TWI841253B - Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate - Google Patents
Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate Download PDFInfo
- Publication number
- TWI841253B TWI841253B TW112106561A TW112106561A TWI841253B TW I841253 B TWI841253 B TW I841253B TW 112106561 A TW112106561 A TW 112106561A TW 112106561 A TW112106561 A TW 112106561A TW I841253 B TWI841253 B TW I841253B
- Authority
- TW
- Taiwan
- Prior art keywords
- ceramic substrate
- layer
- active metal
- solder layer
- solder
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 91
- 239000000758 substrate Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 34
- 239000002184 metal Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 28
- 238000005219 brazing Methods 0.000 claims abstract description 22
- 230000007547 defect Effects 0.000 claims abstract description 21
- 229910000679 solder Inorganic materials 0.000 claims description 79
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 238000005457 optimization Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 24
- 239000010936 titanium Substances 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- 238000007731 hot pressing Methods 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000000151 deposition Methods 0.000 abstract description 2
- 239000011888 foil Substances 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 10
- 238000011109 contamination Methods 0.000 description 8
- 239000011800 void material Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 238000004021 metal welding Methods 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910017945 Cu—Ti Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- BQCADISMDOOEFD-FTXFMUIASA-N silver-103 Chemical compound [103Ag] BQCADISMDOOEFD-FTXFMUIASA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Abstract
Description
本發明是有關一種活性金屬焊接陶瓷基板之製備方法,特別是一種降低活性金屬釺焊製程之焊接後空洞率的製備方法。 The present invention relates to a preparation method for an active metal welded ceramic substrate, in particular, a preparation method for reducing the post-welding void rate of an active metal brazing process.
活性金屬釺焊(硬釺焊)銅工藝(Active Metal Brazing,AMB)是利用焊料中含有的少量活性元素與陶瓷反應生成能被液態釬料潤濕的反應層,從而實現陶瓷與金屬接合的一種方法。 Active Metal Brazing (AMB) is a method of bonding ceramics to metals by using a small amount of active elements in the solder to react with ceramics to generate a reaction layer that can be wetted by liquid solder.
通常,先將陶瓷表面印刷活性金屬焊料而後再與無氧銅裝夾後,再在真空釬焊爐中高溫焊接,覆接完畢基板採用類似於PCB板的濕法刻蝕工藝在表面製作電路,最後表面鍍覆製備出性能可靠的產品。 Usually, the ceramic surface is first printed with active metal solder and then clamped with oxygen-free copper, and then high-temperature soldered in a vacuum soldering furnace. After the substrate is laminated, a wet etching process similar to that of a PCB is used to make circuits on the surface, and finally the surface is plated to produce a product with reliable performance.
而AMB基板是靠陶瓷與活性金屬焊膏在高溫下進行化學反應來實現結合,因此,其結合強度更高,可靠性更好。但是由於該方法成本較高、合適的焊料較少、焊料對於焊接的可靠性影響較大,目前,只有日本幾家公司掌握了高可靠活性金屬焊接技術。 The AMB substrate is achieved by chemically reacting ceramics and active metal solder paste at high temperatures, so its bonding strength is higher and its reliability is better. However, due to the high cost of this method, the small amount of suitable solder, and the large impact of solder on the reliability of welding, currently only a few Japanese companies have mastered the high-reliability active metal welding technology.
而目前陶瓷介面的空洞率是基板品質的重要因素之一,因此陶瓷介面空洞的控制至關重要,若是具有良好的介面空洞率,將能夠保證基板在高 溫、大電流下的服役可靠性。 At present, the void ratio of the ceramic interface is one of the important factors in the quality of the substrate. Therefore, the control of the void ratio of the ceramic interface is crucial. If the interface void ratio is good, the service reliability of the substrate under high temperature and high current can be guaranteed.
以Ag-Cu-Ti活性焊料為例說明,空洞形成的原因如下: Taking Ag-Cu-Ti active solder as an example, the causes of void formation are as follows:
(1)原料表面品質:焊接前陶瓷、無氧銅及焊片表面的劃痕、凹坑、氧化、有機污染等問題都會對焊料的潤濕鋪展造成負面影響,為釺焊介面帶來了潛在的空洞風險,針對這一部分,以Si3N4陶瓷材料之表面缺陷來講,一般有以下幾種表面汙染與缺陷,顆粒污染(Particle contamination)、表面粗糙度(Surface roughness)、表面裂紋(Surface cracks)、表面污染(Surface contamination)、點缺陷(Point defects)、位錯(Dislocations)、微裂紋(Microcracks)、雜質(Impurities),其中以點缺陷(Point defects)、位錯(Dislocations)、微裂紋(Microcracks)、雜質(Impurities)、表面污染(Surface contamination)會造成影響最大,若是沒有處理好,當鈦潤濕於表面上後,將容易因表面缺陷穿透至陶瓷基板內,導致空洞風險產生,並造成基板銅膜接合介面強度弱化等負面影響,更進而導致空洞的風險產生。 (1) Surface quality of raw materials: Scratches, pits, oxidation, organic contamination and other problems on the surface of ceramics, oxygen-free copper and solder pads before welding will have a negative impact on the wetting and spreading of solder, bringing potential void risks to the brazing interface. Regarding this part, the surface defects of Si 3 N 4 ceramic materials generally include the following surface contamination and defects: particle contamination, surface roughness, surface cracks, surface contamination, point defects, dislocations, microcracks, and impurities. Point defects, dislocations, microcracks, impurities, and surface contamination are the most common. Contamination) will have the greatest impact. If it is not handled properly, when titanium is wetted on the surface, it will easily penetrate into the ceramic substrate due to surface defects, resulting in the risk of voids and weakening the strength of the substrate copper film bonding interface, further leading to the risk of voids.
(2)活性元素失活:Ag-Cu-Ti的活性元素(Ti),對氧十分敏感,因此高溫釺焊過程中,往往要求真空度優於10-3Pa,若真空度無法滿足焊接要求導致Ti氧化失活,焊料無法潤濕Si3N4陶瓷表面造成大面積虛焊、漏焊的現象。 (2) Deactivation of active elements: The active element (Ti) of Ag-Cu-Ti is very sensitive to oxygen. Therefore, during high-temperature brazing, the vacuum degree is often required to be better than 10-3Pa. If the vacuum degree cannot meet the welding requirements, Ti will be oxidized and deactivated, and the solder will not be able to wet the surface of Si3N4 ceramics, resulting in large-area voids and leaks.
(3)釺焊工藝參數:Ag-Cu-Ti活性釺料往往在800℃以上才能潤濕Si3N4表面,若釺焊溫度過低或保溫時間過短,將會使得Ti與陶瓷表面的反應不夠充分,導致釺料無法完全潤濕陶瓷表面。 (3) Brazing process parameters: Ag-Cu-Ti active brazing filler metal can only wet the Si3N4 surface at a temperature above 800 °C. If the brazing temperature is too low or the holding time is too short, the reaction between Ti and the ceramic surface will not be sufficient, resulting in the inability of the brazing filler metal to completely wet the ceramic surface.
(4)焊膏印刷品質:大面積焊膏印刷過程中,較易出現焊膏漏印、印刷不均 勻的問題,焊料熔化後一旦沒有鋪展覆蓋這些漏印區域,就會直接導致空洞的形成。 (4) Solder paste printing quality: During large-area solder paste printing, it is easy to have problems with solder paste missing and uneven printing. Once the solder melts and does not spread to cover these missed areas, it will directly lead to the formation of voids.
(5)焊膏放氣:釺焊過程中,焊膏中揮發出的氣體會被助焊劑包裹形成氣泡,此外助焊劑中的有機酸和金屬氧化物反應也會產生氣泡,隨著反應的進行氣泡逐漸變大,排出的氣泡會在焊膏表面留下密密麻麻的氣孔,而未排出的氣泡同樣會隨著焊料熔化凝固的過程滯留在釺焊介面處,進而形成空洞,並導致基板銅膜接合介面在長期運作中產生斷裂的風險。 (5) Solder paste degassing: During the brazing process, the gas volatilized in the solder paste will be wrapped by the flux to form bubbles. In addition, the reaction between the organic acid and metal oxide in the flux will also produce bubbles. As the reaction proceeds, the bubbles gradually grow larger. The discharged bubbles will leave dense pores on the surface of the solder paste. The bubbles that are not discharged will also be retained at the brazing interface as the solder melts and solidifies, thereby forming voids and causing the risk of fracture of the substrate copper film joint interface during long-term operation.
而一般降低空洞率的方式,是通過AMB工藝製備氮化矽覆銅基板的過程中,對陶瓷和銅片進行除油和除氧化處理、提供較高的真空釺焊環境,這是目前公知的降低介面空洞率的方法,但其功效仍是非常有限,急需有效的改善方法。 The general way to reduce the void rate is to remove oil and oxidation from the ceramic and copper sheets and provide a high vacuum brazing environment during the preparation of silicon nitride copper-clad substrates through the AMB process. This is a well-known method for reducing interface void rate, but its effectiveness is still very limited and an effective improvement method is urgently needed.
因此,本案先透過ALD將一表面優化層(氮化矽、氧化鋁或氮化鋁)形成於該陶瓷基板之上表面及下表面上,用以覆蓋表面缺陷,對陶瓷基板之上下表面進行平整處理,以減少空洞發生的機率。另外再使用ALD將第一焊料層(鈦或是氮化鈦)形成於表面優化層上,並將第三焊料層(銀)形成於銅板表面上,如此當將該陶瓷基板與兩個銅板上下相疊再進行高溫熱壓釺焊所形成之活性金屬焊接陶瓷基板,其空洞發生機率將能夠明顯降低,因此本發明應為一最佳解決方案。 Therefore, in this case, a surface optimization layer (silicon nitride, aluminum oxide or aluminum nitride) is first formed on the upper and lower surfaces of the ceramic substrate by ALD to cover the surface defects and flatten the upper and lower surfaces of the ceramic substrate to reduce the probability of voids. In addition, ALD is used to form a first solder layer (titanium or titanium nitride) on the surface optimization layer, and a third solder layer (silver) is formed on the surface of the copper plate. In this way, when the ceramic substrate and two copper plates are stacked up and down and then high-temperature hot-pressing brazing is performed to form an active metal welding ceramic substrate, the probability of voids will be significantly reduced. Therefore, the present invention should be an optimal solution.
本發明活性金屬焊接陶瓷基板之製備方法,其方法為: (1)於一陶瓷基板之上表面及下表面上,進行原子層沉積處理,將一表面優化層形成於該陶瓷基板之上表面及下表面上,其中該表面優化層之成份係為氮化矽、氧化鋁或氮化鋁;(2)於該表面優化層上,進行原子層沉積處理,將一第一焊料層形成於該表面優化層上,其中該第一焊料層之成份係為鈦;(3)於朝向該陶瓷基板之上表面及下表面之兩個銅板表面上,將一第三焊料層形成於該銅板表面上,其中該第三焊料層之成份係至少為銅及銀;(4)將該陶瓷基板與兩個銅板上下相疊形成一層狀結構,再將該層狀結構進行高溫熱壓釺焊,以形成一活性金屬焊接陶瓷基板。 The present invention discloses a method for preparing an active metal-welded ceramic substrate, which comprises: (1) performing an atomic layer deposition process on the upper surface and the lower surface of a ceramic substrate to form a surface optimization layer on the upper surface and the lower surface of the ceramic substrate, wherein the composition of the surface optimization layer is silicon nitride, aluminum oxide or aluminum nitride; (2) performing an atomic layer deposition process on the surface optimization layer to form a first solder layer on the surface optimization layer; (3) forming a third solder layer on the copper plate surface facing the upper surface and the lower surface of the ceramic substrate, wherein the third solder layer comprises at least copper and silver; (4) stacking the ceramic substrate and the two copper plates up and down to form a layered structure, and then performing high temperature hot pressing welding on the layered structure to form an active metal welded ceramic substrate.
更具體的說,所述表面優化層用以覆蓋該陶瓷基板之上表面及下表面上的表面缺陷。 More specifically, the surface optimization layer is used to cover the surface defects on the upper and lower surfaces of the ceramic substrate.
更具體的說,所述陶瓷基板之上表面及下表面,能夠先進行原子層蝕刻處理,再進行原子層沉積處理形成該表面優化層,其中該原子層蝕刻處理用以移除該陶瓷基板之上表面及下表面上的表面缺陷。 More specifically, the upper and lower surfaces of the ceramic substrate can be first subjected to an atomic layer etching process and then subjected to an atomic layer deposition process to form the surface optimization layer, wherein the atomic layer etching process is used to remove surface defects on the upper and lower surfaces of the ceramic substrate.
更具體的說,所述表面優化層之厚度為1nm~1μm。 More specifically, the thickness of the surface optimization layer is 1nm~1μm.
更具體的說,所述第一焊料層上更能夠形成有一第二焊料層,該第二焊料層成份為氮化鈦。 More specifically, a second solder layer can be formed on the first solder layer, and the second solder layer is composed of titanium nitride.
更具體的說,所述第二焊料層之厚度為0.1~100nm。 More specifically, the thickness of the second solder layer is 0.1~100nm.
更具體的說,所述第一焊料層之厚度為0.1~100nm。 More specifically, the thickness of the first solder layer is 0.1~100nm.
更具體的說,所述第三焊料層之厚度為0.1μm~100μm。 More specifically, the thickness of the third solder layer is 0.1 μm ~100 μm .
更具體的說,所述第三焊料層之成份係更包含有鈦。 More specifically, the composition of the third solder layer further includes titanium.
更具體的說,所述高溫熱壓釺焊之溫度為750~950℃。 More specifically, the temperature of the high temperature hot pressure brazing is 750~950℃.
1:活性金屬焊接陶瓷基板 1: Active metal welding ceramic substrate
11:陶瓷基板 11: Ceramic substrate
12:銅板 12: Copper plate
13:銅板 13: Copper plate
14:表面優化層 14: Surface optimization layer
15:第一焊料層 15: First solder layer
16:第二焊料層 16: Second solder layer
17:第三焊料層 17: Third solder layer
[第1圖]係本發明活性金屬焊接陶瓷基板之製備方法之實施製備流程示意圖。 [Figure 1] is a schematic diagram of the preparation process of the active metal welded ceramic substrate preparation method of the present invention.
[第2A圖]係本發明活性金屬焊接陶瓷基板之製備方法之活性金屬焊接陶瓷基板之結構分離示意圖。 [Figure 2A] is a schematic diagram of the structural separation of the active metal welded ceramic substrate in the preparation method of the active metal welded ceramic substrate of the present invention.
[第2B圖]係本發明活性金屬焊接陶瓷基板之製備方法之活性金屬焊接陶瓷基板之熱壓後結構示意圖。 [Figure 2B] is a schematic diagram of the structure of the active metal welded ceramic substrate after hot pressing in the preparation method of the active metal welded ceramic substrate of the present invention.
[第3圖]係本發明活性金屬焊接陶瓷基板之製備方法之陶瓷基板與第一焊料層之另一實施結構示意圖。 [Figure 3] is another schematic diagram of the structure of the ceramic substrate and the first solder layer in the preparation method of the active metal-welded ceramic substrate of the present invention.
有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。 Other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the preferred embodiment with reference to the drawings.
請參閱第1圖所示,活性金屬焊接陶瓷基板之製備方法如下:(1)於一陶瓷基板之上表面及下表面上,進行原子層沉積處理,將一表面優化層形成於該陶瓷基板之上表面及下表面上,其中該表面優化層之成份係為氮化矽、氧化鋁或氮化鋁101;(2)於該表面優化層上,進行原子層沉積處理,將一第一焊料層形成於該表面優化層上,其中該第一焊料層之成份係為鈦102;(3)於朝向該陶瓷基板之上表面及下表面之兩個銅板表面上,將一第三焊
料層形成於該銅板表面上,其中該第三焊料層之成份係至少為銅及銀103;(4)將該陶瓷基板與兩個銅板上下相疊形成一層狀結構,再將該層狀結構進行高溫熱壓釺焊,以形成一活性金屬焊接陶瓷基板104。
Referring to FIG. 1, the preparation method of the active metal welding ceramic substrate is as follows: (1) performing an atomic layer deposition process on the upper surface and the lower surface of a ceramic substrate to form a surface optimization layer on the upper surface and the lower surface of the ceramic substrate, wherein the composition of the surface optimization layer is silicon nitride, aluminum oxide or
其中該高溫熱壓釺焊之溫度為750~950℃。 The temperature of the high temperature hot pressure brazing is 750~950℃.
如第2A圖所示,該活性金屬焊接陶瓷基板係包含有陶瓷基板11、兩個銅板12,13,其中陶瓷基板11上下表面皆附著有該表面優化層14,該表面優化層14之材料為Si3N4、AlN或是Al2O3。
As shown in FIG. 2A , the active metal welded ceramic substrate includes a
該表面優化層14之厚度為1nm~1μm。
The thickness of the
該表面優化層14用以覆蓋該陶瓷基板11之上表面及下表面上的表面缺陷。
The
該表面優化層14上能夠附著有一第一焊料層15(鈦)。
A first solder layer 15 (titanium) can be attached to the
該兩個銅板12,13分別朝向該陶瓷基板11之表面上附著有第三焊料層17(銅、銀、鈦),其中該第三焊料層17之成份為銀、銅、鈦(其中銀的成份占比為66~72%,銅的成份占比為28~32%,鈦的成份占比為0~6%)。
The two
該第三焊料層17係以濺鍍法或是原子層沉積法所形成於該兩個銅板12,13之表面上。
The
該第一焊料層15之厚度為0.1~100nm。
The thickness of the
該第三焊料層17之厚度為0.1μm~100μm。
The thickness of the
該銅板12,13之厚度為100~1000μm。
The thickness of the
如第2B圖所示,經過上下相疊為層狀結構,再將該層狀結構進行高溫熱壓釺焊,則形成為一活性金屬焊接陶瓷基板1。
As shown in Figure 2B, after being stacked up and down to form a layered structure, the layered structure is then subjected to high-temperature hot-pressing brazing to form an active metal-welded
該原子層沉積處理(Atomic Layer Deposition,ALD)之流程係為一習用技術,主要將含有欲沉積成分的化學氣體與陶瓷基板反應,再利用大量惰性氣體(例如氮氣、氬氣)將化學氣體移除,然後重複上述步驟a。藉此讓所有反應只會發生在陶瓷基板表面,每一次循環的過程僅形成厚度為一層原子的薄膜,也因此讓每次鍍膜厚度的精確性達原子級(約0.1nm)的尺度,並具有極佳均勻性。也因為成長過程被侷限在陶瓷基板表面,在具有結構的表面上也能得到很好的覆蓋率與均勻性。 The Atomic Layer Deposition (ALD) process is a common technique that mainly involves reacting a chemical gas containing the components to be deposited with a ceramic substrate, then removing the chemical gas with a large amount of inert gas (such as nitrogen or argon), and then repeating step a. This allows all reactions to occur only on the surface of the ceramic substrate, and each cycle only forms a thin film with a thickness of one atom. This allows the accuracy of each film deposition thickness to reach the atomic level (about 0.1nm) and has excellent uniformity. Because the growth process is confined to the surface of the ceramic substrate, good coverage and uniformity can be achieved on surfaces with structures.
該原子層沉積處理(Atomic Layer Deposition,ALD)用以覆蓋該陶瓷基板之上表面及下表面上的缺陷,該缺陷係為點缺陷(Point defects)、位錯(Dislocations)、微裂紋(Microcracks)、雜質(Impurities)、表面污染(Surface contamination),以使表面平整化。 The atomic layer deposition (ALD) process is used to cover the defects on the upper and lower surfaces of the ceramic substrate, such as point defects, dislocations, microcracks, impurities, and surface contamination, to make the surface flat.
本案雖然使用原子層沉積處理(Atomic Layer Deposition,ALD)能夠覆蓋表面缺陷,然而若能夠先使用原子層蝕刻處理(Atomic Layer Etching,ALE)去除表面微缺陷,再使用原子層沉積處理(Atomic Layer Deposition,ALD)覆蓋表面缺陷,如此將能夠達到更好的效果。 Although the ALD process can cover the surface defects in this case, better results can be achieved if the ALE process can be used to remove the surface micro defects first and then the ALD process can be used to cover the surface defects.
因此,能夠先對陶瓷基板11之上表面及下表面,能夠先進行原子層蝕刻處理,之後再對陶瓷基板11之上表面及下表面原子層沉積處理,形成該表面優化層,該原子層蝕刻處理用以移除該陶瓷基板11之上表面及下表面上的表面缺陷。
Therefore, the upper and lower surfaces of the
該原子層蝕刻處理(Atomic Layer Etching,ALE)之流程係為一習用技術,主要將一蝕刻氣體與一惰性氣體一起經由一質量流量控制器供應至一反應空間,再使用電漿進行蝕刻,其中向該反應空間供應惰性氣體或氮氣作為基 本反應氣體以產生電漿,除此之外更能夠添加氧化氣體或是氫氣一類的還原氣體來控制蝕刻速率,其製程溫度大多控制在0至250度。 The Atomic Layer Etching (ALE) process is a common technology. It mainly supplies an etching gas and an inert gas to a reaction space through a mass flow controller, and then uses plasma for etching. Inert gas or nitrogen is supplied to the reaction space as the basic reaction gas to generate plasma. In addition, oxidizing gas or reducing gas such as hydrogen can be added to control the etching rate. The process temperature is mostly controlled at 0 to 250 degrees.
該原子層蝕刻處理(Atomic Layer Etching,ALE),用以移除該陶瓷基板之上表面及下表面上的缺陷,該缺陷係為點缺陷(Point defects)、位錯(Dislocations)、微裂紋(Microcracks)、表面污染(Surface contamination)。 The atomic layer etching (ALE) process is used to remove defects on the upper and lower surfaces of the ceramic substrate, such as point defects, dislocations, microcracks, and surface contamination.
該陶瓷基板11之上表面及下表面的表面優化層14、第一焊料層15及第二焊料層16,與該銅板12,13的第三焊料層17接觸後,再使用一可導熱材料對其進行真空包裝,以取得該得層狀結構,該真空包裝的真空度小於10-1Pa,而該可導熱材料為柔性金屬箔袋。
The
如第3圖所示,該第一焊料層15上更能夠形成有一第二焊料層16,該第二焊料層16成份為氮化鈦,該第二焊料層16具有抗氧化功能,用以防止或降低該第一焊料層15氧化之可能,本案能夠僅形成該第一焊料層15即可實施,或是形成第一焊料層15及第二焊料層16,其中多層之最外層為第一焊料層15或是第二焊料層16。
As shown in FIG. 3, a
該第二焊料層16之厚度為0.1~100nm。
The thickness of the
該第二焊料層16主要避免第一焊料層15在後續高溫處理中,鈦金屬氧化並有效控制intermetallic的形成。
The
該陶瓷基板11更經過脫脂處理,以使該陶瓷基板在惰性氣體或還原性氣體氛圍中,將該第一焊料層15及第二焊料層16進行加熱脫脂附著該陶瓷基板11之上表面及下表面上。該惰性氣體包括氮氣或氬氣,而該還原性氣體包括氫氣、氮氫混合氣或酸性氣體。
The
該銅板12,13更經過脫脂處理,以使該銅板12,13在惰性氣體或還原
性氣體氛圍中,將該第三焊料層17進行加熱脫脂附著該銅板12,13表面上。
The
由於本案透過原子層蝕刻處理(Atomic Layer Etching,ALE)與原子層沉積處理(Atomic Layer Deposition,ALD)將陶瓷基板之上下表面處理後,將能夠減少空洞發生的機率。 Since this case uses atomic layer etching (ALE) and atomic layer deposition (ALD) to process the upper and lower surfaces of the ceramic substrate, the probability of voids occurring can be reduced.
由於第一焊料層是使用原子層沉積處理(Atomic Layer Deposition,ALD)所形成,故能夠精準控制其厚度,以保證表面均勻平整,如此除了能夠與陶瓷基板達成好的連結性之外,更由於第一焊料層之覆蓋均勻厚度夠薄,故能夠達到有效的控制陶瓷基板和金屬焊料間化合物層(intermetallic layer)形成。 Since the first solder layer is formed using Atomic Layer Deposition (ALD), its thickness can be precisely controlled to ensure a uniform and flat surface. In addition to achieving good connectivity with the ceramic substrate, the first solder layer can also be effectively controlled to form an intermetallic layer between the ceramic substrate and the metal solder because the first solder layer is uniformly thin.
本發明所提供之活性金屬焊接陶瓷基板之製備方法,與其他習用技術相互比較時,其優點如下: The preparation method of active metal welded ceramic substrate provided by the present invention has the following advantages when compared with other conventional technologies:
(1)本案透過原子層蝕刻處理(Atomic Layer Etching,ALE),對陶瓷基板之上下表面進行表面處理(去除表面微缺陷),如此將能夠減少空洞發生的機率,並提高製備活性金屬焊接陶瓷基板之良率。 (1) In this case, the upper and lower surfaces of the ceramic substrate are treated (removing surface micro-defects) through atomic layer etching (ALE). This will reduce the probability of voids and improve the yield of preparing active metal welding ceramic substrates.
(2)本案透過原子層沉積處理(Atomic Layer Deposition,ALD),將表面優化層(氮化矽、氧化鋁或氮化鋁)形成於陶瓷基板之上下表面上,以更好的處理表面(覆蓋表面缺陷),同時也能夠減少空洞發生的機率,並提高製備活性金屬焊接陶瓷基板之良率。 (2) In this case, the surface optimization layer (silicon nitride, aluminum oxide or aluminum nitride) is formed on the upper and lower surfaces of the ceramic substrate through atomic layer deposition (ALD) to better treat the surface (cover surface defects), while also reducing the probability of voids and improving the yield of preparing active metal welding ceramic substrates.
(3)本案透過原子層蝕刻處理(Atomic Layer Etching,ALE)與原子層沉積處理(Atomic Layer Deposition,ALD),能夠改善第一焊料層(鈦)在陶瓷基板溼潤Wetting能力增強銅和基板之間的結合強度。 (3) This case uses atomic layer etching (ALE) and atomic layer deposition (ALD) to improve the wetting ability of the first solder layer (titanium) on the ceramic substrate and enhance the bonding strength between copper and the substrate.
本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施 例,並在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。 The present invention has been disclosed through the above-mentioned embodiments, but they are not used to limit the present invention. Anyone familiar with this technical field and having common knowledge can make some changes and modifications without departing from the spirit and scope of the present invention after understanding the above-mentioned technical features and embodiments of the present invention. Therefore, the scope of patent protection of the present invention shall be subject to the definition of the claim items attached to this specification.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112106561A TWI841253B (en) | 2023-02-22 | 2023-02-22 | Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112106561A TWI841253B (en) | 2023-02-22 | 2023-02-22 | Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI841253B true TWI841253B (en) | 2024-05-01 |
TW202435375A TW202435375A (en) | 2024-09-01 |
Family
ID=92076858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112106561A TWI841253B (en) | 2023-02-22 | 2023-02-22 | Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI841253B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201813462A (en) * | 2016-06-10 | 2018-04-01 | 日商田中貴金屬工業股份有限公司 | Ceramic circuit substrate and method for manufacturing the ceramic circuit substrate |
TW201934523A (en) * | 2018-02-14 | 2019-09-01 | 日商三菱綜合材料股份有限公司 | Method of manufacturing ceramic/Al-SiC composite material bonded body and method of manufacturing power module substrate with heat sink |
US20200128664A1 (en) * | 2017-04-25 | 2020-04-23 | Denka Company Limited | Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board |
TW202016051A (en) * | 2018-08-28 | 2020-05-01 | 日商三菱綜合材料股份有限公司 | Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board |
TW202105623A (en) * | 2019-06-26 | 2021-02-01 | 日商三菱綜合材料股份有限公司 | Copper/ceramic joined body, insulation circuit board, copper/ceramic joined body production method, and insulation circuit board manufacturing method |
US20210176859A1 (en) * | 2017-05-30 | 2021-06-10 | Denka Company Limited | Ceramic circuit board and method for producing same |
TW202126603A (en) * | 2019-12-02 | 2021-07-16 | 日商三菱綜合材料股份有限公司 | Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board |
US20220230935A1 (en) * | 2019-08-21 | 2022-07-21 | Mitsubishi Materials Corporation | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board |
US20220359340A1 (en) * | 2019-10-30 | 2022-11-10 | Mitsubishi Materials Corporation | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board |
-
2023
- 2023-02-22 TW TW112106561A patent/TWI841253B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201813462A (en) * | 2016-06-10 | 2018-04-01 | 日商田中貴金屬工業股份有限公司 | Ceramic circuit substrate and method for manufacturing the ceramic circuit substrate |
US20200128664A1 (en) * | 2017-04-25 | 2020-04-23 | Denka Company Limited | Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board |
US20210176859A1 (en) * | 2017-05-30 | 2021-06-10 | Denka Company Limited | Ceramic circuit board and method for producing same |
TW201934523A (en) * | 2018-02-14 | 2019-09-01 | 日商三菱綜合材料股份有限公司 | Method of manufacturing ceramic/Al-SiC composite material bonded body and method of manufacturing power module substrate with heat sink |
TW202016051A (en) * | 2018-08-28 | 2020-05-01 | 日商三菱綜合材料股份有限公司 | Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board |
TW202144311A (en) * | 2018-08-28 | 2021-12-01 | 日商三菱綜合材料股份有限公司 | Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board |
TW202105623A (en) * | 2019-06-26 | 2021-02-01 | 日商三菱綜合材料股份有限公司 | Copper/ceramic joined body, insulation circuit board, copper/ceramic joined body production method, and insulation circuit board manufacturing method |
US20220230935A1 (en) * | 2019-08-21 | 2022-07-21 | Mitsubishi Materials Corporation | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board |
US20220359340A1 (en) * | 2019-10-30 | 2022-11-10 | Mitsubishi Materials Corporation | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board |
TW202126603A (en) * | 2019-12-02 | 2021-07-16 | 日商三菱綜合材料股份有限公司 | Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board |
Also Published As
Publication number | Publication date |
---|---|
TW202435375A (en) | 2024-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6066219A (en) | Process for producing a ceramic substrate and a ceramic substrate | |
JPH0429390A (en) | Manufacture of ceramic circuit board | |
CN113939095B (en) | Ceramic copper-clad plate and preparation method thereof | |
CN110937913B (en) | Aluminum nitride ceramic copper-clad substrate and preparation method thereof | |
US12002732B2 (en) | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board | |
CN114230359B (en) | Ceramic copper-clad plate and preparation method thereof | |
CN110734295A (en) | Preparation method of aluminum nitride ceramic copper-clad plates | |
CN115626835A (en) | Manufacturing method of ceramic-based copper-clad plate and product thereof | |
CN111943708B (en) | Aluminum nitride ceramic copper-coating method combining screen printing and laser surface cladding | |
CN110937912B (en) | Silicon nitride ceramic copper-clad substrate and preparation method thereof | |
JP3834351B2 (en) | Ceramic circuit board | |
TWI841253B (en) | Method for manufacturing highly reliable metal-to-ceramic active metal brazed substrate | |
US5045400A (en) | Composition for and method of metallizing ceramic surface, and surface-metallized ceramic article | |
CN113636869B (en) | Screen printing slurry of aluminum nitride ceramic substrate and metallization method | |
US4664942A (en) | Nickel diffusion bonded to metallized ceramic body and method | |
JP3495051B2 (en) | Ceramic-metal joint | |
WO2024174802A1 (en) | Preparation method for active metal welded ceramic substrate | |
KR101795812B1 (en) | Substrate for power module, substrate for power module equiptted with heat sink, power module, and manufacturing method of substrate for power module | |
JPH0424312B2 (en) | ||
JP2013227194A (en) | Method for manufacturing metal-ceramic bonding substrate | |
JP2021017390A (en) | Copper/ceramic-jointed structure, insulated circuit board, method for manufacturing copper/ceramic-jointed structure, and method for manufacturing insulated circuit board | |
JPH05201777A (en) | Ceramic-metal joined body | |
CN115491639B (en) | Surface modified diamond diaphragm and preparation method thereof | |
JP7379813B2 (en) | Joined body and method for manufacturing the joined body | |
JP7424043B2 (en) | Copper/ceramic bonded body, insulated circuit board, method for manufacturing copper/ceramic bonded body, method for manufacturing insulated circuit board |