJX-UHFFFAOYSA-N [O-2].[Al+3].[O-2].[Zn+2] Chemical compound [O-2].[Al+3].[O-2].[Zn+2] JODIJOMWCAXJJX-UHFFFAOYSA-N 0.000 description 3
- GIMKBFDFHIIEBU-UHFFFAOYSA-N [O-2].[Al+3].[Zn+2].[Co+2] Chemical compound [O-2].[Al+3].[Zn+2].[Co+2] GIMKBFDFHIIEBU-UHFFFAOYSA-N 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 description 3
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VBWZBVILWFLXTF-UHFFFAOYSA-M [O-2].O[Er+2] Chemical compound [O-2].O[Er+2] VBWZBVILWFLXTF-UHFFFAOYSA-M 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- DZUDZSQDKOESQQ-UHFFFAOYSA-N cobalt hydrogen peroxide Chemical compound [Co].OO DZUDZSQDKOESQQ-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- IDIJOAIHTRIPRC-UHFFFAOYSA-J hexaaluminum;sodium;2,2,4,4,6,6,8,8,10,10,12,12-dodecaoxido-1,3,5,7,9,11-hexaoxa-2,4,6,8,10,12-hexasilacyclododecane;iron(2+);triborate;tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Fe+2].[Fe+2].[Fe+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-][Si]1([O-])O[Si]([O-])([O-])O[Si]([O-])([O-])O[Si]([O-])([O-])O[Si]([O-])([O-])O[Si]([O-])([O-])O1 IDIJOAIHTRIPRC-UHFFFAOYSA-J 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910000246 schorl Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Thin Film Transistor (AREA)
Abstract
本發明揭露一種雙波段薄膜電晶體檢光器,其利用原子層沉積背閘極結構的氧化鋅鋁鉿透明薄膜電晶體,且在氧化鋅鋁鉿通道層表面製作金奈米粒子結構,除了可偵測光子能量相當於氧化鋅鋁鉿半導體能隙之紫外光外,並對光子能量小於氧化鋅鋁鉿半導體能隙的可見光及近紅外光波段具有高響應度之檢光功能,可應用於檢光器及光生化檢測。 The present invention discloses a dual-band thin film transistor photodetector, which utilizes a ZnO-Al-Bi transparent thin film transistor with an atomic layer deposition back gate structure, and manufactures a gold nanoparticle structure on the surface of the ZnO-Al-Bi channel layer. In addition to being able to detect ultraviolet light with photon energy equivalent to the energy gap of the ZnO-Al-Bi semiconductor, it also has a photodetection function with high response to visible light and near-infrared light bands with photon energy less than the energy gap of the ZnO-Al-Bi semiconductor, and can be applied to photodetectors and photobiochemical detection.
Description
本發明涉及薄膜電晶體之技術領域,具體涉及一種雙波段薄膜電晶體,尤指一種可提升光電響應度,並可將高能隙、透明的氧化鋅鋁鉿薄膜電晶體應用於可見光-近紅外光波段的光檢測器。 The present invention relates to the technical field of thin film transistors, and specifically to a dual-band thin film transistor, in particular to a high-bandgap, transparent zinc-aluminum-bezoarium oxide thin film transistor that can enhance photoelectric response and can be used in optical detectors in the visible-near infrared band.
按,隨著科技的日益發展,透明薄膜電晶體被廣泛的應用於光檢測器、太陽能電池及光生化檢測中。其中光檢測器在日常生活中應用非常廣泛,例如智慧行動裝置、穿戴式裝置、安全防護設備中皆是應用的範疇。而目前能將光訊號轉換為電訊號的光檢測器〔Photodetector〕的做法分別是採用真空管的光倍增管〔Photo-Multiplier Tube,PMT〕、使用矽材料的光檢測器、以及使用寬能隙材料之光檢測器。其中光倍增管的成本高、需要高操作電壓、而且真空管容易破碎。而矽光檢測器則具有製作容易、成本低廉、與低操作電壓等特性,因此紫外光檢測元件仍然以使用矽材料之光二極體所構成,但受限於矽之能隙在室溫下僅僅只有1.2eV,且矽基光二極體之最靈敏波長並非落在紫外光區域以致於在紫外光區域的響應非常低。因此,若以寬能隙材料製作之光檢測器,由於寬能隙材料可以具有較大的能隙〔Band Gap〕,將非常適合應用於紫外光的偵測。 With the development of technology, transparent thin film transistors are widely used in photodetectors, solar cells and photobiochemical detection. Photodetectors are widely used in daily life, such as smart mobile devices, wearable devices, and safety protection equipment. Currently, the photodetectors that can convert optical signals into electrical signals are photomultiplier tubes (PMT) using vacuum tubes, photodetectors using silicon materials, and photodetectors using wide bandgap materials. Photomultiplier tubes are expensive, require high operating voltages, and vacuum tubes are easily broken. Silicon photodetectors have the characteristics of easy manufacturing, low cost, and low operating voltage. Therefore, ultraviolet light detection components are still composed of photodiodes made of silicon materials. However, they are limited by the fact that the energy gap of silicon is only 1.2eV at room temperature, and the most sensitive wavelength of silicon-based photodiodes does not fall in the ultraviolet light region, so the response in the ultraviolet light region is very low. Therefore, if a photodetector is made of wide energy gap materials, since wide energy gap materials can have a larger energy gap (Band Gap), it will be very suitable for ultraviolet light detection.
而氧化鋅〔zinc oxide,ZnO〕之能隙約為3.3eV,屬於II-VI族寬能隙半導體材料,恰好是在藍光到UV光的波段,因此廣泛的應用在光檢測器、發光二極體、太陽能電池、雷射元件及光生化檢測器,但由於氧化鋅對光學的特性限制,因此只限於紫外光的檢測,為了改善 所製造的元件特性,目前有部分研究試圖在氧化鋅層形成各種不同的構造,例如表面粗糙化、形成微結構或成長奈米顆粒等,該些具有微結構的氧化鋅層在製造上頗為不便,且其特性表現仍不甚佳,尤其是應用在光檢測器之方面。 Zinc oxide (ZnO) has an energy gap of about 3.3 eV and belongs to the II-VI group of wide-gap semiconductor materials, which is in the wavelength range from blue light to UV light. Therefore, it is widely used in photodetectors, LEDs, solar cells, laser components and photobiochemical detectors. However, due to the optical characteristics of zinc oxide, it is limited to ultraviolet light detection. In order to improve the characteristics of the manufactured components, some studies have tried to form various structures on the zinc oxide layer, such as surface roughening, forming microstructures or growing nanoparticles. These zinc oxide layers with microstructures are inconvenient to manufacture, and their characteristics are still not very good, especially in the application of photodetectors.
因此,為了解決上述問題,有需要開發不同材料或結構技術來延伸檢測的可見光波段是必要的發展趨勢,其係業界所期待者,亦係本發明所欲探討者。 Therefore, in order to solve the above problems, it is necessary to develop different materials or structural technologies to extend the visible light band for detection. This is a necessary development trend, which is what the industry expects and what this invention intends to explore.
因此,本發明之主要目的係在提供一種應用氧化鋅鋁鉿透明薄膜電晶體之雙波段薄膜電晶體檢光器,藉以能利用高能隙、透明的氧化鋅鋁鉿薄膜電晶體造成的電流放大效應,除了可偵測光子能量相當於氧化鋅鋁鉿半導體能隙之紫外光,並且對於光子能量小於氧化鋅鋁鉿半導體能隙的可見光及近紅外光波段具有高響應度檢光功能。 Therefore, the main purpose of the present invention is to provide a dual-band thin film transistor photodetector using ZnO-Al-Bi transparent thin film transistors, which can utilize the current amplification effect caused by high energy gap, transparent ZnO-Al-Bi thin film transistors. In addition to being able to detect ultraviolet light with photon energy equivalent to the energy gap of ZnO-Al-Bi semiconductors, it also has a high-response photodetection function for visible light and near-infrared light bands with photon energy less than the energy gap of ZnO-Al-Bi semiconductors.
又,本發明之另一主要目的係在提供一種應用氧化鋅鋁鉿透明薄膜電晶體之雙波段薄膜電晶體檢光器,其能於氧化鋅鋁鉿透明薄膜電晶體上利用金奈米粒子的電流放大效應,解決蕭基二極體結構對於電漿熱電子低響應度之問題,而能進一步被應用於光電模組、感測顯示、生化檢定及太陽能電池方面中,提高其實用性。 In addition, another main purpose of the present invention is to provide a dual-band thin film transistor photodetector using zinc oxide aluminum benzimidazole transparent thin film transistors, which can utilize the current amplification effect of gold nanoparticles on zinc oxide aluminum benzimidazole transparent thin film transistors to solve the problem of low response of the Schroeder diode structure to plasma hot electrons, and can be further applied to optoelectronic modules, sensor displays, biochemical assays and solar cells to improve its practicality.
基於此,本發明主要係透過下列的技術手段,來具體實現前述之目的及功效,其具有一氧化鋅鋁鉿透明薄膜電晶體,該氧化鋅鋁鉿透明薄膜電晶體係於一玻璃基板上生成有一透明導電膜,且於該透明導電膜上沉積生成一由氧化鋁和二氧化鉿之定義絕緣層,並以原子層沉積方式成長氧化鋁/氧化鉿/氧化鋅奈米層堆疊結構透形成數位摻雜之一氧化鋅鋁鉿通道層,且該氧化鋅鋁鉿通道層表面具有間隔之一源極及一汲極,並在該氧化鋅鋁鉿通道層之該源極與該汲極間的表面以熱退火製 備自組成金奈米粒子,且該金奈米粒子之粒徑小於入射光波長。 Based on this, the present invention mainly realizes the above-mentioned purpose and effect through the following technical means. It has a zinc oxide aluminum benzimidazole transparent thin film transistor. The zinc oxide aluminum benzimidazole transparent thin film transistor is formed on a glass substrate with a transparent conductive film, and an insulating layer defined by aluminum oxide and benzimidazole is deposited on the transparent conductive film by atomic layer deposition. A stacked structure of aluminum oxide/cobalt oxide/zinc oxide nanolayers is grown to form a digitally doped zinc oxide aluminum cobalt channel layer, and the surface of the zinc oxide aluminum cobalt channel layer has a source and a drain separated therefrom, and self-assembled gold nanoparticles are prepared by thermal annealing on the surface between the source and the drain of the zinc oxide aluminum cobalt channel layer, and the particle size of the gold nanoparticles is smaller than the wavelength of the incident light.
藉此,本發明之氧化鋅鋁鉿透明薄膜電晶體透過上述的薄膜電晶體造成的電流放大效應,可提升光電響應度,將使高能隙、透明的氧化鋅鋁鉿透明薄膜電晶體能應用於可見光-近紅外光波段的檢光器,並使得本發明之氧化鋅鋁鉿透明薄膜電晶體進一步可應用在光電模組、光生化檢定等方面,大幅提升其應用面與實用性,可增進其經濟效益。 Thus, the zinc oxide aluminum bismuth transparent thin film transistor of the present invention can enhance the photoresponse through the current amplification effect caused by the above-mentioned thin film transistor, so that the high energy gap, transparent zinc oxide aluminum bismuth transparent thin film transistor can be applied to the photodetector in the visible light-near infrared light band, and the zinc oxide aluminum bismuth transparent thin film transistor of the present invention can be further applied to optoelectronic modules, photobiochemical assays, etc., greatly improving its application and practicality, and enhancing its economic benefits.
且本發明並利用下列的技術手段,進一步實現前述之目的及功效;其包含:所述之氧化鋅鋁鉿透明薄膜電晶體的金奈米粒子粒徑為400nm以下。 The present invention also utilizes the following technical means to further achieve the aforementioned purpose and effect; which include: the gold nanoparticles of the zinc oxide aluminum benzene transparent thin film transistor have a particle size of less than 400nm.
所述之氧化鋅鋁鉿通道層之厚度小於20nm。 The thickness of the zinc oxide aluminum oxide channel layer is less than 20nm.
所述之氧化鋅鋁鉿透明薄膜電晶體的氧化鋅鋁鉿通道層係由二氧化鉿及氧化鋁薄層作為氧化鋅的數位摻雜層而形成,其中氧化鋅與二氧化鉿及氧化鋁厚度比=8.5~14.5:1。 The zinc oxide aluminum alumina channel layer of the zinc oxide aluminum alumina transparent thin film transistor is formed by a thin layer of alumina and alumina as a digital doping layer of zinc oxide, wherein the thickness ratio of zinc oxide to alumina and alumina is 8.5~14.5:1.
所述之氧化鋅鋁鉿透明薄膜電晶體的定義絕緣層分別為150nm之氧化鋁及50nm之二氧化鉿疊層,其中該氧化鋅鋁鉿通道層的厚度為14nm,並以0.2nm的二氧化鉿及氧化鋁薄層作為氧化鋅的數位摻雜層而形成氧化鋅鋁鉿通道層,其中氧化鋅與二氧化鉿及氧化鋁厚度比=10:1,其中氧化鋅為2nm與二氧化鉿及氧化鋁各為0.2nm,以此成長三對氧化鋅鋁鉿再於其上成長0.8nm的氧化鋅,最後鍍上5nm之金薄膜,並進行熱退火形成自組成40nm~50nm的金奈米粒子。 The insulating layer of the ZnO-Al-Bi transparent thin film transistor is defined as a 150nm aluminum oxide and a 50nm benzimidazole layer, wherein the ZnO-Al-Bi channel layer has a thickness of 14nm, and a 0.2nm benzimidazole and aluminum oxide thin layer is used as a digital doping layer of ZnO to form a ZnO-Al-Bi channel layer, wherein the oxide is The thickness ratio of zinc to erbium dioxide and aluminum oxide is 10:1, where zinc oxide is 2nm and erbium dioxide and aluminum oxide are 0.2nm each. Three pairs of zinc oxide and aluminum erbium are grown, and then 0.8nm of zinc oxide is grown on top. Finally, a 5nm gold film is plated and thermally annealed to form self-assembled 40nm~50nm gold nanoparticles.
為使 貴審查委員能進一步了解本發明的構成、特徵及其他目的,以下乃舉本發明之若干較佳實施例,並配合圖式詳細說明如後,同時讓熟悉該項技術領域者能夠具體實施。 In order to enable the review committee to further understand the structure, features and other purposes of the present invention, the following are some preferred embodiments of the present invention, and are described in detail with the help of drawings, so that those familiar with the technical field can implement them in detail.
100:氧化鋅鋁鉿透明薄膜電晶體 100: Zinc oxide aluminum oxide transparent thin film transistor
10:玻璃基板 10: Glass substrate
11:透明導電膜 11: Transparent conductive film
20:定義絕緣層 20: Define the insulating layer
21:氧化鋁 21: Alumina
22:二氧化鉿 22: Ethylene dioxide
25:氧化鋅鋁鉿通道層 25: Zinc oxide aluminum channel layer
26:源極 26: Source
27:汲極 27: Drainage
28:背閘極 28: Back gate
30:金奈米粒子 30: Gold nanoparticles
第一圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體的構造示意圖。 Figure 1: A schematic diagram of the structure of the zinc oxide aluminum-electron tantalum transparent thin film transistor of the present invention.
第二圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體於入射光波的示意圖。 Figure 2: A schematic diagram of the zinc oxide aluminum bismuth transparent thin film transistor of the present invention under incident light waves.
第三圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體中金奈米粒子與薄膜電晶體形成熱電子之示意圖。 Figure 3: A schematic diagram of the formation of hot electrons between gold nanoparticles and thin film transistors in the zinc oxide aluminum-beta transparent thin film transistor of the present invention.
第四圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體的特性,其中(A)為I-V特性曲線;(B)為電漿子電晶體於黑暗條件下的傳輸特性曲線;(C)為金奈米粒子形成於半導體表面之狀態;(D)為40nm~50nm金奈米粒子的透射率。 Figure 4: The characteristics of the zinc oxide aluminum bismuth transparent thin film transistor of the present invention, where (A) is the I-V characteristic curve; (B) is the transmission characteristic curve of the plasma transistor under dark conditions; (C) is the state of gold nanoparticles formed on the semiconductor surface; (D) is the transmittance of 40nm~50nm gold nanoparticles.
第五圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體另一實施例,其中(A)為結構示意圖;(B)為在綠光的環境下IV特性曲線;(C)為在UV光的環境下之IV特性曲線;(D)為其響應度光譜圖。 Figure 5: Another embodiment of the zinc oxide aluminum bismuth transparent thin film transistor of the present invention, wherein (A) is a schematic diagram of the structure; (B) is the IV characteristic curve under a green light environment; (C) is the IV characteristic curve under a UV light environment; (D) is its response spectrum.
第六圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體較佳實施例在高偏壓下測量之光響應度示意圖,其中(A)為綠光〔波長550nm〕在VGS之光響應度;(B)為綠光〔波長550nm〕在VDS之光響應度;(C)為UV光〔波長350nm〕在VGS之光響應度;(D)為UV光〔波長350nm〕在VDS之光響應度。 Figure 6: is a schematic diagram of the optical response of the preferred embodiment of the zinc oxide aluminum alumina transparent thin film transistor of the present invention measured under high bias, wherein (A) is the optical response of green light (wavelength 550nm) at V GS ; (B) is the optical response of green light (wavelength 550nm) at V DS ; (C) is the optical response of UV light (wavelength 350nm) at V GS ; (D) is the optical response of UV light (wavelength 350nm) at V DS .
第七圖:為本發明之氧化鋅鋁鉿透明薄膜電晶體較佳實施例透過軟體模擬不同的金奈米粒子直徑呈現的最高吸收率與吸收波長之示意圖。 Figure 7: A schematic diagram of the maximum absorption rate and absorption wavelength of the preferred embodiment of the zinc oxide aluminum benzene transparent thin film transistor of the present invention through software simulation of different gold nanoparticle diameters.
本發明係一種雙波段薄膜電晶體,以下藉由特定的具體實施形態說明本發明之技術內容,使熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之優點與功效。然本發明亦可藉由其他不同 的具體實施形態加以施行或應用。 The present invention is a dual-band thin film transistor. The technical content of the present invention is described below through a specific concrete implementation form, so that people familiar with this technology can easily understand the advantages and effects of the present invention from the content disclosed in this manual. However, the present invention can also be implemented or applied through other different specific implementation forms.
如第一圖所示,本發明之雙波段薄膜電晶體檢光器係透過原子層沉積一背閘極(28)結構生成的氧化鋅鋁鉿透明薄膜電晶體(100),該氧化鋅鋁鉿透明薄膜電晶體(100)係於一玻璃基板(10)上生成有一透明導電膜(11)〔ITO〕,並於該透明導電膜(11)上沉積生成一由氧化鋁(21)〔Al2O3〕和二氧化鉿(22)〔HfO2〕之定義絕緣層(20),並以原子層沉積方式〔Atomic Layer Deposition,ALD〕成長氧化鋁/氧化鉿/氧化鋅奈米層堆疊結構形成數位摻雜之一氧化鋅鋁鉿通道層(25)〔AHZO Channel〕,該氧化鋅鋁鉿通道層(25)之厚度小於20nm,且該氧化鋅鋁鉿通道層(25)表面具有間隔之一源極(26)〔Source〕及一汲極(27)〔Drain〕,並在該氧化鋅鋁鉿通道層(25)之該源極(26)與該汲極(27)間的表面以熱退火製備自組成金奈米粒子(30)〔Au nanoparticles,Au NPs〕,且該金奈米粒子(30)之粒徑小於入射光波長,本發明之金奈米粒子(30)粒徑為400nm以下,且該金奈米粒子(30)的粒徑以40nm~50nm為最佳實施例,而完成整合金奈米粒子(30)與薄膜電晶體之電漿子電晶體。 As shown in the first figure, the dual-band thin film transistor photodetector of the present invention is a zinc oxide aluminum bismuth transparent thin film transistor (100) formed by atomic layer deposition of a back gate (28) structure. The zinc oxide aluminum bismuth transparent thin film transistor (100) is formed on a glass substrate (10) with a transparent conductive film (11) [ITO], and a defined insulating layer (20) composed of aluminum oxide (21) [Al 2 O 3 ] and bismuth dioxide (22) [HfO 2 ] is deposited on the transparent conductive film (11). The insulating layer (20) is formed by atomic layer deposition [Atomic Layer Deposition]. Deposition, ALD〕grow aluminum oxide/beta oxide/zinc oxide nanolayer stacking structure to form a digitally doped zinc oxide aluminum beta channel layer (25)〔AHZO Channel〕, the thickness of the zinc oxide aluminum beta channel layer (25) is less than 20nm, and the surface of the zinc oxide aluminum beta channel layer (25) has a source (26)〔Source〕 and a drain (27)〔Drain〕 spaced apart, and the surface between the source (26) and the drain (27) of the zinc oxide aluminum beta channel layer (25) is thermally annealed to prepare self-assembled gold nanoparticles (30)〔Au nanoparticles, Au NPs], and the particle size of the gold nanoparticle (30) is smaller than the wavelength of the incident light. The particle size of the gold nanoparticle (30) of the present invention is below 400nm, and the particle size of the gold nanoparticle (30) is preferably 40nm~50nm, thereby completing the integration of the gold nanoparticle (30) and the plasma transistor of the thin film transistor.
而如第二、三圖及第四(A)~四(D)圖所示,其中第二圖為入射光波形成熱電子的示意圖、第三圖為金奈米粒子與薄膜電晶體形成蕭基能障之示意圖、第四(A)圖為I-V特性曲線、第四(B)圖為電漿子電晶體於黑暗條件下的傳輸特性曲線、第四(C)圖為金奈米粒子形成於半導體表面之狀態;第四(D)圖為40nm~50nm金奈米粒子的透射率。而在以該透明導電膜(11)為背閘極(28)〔Back gate〕結構的透明氧化鋅鋁鉿通道層(25)表面製作粒徑尺寸遠小於入射光波長的金奈米粒子(30),如40nm~50nm,由於入射光子的電場與金屬的自由電子形成電漿共振態,藉由金奈米粒子(30)表面的碰撞造成朗道阻尼〔Landau Damping〕,而將光子能量ħω予金奈米粒子(30)中的電子,形成熱電子,這些熱電子將以熱游子放射〔thermionic emission〕或穿隧〔tunneling〕越過金/N型氧化鋅鋁鉿蕭基能障〔Schottky barrier〕,注入到電晶體的氧化鋅鋁鉿通道層(25)。入射的熱電子受背閘極(28)之電場〔VGS>0〕趨動,累積於半導體/氧化層的介面,使得通道層的導電度σ=neμ因電子濃度n增加而增加,等效於減小電晶體臨界電壓〔threshold voltage,Vth〕,進而使得在飽和區操作的電晶體汲極電流〔IDS,公式(1)〕變大,獲得放大熱電子信號的效果,達成高檢光響應度。 As shown in the second, third and fourth (A) to fourth (D) figures, the second figure is a schematic diagram of the formation of hot electrons by incident light waves, the third figure is a schematic diagram of the formation of Schorl energy barrier by gold nanoparticles and thin film transistors, the fourth (A) figure is the IV characteristic curve, the fourth (B) figure is the transmission characteristic curve of the plasma transistor under dark conditions, the fourth (C) figure is the state of gold nanoparticles formed on the semiconductor surface; the fourth (D) figure is the transmittance of 40nm~50nm gold nanoparticles. Gold nanoparticles (30) with a particle size much smaller than the wavelength of the incident light, such as 40nm-50nm, are fabricated on the surface of the transparent zinc oxide aluminum bismuth channel layer (25) with the transparent conductive film (11) as the back gate (28). Since the electric field of the incident photon and the free electrons of the metal form a plasma resonance state, Landau damping is caused by the collision on the surface of the gold nanoparticle (30), and the photon energy ħω is given to the electrons in the gold nanoparticle (30) to form hot electrons. These hot electrons will cross the gold/N-type zinc oxide aluminum bismuth Schottky barrier by thermal emission or tunneling and be injected into the zinc oxide aluminum bismuth channel layer (25) of the transistor. The incident hot electrons are driven by the electric field of the back gate (28) [V GS > 0] and accumulate at the interface of the semiconductor/oxide layer, causing the conductivity σ = neμ of the channel layer to increase due to the increase in electron concentration n, which is equivalent to reducing the transistor critical voltage [threshold voltage, V th ], thereby increasing the transistor drain current [I DS , formula (1)] operating in the saturation region, thereby achieving the effect of amplifying the hot electron signal and achieving a high detection response.
而本發明在如第五(A)圖之另一具體實施例中,以具透明導電膜(11)之玻璃基板(10)作為背閘極(28)薄膜電晶體〔back-gate TFT〕,且閘極氧化層為200nm之定義絕緣層(20),其分別為150nm之氧化鋁(21)及50nm之二氧化鉿(22)疊層,並以二氧化鉿〔HfO2〕及氧化鋁〔Al2O3〕薄層作為氧化鋅〔ZnO〕的數位摻雜層而形成氧化鋅鋁鉿通道層(25),而其中氧化鋅〔ZnO〕與二氧化鉿〔HfO2〕及氧化鋁〔Al2O3〕厚度比=8.5~14.5:1,本發明之氧化鋅鋁鉿通道層(25)的厚度為14nm,並以0.2nm的二氧化鉿〔HfO2〕及氧化鋁〔Al2O3〕薄層作為氧化鋅〔ZnO〕的數位摻雜層而形成氧化鋅鋁鉿通道層(25),本發明之氧化鋅〔ZnO〕與二氧化鉿〔HfO2〕及氧化鋁〔Al2O3〕厚度比以10:1〔其中氧化鋅為2nm:二氧化鉿為0.2nm及氧化鋁為0.2nm〕、且以此成長三對氧化鋅鋁鉿〔(2+0.2+2+0.2)×3=13.2nm〕再於其上成長0.8nm的氧化鋅為最佳實例,最後鍍上5nm之金薄膜,並進行熱退火形成自組成40nm~50nm的金奈米粒子(30)。 In another specific embodiment of the present invention as shown in FIG. 5 (A), a glass substrate (10) with a transparent conductive film (11) is used as a back-gate thin film transistor (28), and the gate oxide layer is a 200nm defined insulating layer (20), which is a stack of 150nm aluminum oxide (21) and 50nm bismuth oxide (22), and a thin layer of bismuth oxide (HfO 2 ) and aluminum oxide (Al 2 O 3 ) is used as a digital doping layer of zinc oxide (ZnO) to form a zinc oxide aluminum bismuth channel layer (25), wherein zinc oxide (ZnO) and bismuth oxide (HfO 2 ) and aluminum oxide (Al 2 O 3 ) are in contact with each other. 〕thickness ratio = 8.5~14.5:1, the thickness of the zinc oxide aluminum bismuth channel layer (25) of the present invention is 14nm, and a 0.2nm thin layer of bismuth dioxide (HfO 2 ) and aluminum oxide (Al 2 O 3 ) is used as a digital doping layer of zinc oxide (ZnO) to form the zinc oxide aluminum bismuth channel layer (25). The zinc oxide (ZnO) of the present invention and the bismuth dioxide (HfO 2 ) and aluminum oxide (Al 2 O 3 The best example is to grow three pairs of zinc oxide and aluminum oxide ((2+0.2+2+0.2)×3=13.2nm) with a thickness ratio of 10:1 (where zinc oxide is 2nm, cobalt dioxide is 0.2nm and aluminum oxide is 0.2nm), and then grow 0.8nm of zinc oxide on top of it. Finally, a 5nm gold film is plated and thermally annealed to form self-assembled gold nanoparticles of 40nm~50nm (30).
而透過前述5nm的金薄膜在320度12分鐘下進行快速熱 退火形成40nm~50nm的金奈米粒子(30),在黑暗的條件下,TFT有電流開關比為4.8x104,S.S值為3.7V/dec,臨界電壓Vth為-12.7V。而透過第五(B)圖為在綠光〔波長550nm〕的環境下電壓為LED偏壓之IV特性曲線,電漿子電晶體擁有較顯著的電流增益1.6x10-5A。然而,如第五(C)圖為在UV光〔波長350nm〕的環境下電壓為LED偏壓之IV特性曲線,因為氧化鋅能隙的吸收呈現顯著的電流增益6.6x10-5A,因電漿子電晶體的綠光光電流是由金奈米粒子透過局限表面電漿共振激發熱電子,而透過第五(D)圖之響應度光譜圖可以證實上述,其中在VGS=2V、VDS=2-3V的低偏壓下測量,峰值分別在l=350nm(能隙吸收)及550nm(LSPR)。 The aforementioned 5nm gold film was rapidly annealed at 320 degrees for 12 minutes to form 40nm~50nm gold nanoparticles (30). Under dark conditions, the TFT has a current switching ratio of 4.8x10 4 , a SS value of 3.7V/dec, and a critical voltage V th of -12.7V. The fifth (B) figure shows the IV characteristic curve of the voltage as LED bias in the environment of green light (wavelength 550nm), and the plasma transistor has a more significant current gain of 1.6x10 -5 A. However, as shown in Figure 5 (C), which is the IV characteristic curve of the LED bias voltage under UV light (wavelength 350nm), the absorption of the zinc oxide bandgap shows a significant current gain of 6.6x10-5A . Since the green light photocurrent of the plasmonic transistor is excited by hot electrons from gold nanoparticles through confined surface plasmon resonance, the above can be confirmed by the responsivity spectrum in Figure 5 (D), where the peak values are measured at l=350nm (bandgap absorption) and 550nm (LSPR) under low bias of VGS =2V and VDS =2-3V.
第六圖為在高偏壓下測量光響應度,其中第六(A)、六(B)圖分別為綠光〔波長550nm〕在VGS及VDS之光響應度,而第六(C)、六(D)圖則分別為UV光〔波長350nm〕在VGS及VDS之光響應度,藉由場效電晶體放大電漿熱電子之入射電流獲得較高的光響應,有別於文獻中常見檢測表面電漿共振熱電子的低響應度(Responsivity,R<10-4A/W)金屬-半導體-金屬(MSM)蕭基半導體元件,提升將近105的數量級。 Figure 6 shows the optical response measured under high bias. Figures 6 (A) and 6 (B) show the optical response of green light (wavelength 550nm) at VGS and VDS , respectively, while Figures 6 (C) and 6 (D) show the optical response of UV light (wavelength 350nm) at VGS and VDS , respectively. By amplifying the incident current of plasma hot electrons through field effect transistors, a higher optical response is obtained. This is different from the low response (Responsivity, R< 10-4 A/W) of metal-semiconductor-metal (MSM) Schottky semiconductor devices commonly used in the literature for detecting surface plasmon resonance hot electrons, and is improved by nearly 105 .
另如第七圖,則為透過軟體模擬不同的金奈米粒子(30)直徑呈現的最高吸收率與吸收波長,隨著直徑增加吸收波長則紅移,因此,將繼續增加元件的金奈米粒子(30)直徑以偵測近紅外光的波段。 As shown in Figure 7, the highest absorption rate and absorption wavelength of different diameters of gold nanoparticles (30) are simulated by software. As the diameter increases, the absorption wavelength redshifts. Therefore, the diameter of the gold nanoparticles (30) of the device will continue to increase to detect the near-infrared light band.
藉由上述的特色說明,本發明之氧化鋅鋁鉿透明薄膜電晶體(100)利用在厚度小於20nm的氧化鋅鋁鉿通道層(25)表面製作粒徑100nm以下等級的金奈米粒子(30)結構,研發整合金奈米粒子(30)與薄膜電晶體之電漿子電晶體〔Plasmon FET〕。用以當可見光-近紅外光入射時,其光子與金奈米粒子(30)中的電子形成侷限表面電漿共振 (Localized surface plasmon resonance,LSPR),產生熱電子穿越金奈米粒子(30)/氧化鋅鋁鉿之蕭基能障,注入氧化鋅鋁鉿通道層(25),增進氧化鋅鋁鉿通道層(25)的導電率,使得薄膜電晶體的汲極電流增加,成為除了可偵測光子能量相當於氧化鋅鋁鉿半導體能隙之紫外光,並且對於光子能量小於氧化鋅鋁鉿半導體能隙的可見光及近紅外光波段〔l=550-1050nm〕具有高響應度檢光功能,有別於現有常見檢測表面電漿共振熱電子的低響應度〔Responsivity,R<10-4A/W〕金屬-半導體-金屬〔MSM〕蕭基半導體元件,本發明利用薄膜電晶體造成的電流放大效應,可提升光電響應度R>10A/W,將高能隙、透明的氧化鋅鋁鉿透明薄膜電晶體(100)能應用於可見光-近紅外光波段〔l=550-1050nm〕的檢光器,並使得本發明之氧化鋅鋁鉿透明薄膜電晶體(100)進一步可應用在光電模組、光生化檢定等方面。 According to the above characteristics, the zinc oxide aluminum bismuth transparent thin film transistor (100) of the present invention utilizes a gold nanoparticle (30) structure with a particle size of less than 100 nm to be made on the surface of a zinc oxide aluminum bismuth channel layer (25) with a thickness of less than 20 nm, and develops a plasmon FET integrating the gold nanoparticle (30) and the thin film transistor. When visible light or near-infrared light is incident, its photons and the electrons in the gold nanoparticle (30) form a localized surface plasmon resonance (Localized surface plasmon Resonance, LSPR), generating hot electrons that pass through the Schroeder energy barrier of gold nanoparticles (30)/ZnAlBiOx, and are injected into the ZnAlBiOx channel layer (25), thereby increasing the conductivity of the ZnAlBiOx channel layer (25) and increasing the drain current of the thin film transistor. In addition to being able to detect ultraviolet light with photon energy equivalent to the energy gap of ZnAlBiOx semiconductors, it also has a high-response photodetection function for visible light and near-infrared light bands (l=550-1050nm) with photon energy less than the energy gap of ZnAlBiOx semiconductors, which is different from the low response of existing common surface plasmon resonance hot electron detection (Responsivity, R< 10-4 A/W〕metal-semiconductor-metal〔MSM〕Schwarz-based semiconductor element. The present invention utilizes the current amplification effect caused by thin film transistors to improve the photoelectric response R>10A/W, so that the high-bandgap, transparent zinc oxide aluminum benignion transparent thin film transistor (100) can be applied to a photodetector in the visible light-near infrared light band〔l=550-1050nm〕, and the zinc oxide aluminum benignion transparent thin film transistor (100) of the present invention can be further applied to optoelectronic modules, photobiochemical assays, etc.
上述實施例僅為本發明的優選實施方式,不應當用於限制本發明的保護範圍,但凡在本發明的主體設計思想和精神上作出的毫無實質意義的改動或潤色,其所解決的技術問題仍然與本發明一致的,均應當包含在本發明的保護範圍之內。 The above embodiments are only preferred embodiments of the present invention and should not be used to limit the scope of protection of the present invention. Any changes or embellishments that have no substantive significance on the main design concept and spirit of the present invention, as long as the technical problems they solve are still consistent with the present invention, should be included in the scope of protection of the present invention.
藉此,可以理解到本發明為一創意極佳之創作,除了有效解決習式者所面臨的問題,更大幅增進功效,且在相同的技術領域中未見相同或近似的產品創作或公開使用,同時具有功效的增進,故本發明已符合發明專利有關「新穎性」與「進步性」的要件,乃依法提出申請發明專利。 From this, we can understand that the present invention is a highly creative creation. In addition to effectively solving the problems faced by practitioners, it also greatly improves the efficacy. In the same technical field, there is no same or similar product creation or public use. At the same time, it has improved efficacy. Therefore, the present invention has met the requirements of invention patents regarding "novelty" and "progressiveness", and an invention patent application is filed in accordance with the law.
100:氧化鋅鋁鉿透明薄膜電晶體 100: Zinc oxide aluminum oxide transparent thin film transistor
10:玻璃基板 10: Glass substrate
11:透明導電膜 11: Transparent conductive film
20:定義絕緣層 20: Define the insulating layer
21:氧化鋁 21: Alumina
22:二氧化鉿 22: Ethylene dioxide
25:氧化鋅鋁鉿通道層 25: Zinc oxide aluminum channel layer
26:源極 26: Source
27:汲極 27: Drain
28:背閘極 28: Back gate
30:金奈米粒子 30: Gold nanoparticles
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116154A TWI841366B (en) | 2023-04-28 | 2023-04-28 | Dual-band thin film transistor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116154A TWI841366B (en) | 2023-04-28 | 2023-04-28 | Dual-band thin film transistor photodetector |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI841366B true TWI841366B (en) | 2024-05-01 |
TW202443869A TW202443869A (en) | 2024-11-01 |
Family
ID=92077007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112116154A TWI841366B (en) | 2023-04-28 | 2023-04-28 | Dual-band thin film transistor photodetector |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI841366B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170005202A1 (en) * | 2014-07-11 | 2017-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20180217117A1 (en) * | 2005-02-23 | 2018-08-02 | Bao Tran | Nano sensor |
US20190002283A1 (en) * | 2004-11-09 | 2019-01-03 | Board Of Regents, The University Of Texas System | Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
TW201921694A (en) * | 2009-02-27 | 2019-06-01 | 日商半導體能源研究所股份有限公司 | Semiconductor device and method of manufacturing same |
TW202006960A (en) * | 2018-07-17 | 2020-02-01 | 日商索尼半導體解決方案公司 | Imaging element, laminated imaging element and solid-state imaging device |
TW202139297A (en) * | 2009-06-30 | 2021-10-16 | 日商半導體能源研究所股份有限公司 | Display device |
TW202213541A (en) * | 2009-07-03 | 2022-04-01 | 日商半導體能源研究所股份有限公司 | Method for manufacturing semiconductor device |
-
2023
- 2023-04-28 TW TW112116154A patent/TWI841366B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190002283A1 (en) * | 2004-11-09 | 2019-01-03 | Board Of Regents, The University Of Texas System | Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
US20180217117A1 (en) * | 2005-02-23 | 2018-08-02 | Bao Tran | Nano sensor |
US20220252565A1 (en) * | 2005-02-23 | 2022-08-11 | Bao Tran | Electronic device |
TW201921694A (en) * | 2009-02-27 | 2019-06-01 | 日商半導體能源研究所股份有限公司 | Semiconductor device and method of manufacturing same |
TW202027280A (en) * | 2009-02-27 | 2020-07-16 | 日商半導體能源研究所股份有限公司 | Semiconductor device and manufacturing method thereof |
TW202139297A (en) * | 2009-06-30 | 2021-10-16 | 日商半導體能源研究所股份有限公司 | Display device |
TW202213542A (en) * | 2009-06-30 | 2022-04-01 | 日商半導體能源研究所股份有限公司 | Display device |
TW202213541A (en) * | 2009-07-03 | 2022-04-01 | 日商半導體能源研究所股份有限公司 | Method for manufacturing semiconductor device |
US20170005202A1 (en) * | 2014-07-11 | 2017-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
TW202006960A (en) * | 2018-07-17 | 2020-02-01 | 日商索尼半導體解決方案公司 | Imaging element, laminated imaging element and solid-state imaging device |
Also Published As
Publication number | Publication date |
---|---|
TW202443869A (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Varshney et al. | Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN | |
Jiang et al. | A tailorable polarity-flipping response in self-powered, flexible Sb 2 Se 3/ZnO bilayer photodetectors | |
Cheng et al. | Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions | |
Ferhati et al. | Highly sensitive, ultra-low dark current, self-powered solar-blind ultraviolet photodetector based on ZnO thin-film with an engineered rear metallic layer | |
CN105762281A (en) | Ferroelectric local field enhanced two-dimensional semiconductor photoelectric detector and preparation method | |
CN105742394A (en) | Black phosphorus/graphene heterostructure-based ultraviolet detector and production method thereof | |
Chauhan et al. | Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors | |
CN101286535A (en) | Sun blind region ultraviolet detector with pn junction MgxZn1-xO film | |
TWI705577B (en) | Two-dimensional electronic devices and related fabrication methods | |
Kim et al. | High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse | |
CN205723636U (en) | A kind of ferroelectricity Localized field enhancement type two-dimensional semiconductor photodetector | |
Liu et al. | High-sensitivity flexible position sensing in a Cu (In, Ga) Se2 multi-layer heterojunction tuned by piezo-pyroelectric effect | |
CN111211186A (en) | A MoS2 phototransistor with improved photodetection performance and preparation method thereof | |
Dixit et al. | Ultra-wide bandgap copper oxide: High performance solar-blind Photo-detection | |
Zheng et al. | Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response | |
Pandey et al. | Enhanced sub-band gap photosensitivity by an asymmetric source–drain electrode low operating voltage oxide transistor | |
Agrawal et al. | Highly visible-blind ZnO photodetector by customizing nanostructures with controlled defects | |
US11056606B2 (en) | Photodetector and method of manufacture | |
TWI841366B (en) | Dual-band thin film transistor photodetector | |
Fang et al. | Photo-detection characteristics of In-Zn-O/SiOx/n-Si hetero-junctions | |
US9142790B2 (en) | PhotoSensor and photodiode therefor | |
Hu et al. | Improvement in thermal degradation of zno photodetector by embedding silver oxide nanoparticles | |
EP2466645A1 (en) | Thin-film photoelectric conversion element and method for manufacturing thin-film photoelectric conversion element | |
TWI390749B (en) | Transparent photodetector and method for manufacture the same | |
Zumuukhorol et al. | Effect of a SiO 2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors |