TWI839679B - Sorting of plastics - Google Patents
Sorting of plastics Download PDFInfo
- Publication number
- TWI839679B TWI839679B TW111104602A TW111104602A TWI839679B TW I839679 B TWI839679 B TW I839679B TW 111104602 A TW111104602 A TW 111104602A TW 111104602 A TW111104602 A TW 111104602A TW I839679 B TWI839679 B TW I839679B
- Authority
- TW
- Taiwan
- Prior art keywords
- block
- plastic
- type
- spectroscopy
- blocks
- Prior art date
Links
- 229920003023 plastic Polymers 0.000 title claims abstract description 221
- 239000004033 plastic Substances 0.000 title claims abstract description 221
- 239000000463 material Substances 0.000 claims abstract description 368
- 238000000034 method Methods 0.000 claims abstract description 102
- 238000010801 machine learning Methods 0.000 claims abstract description 69
- 239000000126 substance Substances 0.000 claims description 83
- 238000012545 processing Methods 0.000 claims description 44
- 229920000642 polymer Polymers 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 35
- 230000003595 spectral effect Effects 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 31
- 230000000007 visual effect Effects 0.000 claims description 27
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 26
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 26
- 239000004800 polyvinyl chloride Substances 0.000 claims description 26
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 26
- 239000004743 Polypropylene Substances 0.000 claims description 23
- -1 polyethylene terephthalate Polymers 0.000 claims description 23
- 239000004793 Polystyrene Substances 0.000 claims description 21
- 229920001684 low density polyethylene Polymers 0.000 claims description 21
- 239000004702 low-density polyethylene Substances 0.000 claims description 21
- 238000012549 training Methods 0.000 claims description 20
- 229920001903 high density polyethylene Polymers 0.000 claims description 19
- 239000004700 high-density polyethylene Substances 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 17
- 238000004611 spectroscopical analysis Methods 0.000 claims description 16
- 238000001069 Raman spectroscopy Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 14
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 13
- 238000004876 x-ray fluorescence Methods 0.000 claims description 12
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 claims description 11
- 238000002411 thermogravimetry Methods 0.000 claims description 11
- 229920002223 polystyrene Polymers 0.000 claims description 10
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 238000004626 scanning electron microscopy Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 8
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 7
- 238000005481 NMR spectroscopy Methods 0.000 claims description 7
- 238000007563 acoustic spectroscopy Methods 0.000 claims description 7
- 238000004587 chromatography analysis Methods 0.000 claims description 7
- 230000005251 gamma ray Effects 0.000 claims description 7
- 238000001730 gamma-ray spectroscopy Methods 0.000 claims description 7
- 238000002094 microwave spectroscopy Methods 0.000 claims description 7
- 238000000399 optical microscopy Methods 0.000 claims description 7
- 238000000518 rheometry Methods 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000004064 recycling Methods 0.000 description 27
- 238000002441 X-ray diffraction Methods 0.000 description 22
- 238000013528 artificial neural network Methods 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- 238000004422 calculation algorithm Methods 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 17
- 239000002699 waste material Substances 0.000 description 15
- 230000009471 action Effects 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 239000008241 heterogeneous mixture Substances 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 239000013502 plastic waste Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- 229910052729 chemical element Inorganic materials 0.000 description 5
- 238000000701 chemical imaging Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000010813 municipal solid waste Substances 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012958 reprocessing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000010794 food waste Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000870659 Crassula perfoliata var. minor Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 241000009334 Singa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- VEUACKUBDLVUAC-UHFFFAOYSA-N [Na].[Ca] Chemical compound [Na].[Ca] VEUACKUBDLVUAC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000013533 biodegradable additive Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000007233 catalytic pyrolysis Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000010787 construction and demolition waste Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 239000010793 electronic waste Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000002025 liquid chromatography-photodiode array detection Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 235000013310 margarine Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000011092 plastic-coated paper Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000010817 post-consumer waste Substances 0.000 description 1
- 235000013606 potato chips Nutrition 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000003473 refuse derived fuel Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229920013744 specialty plastic Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
- B07C5/3422—Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/36—Sorting apparatus characterised by the means used for distribution
- B07C5/361—Processing or control devices therefor, e.g. escort memory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
- G01N15/147—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/149—Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
- B29B2017/0213—Specific separating techniques
- B29B2017/0279—Optical identification, e.g. cameras or spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N2015/025—Methods for single or grouped particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N2015/0288—Sorting the particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N2015/0294—Particle shape
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1497—Particle shape
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/845—Objects on a conveyor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
- G01N2201/1296—Using chemometrical methods using neural networks
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Sorting Of Articles (AREA)
- Image Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
本發明一般而言係有關於固態廢料的分類(sorting),並且更具體地係有關於從城市或工業固態廢料中分類塑料塊。 The present invention relates generally to the sorting of solid waste and more particularly to the sorting of plastic chunks from municipal or industrial solid waste.
本申請主張美國臨時專利申請案第63/146,892號及美國臨時專利申請案第63/173,301號之優先權。本申請係美國專利申請第17/495,291號的部分繼續申請,該申請係美國專利申請第17/380,928號的繼續,其係美國專利申請第17/227,245號的部分繼續申請,其係美國專利申請第16/939,011號的部分繼續申請,其係美國專利申請第16/375,675號的部分繼續申請(公告為美國專利第10,722,922號),其係美國專利申請第15/963,755號的部分繼續申請(公告為美國專利第10,710,119號),其主張美國臨時專利申請案第62/490,219號之優先權,並且其係美國專利申請第15/213,129號的部分繼續申請(公告為美國專利 第10,207,296號),其主張美國臨時專利申請案第62/193,332號之優先權,在此全部以引用方式併入本文中。本申請亦是美國專利申請第17/491,415號的部分繼續申請,其係美國專利申請第16/852,514號的部分繼續申請,其係美國專利申請第16/358,374號的分割申請(公告為美國專利第10,625,304),其係美國專利申請第15/963,755號的部分繼續申請(公告為美國專利第10,710,119號)。 This application claims priority to U.S. Provisional Patent Application No. 63/146,892 and U.S. Provisional Patent Application No. 63/173,301. This application is a continuation-in-part of U.S. Patent Application No. 17/495,291, which is a continuation-in-part of U.S. Patent Application No. 17/380,928, which is a continuation-in-part of U.S. Patent Application No. 17/227,245, which is a continuation-in-part of U.S. Patent Application No. 16/939,011, which is a continuation-in-part of U.S. Patent Application No. 16/375,675 (published as U.S. Patent No. 10,722,922), which is a continuation-in-part of U.S. Patent Application No. 15/963,755 (published as U.S. Patent No. 10,710,119), claiming priority to U.S. Provisional Patent Application No. 62/490,219, and which is a continuation-in-part of U.S. Patent Application No. 15/213,129 (published as U.S. Patent No. 10,207,296), claiming priority to U.S. Provisional Patent Application No. 62/193,332, all of which are hereby incorporated by reference. This application is also a continuation-in-part of U.S. Patent Application No. 17/491,415, which is a continuation-in-part of U.S. Patent Application No. 16/852,514, which is a divisional application of U.S. Patent Application No. 16/358,374 (published as U.S. Patent No. 10,625,304), which is a continuation-in-part of U.S. Patent Application No. 15/963,755 (published as U.S. Patent No. 10,710,119).
本發明係在美國政府根據美國能源部授予之第DE-AR0000422號的支持下進行的。美國政府在本發明中享有某些權利。 This invention was made with support from the U.S. Government under Grant No. DE-AR0000422 from the U.S. Department of Energy. The U.S. Government has certain rights in this invention.
這個部分旨在介紹本領域的各個態樣,其可以與本發明的例示性實施例相關聯。相信這裡所討論的有助於提供架構以利於更好地理解本發明的特定態樣。因此,應理解到應該從這個角度來閱讀這個部分,而不一定是對先前技術的承認。 This section is intended to introduce various aspects of the art that may be associated with exemplary embodiments of the present invention. It is believed that what is discussed here helps provide a framework to facilitate a better understanding of certain aspects of the present invention. Therefore, it should be understood that this section should be read from this perspective and not necessarily as an admission of prior art.
回收是收集和處理本來會作為垃圾丟棄之材料(例如,來自廢料流)的過程,並將它們轉化為新產品,或者至少能夠進行更適當的處理。回收對社區和環境都有好處,因為其減少往垃圾掩埋場的廢料量,保護木材、水和礦物等自然資源,藉由利用國內材料來源提高經濟安全 性,藉由減少收集新原材料的需要來防止污染,並節省能源。在收集之後,可回收物可能會被送到材料回收設施(「MRF」)進行分類、清潔及加工成可用於製造的材料。因此,經濟地對高度混合的廢料流進行分類的高通量自動分類平台將受益於各個行業。因此,需要具有成本效益的分類平台,該平台可以識別、分析和分離具有高通量的混合工業或城市固體廢料流,以經濟地產生更高品質的原料(也可能含有低量的痕量污染物)用於後續處理。通常,MRF無法區分許多材料,這將分類材料限制在低品質和較低價值的市場,或是太慢、勞動密集且效率低,從而限制了可經濟回收或回收的材料數量。 Recycling is the process of collecting and processing materials that would otherwise be thrown away as trash (e.g., from a waste stream) and transforming them into new products, or at least enabling more appropriate disposal. Recycling benefits communities and the environment by reducing the amount of waste going to landfills, conserving natural resources such as wood, water, and minerals, increasing economic security by utilizing domestic sources of materials, preventing pollution by reducing the need to collect new raw materials, and saving energy. After collection, recyclables may be sent to a material recovery facility (“MRF”) to be sorted, cleaned, and processed into materials that can be used in manufacturing. Therefore, a high-throughput automated sorting platform that can economically sort highly mixed waste streams would benefit a variety of industries. Therefore, there is a need for cost-effective sorting platforms that can identify, analyze and separate mixed industrial or municipal solid waste streams with high throughput to economically produce higher quality feedstock (which may also contain low levels of trace contaminants) for subsequent processing. Typically, MRFs are unable to distinguish between many materials, which limits the sorted materials to low-quality and lower-value markets, or are too slow, labor-intensive and inefficient, limiting the amount of material that can be economically recycled or recovered.
城市固態廢料(「MSW」)係涵蓋家庭、商業、和工業來源之廢料流的廣義用語。在每個類別中,都有數千種不同的材料和產品。美國環保署報告稱,2017年產生了267.8百萬噸MSW。35.37百萬噸,或該MSW總重量的13.2%由塑料組成。在這35.37百萬噸塑料中,2.96百萬噸的塑料(8.4%)被回收,5.59百萬噸(15.8%)透過能源回收燃燒,26.82百萬噸(75.8%)被掩埋。顯然,需要更多地回收塑料。 Municipal solid waste (“MSW”) is a broad term that covers waste streams from household, commercial, and industrial sources. Within each category, there are thousands of different materials and products. The U.S. Environmental Protection Agency reported that 267.8 million tons of MSW were generated in 2017. 35.37 million tons, or 13.2% of the total weight of that MSW, consisted of plastics. Of the 35.37 million tons of plastics, 2.96 million tons (8.4%) were recycled, 5.59 million tons (15.8%) were burned for energy recovery, and 26.82 million tons (75.8%) were landfilled. Clearly, more plastics need to be recycled.
塑料回收是將塑料廢料再加工成新的有用產品。回收是必要的,因為幾乎所有塑料都是不可生物降解的,因此會在環境中堆積。目前,幾乎所有的回收都是藉由將廢塑料重熔和重整為新產品來進行的;所謂的機械回收。這會導致聚合物在化學水平上降解,並且還需要在重新處理之 前按顏色和聚合物類型對塑料廢料進行分類,這既複雜又昂貴。這方面的失敗可能導致材料特性不一致,這對工業沒有吸引力。在一種稱為原料回收的替代方案中,塑料廢料被轉化回其起始化學品,然後可以再加工成新鮮塑料。這提供了更多回收的希望,但會受到更高的能源和資本成本的影響。作為能源回收的一部分,塑料廢料也可以代替化石燃料燃燒。 Plastic recycling is the reprocessing of plastic waste into new, useful products. Recycling is necessary because almost all plastics are non-biodegradable and therefore accumulate in the environment. Currently, almost all recycling is done by remelting and reforming waste plastics into new products; so-called mechanical recycling. This causes the polymers to degrade at a chemical level and also requires sorting plastic waste by color and polymer type before reprocessing, which is both complex and expensive. Failure in this regard can result in inconsistent material properties, which is unattractive to industry. In an alternative, known as feedstock recycling, plastic waste is converted back to its starting chemicals, which can then be reprocessed into fresh plastic. This offers the promise of more recycling but is subject to higher energy and capital costs. Plastic waste can also replace fossil fuel burning as part of energy recovery.
目前,只有一些塑料是可回收的。當塑料進入回收利用時,它們通常被分類為不同類型的塑料。回收率也因塑料類型而異。幾種類型是常用的,每種類型具有不同的化學和物理特性。這導致它們分類和再加工的難易程度存在差異,從而影響回收材料的價值和市場規模。由單一材料(例如,聚對苯二甲酸乙二酯(「PET」)、高密度聚乙烯(「HDPE」)和聚丙烯(「PP」))製成的塑料包裝和產品更容易回收。有時或幾乎從不可回收的塑料包括聚氯乙烯(「PVC」)、低密度聚乙烯(「LDPE」)、線性低密度聚乙烯(「LLDPE」)和聚苯乙烯(「PS」)。此外,塑料只能回收有限的次數。 Currently, only some plastics are recyclable. When plastics enter recycling, they are usually sorted into different types of plastics. Recycling rates also vary by plastic type. Several types are commonly used, each with different chemical and physical properties. This results in differences in how easily they can be sorted and reprocessed, which in turn affects the value and market size of the recycled material. Plastic packaging and products made from a single material, such as polyethylene terephthalate (“PET”), high-density polyethylene (“HDPE”), and polypropylene (“PP”), are more easily recycled. Plastics that are sometimes or almost never recycled include polyvinyl chloride (“PVC”), low-density polyethylene (“LDPE”), linear low-density polyethylene (“LLDPE”), and polystyrene (“PS”). In addition, plastics can only be recycled a limited number of times.
在現代單流MRF和塑料回收機中,大量的進料需要能夠高速移動和分類材料的處理設備。同時,從最純淨、污染最少的流中獲得最高值。為了實現這些有些矛盾的目標,今天的單流MRF和回收機採用自動化設備,透過近紅外線(「NIR」)特徵對塑料包裝進行分類,無論是透射還是反射。這些感測器依賴於來自外部光源的光反射,並且
只能查看材料表面。此外,僅從該感測器捕獲聚合物資訊。例如,NIR光譜可以識別#1類型的透明塑料和淺藍色PET和#2 HDPE,同時拒絕#1彩色PET、#3 PVC、#4 LDPE、#5 PP、#6 PS和#7其他塑料,例如多層聚合物、複合聚合物、丙烯酸和尼龍。此外,NIR光譜無法準確識別黑色或強烈著色的塑料,以及像是塑料塗層紙和多層包裝(由聚合物多層薄膜製成)等複合材料,這可能會產生誤導性讀數。大多數黑色塑料都是用碳著色的。黑色塑料廣泛用於汽車工業、電子產品、食品包裝、塑料袋等。但除了吸收可見光外,黑色塑料還吸收光譜的近紅外線部分,不幸的是,它的副作用是近紅外線光譜不可見。因此,「隱形」黑色塑料未被檢測到進入傳送器末端的「雜項」垃圾箱,這些垃圾箱被燃燒以獲取能量或傾倒到垃圾掩埋場。
In modern single-stream MRFs and plastic recyclers, large volumes of feed material require handling equipment capable of moving and sorting material at high speeds. At the same time, obtaining the highest value from the purest, least contaminated stream. To achieve these somewhat conflicting goals, today’s single-stream MRFs and recyclers employ automated equipment to sort plastic packaging by near-infrared (“NIR”) signatures, either in transmission or reflection. These sensors rely on light reflections from an external light source and can only view the surface of the material. Furthermore, only polymer information is captured from this sensor. For example, NIR spectroscopy can identify
在閉環或初級回收中,廢塑料被回收成類似品質和種類的新物品(例如,將飲料瓶重新變成飲料瓶)。然而,由於聚合物的累積降解和污染物堆積的風險,在不降低品質的情況下持續機械回收塑料是非常具有挑戰性的。儘管已經研究了許多聚合物的閉環回收,但迄今為止唯一的工業成功是PET瓶回收。 In closed-loop or primary recycling, waste plastics are recycled into new items of similar quality and kind (e.g., turning drinks bottles back into drinks bottles). However, the continuous mechanical recycling of plastics without loss of quality is very challenging due to the cumulative degradation of polymers and the risk of contaminant accumulation. Although closed-loop recycling of many polymers has been studied, the only industrial success to date has been PET bottle recycling.
在開環或二次回收(也稱為降級回收)中,每次回收塑料的品質都會降低,因此材料不能無限期地回收並最終成為廢料。將PET瓶回收成羊毛或其他纖維是一個常見的例子,佔PET回收的大部分。聚合物品質的降低可以藉由在製造新產品時將再生塑料與原始材料或相容性塑料混合來 抵消。 In open-loop or secondary recycling (also known as downcycling), the quality of the plastic degrades each time it is recycled, so the material cannot be recycled indefinitely and eventually becomes waste. Recycling PET bottles into wool or other fibers is a common example and accounts for the majority of PET recycling. The reduction in polymer quality can be offset by blending recycled plastic with virgin material or compatible plastics when making new products.
儘管熱固性聚合物不會熔化,但已經開發了用於機械回收的技術。這通常涉及將材料分解成碎屑,然後可以將其與某種黏合劑混合以形成新的複合材料。 Although thermoset polymers do not melt, technology has been developed for mechanical recycling. This generally involves breaking the material down into scraps, which can then be mixed with some kind of binder to form a new composite material.
在原料或三級回收(也稱為化學回收)中,聚合物被還原為其化學結構單元(單體),然後可以聚合回新鮮塑料。熱解聚和化學解聚是兩種類型的原料回收。 In feedstock or tertiary recycling (also called chemical recycling), polymers are reduced to their chemical structural units (monomers) and can then be polymerized back into fresh plastic. Thermal depolymerization and chemical depolymerization are two types of feedstock recycling.
能源回收,也稱為能源回收或四元回收,涉及燃燒塑料廢料代替化石燃料來產生能源。 Energy recovery, also known as energy recovery or quad recycling, involves burning plastic waste to generate energy instead of fossil fuels.
已經開發了一種程序,其中某些種類的塑料可以用作廢鋼回收中的碳源(代替焦炭)。在某些應用中,研磨塑料可用作建築集合體或填充材料。 A process has been developed whereby certain types of plastics can be used as a carbon source (instead of coke) in scrap steel recycling. In some applications, ground plastics can be used as building aggregate or fill material.
塑料廢料可以在廢料轉化為能源的過程中作為垃圾衍生燃料(「RDF」)簡單地燃燒,或者可以首先化學轉化為合成燃料。在任何一種方法中,都必須藉由安裝二氯化技術來排除或補償PVC,因為它在燃燒時會產生大量氯化氫(HCl),這會腐蝕設備並導致燃料產品發生不期望的氯化。 Plastic waste can be simply burned as refuse-derived fuel (“RDF”) in a waste-to-energy process, or it can be first chemically converted to synthetic fuels. In either approach, PVC must be excluded or compensated by installing dichlorination technology, as it produces large amounts of hydrogen chloride (HCl) when burned, which can corrode equipment and lead to undesirable chlorination of the fuel product.
混合的塑料廢料可以解聚得到合成燃料。這比起始塑料具有更高的熱值,並且可以更有效地燃燒,儘管它的效率仍然低於化石燃料。已經研究了各種轉化技術,其中熱解是最常見的。在熱解中使用催化劑可以得到具有更高價值之更明確的產品。與焚燒的廣泛使用相比,由於收集和分類塑料的成本以及所產生燃料的價值相對較低,塑料製 燃料技術在歷史上一直難以在經濟上可行。 Mixed plastic waste can be depolymerized to produce synthetic fuels. This has a higher calorific value than the starting plastic and can be burned more efficiently, although it is still less efficient than fossil fuels. Various conversion technologies have been investigated, of which pyrolysis is the most common. The use of catalysts in pyrolysis can result in more defined products with higher value. Plastic-to-fuel technology has historically been difficult to make economically viable due to the cost of collecting and sorting plastics and the relatively low value of the fuel produced compared to the widespread use of incineration.
由於上述原因,需要改進用於分類所有類型塑料的方法,能夠分類#3至#7類型的塑料、分類PVC的能力、以及分類塑料混合物的能力成新的分類(classification)或小部分(fraction),以便更有效地回收利用。 For the reasons stated above, there is a need for improved methods for sorting all types of plastics, the ability to sort plastic types #3 to #7, the ability to sort PVC, and the ability to sort plastic mixtures into new classifications or fractions for more efficient recycling.
100:分類系統 100:Classification system
101,201,401:材料塊 101,201,401: Material block
102:傳送系統或漏斗 102:Transmission system or funnel
103,203,403:傳送系統 103,203,403:Transmission system
104:傳送系統馬達 104: Transmission system motor
105:位置檢測器 105: Position detector
106:滾筒/振動器/分選機 106: Drum/vibrator/sorter
107:電腦系統 107: Computer system
108:自動化控制系統 108:Automation control system
109,410:相機 109,410:Camera
110:視覺系統 110: Visual system
111:材料塊追蹤裝置 111: Material block tracking device
112:伴隨的控制系統 112: Accompanying control system
120:感測器系統 120:Sensor system
121:能量發射源 121: Energy emission source
122:電源 122: Power supply
124:檢測器 124: Detector
125:電子 125: Electronics
126,127,128,129:分類裝置 126,127,128,129: Classification device
136,137,138,139:分類箱 136,137,138,139: Classification boxes
140:箱 140: Box
300,800,3500:程序 300,800,3500:Program
301,302,303,304,305,801,802,803,804,805,806,807,3501, 3502,3503,3504,3505,3506,3507,3508,3509,3510,3511,3512,3513:程序方塊 301,302,303,304,305,801,802,803,804,805,806,807,3501, 3502,3503,3504,3505,3506,3507,3508,3509,3510,3511,3512,3513: Programming Block
411:XRF系統 411:XRF system
412:NIR系統 412:NIR system
413:MWIR系統 413:MWIR system
3400:資料處理系統 3400:Data processing system
3401:圖形處理器單元 3401: Graphics Processor Unit
3405:本地匯流排 3405: Local bus
3412:使用者界面適配器 3412: User interface adapter
3413:鍵盤 3413:Keyboard
3414:滑鼠 3414: Mouse
3415:處理器 3415:Processor
3416:顯示適配器 3416:Display adapter
3420:揮發性記憶體 3420: Volatile memory
3425:網路(LAN)適配器 3425: Network (LAN) adapter
3430:I/O適配器 3430:I/O adapter
3431:硬碟驅動器 3431: Hard drive
3432:磁帶驅動器 3432:Tape drive
3435:非揮發性記憶體 3435: Non-volatile memory
3440:顯示器 3440:Display
[圖1]繪示根據本發明一些實施例組態之分類系統的示意圖。 [Figure 1] shows a schematic diagram of a classification system configured according to some embodiments of the present invention.
[圖2]繪示在機器學習系統中訓練階段期間使用的材料塊之控制組的例示性表示。 [Figure 2] shows an exemplary representation of a control set of blocks of material used during the training phase in a machine learning system.
[圖3]繪示根據本發明一些實施例組態的流程圖。 [Figure 3] shows a flow chart of some configurations according to the present invention.
[圖4]繪示根據本發明一些實施例組態的簡化示意圖。 [Figure 4] shows a simplified schematic diagram of the configuration of some embodiments of the present invention.
[圖5和6]繪示化學特徵的實例。 [Figures 5 and 6] show examples of chemical characterization.
[圖7]繪示根據本發明一些實施例組態的流程圖。 [Figure 7] shows a flow chart of the configuration of some embodiments of the present invention.
[圖8]繪示根據本發明一些實施例組態的流程圖。 [Figure 8] shows a flow chart of the configuration of some embodiments of the present invention.
[圖9]繪示根據本發明一些實施例組態之資料處理系統的方塊圖。 [Figure 9] shows a block diagram of a data processing system configured according to some embodiments of the present invention.
本文揭露了本發明的各種詳細實施例。然而,應當理解,所揭露的實施例僅僅是本發明的實例示例,其可以以各種和替代的形式實施。圖式不一定按比例繪製;一些特 徵可能被誇大或最小化以顯示特定組件的細節。因此,本文揭露的具體結構和功能細節不應被解釋為限制性的,而僅作為教示所屬技術領域中具有通常知識者採用本發明的各種實施例的代表性基礎。 Various detailed embodiments of the present invention are disclosed herein. However, it should be understood that the disclosed embodiments are merely exemplary of the present invention, which may be implemented in various and alternative forms. The drawings are not necessarily drawn to scale; some features may be exaggerated or minimized to show the details of a particular component. Therefore, the specific structural and functional details disclosed herein should not be interpreted as limiting, but merely as a representative basis for teaching a person of ordinary skill in the art to employ various embodiments of the present invention.
如本文所使用,「材料」可包括任何物品或物件,包括但不限於金屬(含鐵的和不含鐵的)、金屬合金、塑料(包括但不限於本文揭露之工業中已知或未來新創造的任何塑料)、橡膠、泡沫、玻璃(包括但不限於硼矽酸鹽或鈉鈣玻璃以及各種有色玻璃)、陶瓷、紙張、紙板、鐵氟龍、PE、成束電線、絕緣包覆線、稀土元素、樹葉、木材、植物、植物的一部分、紡織品、生物廢物、包裝、電子廢料、電池和蓄電池、報廢車輛、採礦、建築和拆除廢料、農作物廢料、森林殘餘物、專用草、木本能源作物、微藻、城市食物垃圾、食物垃圾、危險化學品和生物醫學垃圾、建築垃圾、農場廢物、生物物品、非生物物品、具有特定碳含量的物體、可能在城市固體廢料中發現的任何其他物體、以及本文揭露的任何其它物件、物品或材料,包括可以彼此區分的任何前述的進一步類型或類別,包括但不限於藉由一或多個感測器系統,包括但不限於本文揭露的任何感測器技術。 As used herein, "material" may include any article or object, including but not limited to metals (ferrous and non-ferrous), metal alloys, plastics (including but not limited to any plastics known in the industry disclosed herein or newly created in the future), rubber, foam, glass (including but not limited to borosilicate or sodium calcium glass and various colored glasses), ceramics, paper, paperboard, Teflon, PE, bundled wires, insulated coated wires, rare earth elements, leaves, wood, plants, parts of plants, textiles, biowaste, packaging, electronic waste, batteries and accumulators, scrapped vehicles, mining, Construction and demolition waste, crop waste, forest residues, specialized grasses, woody energy crops, microalgae, municipal food waste, food waste, hazardous chemicals and biomedical waste, construction waste, farm waste, biological items, non-biological items, items with a specific carbon content, any other items that may be found in municipal solid waste, and any other items, items or materials disclosed herein, including further types or categories of any of the foregoing that can be distinguished from one another, including but not limited to by one or more sensor systems, including but not limited to any sensor technology disclosed herein.
「材料」可包括由化學元素、化學元素的化合物或混合物、或化合物或化合物的混合物或化學元素的混合物組成的任何物品或物體,其中化合物或混合物的複雜性可以從簡單到複雜。如本文所用,「元素」是指元素週期表中 的化學元素,包括可能在本申請案的提交日期之後發現的元素。在本發明中,用語「廢料」、「廢料塊」、「材料」和「材料塊」可以互換使用。 "Material" may include any article or object composed of chemical elements, compounds or mixtures of chemical elements, or compounds or mixtures of compounds or mixtures of chemical elements, where the complexity of the compounds or mixtures can range from simple to complex. As used herein, "element" refers to a chemical element in the periodic table of elements, including elements that may be discovered after the filing date of this application. In the present invention, the terms "waste", "waste block", "material" and "block of material" may be used interchangeably.
正如業內所熟知的,「聚合物」是由非常大的分子或大分子組成的物質或材料,由許多重複的亞基組成。聚合物可以是自然界中發現的天然聚合物或合成聚合物。 As is well known in the industry, a "polymer" is a substance or material composed of very large molecules or macromolecules, composed of many repeated subunits. Polymers can be natural polymers found in nature or synthetic polymers.
「多層聚合物薄膜」由兩種或多種不同的組成物組成,厚度可達約7.5-8×10-4m。這些層至少部分鄰接並且較佳地但可選地是共同延伸的。 A "multi-layer polymer film" is composed of two or more different compositions and may be up to about 7.5-8 x 10-4 m thick. The layers are at least partially adjacent and preferably but optionally coextensive.
如本文中所使用,用語「塑料」、「塑料塊」、及「塑料材料塊」(所有這些都可以互換使用)是指包括或由一或多種聚合物的聚合物組合物組成的任何物體,及/或多層聚合物薄膜。 As used herein, the terms "plastic", "plastic mass", and "mass of plastic material" (all of which may be used interchangeably) refer to any object comprising or consisting of a polymer composition of one or more polymers, and/or a multi-layer polymer film.
如本文中所使用,用語「化學特徵」是指由一或多種分析儀器產生的獨特模式(例如指紋譜),指示樣本中的一或多種特定元素或分子(包括聚合物)的存在。元素或分子可以是有機的及/或無機的。此種分析儀器包括本文揭露的任何感測器系統。根據本發明的實施例,本文揭露的一或多個感測器系統可被組態以產生材料塊(例如,塑料塊)的化學特徵。 As used herein, the term "chemical signature" refers to a unique pattern (e.g., a fingerprint) generated by one or more analytical instruments that indicates the presence of one or more specific elements or molecules (including polymers) in a sample. The elements or molecules can be organic and/or inorganic. Such analytical instruments include any sensor system disclosed herein. According to embodiments of the present invention, one or more sensor systems disclosed herein can be configured to generate a chemical signature of a mass of material (e.g., a mass of plastic).
如本文所用,「小部分」是指有機及/或無機元素或分子、聚合物類型、塑料類型、聚合物組成物、塑料的化學特徵、塑料塊的物理特性(例如顏色、透明度、強度、熔點、密度、形狀、尺寸、製造類型、均勻性、對刺激的 反應等)等的任何特定組合,包括本文揭露之任何和所有各種分類和類型的塑料。小部分的非限制性實例係一或多種不同類型的塑料塊,其包含:LDPE加上相對高比例的鋁;LDPE和PP加上相對較低百分比的鐵;PP加鋅;PE、PET、和HDPE的組合;任何類型的紅色LDPE塑料塊;除PVC外的任何塑料塊組合;黑色塑料塊;含有特定有機/無機分子之#3-#7類型塑料的組合;一或多種不同類型的多層聚合物膜的組合;不含有特定污染物或添加劑的特定塑料組合;熔點大於指明的臨限之任何類型的塑料;複數個指明之類型的任何熱固性塑料;不含氯之指明的塑料;具體相似密度的塑料組合;具有相似極性的塑料組合;不帶蓋的塑料瓶,反之亦然。 As used herein, "fraction" refers to any specific combination of organic and/or inorganic elements or molecules, polymer types, plastic types, polymer compositions, chemical characteristics of plastics, physical properties of plastic pieces (e.g., color, transparency, strength, melting point, density, shape, size, type of manufacturing, homogeneity, response to stimuli, etc.), etc., including any and all of the various classifications and types of plastics disclosed herein. A small number of non-limiting examples are one or more different types of plastic chunks, including: LDPE plus a relatively high percentage of aluminum; LDPE and PP plus a relatively low percentage of iron; PP plus zinc; a combination of PE, PET, and HDPE; any type of red LDPE plastic chunks; any combination of plastic chunks except PVC; black plastic chunks; a combination of #3-#7 types of plastics containing specific organic/inorganic molecules; a combination of one or more different types of multi-layer polymer films; a specific combination of plastics that do not contain specific contaminants or additives; any type of plastic with a melting point greater than a specified threshold; any thermosetting plastic of a plurality of specified types; a specified plastic that does not contain chlorine; a combination of plastics of specific similar density; a combination of plastics with similar polarity; a plastic bottle without a cap, or vice versa.
「催化熱解」涉及藉由在不存在氧氣和存在催化劑的情況下加熱聚合物材料來降解聚合物材料。 "Catalytic pyrolysis" involves the degradation of polymeric materials by heating them in the absence of oxygen and in the presence of a catalyst.
用語「預定」是指預先建立或決定的事物。 The term "predestination" refers to something that is established or determined in advance.
「光譜成像」是在整個電磁光譜中使用多個波段的成像。雖然普通相機可以捕捉可見光譜中的三個波段的光(即紅色、綠色和藍色(RGB)),但光譜成像包含多種技術,包括但不限於RGB。光譜成像可以使用紅外線、可見光、紫外線和/或X射線光譜,或以上的一些組合。光譜資料、或光譜影像資料係光譜影像的數位資料表示。光譜成像可能包括同時採集可見和不可見波段的光譜資料、來自可見範圍之外的照明或使用濾光片來捕獲特定光譜範圍。還可以為光譜圖像中的每個像素捕獲數百個波段。 "Spectroscopic imaging" is imaging that uses multiple bands across the electromagnetic spectrum. While common cameras can capture light in three bands of the visible spectrum, namely red, green, and blue (RGB), spectral imaging encompasses a variety of techniques, including but not limited to RGB. Spectroscopic imaging can use infrared, visible, ultraviolet, and/or X-ray spectra, or some combination of these. Spectral data, or spectral image data, is a digital representation of a spectral image. Spectroscopic imaging may include the acquisition of spectral data in both visible and non-visible bands, illumination from outside the visible range, or the use of filters to capture specific spectral ranges. It is also possible to capture hundreds of bands for each pixel in a spectral image.
如本文所使用,「影像資料封包」是指與捕獲的單一材料塊之光譜影像有關的數位資料封包。 As used herein, an "image data packet" refers to a digital data packet associated with a captured spectral image of a single block of material.
如本文中所使用,用語「識別(identify)」及「分類(classify)」,用語「識別(identification)」及「分類(classification)」以及前述的任何派生詞可以互換使用。如本文中所使用,對材料塊「分類」是為了判定(即,識別)該材料塊所屬的材料的類型或類別。例如,根據本發明的某些實施例,感測器系統(如本文進一步敘述的)可經組態以收集並分析用於對材料進行分類的任何類型的資訊,這些分類可以在分類(sorting)系統內用於根據一組一或多個物理及/或化學特徵(例如,可以是使用者界定的)的變動來選擇性地分類材料塊,包括但不限於顏色、質地、色調、形狀、亮度、重量、密度、組成、尺寸、均勻性、製造類型、化學特徵、預定小部分、放射性特徵、對光、聲音或其他訊號的透射率,以及對諸如各種場的刺激的反應,包括材料塊的發射及/或反射電磁輻射(「EM」)。如本文所使用,「製造類型」是指製造材料塊之製造程序的類型,例如透過鍛造程序形成的金屬部件已經被鑄造(包括但不限於一次性模具鑄造、永久模具鑄造和粉末冶金)、已鍛造、材料去除程序等。 As used herein, the terms "identify" and "classify", the terms "identification" and "classification" and any derivatives thereof may be used interchangeably. As used herein, to "classify" a block of material is to determine (i.e., identify) the type or category of material to which the block of material belongs. For example, according to certain embodiments of the present invention, a sensor system (as further described herein) may be configured to collect and analyze any type of information for classifying materials, which classifications may be used within a sorting system to selectively classify blocks of material based on variations in a set of one or more physical and/or chemical characteristics (e.g., which may be user-defined), including but not limited to color, texture, hue, shape, brightness, weight, density, composition, size, uniformity, type of manufacture, chemical characteristics, predetermined fractions, radioactive characteristics, transmittance to light, sound or other signals, and response to stimuli such as various fields, including emission and/or reflection of electromagnetic radiation ("EM") by the blocks of material. As used herein, "manufacturing type" refers to the type of manufacturing process used to make a block of material, such as a metal part formed by a forging process, has been cast (including but not limited to one-shot die casting, permanent die casting, and powder metallurgy), has been forged, a material removal process, etc.
材料的類型或類別(即,分類)可以是使用者可定義的並且不限於任何已知的材料分類。類型或類別的粒度範圍可以從非常粗到非常細。例如,類型或類別可以包括塑料、陶瓷、玻璃、金屬和其他材料,這些類型或類別的粒
度相對較粗;不同的金屬和金屬合金,例如鋅、銅、黃銅、鉻板和鋁,其中這些類型或類別的粒度更細;或在特定類型的塑料之間,這些類型或類別的粒度相對較細。因此,類型或類別可以被組態以區分具有顯著不同組成物的材料,例如不同類型的塑料(例如,在#1至#7類型的塑料中的任何一種之間),或區分幾乎相同組成物的材料,例如可能屬於特定塑料類型的不同塑料亞類。應當理解,本文討論的方法和系統可用於準確地識別/分類在分類之前其組成物完全未知的材料塊。
The types or categories (i.e., classes) of materials may be user-definable and are not limited to any known material classifications. The particle size of a type or class may range from very coarse to very fine. For example, a type or class may include plastics, ceramics, glass, metals, and other materials, where the particle size of these types or classes is relatively coarse; different metals and metal alloys, such as zinc, copper, brass, chrome, and aluminum, where the particle size of these types or classes is finer; or between specific types of plastics, where the particle size of these types or classes is relatively fine. Thus, types or classes may be configured to distinguish between materials with significantly different compositions, such as different types of plastics (e.g., between any of
本發明的實施例藉由融合多種感測器技術和機器學習系統來提高塑料分類能力。基於感測器的分類器技術的限制性源於使用單一感測器,因為每一感測器只能檢測窄範圍的訊號。最常見的分類器感測器類型是渦流、可見相機、X射線透射、近紅外線和X射線螢光劑(「XRF」),下表總結了這些感測器類型。 Embodiments of the present invention improve plastic classification capabilities by fusing multiple sensor technologies and machine learning systems. Sensor-based classifier technology is limited by the use of a single sensor, as each sensor can only detect a narrow range of signals. The most common classifier sensor types are eddy current, visible camera, X-ray transmission, near infrared, and X-ray fluorescence ("XRF"), which are summarized in the table below.
然而,MSW中的塑料塊可以由一或多種有機聚合物、一或多種無機元素組成,並具有多種不同的顏色、形狀和尺寸。這些塑料的實例包括薯片袋、可擠壓果汁盒、精選飲料容器和電子電磁敏感包裝。本發明之實施例利用基於感測器的技術從廢料流中產生新的小部分,該技術能夠將 這些不同類型的塑料分類成獨特的分類,這些分類可以解釋它們的有機聚合物組成物和/或無機元素組成物。例如,高度關注聚合物和無機元素的相對組成物的轉化化學家將能夠選擇一或多種新型小部分,從而能夠從分類成這些小部分的回收塑料中產生特定產品。結果,根據本發明實施例組態的分類系統可以產生超出現有最先進分類技術可能的小部分。 However, plastic pieces in MSW can be composed of one or more organic polymers, one or more inorganic elements, and come in a variety of different colors, shapes, and sizes. Examples of these plastics include potato chip bags, squeezable juice boxes, select beverage containers, and electronic electromagnetic sensitive packaging. Embodiments of the present invention utilize sensor-based technology to generate new fractions from the waste stream that are able to sort these different types of plastics into unique classifications that can explain their organic polymer composition and/or inorganic element composition. For example, a transformation chemist who pays close attention to the relative composition of polymers and inorganic elements will be able to select one or more new fractions that can produce specific products from recycled plastics sorted into these fractions. As a result, a classification system configured according to an embodiment of the present invention can produce fractions beyond what is possible with existing state-of-the-art classification techniques.
例如,本發明的某些實施例可以被組態以對來自#3-#7型塑料包的預定小部分進行分類和/或分類以產生新產品(例如,藉由回收方法)及/或燃料。此種小部分的例示性終端使用可包括但不限於氣體(例如C1-C4)、燃料(例如汽油、柴油)、及真空瓦斯油。然而,基於其有機和無機元素組成的#3-#7類型塑料的分類從未成功完成。 For example, certain embodiments of the present invention may be configured to sort and/or classify a predetermined fraction from a #3-#7 type plastic bale to produce new products (e.g., via a recycling process) and/or fuel. Exemplary end uses of such fractions may include, but are not limited to, gases (e.g., C1-C4), fuels (e.g., gasoline, diesel), and vacuum gas oil. However, the classification of #3-#7 type plastics based on their organic and inorganic elemental composition has never been successfully accomplished.
本發明之實施例可經組態以根據不同預定的小部分或特徵或類型的組合對塑料材料塊進行分類,這些在下文和本發明的其他地方揭露。 Embodiments of the present invention may be configured to sort pieces of plastic material according to different predetermined combinations of sub-portions or features or types, which are disclosed below and elsewhere in the present invention.
根據其特性,塑料根據其化學結構、極性和應用可分為三類。 Based on their properties, plastics can be divided into three categories based on their chemical structure, polarity and application.
根據其化學結構和溫度行為,塑料可分為熱塑性塑料、熱固性塑料和彈性體。 Based on their chemical structure and temperature behavior, plastics can be divided into thermoplastics, thermosets and elastomers.
關於極性,不同性質的原子的存在會導致電子向共價鍵中電負性最強的原子移動,從而產生偶極子。含有這些極負電性原子的聚合物(諸如CI、O、N、F等)將是極性化合物,會對材料的特性產生影響。如果增加極性,則機械 阻力、硬度、剛性、耐熱性、吸水性和吸濕性、耐化學性以及對極性化合物如水蒸氣的滲透性和黏附性以及對金屬的黏附性也會增加。同時,極性的增加降低了熱膨脹、電絕緣能力、靜電荷積累的趨勢和極性分子(O2、N2)的滲透性。以此方式,可以區分不同的家族,例如聚烯烴、聚酯、縮醛、鹵化聚合物等。 Regarding polarity, the presence of atoms of different natures causes electrons to move to the most electronegative atom in the covalent bond, thus generating a dipole. Polymers containing these extremely negative atoms (such as CI, O, N, F, etc.) will be polar compounds, which will have an impact on the properties of the material. If the polarity is increased, the mechanical resistance, hardness, rigidity, heat resistance, water and moisture absorption, chemical resistance, permeability and adhesion to polar compounds such as water vapor, and adhesion to metals will also increase. At the same time, the increase in polarity reduces thermal expansion, electrical insulation ability, the tendency of electrostatic charge accumulation, and the permeability of polar molecules (O 2 , N 2 ). In this way, different families can be distinguished, such as polyolefins, polyesters, acetals, halogenated polymers, etc.
第三種分類(根據它們的應用)適用於熱塑性材料。第三類塑料有四種類型: 標準塑料或商品:由於其價格和許多方面的良好特性而大量製造和使用的塑料。一些實例係聚乙烯(「PE」)、聚丙烯(「PP」)、聚苯乙烯(「PS」)、聚氯乙烯(「PVC」)、或共聚物丙烯腈丁二烯苯乙烯(「ABS」)。 The third classification (according to their application) applies to thermoplastic materials. There are four types of plastics in the third category: Standard plastics or commodities: plastics that are manufactured and used in large quantities due to their price and many favorable properties. Some examples are polyethylene ("PE"), polypropylene ("PP"), polystyrene ("PS"), polyvinyl chloride ("PVC"), or the copolymer acrylonitrile butadiene styrene ("ABS").
工程塑料:需要良好的結構、透明性、自潤滑性和熱特性時使用。一些實例係聚醯胺(「PA」)、聚縮醛(「POM」)、聚碳酸酯(「PC」)、聚對苯二甲酸乙二醇酯(「PET」)、聚苯醚(「PPE」)和聚對苯二甲酸丁二酯(「PBT」)。 Engineering plastics: used when good structure, transparency, self-lubrication and thermal properties are required. Some examples are polyamide ("PA"), polyacetal ("POM"), polycarbonate ("PC"), polyethylene terephthalate ("PET"), polyphenylene ether ("PPE") and polybutylene terephthalate ("PBT").
特別塑料:具有非凡程度的特別特性,例如具有高透明度和光穩定性的聚甲基丙烯酸甲酯(「PMMA」),或具有良好耐溫性和耐化學品的聚四氟乙烯(Teflon)。 Specialty plastics: those with special properties to an extraordinary degree, such as polymethyl methacrylate ("PMMA") with high transparency and light stability, or polytetrafluoroethylene (Teflon) with good temperature and chemical resistance.
高效能塑料:主要是具有高耐熱性的熱塑性塑料。換言之,它們具有良好的耐高溫機械效能,尤其是高達150℃的高溫。聚醯亞胺(「PI」)、聚碸(「PSU」)、聚醚碸(「PES」)、聚芳基碸(「PAS」)、聚苯硫醚(「PPS」) 和液晶聚合物(「LCP」)是高效能塑料。 High-performance plastics: mainly thermoplastics with high heat resistance. In other words, they have good mechanical properties at high temperatures, especially up to 150°C. Polyimide ("PI"), polysulfone ("PSU"), polyether sulfone ("PES"), polyarylene sulfone ("PAS"), polyphenylene sulfide ("PPS") and liquid crystal polymer ("LCP") are high-performance plastics.
許多塑料製品帶有標識製造它們的聚合物類型的符號。這些樹脂識別碼通常縮寫為RIC,在國際上使用。總共有七個碼,其中六個用於最常見的商品塑料類型,一個用於其他所有類型。這些類型在本文中也稱為聚合物類型#1-#7。聚合物類型#1是指聚對苯二甲酸乙二酯(「PET」)、#2是指高密度聚乙烯(「HDPE」)、#3是指聚氯乙烯(「PVC」)、#4是指低密度聚乙烯(「LDPE」)、#5指聚丙烯(「PP」)、#6指聚苯乙烯(「PS」)、#7指不在聚合物類型#1-#6中的其他聚合物(例如,丙烯酸、聚碳酸酯(「PC」)、聚乳酸纖維、聚丙交酯、尼龍、玻璃纖維、ABS)。歐盟維護著一個類似的九碼列表,其中還包括ABS和聚酰胺。
Many plastic products carry symbols that identify the type of polymer from which they are made. These resin identification codes, often abbreviated as RIC, are used internationally. There are seven codes in total, six for the most common commercial plastic types and one for all others. These types are also referred to herein as polymer types #1-#7.
PET塑料用於製造許多常見的家居用品,諸如飲料瓶、藥罐、繩索、衣服和地毯纖維。HDPE塑料通常用於製造牛奶、機油、洗髮精和潤髮乳、肥皂瓶、洗滌劑和漂白劑的容器。PVC用於各種管道和瓷磚,最常見於管道中。LDPE產品包括保鮮膜、三明治袋、可擠壓瓶和塑料食品袋。PP用於製作午餐盒、人造黃油容器、優格瓶、糖漿瓶、處方瓶和塑料瓶蓋。聚苯乙烯物品包括一次性咖啡杯、塑料食品盒、塑料餐具和包裝發泡體。聚碳酸酯用於嬰兒奶瓶、光碟、及醫療儲存容器。因此,根據本發明之實施例,可以訓練以機器學習系統實施的視覺系統以基於它們已經製成的產品類型在這些不同類型的塑料之間進行 辨別和分類。 PET plastic is used to make many common household items, such as drink bottles, medicine jars, ropes, clothing, and carpet fibers. HDPE plastic is commonly used to make containers for milk, motor oil, shampoo and conditioner, soap bottles, detergents, and bleach. PVC is used in a variety of pipes and tiles, most commonly in plumbing. LDPE products include plastic wrap, sandwich bags, squeezable bottles, and plastic grocery bags. PP is used to make lunch boxes, margarine containers, yogurt bottles, syrup bottles, prescription bottles, and plastic bottle caps. Polystyrene items include disposable coffee cups, plastic food boxes, plastic cutlery, and packaging foam. Polycarbonate is used in baby bottles, compact discs, and medical storage containers. Thus, according to embodiments of the present invention, a vision system implemented as a machine learning system can be trained to discern and classify between these different types of plastics based on the types of products they have been made into.
塑料塊可以根據它們可能包含的添加劑類型進行分類。添加劑是混合到塑料中以提高效能的化合物,包括穩定劑、填料和染料。透明塑料的價值最高,因為它們可能尚未染色,而黑色或深色塑料的價值要低得多,因為它們會導致產品變色。因此,塑料可能需要按聚合物類型和顏色進行分類,以提供適合回收利用的材料。 Pieces of plastic can be sorted based on the types of additives they may contain. Additives are chemical compounds mixed into plastics to improve performance and include stabilizers, fillers, and dyes. Clear plastics have the highest value because they may not have been dyed, while black or dark plastics have a much lower value because they can cause discoloration in the product. Therefore, plastics may need to be sorted by polymer type and color to provide material suitable for recycling.
塑料也可以根據密度分門別類。某些聚合物具有相似的密度範圍(例如,PP和PE,或PET、PS和PVC)。如果塑料塊含有高百分比的填料,這可能會影響其密度。 Plastics can also be classified according to density. Certain polymers have a similar density range (for example, PP and PE, or PET, PS and PVC). If a piece of plastic contains a high percentage of fillers, this may affect its density.
塑料垃圾也可以大致分為兩類:工業廢料(有時稱為後工業樹脂)和消費後垃圾。 Plastic waste can also be roughly divided into two categories: industrial waste (sometimes called post-industrial resins) and post-consumer waste.
塑料塊也可以根據它們的回收方式分門別類。在機械回收期間中,塑料可能會在150-320℃之間的任何溫度下進行再加工,具體取決於聚合物類型,這可能會導致不需要的化學反應,從而導致聚合物降解。這會降低塑料的物理效能和整體品質,並會產生揮發性的低分子量化合物,這些化合物可能會產生不良味道或氣味,並導致熱變色。因此,本發明之實施例可被組態以對塑料塊進行分門別類,從而避免這種不期望的化學反應。塑料中存在的添加劑會加速這種降解。例如,旨在提高塑料生物降解性的含氧生物降解添加劑可以提高熱降解程度。同樣,阻燃劑也會產生不良影響。因此,本發明之實施例可被組態以對塑料塊進行分門別類,從而丟棄具有某些此類添加劑的塑料 塊。 Plastic pieces can also be sorted according to how they are recycled. During mechanical recycling, plastics may be reprocessed at temperatures anywhere between 150-320°C, depending on the polymer type, which can lead to unwanted chemical reactions that cause polymer degradation. This can reduce the physical effectiveness and overall quality of the plastic and produce volatile low molecular weight compounds that can produce unpleasant tastes or odors and cause thermal discoloration. Therefore, embodiments of the present invention can be configured to sort plastic pieces to avoid such undesirable chemical reactions. Additives present in the plastic can accelerate this degradation. For example, oxygen-containing biodegradable additives intended to increase the biodegradability of plastics can increase the degree of thermal degradation. Similarly, flame retardants can also have an adverse effect. Thus, embodiments of the present invention may be configured to sort plastic pieces and thereby discard plastic pieces that have certain such additives.
產品的品質也可能很大程度上取決於塑料的分類效果。許多聚合物在熔融時彼此不混溶,並且在再加工程序中會發生相分離(如,油和水)。由此類共混物製成的產品在不同聚合物類型之間含有許多邊界,跨這些邊界的內聚力較弱,導致機械特性較差。因此,本發明之實施例可被組態以對塑料塊進行分門別類,使得某些不混溶的塑料塊不會一起分類到同一組中。 The quality of the product may also depend greatly on how well the plastics are sorted. Many polymers are immiscible in each other when melted and phase separate during reprocessing (e.g., oil and water). Products made from such blends contain many boundaries between the different polymer types, and the cohesion across these boundaries is weak, resulting in poor mechanical properties. Therefore, embodiments of the present invention can be configured to sort the plastic pieces so that certain immiscible plastic pieces are not sorted together into the same group.
根據本發明之某些實施例敘述的系統和方法接收複數個材料塊(例如,本文揭露之各種塑料的任何組合)的異質混合物,其中此異質混合物中的至少一材料塊包括不同於一或多種其它材料塊的元素組合物(例如,化學特徵)及/或此異質混合物中的至少一材料塊係可區分的(例如,視覺上可辨別的特性或特徵、不同的化學特徵等),並且系統和方法被組態以將此材料塊識別/分門別類成與此類其他材料塊分開的組。本發明之實施例可用於對任何類型或類別的材料或如本文所界定的小部分進行分類。 Systems and methods described according to certain embodiments of the present invention receive a heterogeneous mixture of a plurality of blocks of material (e.g., any combination of various plastics disclosed herein), wherein at least one block of material in the heterogeneous mixture includes a different elemental composition (e.g., chemical signature) than one or more other blocks of material and/or at least one block of material in the heterogeneous mixture is distinguishable (e.g., visually discernible properties or characteristics, different chemical signatures, etc.), and the systems and methods are configured to identify/sort the block of material into a group separate from other blocks of material of the same type. Embodiments of the present invention may be used to sort any type or class of materials or sub-portions as defined herein.
本發明之實施例將在本文中敘述為藉由根據使用者界定的分組(例如,材料類型分類或小部分)將材料塊物理地沉積(例如,轉移或彈出)到單獨的容器或箱中來將材料塊分類成分別的群組。作為實例,在本發明之某些實施例中,可以將材料塊分類到單獨的箱中,以便分離具有與其他材料塊的物理特性可區分的物理特性(例如,視覺上可辨別的特性或特徵,不同化學特徵等)。 Embodiments of the present invention will be described herein as sorting blocks of material into separate groups by physically depositing (e.g., transferring or ejecting) the blocks of material into separate containers or bins according to user-defined groupings (e.g., material type classifications or sub-portions). As an example, in certain embodiments of the present invention, blocks of material may be sorted into separate bins to separate blocks of material having physical properties that are distinguishable from the physical properties of other blocks of material (e.g., visually discernible properties or characteristics, different chemical characteristics, etc.).
圖1繪示根據本發明之各種實施例組態之分類系統100的實例。傳送系統103可被實施以傳送單一材料塊101的一或多個流通過分類系統100,使得單一材料塊101之每一者可以追蹤、分類、及整理至預定的期望組。此種傳送系統103可以用一或多個傳送帶實施,材料塊101在傳送帶上以通常以預定的恆定速度行進。然而,本發明之某些實施例可以用其它類型的傳送系統來實施,包括其中材料塊自由落下通過分類系統100之各種組件的系統(或任何其它類型的垂直分類器)、或振動傳送系統。在下文中,在適用的情況下,傳送系統103也可稱為傳送帶103。在一或多個實施例中,傳送、刺激、檢測、分門別類的一些或所有動作可以自動執行,即,無需人工干預。例如,在分類系統100中,一或多個刺激源、一或多個排放檢測器、分類模組、分類設備及/或其他系統組件可以被組態以自動執行這些和其他操作。
FIG. 1 illustrates an example of a
此外,儘管圖1繪示了傳送系統103上的單一材料塊101流的,但是可以實施本發明的實施例之其中複數個這樣的材料塊的流彼此並行地經過分類系統100的各個組件。例如,如美國專利第10,207,296號中進一步敘述的,材料塊可以分布在單一傳送帶或一組平行傳送帶上行進的兩或多個平行的單一流。因此,本發明的某些實施例能夠同時追蹤、分門別類多個此種並行行進的材料塊流。根據本發明之某些實施例,不需要併入或使用分選機。相反,傳送系統(例如,傳送系統103)可以簡單地傳送大量材料
塊,這些材料塊已經以隨機方式沉積在傳送系統103上。
Furthermore, although FIG. 1 depicts a single stream of
根據本發明之某些實施例,某種合適的進料器機制(例如,另一個傳送系統或漏斗102)可用於將材料塊101供給到傳送系統103上,由此傳送系統103將材料塊101傳送通過分類系統100內的各種組件。在由傳送系統103接收材料塊101之後,可以使用可選的滾筒/振動器/分選機106來將單一的材料塊與材料塊的集合分離。在本發明之某些實施例中,傳送系統103由傳送系統馬達104操作以用預定速度行進。預定速度可以由操作者以任何已知的方式編程和/或調節。對傳送系統103之預定速度的監測可替代地用位置檢測器105來執行。在本發明的某些實施例中,傳送系統馬達104及/或位置檢測器105的控制可以由自動化控制系統108執行。此種自動化控制系統108可以在電腦系統107的控制下操作及/或用於執行自動化控制的功能可以在電腦系統107內的軟體中實施。
According to certain embodiments of the present invention, some suitable feeder mechanism (e.g., another conveyor system or hopper 102) can be used to feed the
傳送系統103可為傳統的環形帶傳送器,其採用適合於以預定速度移動帶傳送器的習知驅動馬達104。可以是習知編碼器的位置檢測器105可操作地耦接至傳送系統103和自動化控制系統108,以提供相應於傳送帶之運動(例如,速度)的資訊。因此,如將在本文中進一步敘述的,透過利用對傳送系統驅動馬達104及/或自動化控制系統108(並且可選地包括位置檢測器105)的控制,由於識別了在傳送系統103上行進的每個材料塊101,它們可藉由位置和時間(相對於分類系統100的各種組件)進行追蹤,使得
分類系統100的各種組件可以在每一材料塊101在它們附近經過時被啟用/停用。結果,自動化控制系統108能夠在每一材料塊101沿著傳送系統103行進時追蹤它們的位置。
The
再次參考圖1,本發明的某些實施例可以利用視覺或光學識別系統110及/或材料塊追蹤裝置111作為追蹤每個材料塊101在傳送系統103上行進時的構件。視覺系統110可利用一或多個靜止或實況相機109來記錄在移動傳送系統103上的每一材料塊101的位置(即,位置和時間)。視覺系統110可進一步或替代地被組態以執行材料塊101的全部或部分之某些類型的識別(例如,分類),如將在本文中進一步敘述的。例如,這樣的視覺系統110可以用於捕捉或獲取關於每一材料塊101的資訊。例如,如本文所述,視覺系統110可經組態以(例如,以機器學習系統)從材料塊捕獲或收集任何類型的資訊,這些資訊可以在分類系統100內用於根據一組一或多個特徵(例如,物理及/或化學及/或放射性等)對材料塊101進行分類及/或選擇性地分類。根據本發明的某些實施例,視覺系統110可以經組態以捕獲每一材料塊101的視覺影像(包括一維、二維、三維、或全像成像),例如藉由使用一般數位相機和攝影設備中使用的光學感測器。然後將光學感測器捕獲的視覺影像作為影像資料(例如,格式化為影像資料封包)儲存在記憶體裝置中。根據本發明的某些實施例,這樣的影像資料可以表示在光的光學波長(即,一般人眼可觀察到的光的波長)內捕獲的影像。然而,本發明的替代實施例可利用
感測器系統,該感測器系統組態以捕獲由人眼之可見波長之外的光波長構成之材料的影像。
Referring again to FIG. 1 , certain embodiments of the present invention may utilize a vision or
根據本發明的某些實施例,分類系統100可以以一或多個感測器系統120實施,其可單獨使用或與視覺系統110結合使用來分類/識別材料塊101。感測器系統120可經組態有用於判定塑料塊之化學特徵及/或分類塑料塊以進行分類之任何類型的感測器技術,包括感測系統,利用輻射或反射電磁波輻射(例如,利用紅外線(「IR」)、傅立葉變換IR(「FTIR」)、前視紅外線(「FLIR」)、非常近紅外線(「VNIR」)、近紅外線(「NIR」)、短波長紅外線(「SWIR」)、長波長紅外線(「LWIR」)、中波長紅外線(「MWIR」或「MIR」)、X射線透射(「XRT」、伽馬射線、紫外線(「UV」)、X射線螢光(「XRF」)、雷射誘導之擊穿光譜學(「LIBS」)、拉曼光譜學、反斯拖克斯拉曼光譜學、伽瑪光譜學、高光譜光譜(例如,超出可見波長的任何範圍)、聲學光譜學、NMR光譜、微波光譜學、兆赫光譜學、及包括具有上述中任何一種的一維、二維或三維成像)、或任何其他類型的感測器技術,包括但不限於化學或放射性。美國專利第10,207,296號中進一步敘述例示性XRF系統的實施(例如,用作本文中的感測器系統120)。XRF可在本發明的實施例中用於識別塑料塊內的無機材料(例如,用於包含在化學特徵中)。
According to certain embodiments of the present invention, the
以下的感測器系統亦可在本發明的某些實施例中用於判定塑料塊的化學特徵及/或分類塑料塊以進行分類。 The following sensor system may also be used in certain embodiments of the present invention to determine the chemical characteristics of plastic pieces and/or to classify plastic pieces for classification.
先前揭露的各種形式的紅外線光譜可用於獲得每一塑料塊的特定化學特徵,其提供有關任何塑料材料的基礎聚合物以及材料中存在的其他組成物(礦物填料、共聚物、聚合物共混物等)的資訊。 Various forms of infrared spectroscopy previously disclosed can be used to obtain a specific chemical signature of each piece of plastic, which provides information about the base polymer of any plastic material as well as other components present in the material (mineral fillers, copolymers, polymer blends, etc.).
微差掃描熱量法(「DSC」)係熱分析技術,其獲得在加熱每一材料特定的分析材料期間產生的熱變化。 Differential Scanning Calorimetry ("DSC") is a thermal analysis technique that obtains the heat changes produced during heating of an analysis material specific to each material.
熱重分析(「TGA」)是另一種熱分析技術,可提供有關塑料材料組成物的定量資訊,包括聚合物百分比、其他有機組成物、礦物填料、炭黑等。 Thermogravimetric analysis ("TGA") is another thermal analysis technique that can provide quantitative information about the composition of plastic materials, including polymer percentage, other organic components, mineral fillers, carbon black, etc.
毛細管和旋轉流變儀可藉由測量聚合物材料的抗蠕變性和抗變形性來判定聚合物材料的流變特性。 Capillary and rotational rheometers can determine the rheological properties of polymer materials by measuring their resistance to creep and deformation.
光學和掃描電子顯微鏡(「SEM」)可提供有關所分析材料結構的資訊,包括多層材料(例如多層聚合物薄膜)中的層數和厚度、聚合物基質中顏料或填料顆粒的分散尺寸、塗層缺陷、組分之間的界面形態等。 Optical and scanning electron microscopy ("SEM") can provide information about the structure of the material being analyzed, including the number and thickness of layers in multilayer materials (e.g. multilayer polymer films), the dispersed size of pigment or filler particles in the polymer matrix, coating defects, interface morphology between components, etc.
色析法(例如,LC-PDA、LC-MS、LC-LS、GC-MS、GC-FID、HS-GC)可以量化塑料材料的微量組成,例如紫外線穩定劑、抗氧化劑、增塑劑、防滑劑等,以及殘留單體、油墨或黏著劑中的殘留溶劑、降解物質等。 Chromatographic methods (e.g., LC-PDA, LC-MS, LC-LS, GC-MS, GC-FID, HS-GC) can quantify the trace components of plastic materials, such as UV stabilizers, antioxidants, plasticizers, anti-slip agents, etc., as well as residual monomers, residual solvents in inks or adhesives, and degradation substances.
應當注意,雖然圖1繪示了視覺系統110及一或多個感測器系統120的組合,但是本發明的實施例可以利用本文揭露的任何感測器技術的感測器系統的任何組合來實施,或者當前可用或將來開發的任何其他感測器技術。儘管圖1繪示為包括一或多個感測器系統120,但是這種感測器系
統的實施在本發明的某些實施例中是可選的。在本發明的某些實施例中,視覺系統110和一或多個感測器系統120的組合可用來分類材料塊101。在本發明的某些實施例中,一或多個本文揭露之不同的感測器技術的任何組合可被用來分類材料塊101,而無需使用視覺系統110。此外,本發明的實施例可包括一或多個感測器系統及/或視覺系統的任何組合,其中此種感測器/視覺系統的輸出在機器學習系統(如本文進一步揭露)內被處理,以便從材料的異質混合物中分類/識別材料,然後可彼此分類。
It should be noted that while FIG. 1 depicts a combination of a
根據本發明的替代實施例,視覺系統110及/或感測器系統可經組態以識別哪些材料塊101不是由分類系統100分類的類型(例如,包含特定的污染物、添加劑或不良物理特徵的塑料塊(例如,附接的容器蓋由與容器不同類型的塑料製成)),並發送訊號以拒絕此類材料塊。在此種組態中,經識別的材料塊101可利用如下文所述之用於將分類的材料塊物理地轉移到單獨箱中的機制之一來轉移/彈出。
According to an alternative embodiment of the present invention, the
在本發明的某些實施例中,材料塊追蹤裝置111及伴隨的控制系統112,可被利用並組態以在材料塊101中的每一個通過材料塊追蹤裝置111附近時測量它們的尺寸及/或形狀以及移動傳送系統103上的每一材料塊101的位置(即,位置和時間)。美國專利第10,207,296號進一步敘述此種材料塊追蹤裝置111和控制系統112的例示性操作。或者,如先前所揭露的,視覺系統110可用於在每一材料塊
101由傳送系統103運輸時追蹤它們的位置(即,位置和時間)。這樣,本發明的某些實施例可以在沒有材料塊追蹤裝置(例如,材料塊追蹤裝置111)來追蹤材料塊的情況下實施。
In certain embodiments of the present invention, a
在實施一或多個感測器系統120之本發明的某些實施例中,感測器系統120可經組態以當材料塊101在感測器系統120附近通過時幫助視覺系統110識別每一材料塊101的的化學組成物、相對化學組成物及/或製造類型。感測器系統120可包括能量發射源121,其可以由電源122供電,例如,以便激發來自每一材料塊101的反應。
In certain embodiments of the present invention implementing one or
根據將XRF系統實施為感測器系統120之本發明的某些實施例,源121可包括串聯X射線螢光劑(「IL-XRF」)管,諸如在美國專利第10,207,296號中進一步敘述的。這種IL-XRF管可以包括單獨的X射線源,每一X射線源專用於一或多個(例如,單一化的)傳送材料塊流。在這種情況下,一或多個檢測器124可以實施為XRF檢測器,以檢測來自每一單一流內的材料塊101的螢光X射線。美國專利第10,207,296號中進一步敘述了這種XRF檢測器的實例。
According to certain embodiments of the present invention in which an XRF system is implemented as
在本發明的某些實施例中,當每一材料塊101在發射源121附近經過,感測器系統120可向材料塊101發射適當的感測訊號。一或多個檢測器124可被定位並組態以適合於所使用的感測器技術之類型的形式感測/檢測來自材料塊101的一或多個特性。一或多個檢測器124及相關聯的檢測器電子125捕獲這些接收到的感測特性,以在其上執行
訊號處理並產生表示感測特性的數位化資訊(例如,光譜資料),然後根據本發明的某些實施例對其進行分析,其可用於輔助視覺系統110對材料塊101中的每一個進行分類。可以在電腦系統107內執行的這種分類然後可以被自動化控制系統108利用來啟用分類設備的N(N1)個分類裝置126...129中的一個,用於根據判定的分類將材料塊101分類(例如,轉移/彈出)到一或多個N(N1)個分類箱136...139中。四個分類裝置126...129及與分類裝置相關聯的四個分類箱136...139在圖1中僅作為非限制性實例繪示。
In certain embodiments of the present invention, as each block of
現有的塑料分類器係以二元方式對材料進行分類,其中傳送器末端的空氣噴嘴將已識別分類的塑料彈出到兩個箱中的一個中。例如,如果需要分離四類塑料,則整個流將需要通過這種二元分類器傳送四次不同的時間,這需要四倍於試圖移除流中單個物體的時間。根據本發明實施例,分類系統100允許一次性對多種塑料分類進行分類。
Existing plastic sorters sort materials in a binary manner, where an air nozzle at the end of a conveyor ejects the identified plastic into one of two bins. For example, if four types of plastic need to be separated, the entire stream will need to be passed through such a binary sorter four different times, which takes four times as long as trying to remove a single object from the stream. According to an embodiment of the present invention, the
分類設備可包括用於將選擇的材料塊101重導向至期望的位置的任何已知機制,包括但不限於將材料塊101從傳送帶系統轉移至複數個分類箱。例如,分類設備可利用空氣噴射器,每個空氣噴射器分配給一或多個分類。當其中一個空氣噴射器(例如,127)接收到來自自動化控制系統108的訊號時,該空氣噴射器發出一股空氣流,導致材料塊101從傳送系統103轉移/彈出到對應於該空氣噴射器的分類箱(例如,137)。
The sorting device may include any known mechanism for redirecting the selected
可以使用其它機制來轉移/彈出材料塊,諸如從傳送帶上機械移除材料塊,從傳送帶上推動材料塊(例如,使用油漆刷型的柱塞),在傳送系統103中形成開口(例如,閘門),材料塊可以從該處落下,或者當材料塊從傳送帶的邊緣落下時,使用空氣噴射器將材料塊轉移到單獨的箱中。推動器裝置(如本文所使用的)可以指任何形式的裝置,其可以被啟用以動態地從傳送系統/裝置上移動物體,採用氣動、機械或其他方式來這樣做,例如任何合適類型的機械推動機制(例如,ACME螺桿驅動)、氣動推動機制或空氣噴射器推動機制。一些實施例可包括位於不同位置及/或沿傳送系統之路徑具有不同轉向路徑取向的多個推動器裝置。在各種不同的實施方式中,本文敘述的這些分類系統可以根據機器學習系統執行的材料塊的分類來判定啟用哪個推動器裝置(如果有的話)。此外,判定啟用哪個推動器裝置可以基於檢測到的其他物體的存在及/或特徵,這些物體也可能與目標物品同時在推動器裝置的轉移路徑內。此外,即使對於有沿途分離不完美的傳送系統的設施,所揭露的分類系統可識別多個物體何時沒有被很好的分離,並基於哪個推動裝置可能使附近的物體分離配得最佳的分導路徑,而從複數個推動裝置中動態揀選應啟動的推動裝置。在一些實施例中,經識別為目標物體的物體可代表應被轉移出傳送系統的材料。在其他實施例中,經識別為目標物體的物體代表應該允許保留在傳送系統上的材料,使得非目標材料被轉移。
Other mechanisms may be used to transfer/eject the pieces of material, such as mechanically removing the pieces of material from the conveyor, pushing the pieces of material from the conveyor (e.g., using a paint brush type plunger), forming an opening (e.g., a gate) in the
除了材料塊101被轉移/彈出到其中的N個分類箱136...139之外,分類系統100還可以包括接收器或箱140,其接收沒有從傳送系統103轉移/彈出進入任何上述分類箱136...139的材料塊101。例如,當材料塊101的分類未被判定時(或僅僅因為分類裝置未能充分地轉移/彈出塊),材料塊101可能不會從傳送系統103轉移/彈出至N個分類箱136...139之一者中。因此,箱140可以用作默認容器,未分類的材料塊傾倒到該容器中。或者,箱140可用於接收故意未分配給N個分類箱136...139中的任何一者之一或多個分類的材料塊。然後可以根據其他特性及/或藉由另一分類系統對這些材料塊進行進一步分類。
In addition to the
根據所需材料塊的分類的多樣性,可將多個分類映射到單個分類裝置及相關聯的分類箱。換句話說,分門別類的箱之間不需要一對一的相關性。例如,使用者可能期望某些類別的材料分類到相同的分類箱(例如,屬於一小部分的不同塑料類型)中。為了完成這種分類,當材料塊101被分類為落入預定的分類組(例如,小部分)時,可以啟用相同的分類裝置以將它們分類到相同的分類箱中。這種組合分類可用於產生任何所需的已分類材料塊的組合。分類的映射可以由使用者編程(例如,使用由電腦系統107操作的分類演算法(例如,參見圖7))以產生這樣的期望組合。此外,材料塊的分類是使用者可界定的,並且不限於任何特定的已知材料塊分類(例如,本文揭露的小部分)。 Depending on the diversity of the classifications of the desired material blocks, multiple classifications can be mapped to a single classification device and associated classification boxes. In other words, there does not need to be a one-to-one correlation between the classified boxes. For example, a user may expect certain categories of materials to be classified into the same classification box (e.g., different plastic types belonging to a small portion). To accomplish this classification, when material blocks 101 are classified as falling into a predetermined classification group (e.g., a small portion), the same classification device can be enabled to classify them into the same classification box. This combination classification can be used to generate any desired combination of classified material blocks. The mapping of the classifications can be programmed by the user (e.g., using a classification algorithm operated by the computer system 107 (e.g., see Figure 7)) to generate such desired combinations. Furthermore, the classification of blocks of material is user-definable and is not limited to any particular known block of material classification (e.g., the small subset disclosed herein).
傳送系統103可包括圓形傳送器(未圖示),使得為分
類的材料塊返回到分類系統100的起點並再次通過分類系統100。此外,因為分類系統100能夠在每個材料塊101在傳送系統103上行進時專門追蹤它,所以可以實施某種分類裝置(例如,分類裝置129)來引導/彈出在通過分類系統100的預定數量的循環之後分類系統100未能分類的材料塊101(或材料塊101被收集在箱140中)。
The
在本發明的某些實施例中,傳送系統103可被分成串聯組態的多個帶(例如,兩個帶),其中第一帶將材料塊傳送通過視覺系統110,而第二帶將某些已分類的材料塊傳送通過實施的感測器系統120以進行第二次分類。此外,這樣的第二傳送帶可低於第一傳送帶的高度,使得材料塊從第一傳送帶落到第二傳送帶上。
In some embodiments of the present invention, the
在實施感測器系統120的本發明的某些實施例中,發射源121可以位於檢測區域上方(即,在傳送系統103上方);然而,本發明的某些實施例可以將發射源121及/或檢測器124定位在仍然產生可接受的感測/檢測物理特性的其他位置。
In some embodiments of the invention implementing
本文敘述的系統和方法可用於對具有多種尺寸和形狀中的任一者的單一材料塊進行分類及/或分類。儘管本文描述的系統和方法主要是關於分類單一材料塊來描述的,但是本文敘述的系統和方法不限於此。此種系統和方法可用於同時刺激及/或檢測來自複數個材料的發射。例如,與沿一或多個傳送帶串聯傳送的單個材料流相反,可以並行傳送多個單一流。每個流可以在同一帶上或平行配置在 不同的帶上。此外,塊可隨機地分佈(例如,橫跨和沿著)在一或多個傳送帶上。因此,本文敘述的系統和方法可用於同時刺激、及/或檢測來自複數個材料塊的發射。換言之,複數個材料塊可以被視為單個塊,而不是單獨考慮每一材料塊。因此,可將複數個材料塊一起分門別類(例如,從傳送系統轉移/排出)。 The systems and methods described herein may be used to classify and/or sort single blocks of material having any of a variety of sizes and shapes. Although the systems and methods described herein are primarily described with respect to classifying single blocks of material, the systems and methods described herein are not limited thereto. Such systems and methods may be used to simultaneously stimulate and/or detect emissions from a plurality of materials. For example, as opposed to a single stream of material being conveyed in series along one or more conveyor belts, multiple single streams may be conveyed in parallel. Each stream may be on the same belt or arranged in parallel on different belts. In addition, the blocks may be randomly distributed (e.g., across and along) on one or more conveyor belts. Thus, the systems and methods described herein may be used to simultaneously stimulate and/or detect emissions from a plurality of blocks of material. In other words, multiple blocks of material can be treated as a single block, rather than considering each block of material individually. Thus, multiple blocks of material can be sorted together (e.g., transferred/discharged from a conveyor system).
儘管本文描述的系統和方法主要是關於分類材料塊來描述的,但是這樣的系統和方法不限於該用途。它們可用於其他應用,例如,識別材料塊內的元素(例如,污染物)或判定材料塊的組成物。 Although the systems and methods described herein are primarily described with respect to classifying blocks of material, such systems and methods are not limited to that use. They may be used in other applications, such as identifying elements (e.g., contaminants) within a block of material or determining the composition of a block of material.
如前所述,本發明的某些實施例可以實施一或多個視覺系統(例如,視覺系統110)以便識別、追蹤及/或分類材料塊。根據本發明實施例,這種視覺系統可以單獨操作以識別及/或分門別類材料塊,或者可以與一或多個感測器系統(例如,感測器系統120)組合來識別及/或分門別類材料塊。如果分類系統(例如,分類系統100)係組態以為單獨與這樣的視覺系統110一起操作,則感測器系統120可以從分類系統100中省略(或簡單地停用)。
As previously mentioned, certain embodiments of the present invention may implement one or more vision systems (e.g., vision system 110) to identify, track, and/or classify blocks of material. According to embodiments of the present invention, such vision systems may operate alone to identify and/or classify blocks of material, or may be combined with one or more sensor systems (e.g., sensor system 120) to identify and/or classify blocks of material. If a classification system (e.g., classification system 100) is configured to operate solely with such a
不管從材料塊捕獲的感測特徵/資訊的類型如何,資訊(例如,影像資料封包)隨後可以被發送到電腦系統(例如,電腦系統107)以由機器學習系統處理,以識別及/或分類每一材料塊。這樣的機器學習系統可以實施任何已知的機器學習系統,包括實施類神經網路(例如,人工類神經網路、深度類神經網路、卷積類神經網路、遞迴類神經 網路、自動編碼器、強化學習等)、模糊邏輯、人工智慧(「AI」)、深度學習演算法、深度結構化學習分層學習演算法、支持向量機(「SVM」)(例如,線性SVM、非線性SVM、SVM迴歸等)、決策樹學習(例如,分類和迴歸樹(「CART」)、集成方法(例如,集成學習、隨機森林、裝袋和黏貼、補丁和子空間、提升、堆疊等)、降維(例如,投影、流形學習、主體組件分析等)及/或深度機器學習算法,諸如在deeplearning.net網站上(包括此網站中引用的所有軟體、出版物和可用軟體的超鏈接)中敘述和公開可用的那些,特此透過引用併入本文。可以在本發明之實施例中利用之公開可用的機器學習軟體和庫的非限制性實例包括Python、OpenCV、Inception、Theano、Torch、PyTorch、Pylearn2、Numpy、Blocks、TensorFlow、MXNet、Caffe、Lasagne、Keras、Chainer、Matlab Deep Learning、CNTK、MatConvNet(電腦視覺應用實施卷積類神經網路的MATLAB工具箱)、DeepLearnToolbox(用於深度學習之Matlab工具箱(來自Rasmus Berg Palm))、BigDL、Cuda-Convnet(卷積(或更一般地,前饋)類神經網路的快速C++/CUDA實施方式)Deep Belief Networks、RNNLM、RNNLIB-RNNLIB、matrbm、deeplearning4j、Eblearn.lsh、deepmat、MShadow、Matplotlib、SciPy、CXXNET、Nengo-Nengo、Eblearn、cudamat、Gnumpy、3-way factored RBM和mcRBM、mPoT(Python碼使用CUDAMat和Gnumpy來訓練自然影像模的型)、ConvNet、 Elektronn、OpenNN、NeuralDesigner、Theano Generalized Hebbian Learning、Apache Singa、Lightnet 及SimpleDNN。 Regardless of the type of sensory features/information captured from the blocks of material, the information (e.g., image data packets) can then be sent to a computer system (e.g., computer system 107) to be processed by a machine learning system to identify and/or classify each block of material. Such a machine learning system can implement any known machine learning system, including implementing neural networks (e.g., artificial neural networks, deep neural networks, convolutional neural networks, recurrent neural networks, automatic encoders, reinforcement learning, etc.), fuzzy logic, artificial intelligence ("AI"), deep learning algorithms, deep structured learning hierarchical learning algorithms methods, support vector machines (“SVM”) (e.g., linear SVM, nonlinear SVM, SVM regression, etc.), decision tree learning (e.g., classification and regression trees (“CART”), ensemble methods (e.g., ensemble learning, random forest, bagging and pasting, patching and subspace, boosting, stacking, etc.), dimensionality reduction (e.g., projection, manifold learning, principal component partitioning, etc.), Analysis, etc.) and/or deep machine learning algorithms, such as those described and publicly available on the deeplearning.net website (including all software, publications, and hyperlinks to available software referenced on this website), are hereby incorporated by reference into this document. Non-limiting examples of publicly available machine learning software and libraries that can be utilized in embodiments of the present invention include Python, OpenCV, Inception, Theano, Torch, PyTorch, Pylearn2, Numpy, Blocks, TensorFlow, MXNet, Caffe, Lasagne, Keras, Chainer, Matlab Deep Learning, CNTK, MatConvNet (MATLAB toolbox for implementing convolutional neural networks for computer vision applications), DeepLearnToolbox (Matlab toolbox for deep learning (from Rasmus Berg Palm)), BigDL, Cuda-Convnet (fast C++/CUDA implementation of convolutional (or more generally, feedforward) neural networks) Deep Belief Networks, RNNLM, RNNLIB-RNNLIB, matrbm, deeplearning4j, Eblearn.lsh, deepmat, MShadow, Matplotlib, SciPy, CXXNET, Nengo-Nengo, Eblearn, cudamat, Gnumpy, 3-way factored RBM and mcRBM, mPoT (Python code to train natural image models using CUDAMat and Gnumpy), ConvNet, Elektronn, OpenNN, NeuralDesigner, Theano Generalized Hebbian Learning, Apache Singa, Lightnet and SimpleDNN.
根據本發明的某些實施例,機器學習可以分兩個階段執行。例如,首先發生訓練,這可以離線執行,因為分類系統100沒有被用於執行材料塊的實際分門別類(例如,參見圖3-4)。分類系統100可用於訓練機器學習系統,使材料塊(即,具有相同類型或類別的材料,或落入相同的預定小部分)的同質組(在本文中亦稱為對照樣本)係(例如,藉由傳送系統103)通過分類系統100;並且所有這些材料可能不會被分類,但可收集在公共箱(例如,箱140)中。或者,可以在遠離分類系統100的另一個位置執行訓練,包括使用一些其他機制來收集材料塊控制組之感測資訊(特徵)。在此訓練階段期間,機器學習系統中的演算法從捕獲的資訊中提取特徵(例如,使用本領域已知的影像處理技術)。訓練演算法的非限制實例包括但不限於線性迴歸、梯度下降、前饋、多項式迴歸、學習曲線、正規化學習模型、及邏輯迴歸。正是在這個訓練階段,機器學習系統中的演算法學習材料及其特徵/特性之間的關係(例如,由視覺系統和/或感測器系統捕獲)創建了一個知識庫,用於以後對分類系統100接收到的材料塊的異質混合物進行分類,然後可以藉由期望的分類對其進行分類。這樣的知識庫可以包括一個或多個庫,其中每一庫包括供機器學習系統在對材料塊進行分類時使用的參數(例如,類神經網
路參數)。例如,一個特定庫可包括由訓練階段組態的參數,用以識別及分類特定類型或類別的材料,或者屬於預定小部分的一或多種材料。根據本發明的某些實施例,可以將這樣的庫輸入至機器學習系統中,然後分類系統100的使用者可以能夠調整某些參數以便調整分類系統100的操作(例如,調整機器學習系統從異質材料混合物中識別特定材料之程度的臨限有效性)。
According to certain embodiments of the invention, machine learning can be performed in two phases. For example, training occurs first, which can be performed offline because the
如圖2所繪示,在訓練階段,為對照樣本的一或多個特定類型、分類、或材料的小部分的複數個材料塊201可傳遞通過視覺系統及/或一或多個感測系統(例如,藉由傳送系統203),使得機器學習系統中的演算法能夠檢測、提取和學習代表此類材料的特徵。例如,每一材料塊201可以是特定類型、類別或預定小部分的單獨塑料塊,它們藉由這樣的訓練階段,使得機器學習系統內的演算法「學習」(訓練)如何相應地檢測、識別和分類此類塑料塊。在訓練視覺系統(例如,視覺系統110)的情況下,被訓練以視覺辨別材料塊。這將建立一個特定於一或多種特定類型、類別或塑料材料小部分的參數庫。然後,可以針對不同類型、類別或小部分的塑料塊執行相同的程序,建立特定於該類型、類別或小部分的參數庫等。對於要由機器學習系統分類的每一塑料類型、類別或小部分,任何數量的塑料類型、類別或小部分的例示性塑料塊可通過系統。給定捕獲的感測資訊作為輸入資料,機器學習系統中的演算法可以使用N個分類器,每一分類器測試N種不同材料類
型、類別或小部分中的一種。注意,機器學習系統可以被「教導」(訓練)以檢測任何類型、類別或小部分的材料,包括在MSW中發現的任何類型、類別或小部分材料、或本文揭露的任何其他材料。
As shown in FIG2 , during a training phase, a plurality of material blocks 201 of one or more specific types, classifications, or fractions of materials of a reference sample may be passed through a vision system and/or one or more sensing systems (e.g., via a transmission system 203) so that an algorithm in a machine learning system can detect, extract, and learn features representative of such materials. For example, each
在建立演算法並且機器學習系統已經充分學習(經過訓練)材料分類(例如,在使用者界定的統計置信度水平內)的差異(例如,視覺上可辨別的差異)之後,然後將用於不同材料分類的庫實施於材料分門別類系統(例如,分類系統100)中,以用於識別及/或分類來自材料塊的異質混合物(例如,包含在MSW中)的材料塊,如果要進行分類,則可能對這些分類的材料塊進行分類。 After the algorithm is built and the machine learning system has sufficiently learned (trained) the differences (e.g., visually discernible differences) in material classifications (e.g., within a user-defined statistical confidence level), the library for the different material classifications is then implemented into a material classification system (e.g., classification system 100) for use in identifying and/or classifying material blocks from a heterogeneous mixture of material blocks (e.g., contained in MSW), and potentially classifying such classified material blocks if classification is to be performed.
如相關文獻中所見,構建、優化和利用機器學習系統的技術對於所屬技術領域中具有通常知識者而言是已知的。此類文獻的示例包括以下出版物:Krizhevsky等人,「ImageNet Classification with Deep Convolutional Networks」,第25屆類神經資訊處理系統國際會議論文集,2012年12月3日至6日,內華達州太浩湖,及LeCun等人,「Gradient-Based Learning Applied to Document Recognition」,IEEE會議記錄,電氣和電子工程師協會(IEEE),1998年11月,兩者均以引用方式併入本文中。 Techniques for building, optimizing, and utilizing machine learning systems are known to those of ordinary skill in the art, as seen in the relevant literature. Examples of such literature include the following publications: Krizhevsky et al., “ ImageNet Classification with Deep Convolutional Networks ”, Proceedings of the 25th International Conference on Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, and LeCun et al., “ Gradient-Based Learning Applied to Document Recognition ”, Proceedings of the IEEE Conference, Institute of Electrical and Electronics Engineers (IEEE), November 1998, both of which are incorporated herein by reference.
在一個實例技術中,由視覺或感測器系統捕獲之關於特定材料塊的資料可被處理為資料值的陣列(執行(組態有)機器學習系統的資料處理系統(例如,圖9的資料處理系統3400)內)。例如,資料可以是由數位相機或其他類型的感
測器系統捕獲之關於特定材料塊的光譜資料,並被處理為資料值的陣列(例如,影像資料封包)。每一資料值可以由單個數字表示,或作為一系列數字表示值。這些值可以乘以類神經元權重參數(例如,使用類神經網路),並且可能添加了偏差。這可能會被饋送到類神經元非線性中。類神經元輸出的結果數字可以像值一樣被處理,該輸出乘以隨後的類神經元權重值,可選地添加偏差,並再次饋送至類神經元非線性。該程序的每次疊代都稱為類神經網路的「層」。最後一層的最終輸出可以解釋為在與材料塊有關之捕獲的資料中材料存在或不存在的機率。在前面提到的「ImageNet Classification with Deep Convolutional Networks」和「Gradient-Based Learning Applied to Document Recognition」參考資料中都詳細敘述了這種程序的實例。
In one example technique, data captured by a vision or sensor system about a particular block of material may be processed as an array of data values (within a data processing system (e.g.,
根據其中實施類神經網路之本發明的某些實施例,作為最終層(「分類層」),類神經元輸出的最終集合被訓練以表示材料塊與捕獲的資料相關聯的可能性。於操作期間,如果材料塊與補獲的資料相關聯的可能性超過使用者指明的臨限,則判定材料塊確實與捕獲的資料相關聯。這些技術可以擴展到不僅判定與特定捕獲資料相關聯的材料類型的存在,而且判定特定捕獲資料的子區域是否屬於一種類型的材料或另一種類型的材料。這個程序被稱為分割,文獻中存在使用類神經網路的技術,諸如那些被稱為「完全卷積」類神經網路,或者包含卷積部分(即,部分 卷積)的網路,如果不是完全卷積的話。這允許判定材料的位置和尺寸。 According to certain embodiments of the present invention in which a neural network is implemented, as a final layer ("classification layer"), a final set of neuron outputs is trained to represent the likelihood that a block of material is associated with the captured data. During operation, if the likelihood that the block of material is associated with the acquired data exceeds a user-specified threshold, then the block of material is determined to be indeed associated with the captured data. These techniques can be extended to determine not only the presence of a material type associated with a particular captured data, but also whether a sub-region of a particular captured data belongs to one type of material or another type of material. This process is called segmentation, and techniques exist in the literature that use neural networks, such as those called "fully convolutional" neural networks, or networks that contain parts of convolutions (i.e., partial convolutions) if they are not fully convolutional. This allows the location and size of materials to be determined.
應當理解到,本發明不排他地限制於機器學習技術。也可以使用用於材料分類/識別的其他常用技術。例如,感測器系統可以利用使用多光譜或高光譜相機的光學光譜技術來提供訊號,該訊號可以藉由檢查材料的光譜發射(即,光譜成像)來指示材料的類型、類別或小部分的存在或不存在。材料塊的光譜影像也可以用在模板匹配演算法中,其中光譜影像的資料庫與採集的光譜影像進行比較,以從該資料庫中找出某些類型的材料的存在或不存在。還可以將捕獲的光譜影像的直方圖與直方圖資料庫進行比較。類似地,字袋模型可以與諸如尺度不變特徵變換(「SIFT」)之類的特徵提取技術一起使用,以比較捕獲的光譜影像和資料庫中的那些特徵之間之提取的特徵。 It should be understood that the present invention is not exclusively limited to machine learning techniques. Other commonly used techniques for material classification/identification may also be used. For example, the sensor system may utilize optical spectroscopy techniques using a multispectral or hyperspectral camera to provide a signal that indicates the presence or absence of a type, class, or fraction of a material by examining the spectral emissions of the material (i.e., spectral imaging). Spectral images of blocks of material may also be used in template matching algorithms, where a database of spectral images is compared to a captured spectral image to find the presence or absence of certain types of materials from the database. Histograms of captured spectral images may also be compared to a database of histograms. Similarly, bag-of-words models can be used with feature extraction techniques such as Scale-Invariant Feature Transform ("SIFT") to compare the extracted features between the captured spectral image and those in the database.
因此,如本文所揭露的,本發明的某些實施例提供對一或多種不同類型、類別或小部分的材料的識別/分類,以便判定哪些材料塊應從界定的組中的傳送系統轉移。根據某些實施例,利用機器學習技術來訓練(即,組態)類神經網路來識別多種一或多個不同類型、類別或小部分的材料。捕獲的材料之光譜影像或其他類型的感測資訊(例如,在傳送系統上行進),並且基於此類材料的識別/分類,本文敘述的系統可以決定哪些材料塊應該被允許保留在傳送系統上,哪些應該從傳送系統轉移/移除(例如,進入收集箱,或是轉移到另一個傳送系統上)。 Thus, as disclosed herein, certain embodiments of the present invention provide for identification/classification of one or more different types, categories, or sub-portions of materials in order to determine which pieces of material should be diverted from a conveyor system in a defined group. According to certain embodiments, machine learning techniques are utilized to train (i.e., configure) a neural network to identify a plurality of one or more different types, categories, or sub-portions of materials. Spectral images or other types of sensory information of the materials are captured (e.g., traveling on a conveyor system), and based on such identification/classification of such materials, the systems described herein can determine which pieces of material should be allowed to remain on the conveyor system and which should be diverted/removed from the conveyor system (e.g., into a collection bin, or transferred to another conveyor system).
根據本發明的某些實施例,藉由用一組新的類神經網路參數替換當前的一組類神經網路參數,可以動態地重新組態用於現有裝置的機器學習系統(例如,分類系統100)以識別/分類新類型、類別或小部分材料的特徵。 According to certain embodiments of the present invention, a machine learning system (e.g., classification system 100) used in an existing device can be dynamically reconfigured to recognize/classify features of new types, categories, or subsets of materials by replacing a current set of neural network parameters with a new set of neural network parameters.
這裡要提到的一點是,根據本發明的某些實施例,材料塊之檢測/捕獲的特徵/特性(例如,光譜影像)不一定是簡單地特別可識別或可辨別的物理特性;它們可以是只能用數學表達的抽象公式,或者根本不能用數學表達;然而,機器學習系統可被組態以解析光譜資料以尋找允許在訓練階段對對照樣本進行分類的模式。此外,機器學習系統可以獲取材料片段的捕獲資訊(例如,光譜影像)的子部分,並嘗試找到預定義分類之間的相關性。 It is important to mention here that, according to certain embodiments of the present invention, the detected/captured features/characteristics of a piece of material (e.g., a spectral image) are not necessarily simply specifically recognizable or identifiable physical properties; they may be abstract formulas that can only be expressed mathematically, or not at all; however, a machine learning system may be configured to parse the spectral data to find patterns that allow for classification of control samples during the training phase. Furthermore, the machine learning system may obtain sub-portions of the captured information (e.g., a spectral image) of a piece of material and attempt to find correlations between predefined classifications.
根據本發明的某些實施例,替代利用材料塊的對照樣本藉由視覺系統及/或感測器系統通過的訓練階段,機器學習系統的訓練可以利用標籤/註釋技術,當視覺/感測器系統捕獲材料塊的資料/資訊時,使用者輸入識別每一材料塊的標籤/註釋,然後用於建立庫以供機器學習系統在對材料塊的異質混合物中的材料塊進行分類時使用。 According to certain embodiments of the present invention, instead of using a control sample of a material block through a training phase passed by a vision system and/or a sensor system, the training of the machine learning system can utilize labeling/annotation technology, when the vision/sensor system captures data/information of the material block, the user inputs a label/annotation identifying each material block, which is then used to build a library for the machine learning system to use when classifying material blocks in a heterogeneous mixture of material blocks.
參考圖3-6,本發明的實施例以唯一識別塑料的各種類型、類別或小部分的方式組合或融合多種感測器技術(例如,視覺(「VIS」)、XRF、NIR和MWIR的任何組合),以便它們可以按其有機和無機化學組成分類。然而,由於MSW中的這些塑料塊具有許多不同的尺寸和形狀,因此這些不同感測器產生的訊號可能在它們之間具有 很大程度的差異。因此,機器學習與各種感測器技術的融合相結合,即使存在如此大的差異,也可以提高這些訊號的分類準確度。由於在系統中實施多個不同的感測器可能會增加系統的成本,並且還會降低分類速度,因此本發明的某些實施例可以實施具有更少數量的感測器系統(以及由此產生的更低的資本和營運成本)的系統(例如,分類系統100),以提高經濟可行性,但仍能夠充分分類材料。 3-6, embodiments of the present invention combine or fuse multiple sensor technologies (e.g., any combination of visual ("VIS"), XRF, NIR, and MWIR) in a manner that uniquely identifies various types, categories, or small portions of plastics so that they can be classified by their organic and inorganic chemical components. However, because these pieces of plastic in MSW have many different sizes and shapes, the signals generated by these different sensors may have a large degree of variation between them. Therefore, machine learning combined with the fusion of various sensor technologies can improve the classification accuracy of these signals even in the presence of such large variations. Because implementing multiple different sensors in a system may increase the cost of the system and also reduce sorting speed, certain embodiments of the present invention may implement a system (e.g., sorting system 100) with a reduced number of sensor systems (and thus lower capital and operating costs) to improve economic feasibility while still being able to adequately sort material.
圖4繪示系統(例如,分類系統100)的簡化示意圖,其中材料塊(例如,塑料塊)401由傳送系統403傳送經過從每一材料塊401捕獲光譜資料的感測器系統。在此非限制性實例中,感測器系統係捕獲每一材料塊401的可見影像資料的相機410(例如,視覺系統110)、XRF系統411、NIR系統412、及MWIR系統413。然而,應注意,本文揭露的任何其他感測器系統可以以任何組合使用。
FIG. 4 shows a simplified schematic diagram of a system (e.g., classification system 100) in which blocks of material (e.g., plastic blocks) 401 are transported by a
參考圖3和4,材料的化學特徵在程序方塊301中用一或多個感測器系統判定。來自感測器系統的感測/檢測/捕獲的訊號被組合(例如,在多維資料陣列中)用於每一材料塊以建立化學特徵。回想一下,XRF感測器系統能夠判定塑料塊中無機元素或分子的存在,而一或多個其他感測器系統(例如,NIR和MWIR)的組合能夠判定塑料塊中有機元素或分子的存在。在程序方塊302中,捕獲每一材料塊的可見影像。在程序方塊303中,每一材料塊之捕獲的可見影像(即,其相關聯的影像資料)與其判定的化學特徵(即,光譜影像資料)相關聯。圖5和圖6繪示兩種不同類型的塑
料材料-薯片袋和電子包裝的化學特徵及相關影像資料的非限制例示性表示。可以容易地看出,不同類型或類別的塑料塊將具有不同的(獨特的)化學特徵,其在本發明的實施例中用於產生塑料廢料的小部分及/或分類(可以是使用者界定的)。根據本發明的實施例,特定類型或類別之塑料塊的對照組可以透過圖4所示的系統運行,以訓練機器學習系統將特定的化學特徵與特定類型或類別的塑料塊相關聯。
3 and 4, the chemical characteristics of the material are determined using one or more sensor systems in program block 301. The sensed/detected/captured signals from the sensor systems are combined (e.g., in a multidimensional data array) for each piece of material to establish a chemical characteristic. Recall that an XRF sensor system is capable of determining the presence of inorganic elements or molecules in a piece of plastic, while a combination of one or more other sensor systems (e.g., NIR and MWIR) is capable of determining the presence of organic elements or molecules in a piece of plastic. In
例如,關於圖5中所示的實例,可以處理從多個薯片袋(可包括不同物理條件或取向的袋子,甚至與不同品牌的晶片和/或製造商相關的袋子)捕獲的影像以訓練機器學習系統。 For example, with respect to the example shown in FIG. 5 , images captured from multiple potato chip bags (which may include bags of different physical conditions or orientations, or even bags associated with different brands of chips and/or manufacturers) may be processed to train a machine learning system.
程序方塊304可涉及將塑料塊分離成一或多個小部分。有許多方法可以建立這些小部分。一種方法是基於主要元素建立第一層,然後基於次要元素建立第二層甚至第三層。例如,小部分可以首先藉由聚合物類型判定,然後分支成無機元素,例如鋁和鋅。然後可以為聚合物的共混物建立其他例示性小部分,然後分支到它們的無機元素組成物中。還有一些計算方法可以執行這種類型的聚類來判定小部分,例如主組成分析、K-means聚類以及無監督和半監督學習。小部分在本文中進一步界定。 Block 304 may involve separating the plastic mass into one or more sub-fractions. There are many ways to create these sub-fractions. One approach is to create a first layer based on major elements and then create a second and even third layer based on minor elements. For example, sub-fractions may be first determined by polymer type and then branched into inorganic elements such as aluminum and zinc. Other exemplary sub-fractions may then be created for blends of polymers and then branched into their inorganic elemental compositions. There are also computational methods that can perform this type of clustering to determine sub-fractions, such as principal component analysis, K-means clustering, and unsupervised and semi-supervised learning. Sub-fractions are further defined herein.
在程序方塊305中,在已判定小部分之後,可以對與小部分有關的塑料塊進行分類(例如,手動地)以為每一小部分建立對照組。因為每一小部分都是用感測器系統測量
的,所以每一對照組含有關於塊的化學資訊。視覺系統(例如,視覺系統110)可被用來訓練機器學習系統來識別那些小部分。使用這種方法,塑料中的化學資料被轉換為視覺特徵,機器學習系統可以學習對其進行分類。並且當分類系統100用於基於視覺影像進行分類時,它亦藉由化學組成來分離塑料。當兩個物體看起來不同並且具有不同的化學組成時,此方法有效。當兩個物體看起來相同或非常相似並且具有不同的化學組成時,可以使用兩或多個感測器系統來執行分類(例如,VIS加XRF等)。
In
由於判定的小部分可以構成任何所需種類之指明的有機及/或無機元素或分子,因此程序300可用訓練在分類系統內實現的機器學習系統,使得其組態以對不同塑料塊的異質混合物進行分類,以產生含有一或多種不同類型或類別的塑料塊的至少一小部分。例如,如果機器學習系統已被訓練來識別任何含有特定有機及/或無機元素或分子組合的塑料塊,那麼當完成分類時,分類出來的小部分可能含有不完全相同的塑料塊(即,複數個塑料薯片袋屬於不同品牌的薯片,因為每一塑料薯片袋都是由預定小部分界定的有機及/或無機元素或分子組成)。 Since the determined fractions may constitute any desired types of specified organic and/or inorganic elements or molecules, process 300 may be used to train a machine learning system implemented within the classification system so that it is configured to classify a heterogeneous mixture of different plastic chunks to produce at least a fraction of the plastic chunks containing one or more different types or categories. For example, if the machine learning system has been trained to recognize any plastic chunks containing a specific combination of organic and/or inorganic elements or molecules, then when the classification is completed, the classified fractions may not contain exactly the same plastic chunks (i.e., multiple plastic potato chip bags belong to different brands of potato chips because each plastic potato chip bag is composed of organic and/or inorganic elements or molecules defined by a predetermined fraction).
圖7繪示描繪根據本發明的某些實施例之利用視覺系統及/或一或多個感測器系統對材料塊進行分門別類之程序3500的例示性實施例的流程圖。可執行程序3500以將塑料塊之異質混合物分類為預定的類型、類別及/或小部分的任何組合。程序3500可經組態以在本文敘述之本發明的
任何實施例中操作,包括圖1的分類系統100。程序3500的操作可以由硬體及/或軟體執行,包括在控制系統(例如,圖1之電腦系統107、視覺系統110、及/或感測器系統120)的電腦系統(例如,圖9之資料處理系統3400)內。在程序方塊3501中,材料塊可被放置在傳送系統上。在程序方塊3502中,檢測每一材料塊在傳送系統上的位置,以便在每一材料塊行進通過分類系統100時對其進行追蹤。這可由視覺系統110執行(例如,藉由在與傳送系統位置檢測器(例如,位置檢測器105)通訊時將材料塊與下方的傳送系統材料區分開來)。或者,可以使用材料追蹤裝置111來追蹤塊。或者,任何可產生光源(包括但不限於可見光、UV、及IR)並具有可用於定位塊的檢測器的系統。在程序方塊3503中,當材料塊已經行進接近視覺系統及/或感測器系統中的一或多個時,捕獲/獲取材料塊的感測資訊/特性。在程序方塊3504中,視覺系統(例如,在電腦系統107內實施)(諸如先前揭露的)可執行捕獲的資訊的預處理,其可以用於檢測(提取)每一材料塊的資訊(例如,從背景(例如,傳送帶)中):換句話說,可以利用預處理來識別材料塊和背景之間的差異)。已知的影像處理技術(諸如,擴大、臨限、及輪廓化)可用於將材料塊識別為與背景不同。在程序方塊3505中,可執行分段。例如,捕獲的資訊可包括與一或多個材料塊有關的資訊。此外,特定材料塊在其影像被捕獲時可能位於傳送帶的接縫上。因此,在這種情況下,可能需要將單一材料塊的影像與影像之背景隔
離開來。在程序方塊3505的例示性技術中,第一步是應用高對比度的影像;以這種方式,背景像素被減少到基本上所有的黑色像素,並且與材料塊有關的至少一些像素被照亮到實質上所有的白色像素。白色的材料塊的影像像素然後被擴大以覆蓋材料塊的整個尺寸。在這一步之後,材料塊的位置是黑色背景上所有白色像素的高對比度影像。然後,可以使用輪廓演算法來檢測材料塊的邊界。保存邊界資訊,然後將邊界位置轉移到原始影像。然後在大於先前界定的邊界的區域上對原始影像執行分割。以這種方式,材料塊被識別並與背景分離。
FIG. 7 depicts a flow chart depicting an exemplary embodiment of a
在可選的程序方塊3506中,材料塊可以在材料塊追蹤裝置及/或感測器系統附近沿著傳送系統傳送,以便追蹤每一材料塊及/或判定材料塊的尺寸及/或形狀,如果XRF系統或一些其它光譜感測器也在分類系統中實施,這可能是有用的。在程序方塊3507中,可執行後處理。後處理可能涉及調整捕獲的資訊/資料的大小以準備在機器學習系統中使用。這還可能包括修改某些屬性(例如,增強影像對比度、改變影像背景或應用過濾器),以增強機器學習系統對材料塊進行分類的能力。在程序方塊3509中,可調整資料的大小。在某些情況下可能需要調整資料大小以匹配某些機器學習系統(諸如,類神經網路)的資料輸入需求。例如,類神經網路可能需要比由一般數位相機捕獲的影像之尺寸小得多的影像尺寸(例如,225x255像素或299x299像素)。此外,輸入資料尺寸越小,執行分類所需
的處理時間就越少。因此,較小的資料尺寸最終可以增加分類系統100的吞吐量並增加其價值。
In
在程序方塊3510和3511中,基於感測/檢測的特徵識別/分類每一材料塊。例如,程序方塊3510可組態有採用一或多種機器學習演算法的類神經網路,其將提取的特徵與儲存在先前產生的知識庫(例如,在訓練階段產生的)中的特徵進行比較,並且基於這種比較將具有最高匹配度的分類分配給每一材料塊。機器學習系統的演算法可以藉由使用自動訓練的過濾器以分層方式處理捕獲的資訊/資料。然後過濾器回應在演算法的下一個層級中成功地組合,直到在最後一步中獲得機率。在程序方塊3511中,這些機率可用於N個分類中的每一者,以決定各別的材料塊應被分類到N個分類容器中的哪一個中。例如,N個分類中的每一個可以分配給一個分類容器,並且考慮中的材料塊被分類到與返回大於預定臨限的最高機率的分類相對應的那個容器中。在本發明的實施例中,這樣預定的臨限可以由使用者預先設定。如果沒有一個機率大於預定臨限,則可以將特定材料塊分類到異常容器(例如,分類容器140)中。
In program blocks 3510 and 3511, each block of material is identified/classified based on the sensed/detected features. For example,
接下來,在程序方塊3512中,啟動對應於材料塊的一或多個分類的分類裝置。在材料塊的影像被捕獲的時間和分類裝置被啟用的時間之間,材料塊已經從視覺系統及/或感測器系統附近移動到傳送系統下游的位置(例如,以傳送系統的傳送速度)。在本發明的實施例中,分類的裝
置的啟用被定時,使得當材料塊通過映射至材料塊之分類的分類裝置時,分類裝置被啟用,並且材料塊從傳送系統轉移/彈出到其相關的分類容器中。在本發明的實施例中,分類裝置的啟用可以由各別位置檢測器定時,其檢測材料塊何時通過分類裝置前並發送訊號以啟用分類裝置的啟用。在程序方塊3513中,對應於被啟用的分類裝置的分類容器接收轉移/彈出的材料塊。
Next, in
圖8繪示描繪根據本發明的某些實施例之對材料塊進行分類的程序800的例示性實施例的流程圖。程序800可經組態以在本文敘述之本發明的任何實施例中操作,包括圖1的分類系統100。程序800可經組態以與程序3500結合操作。例如,根據本發明的某些實施例,程序方塊803和804可被併入程序3500中(例如,與程序方塊3503-3510串聯或並聯操作),為了將結合機器學習系統實施的視覺系統110的努力與不結合機器學習系統實施的感測器系統(例如,感測器系統120)結合起來,以便分類及/或整理材料。
FIG8 depicts a flow chart depicting an exemplary embodiment of a
程序800的操作可以由硬體及/或軟體執行,包括在控制系統(例如,圖1之電腦系統107)的電腦系統(例如,圖9之資料處理系統3400)內。在程序方塊801中,材料塊可被沉積在傳送系統上。接著,在可選的程序方塊802中,材料塊可以在材料塊追蹤裝置及/或光學成像系統附近沿著傳送系統傳送,以便追蹤每一材料塊及/或判定材料塊的尺寸及/或形狀。在程序方塊803中,當材料塊已經在感測器系統附近行進時,可以用EM能量(波)或適合感測器系統
使用的特定類型感測器技術的一些其他類型的刺激來查詢或刺激該材料塊。在程序方塊804中,材料塊的物理特性由感測器系統感測/檢測及捕獲。在程序方塊805中,對於至少一些材料塊,材料的類型係基於(至少部分的)捕獲的特徵來識別/分類的,其可以與機器學習系統結合視覺系統110進行的分類相結合。
The operations of
接下來,如果執行對材料塊的分類,則在程序方塊806中,啟動對應於材料塊的一或多個分類的分類裝置。在感測到材料塊的時間和啟動分類裝置的時間之間,材料塊已經以傳送系統的傳送速度,從感測器系統附近移動到傳送系統下游的位置。在本發明的某些實施例中,分類的裝置的啟用被定時,使得當材料塊通過映射至材料塊之分類的分類裝置時,分類裝置被啟用,並且材料塊從傳送系統轉移/彈出到其相關的分類容器中。在本發明的某些實施例中,分類裝置的啟用可以由各別位置檢測器定時,其檢測材料塊何時通過分類裝置前並發送訊號以啟用分類裝置的啟用。在程序方塊807中,對應於被啟用的分類裝置的分類容器接收轉移/彈出的材料塊。
Next, if the material block is to be classified, then in
根據本發明的某些實施例,分類系統100的複數個至少一部分可連續地鏈接在一起以執行多個疊代或分類層。例如,當兩或多個分類系統100以這種方式鏈接時,傳送系統可以用單一傳送帶或多個傳送帶實施,傳送材料塊通過第一視覺系統(根據某些實施例,還有感測器系統),該第一視覺系統組態以藉由分類器(例如,第一自動化控制
系統108及相關聯的一或多個分類裝置126...129)將第一組異質材料混合物的材料塊分類到第一組一或多個容器(例如,分類箱136...139)中,然後將材料塊傳送通過第二視覺系統(根據某些實施例,還有另一感測器系統),該第二視覺系統組態以藉由第二分類器將第二組異質材料混合物的材料塊分類到第二組一或多個分類箱。此種多階段分類的進一步討論在美國公佈的專利申請案號第2022/0016675,其特此以引用方式併入本文中。
According to certain embodiments of the present invention, multiple at least portions of the
這種連續的分類系統100可以包含以這種方式連接在一起的任何數量的這種系統。根據本發明的某些實施例,每個連續的系統可以被組態以分類出與先前系統不同的分類或類型的材料。
Such a
根據本發明的各種實施例,可以藉由不同類型的感測器對不同類型、類別或小部分的材料進行分類,每一感測器用於機器學習系統,並組合以對廢料或廢料流中的材料塊進行分類。 According to various embodiments of the present invention, different types, categories, or sub-portions of materials can be classified by different types of sensors, each used in a machine learning system, and combined to classify waste materials or blocks of material in a waste stream.
根據本發明的各種實施例,來自兩或多個感測器的資料(例如,光譜資料)可以使用單個或多個機器學習系統進行組合,以對材料塊進行分類。 According to various embodiments of the present invention, data (e.g., spectral data) from two or more sensors can be combined using a single or multiple machine learning systems to classify a block of material.
根據本發明的各種實施例,多個感測器系統可以安裝在單個傳送系統上,每個感測器系統利用不同的機器學習系統。根據本發明的各種實施例,多個感測器系統可以安裝在不同傳送系統上,每個感測器系統利用不同的機器學習系統。 According to various embodiments of the present invention, multiple sensor systems can be installed on a single transport system, each sensor system utilizing a different machine learning system. According to various embodiments of the present invention, multiple sensor systems can be installed on different transport systems, each sensor system utilizing a different machine learning system.
本發明的某些實施例可經組態以在分類後產生具有小於預定重量百分比或體積百分比的某種元素或材料之含量的大量材料。 Certain embodiments of the present invention may be configured to produce, after classification, a bulk material having a content of a certain element or material that is less than a predetermined weight percentage or volume percentage.
根據本發明的各種實施例,不同類型感測器系統的任何組合可用於識別/分類和可能分類如本文所揭露的材料。例如,如本文所揭露的每一成像或光譜感測器可用於從感測到的材料塊的資訊/特性產生資料,以便由特定於該感測器系統的機器學習系統處理。或者,可以使用任何感測器系統,而無需藉由機器學習系統進行處理,或藉由機器學習系統進行處理,或兩者的組合。 According to various embodiments of the present invention, any combination of different types of sensor systems may be used to identify/classify and potentially categorize materials as disclosed herein. For example, each imaging or spectroscopic sensor as disclosed herein may be used to generate data from sensed information/properties of a block of material for processing by a machine learning system specific to that sensor system. Alternatively, any sensor system may be used without processing by a machine learning system, or with processing by a machine learning system, or a combination of both.
根據本發明的各種實施例,可以藉由不同類型的感測器系統對不同類型、類別及/或小部分的材料進行分類,每一種感測系統用於機器學習系統,並組合以對廢料流中的材料塊進行分類。 According to various embodiments of the present invention, different types, categories and/or fractions of materials can be classified by different types of sensor systems, each of which is used in a machine learning system and combined to classify blocks of material in a waste stream.
現在參考圖9,描繪了繪示資料處理(「電腦」)系統3400的方塊圖,其中可以實現本發明的實施例的態樣。(用語「電腦」、「系統」、「電腦系統」、及「資料處理系統」在本文中可互換使用。)電腦系統107、自動化控制系統108、感測器系統120之態樣、及/或視覺系統110可以與資料處理系統3400類似地組態。資料處理系統3400可以採用本地匯流排3405(例如,外圍組件互連(「PCI」)本地匯流排架構)。可以使用任何合適的匯流排架構,例如加速圖形埠(「AGP」)和工業標準架構(「ISA」)等等。一或多個處理器3415、揮發性記憶體3420、及非揮發性記憶
體3435可經連接至本地匯流排3405(例如,透過PCI橋接器(未圖示))。積體記憶體控制器及快取記憶體可經耦接至一或多個處理器3415。一或多個處理器3415可包括一或多個中央處理器單元及/或一或多個圖形處理器單元3401及/或一或多個張量處理單元。至本地匯流排3405的額外連接可透過直接組件互連接或透過附加板進行。在所描繪的實例中,通訊(例如,網路(LAN))適配器3425、I/O(例如,小型電腦系統介接(「SCSI」)主機匯流排)適配器3430、和擴展匯流排介面(未圖示)可藉由直接組件連接至本地匯流排3405。音頻適配器(未圖示)、圖形適配器(未圖示)、及顯示適配器3416(耦接至顯示器3440)可經連接至本地匯流排3405(例如,透過插入擴展槽的附加板)。
Referring now to FIG. 9 , a block diagram is depicted illustrating a data processing (“computer”)
使用者界面適配器3412可以為鍵盤3413和滑鼠3414、數據機(未圖示)、及額外的記憶體(未圖示)提供連接。I/O適配器3430可以為硬碟驅動器3431、磁帶驅動器3432、及CD-ROM驅動器(未圖示)提供連接。
操作系統可以在一或多個處理器3415上運行並且用於協調和提供對資料處理系統3400內之各種組件的控制。在圖9中,操作系統可以是商業可用的操作系統。物件導向編程系統(例如,Java、Python等)可以與操作系統一起運行,並且提供在資料處理系統3400上執行的一或更多程式(例如,Java、Python等)對操作系統的調用。用於操作系統、物件導向操作系統、及程式的指令可位於非揮發性記憶體3435儲存裝置(諸如,硬碟驅動器3431)上,並且可載
入揮發性記憶體3420中以供處理器3415執行。
The operating system may run on one or
所屬技術領域中具有通常知識者將理解圖9中的硬體可根據實施方式變化。其它內部硬體或週變裝置(諸如,快閃ROM(或等效的非揮發性記憶體)或光碟驅動器等),可用於圖9所示硬體的補充或替代。此外,本發明的任何處理可以應用於多處理器電腦系統,或由複數個這樣的資料處理系統3400執行。例如,機器學習系統的訓練可以由第一資料處理系統3400執行,而用於分類的分類系統100的操作可以由第二電腦資料處理3400執行。
A person of ordinary skill in the art will appreciate that the hardware in FIG. 9 may vary depending on the implementation. Other internal hardware or volatile devices (e.g., flash ROM (or equivalent non-volatile memory) or optical disk drives, etc.) may be used to supplement or replace the hardware shown in FIG. 9. In addition, any processing of the present invention may be applied to a multi-processor computer system, or performed by a plurality of such
作為另一實例,資料處理系統3400可以是被組態為可啟動而不依賴於某種類型的網路通訊介面的獨立系統,無論資料處理系統3400是否包括某種類型的網路通訊介面。作為進一步實例,資料處理系統3400可以是嵌入式控制器,其組態有ROM及/或快閃ROM,提供儲存操作系統檔或使用者產生的資料的非揮發性記憶體。
As another example,
圖9中描繪的實例和上述實例並不意味著暗示架構限制。此外,本發明之態樣的電腦程式形式可以駐留在電腦系統使用的任何電腦可讀的儲存媒體(例如,軟碟、光碟、硬碟、磁帶、ROM、RAM等)上。 The example depicted in FIG. 9 and the examples described above are not meant to imply architectural limitations. In addition, the computer program form of aspects of the present invention may reside on any computer-readable storage medium (e.g., floppy disk, optical disk, hard disk, tape, ROM, RAM, etc.) used by a computer system.
如本文已經敘述的,本發明的實施例可被實施以執行所敘述之用於識別、追蹤、分類及/或分類材料塊的各種功能。這樣的功能可以在硬體及/或軟體內實施,例如在一或多個資料處理系統(例如,圖9的資料處理系統3400)內,諸如前面提到的電腦系統107、視覺系統110、感測器
系統120方面及/或自動化控制系統108。然而,本文敘述的功能不限於在任何特定硬體/軟體平台中的實施方式。
As described herein, embodiments of the present invention may be implemented to perform the various functions described for identifying, tracking, classifying and/or categorizing blocks of material. Such functions may be implemented in hardware and/or software, such as in one or more data processing systems (e.g.,
如所屬技術領域中具有通常知識者將理解的,本發明的態樣可以實施為系統、程序、方法及/或電腦程式產品。因此,本發明的各種態樣可以採用完全硬體實施例、完全軟體實施例(包括韌體、常駐軟體、微碼等)的形式,或者組合軟體與硬體態樣的實施例,這些實施例在本文中通常都稱為「電路」、「電路系統」、「模組」、或「系統」。此外,本發明的態樣可以採取在一或多個電腦可讀的儲存媒體中的電腦程式產品的形式,該電腦可讀的儲存媒體具有實施其上的電腦可讀的程式碼。(然而,可以使用一或多個電腦可讀媒體的任何組合。電腦可讀媒體可以為電腦可讀信號媒體或電腦可讀的儲存媒體。) As will be understood by those of ordinary skill in the art, aspects of the present invention may be implemented as systems, procedures, methods, and/or computer program products. Thus, various aspects of the present invention may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, microcode, etc.), or an embodiment combining software and hardware aspects, which are generally referred to herein as "circuits," "circuitry," "modules," or "systems." Additionally, aspects of the present invention may take the form of a computer program product in one or more computer-readable storage media having computer-readable program code implemented thereon. (However, any combination of one or more computer-readable media may be used. The computer-readable media may be computer-readable signal media or computer-readable storage media.)
電腦可讀的儲存媒體可以是例如但不限於電子的、磁性的、光學的、電磁的、紅外的、生物的、原子的、或半導體系統、設備、控制器、或裝置、或前述的任何合適的組合,其中電腦可讀的儲存媒體本身不是瞬態訊號。電腦可讀取儲存媒體的更具體實例(非詳盡列表)可包括下列:具有一或多個線的電性連接、可攜式電腦磁片、硬碟、隨機存取記憶體(「RAM」)(例如,圖9之RAM 3420)、唯讀記憶體(「ROM」)(例如,圖9之ROM 3435)、可擦除可編程唯讀記憶體(「EPROM」或快閃記憶體)、光纖、可攜式光碟唯讀記憶體(「CD-ROM」)、光學儲存裝置、磁性儲存裝置(例如,圖9之硬碟3431)、或上述任何合適的組
合。於本文件之上下文中,電腦可讀的儲存媒體可以是可含有或儲存程式以供指令執行系統、設備、控制器、或裝置使用或與其結合使用的任何有形媒體。電腦可讀取訊號媒體上實施的程式碼可使用任何合適的介質來傳輸,包括但不限於無線、有線、光纖電纜、RF等、或前述的任何合適的組合。
The computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, biological, atomic, or semiconductor system, apparatus, controller, or device, or any suitable combination of the foregoing, where the computer-readable storage medium itself is not a transient signal. More specific examples of computer-readable storage media (a non-exhaustive list) may include the following: an electrical connection having one or more lines, a portable computer disk, a hard drive, a random access memory ("RAM") (e.g.,
電腦可讀取訊號媒體可包括具有其上實施的電腦可讀取程式碼之傳輸的資料訊號,如在基頻或載波之部份中。此種傳輸的訊號可以採用多種形式中的任何一種,包括但不限於電磁的、光學的、或任何合適的組合。電腦可讀取訊號媒體可為不是電腦可讀的儲存媒體並且可通訊、傳播、或傳輸程式以供指令執行系統、裝置、控制器、或裝置使用或與其結合使用的任何電腦可讀取媒體。 Computer-readable signal media may include a transmitted data signal having computer-readable program code implemented thereon, such as in a baseband or carrier wave portion. Such transmitted signals may take any of a variety of forms, including but not limited to electromagnetic, optical, or any suitable combination. Computer-readable signal media may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in conjunction with an instruction execution system, device, controller, or device.
圖式中的流程圖和方塊圖繪示根據本發明的各種實施例的系統、方法、程序、及程式產品之可能實施的架構、功能、及操作。就這一點而言,流程圖或方塊圖中的每一方塊可表示一個模組、片段或碼部分,其包括用於實施指明的邏輯功能的一或多個可執行程式指令。還應注意到,在一些實施方案中方塊中標註的功能可能不按圖中標註的順序出現。例如,連續顯示的兩個方塊實際上可實質上同時執行,或者這些方塊有時可以以相反的順序執行,這取決於所涉及的功能。 The flowcharts and block diagrams in the figures illustrate the possible implementation architecture, functions, and operations of the systems, methods, programs, and program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagram may represent a module, segment, or code portion, which includes one or more executable program instructions for implementing the specified logical functions. It should also be noted that in some embodiments, the functions labeled in the blocks may not appear in the order labeled in the figure. For example, two blocks shown in succession may actually be executed substantially simultaneously, or the blocks may sometimes be executed in reverse order, depending on the functions involved.
在本文之敘述中,可以以一系列順序動作來敘述流程圖技術。在不脫離本文所教示的範圍,可自由地改變動作 的順序及執行動作的一方。可以透過幾種方式添加,刪除或更改動作。類似地,可以重新排序或循環動作。此外,儘管可以按順序敘述程序、方法、演算法等,但是這樣的程序、方法、演算法或其任何組合可以可操作地以替代順序執行。此外,可以在至少一時間點期間同時執行程序、方法、演算法內的一些動作(例如,並行執行的動作),也可以整體,也可以全部、部分或以其任何組合來執行。 In the description herein, the flowchart technique may be described as a series of sequential actions. The order of the actions and the party performing the actions may be freely changed without departing from the scope of the teachings herein. Actions may be added, deleted, or altered in several ways. Similarly, actions may be reordered or looped. Furthermore, although a procedure, method, algorithm, etc. may be described in sequence, such procedure, method, algorithm, or any combination thereof may be operable to be performed in an alternate sequence. Furthermore, some actions within a procedure, method, algorithm may be performed simultaneously (e.g., actions performed in parallel) during at least one point in time, or may be performed as a whole, in whole, in part, or in any combination thereof.
在軟體中實施之用於由各種類型的處理器(例如,GPU 3401、CPU 3415)執行的模組可(例如)包括電腦指令的一或多個實體或邏輯方塊,其可以(例如)被組織化成為物件、過程或功能。然而,經識別的模組之可執行不需實體地定位在一起,但可包含儲存在不同位置中的不同指令,當這些指令在邏輯上結合在一起時,包括該模組並實現該模組的所述目的。確實,可執行程式碼之模組可為一單一指令或許多指令且甚至可以在許多不同代碼分段上分佈、在不同程式上分佈以及跨許多記憶體裝置。類似地,操作資料(例如,本文敘述的材料分類庫)可被識別且在此可例示於模組之中,且可以任何合適的形式來實施且組織化於資料結構之任何合適類型之中。操作資料可被收集為單一資料集或者可在不同位置之間分佈,包括在不同儲存裝置。資料可以在系統或網路上提供電子訊號。
A module implemented in software for execution by various types of processors (e.g.,
這些程式指令可以被提供至通用電腦、專用電腦、或其他可編程資料處理設備(例如,控制器)之一或多個處理器及/或控制器以產生機器,使得經由電腦或其他可編程
資料處理設備的處理器(例如,GPU 3401、CPU 3415)執行的指令建立用於實施流程圖中指明的功能/動作及/或方塊圖方塊或多的方塊。
These program instructions may be provided to one or more processors and/or controllers of a general purpose computer, a special purpose computer, or other programmable data processing device (e.g., a controller) to produce a machine, so that the instructions executed by the processor (e.g.,
應注意到方塊圖及/或流程圖圖解的每一方塊、以及方塊圖及/或流程圖圖解的中方塊組合可以由專用的基於硬體的系統(例如,其可以包括一或多個圖形處理單元(例如,GPU 3401))或專用硬體和電腦指令的組合來實施。例如,模組可被實施為硬體電路,包括客制VLSI電路或閘極陣列、現有的半導體(諸如,邏輯晶片、電晶體、控制器、或其他分立組件)。模組亦可在可編程硬體裝置中實施,諸如場可編程閘陣列、可編程陣列邏輯、可編程邏輯裝置等。 It should be noted that each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration, can be implemented by a dedicated hardware-based system (e.g., which may include one or more graphics processing units (e.g., GPU 3401)) or a combination of dedicated hardware and computer instructions. For example, a module can be implemented as a hardware circuit, including a custom VLSI circuit or gate array, an existing semiconductor (e.g., a logic chip, a transistor, a controller, or other discrete components). A module can also be implemented in a programmable hardware device, such as a field programmable gate array, a programmable array logic, a programmable logic device, etc.
用以執行本揭示之態樣之操作的電腦程式碼(即,指令)可以用一或多個程式語言之任何組合來編寫,包括物件導向之程式語言,例如,Java、Smalltalk、Python、C++等,習知的程序性編程語言,諸如,「C」編程語言或相似編程語言,或本文揭露的任何機器學習軟體。程式碼可完全地在使用者之電腦系統上執行,部分在使用者的電腦系統上作為獨立軟體封裝執行,部份在使用者的電腦系統(例如,用於分類的電腦系統)和部份在遠端電腦系統(例如,用於訓練感測器系統的電腦系統)上執行,或完全在遠端電腦系統或伺服器上執行。於後者情況下,遠端電腦可以透過任何類型之網路而連接到使用者的電腦系統,包括區域網路(LAN)或廣域網路(WAN),或可以與外部電 腦系統建立連接(例如,透過使用網際網路服務供應商的網際網路)。 Computer program code (i.e., instructions) for performing operations of aspects of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, Python, C++, etc., known procedural programming languages, such as the "C" programming language or similar programming languages, or any machine learning software disclosed herein. The program code may be executed entirely on the user's computer system, partially on the user's computer system as a stand-alone software package, partially on the user's computer system (e.g., a computer system used for classification) and partially on a remote computer system (e.g., a computer system used for training a sensor system), or entirely on a remote computer system or server. In the latter case, the remote computer may be connected to the user's computer system through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer system (for example, through the Internet using an Internet service provider).
這些程式指令也可以被儲存在電腦可讀的儲存媒體中,該電腦可讀的儲存媒體可以指示電腦系統、其他可編程資料處理設備、控制器、或其它裝置以特定方式作用,使得儲存在該電腦可讀取媒體中之該等指令產生包括實施流程圖及/或方塊圖方塊或多個方塊中指明的功能/動作之指令的製造物品。 These program instructions may also be stored in a computer-readable storage medium that can instruct a computer system, other programmable data processing device, controller, or other device to act in a specific manner so that the instructions stored in the computer-readable medium produce an article of manufacture that includes instructions for implementing the functions/actions specified in the flowchart and/or block diagram block or blocks.
程式指令也可被載入至電腦、其他可編程資料處理設備、控制器、或其它裝置上,以導致一系列之操作步驟於電腦、其他可編程設或其它裝置備上被進行以產生電腦實施的程序,使得在電腦或其他可編程設備上執行的指令提供用於實施流程圖及/或方塊圖方塊中或方塊中指明的功能/動作的程序。 Program instructions may also be loaded onto a computer, other programmable data processing device, controller, or other device to cause a series of operating steps to be performed on the computer, other programmable device, or other device to produce a computer-implemented program, so that the instructions executed on the computer or other programmable device provide a program for implementing the functions/actions specified in or in the blocks of the flowchart and/or block diagram.
一或多個資料庫可包括在主機中,用於儲存和提供對各種實施方式之資料的存取。所屬技術領域中具有通常知識者亦將理解到,出於安全理由,本發明之任何資料庫、系統、或組件可包括位於單一位置或多個位置之資料庫或組件的任何組合,其中每一資料庫或系統可包括任何各種合適的安全特徵,諸如防火牆、存取碼、加密、解密等。資料庫可以是任何類型的資料庫,諸如關係型、分層型、物件導向等。可用於實施資料庫的常見資料庫產品包括IBM的DB2、可購自Oracle公司的任何資料庫產品、Microsoft公司的Microsoft Access或任何其它資料庫產 品。資料庫可以以任何合適的方式組織,包括作為資料表或查找表。 One or more databases may be included in the host computer for storing and providing access to data of various implementations. It will also be understood by those skilled in the art that for security reasons, any database, system, or component of the present invention may include any combination of databases or components located in a single location or multiple locations, wherein each database or system may include any variety of suitable security features, such as firewalls, access codes, encryption, decryption, etc. The database may be any type of database, such as relational, hierarchical, object-oriented, etc. Common database products that may be used to implement the database include IBM's DB2, any database product available from Oracle Corporation, Microsoft Access from Microsoft Corporation, or any other database product. The database may be organized in any suitable manner, including as a table or a lookup table.
可以藉由本領域已知和實踐的任何資料關聯技術來完成某些資料的關聯(例如,對於由本文所述的分類系統的每一材料塊)。例如,可以手動或自動完成關聯。自動關聯技術可以包括(例如)資料庫搜尋、資料庫合併、GREP、AGREP、SQL等。關聯步驟可以藉由資料庫合併功能來完成,例如,使用每一製造商和零售商資料表中的關鍵欄位。關鍵欄位根據由關鍵欄位界定之高階物件類對資料庫進行分區。例如,可以將某個類指定為第一資料表和第二資料表中的關鍵欄位,然後可以在關鍵欄位中的類資料之基礎上合併兩個資料表。在這些實施例中,每個合併後的資料表中的關鍵欄位對應的資料最好是相同的。然而,關鍵欄位中具有相似但不相同資料的資料表可以藉由使用例如AGREP來合併。 The association of certain data (e.g., for each material block of the classification system described herein) can be accomplished by any data association technique known and practiced in the art. For example, the association can be accomplished manually or automatically. Automatic association techniques can include, for example, database searches, database merges, GREP, AGREP, SQL, etc. The association step can be accomplished by a database merge function, for example, using key fields in each manufacturer and retailer data table. Key fields partition the database according to high-level object classes defined by the key fields. For example, a class can be designated as a key field in a first table and a second table, and then the two tables can be merged based on the class data in the key field. In these embodiments, the data corresponding to the key fields in each merged data table is preferably the same. However, data tables with similar but different data in the key fields can be merged by using, for example, AGREP.
本發明的態樣提供了一種方法,包括捕獲第一材料塊的第一視覺影像,從而產生與該第一材料塊有關的第一影像資料封包;捕獲第二材料塊的第二視覺影像,從而產生與該第二材料塊有關的第二影像資料封包,其中該第一材料塊具有第一化學特徵,以及其中該第二材料塊具有不同於該第一化學特徵的第二化學特徵;用機器學習系統處理該第一影像資料封包及該第二影像資料封包,該機器學習系統已經學習在具有不同化學特徵的材料塊之間進行視覺辨別;以及用該機器學習系統根據具有該不同化學特徵之
材料塊之間的該學習的視覺辨別,將該第一材料塊和該第二材料塊分類為兩個不同類別。該方法更包括根據該分類將該第一材料塊與第二材料塊分類。該材料塊可為塑料塊。該第一化學特徵可為由複數個不同感測器系統從與該第一塑料塊相同類型的塑料塊的至少一樣本所測量的光譜資料,以及其中該第二化學特徵可為由該複數個不同感測器系統從與該第二塑料塊相同類型的塑料塊的至少一樣本所測量的光譜資料。光譜資料可能與不可見光譜有關。該複數個不同感測器系統可為選自由近紅外線(「NIR」)、中波長紅外線(「MWIR」)、及X射線螢光(「XRF」)系統所組成的群組。該複數個不同感測器系統可為選自由紅外線(「IR」)、傅立葉變換IR(「FTIR」)、前視紅外線(「FLIR」)、非常近紅外線(「VNIR」)、近紅外線(「NIR」)、短波長紅外線(「SWIR」)、長波長紅外線(「LWIR」)、中波長紅外線(「MWIR」或「MIR」)、X射線透射(「XRT」)、伽瑪射線、紫外線(「UV」)、X射線螢光(「XRF」)、雷射誘導之擊穿光譜學(「LIBS」)、拉曼光譜學、反斯拖克斯拉曼光譜學、伽瑪光譜學、高光譜光譜學(例如,超出可見波長的任何範圍)、聲學光譜學、NMR光譜學、微波光譜學、兆赫光譜學、微差掃描熱量法(「DSC」)、熱重分析(「TGA」)、毛細和旋轉流變法、光學和掃描電子顯微鏡(「SEM」)和色析法所組成的群組。該第一化學特徵可包括從與該第一塑料塊相同類型的塑料塊的至少一樣本之有機和無機元素或分子的測量,以
及其中該第二化學特徵可包括從與該第二塑料塊相同類型的塑料塊的至少一樣本之有機和無機元素或分子的測量。該塑料塊可為選自由類型#1聚對苯二甲酸乙二酯(「PET」)、類型#2高密度聚乙烯(「HDPE」)、類型#3聚氯乙烯(「PVC」)、類型#4低密度聚乙烯(「LDPE」)、類型#5聚丙烯(「PP」)、類型#6聚苯乙烯(「PS」)、及類型#7其它聚合物所組成之群組。該第一材料塊可為聚氯乙烯。該兩個不同分類可為不同的小部分。
Aspects of the invention provide a method that includes capturing a first visual image of a first block of material to generate a first image data packet associated with the first block of material; capturing a second visual image of a second block of material to generate a second image data packet associated with the second block of material, wherein the first block of material has a first chemical characteristic, and wherein the second block of material has a second chemical characteristic different from the first chemical characteristic; processing the first image data packet and the second image data packet with a machine learning system that has learned to visually distinguish between blocks of material having different chemical characteristics; and classifying the first block of material and the second block of material into two different categories based on the learned visual distinction between blocks of material having the different chemical characteristics with the machine learning system. The method further includes classifying the first material block and the second material block according to the classification. The material block may be a plastic block. The first chemical characteristic may be spectral data measured by a plurality of different sensor systems from at least one sample of the same type of plastic block as the first plastic block, and wherein the second chemical characteristic may be spectral data measured by the plurality of different sensor systems from at least one sample of the same type of plastic block as the second plastic block. The spectral data may be related to the invisible spectrum. The plurality of different sensor systems may be selected from a group consisting of near infrared ("NIR"), mid-wave infrared ("MWIR"), and X-ray fluorescence ("XRF") systems. The plurality of different sensor systems can be selected from infrared ("IR"), Fourier transform IR ("FTIR"), forward looking infrared ("FLIR"), very near infrared ("VNIR"), near infrared ("NIR"), short wave infrared ("SWIR"), long wave infrared ("LWIR"), mid wave infrared ("MWIR" or "MIR"), X-ray transmission ("XRT"), gamma ray, ultraviolet ("UV"), X-ray The group consisting of X-ray diffraction (XRF), laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, anti-Stokes Raman spectroscopy, gamma spectroscopy, hyperspectral spectroscopy (e.g., any range beyond the visible wavelengths), acoustic spectroscopy, NMR spectroscopy, microwave spectroscopy, megahertz spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), capillary and rotational rheology, optical and scanning electron microscopy (SEM), and chromatography. The first chemical signature may include measurements of organic and inorganic elements or molecules from at least one sample of a plastic block of the same type as the first plastic block, and
wherein the second chemical signature may include measurements of organic and inorganic elements or molecules from at least one sample of a plastic block of the same type as the second plastic block. The plastic block may be selected from the group consisting of
本發明的態樣提供了一種系統,包括相機,其組態以捕獲第一材料塊的第一視覺影像,從而產生與該第一材料塊有關的第一影像資料封包,以及捕獲第二材料塊的第二視覺影像,從而產生與該第二材料塊有關的第二影像資料封包,其中該第一材料塊具有第一化學特徵,以及其中該第二材料塊具有不同於該第一化學特徵的第二化學特徵;資料處理系統,其組態以用機器學習系統處理該第一影像資料封包和該第二影像資料封包,該機器學習系統已經學習在具有不同化學特徵的材料塊之間進行視覺辨別,其中該機器學習系統根據具有該不同化學特徵之材料塊之間的該學習的視覺辨別,將該第一材料塊和該第二材料塊分類為兩個不同小部分;以及分類設備,其組態以根據該小部分將該第一材料塊與第二材料塊分類。該材料塊可為塑料塊。該第一化學特徵可為由複數個不同感測器系統從與該第一塑料塊相同類型的塑料塊的至少一樣本所測量之不可見光譜有關的光譜資料,以及其中該第二化學特徵可為由
該複數個不同感測器系統從與該第二塑料塊相同類型的塑料塊的至少一樣本所測量之不可見光譜有關的光譜資料。該複數個不同感測器系統可為近紅外線(「NIR」)、中波長紅外線(「MWIR」)、及X射線螢光(「XRF」)系統的群組。該複數個不同感測器系統可為紅外線(「IR」)、傅立葉變換IR(「FTIR」)、前視紅外線(「FLIR」)、非常近紅外線(「VNIR」)、近紅外線(「NIR」)、短波長紅外線(「SWIR」)、長波長紅外線(「LWIR」)、中波長紅外線(「MWIR」或「MIR」)、X射線傳輸(「XRT」)、伽瑪射線、紫外線(「UV」)、X射線螢光(「XRF」)、雷射誘導之擊穿光譜學(「LIBS」)、拉曼光譜學、反斯拖克斯拉曼光譜學、伽瑪光譜學、高光譜光譜學(例如,超出可見波長的任何範圍)、聲學光譜學、NMR光譜學、微波光譜學、兆赫光譜學、微差掃描熱量法(「DSC」)、熱重分析(「TGA」)、毛細和旋轉流變法、光學和掃描電子顯微鏡(「SEM」)和色析法的群組。該第一化學特徵可包括從與該第一塑料塊相同類型的塑料塊的至少一樣本之有機和無機元素或分子的測量,以及其中該第二化學特徵可包括從與該第二塑料塊相同類型的塑料塊的至少一樣本之有機和無機元素或分子的測量,其中該塑料塊係選自由類型#1聚對苯二甲酸乙二酯(「PET」)、類型#2高密度聚乙烯(「HDPE」)、類型#3聚氯乙烯(「PVC」)、類型#4低密度聚乙烯(「LDPE」)、類型#5聚丙烯(「PP」)、類型#6聚苯乙烯(「PS」)、及類型#7其它聚合物所組成之群組。
Aspects of the present invention provide a system including a camera configured to capture a first visual image of a first block of material to generate a first image data packet associated with the first block of material, and to capture a second visual image of a second block of material to generate a second image data packet associated with the second block of material, wherein the first block of material has a first chemical characteristic, and wherein the second block of material has a second chemical characteristic different from the first chemical characteristic; and a data processing system, wherein the camera is configured to capture a first visual image of a first block of material to generate a first image data packet associated with the first block of material. The invention relates to a method for processing the first image data packet and the second image data packet using a machine learning system, wherein the machine learning system has learned to visually distinguish between blocks of material with different chemical characteristics, wherein the machine learning system classifies the first block of material and the second block of material into two different small parts based on the learned visual distinction between blocks of material with different chemical characteristics; and a classification device configured to classify the first block of material from the second block of material based on the small parts. The block of material may be a block of plastic. The first chemical characteristic may be spectral data related to the non-visible spectrum measured by a plurality of different sensor systems from at least one sample of the same type of plastic block as the first plastic block, and wherein the second chemical characteristic may be spectral data related to the non-visible spectrum measured by the plurality of different sensor systems from at least one sample of the same type of plastic block as the second plastic block. The plurality of different sensor systems may be a group of near infrared ("NIR"), mid-wave infrared ("MWIR"), and X-ray fluorescence ("XRF") systems. The plurality of different sensor systems may be infrared ("IR"), Fourier transform IR ("FTIR"), forward looking infrared ("FLIR"), very near infrared ("VNIR"), near infrared ("NIR"), short wave infrared ("SWIR"), long wave infrared ("LWIR"), mid wave infrared ("MWIR" or "MIR"), X-ray transmission ("XRT"), gamma ray, ultraviolet ("UV"), X-ray The group of methods include X-ray diffraction (XRF), laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, anti-Stokes Raman spectroscopy, gamma spectroscopy, hyperspectral spectroscopy (e.g., any range beyond the visible wavelengths), acoustic spectroscopy, NMR spectroscopy, microwave spectroscopy, megahertz spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), capillary and rotational rheology, optical and scanning electron microscopy (SEM), and chromatography. The first chemical signature may include measurements of organic and inorganic elements or molecules from at least one sample of the same type of plastic block as the first plastic block, and wherein the second chemical signature may include measurements of organic and inorganic elements or molecules from at least one sample of the same type of plastic block as the second plastic block, wherein the plastic block is selected from the group consisting of
本發明的態樣提供了一種方法,包括用複數個不同感測器系統來判定不同塑料塊之混合物之每一者的化學特徵;捕獲該等塑料塊之每一者的視覺影像;將該等視覺影像與每一塑料塊之該化學特徵數位地關連;判定用於塑料塊分類的特定小部分;使用該等視覺影像來識別該混合物中該等塑料塊中的哪些具有落入該特定小部分中的化學特徵;以及訓練機器學習系統以視覺地識別落入特定小部分的塑料塊,其中該訓練係使用從該等識別的塑料塊產生的對照組進行的。該對照組可為由該等識別的塑料塊之每一者之捕獲的視覺影像資料組成的。其中該小部分可為由有機和無機元素或分子的特定組合組成的。該複數個不同感測器系統可為選自近紅外線(「NIR」)、中波長紅外線(「MWIR」)、及X射線螢光(「XRF」)系統的群組。不同塑料塊的該混合物係選自由類型#1聚對苯二甲酸乙二酯(「PET」)、類型#2高密度聚乙烯(「HDPE」)、類型#3聚氯乙烯(「PVC」)、類型#4低密度聚乙烯(「LDPE」)、類型#5聚丙烯(「PP」)、類型#6聚苯乙烯(「PS」)、及類型#7其它聚合物所組成之群組。該複數個不同感測器系統可為選自紅外線(「IR」)、傅立葉變換IR(「FTIR」)、前視紅外線(「FLIR」)、非常近紅外線(「VNIR」)、近紅外線(「NIR」)、短波長紅外線(「SWIR」)、長波長紅外線(「LWIR」)、中波長紅外線(「MWIR」或「MIR」)、X射線透射(「XRT」)、伽瑪射線、紫外線(「UV」)、X射線螢光(「XRF」)、雷射誘導之擊穿光譜學(「LIBS」)、拉
曼光譜學、反斯拖克斯拉曼光譜學、伽瑪光譜學、高光譜光譜學(例如,超出可見波長的任何範圍)、聲學光譜學、NMR光譜學、微波光譜學、兆赫光譜學、微差掃描熱量法(「DSC」)、熱重分析(「TGA」)、毛細和旋轉流變法、光學和掃描電子顯微鏡(「SEM」)和色析法的群組。
Aspects of the invention provide a method comprising determining a chemical signature of each of a mixture of different plastic chunks using a plurality of different sensor systems; capturing visual images of each of the plastic chunks; digitally associating the visual images with the chemical signature of each plastic chunk; determining a specific sub-portion for classifying the plastic chunks; using the visual images to identify which of the plastic chunks in the mixture have chemical signatures that fall into the specific sub-portion; and training a machine learning system to visually identify the plastic chunks that fall into the specific sub-portion, wherein the training is performed using a control set generated from the identified plastic chunks. The control set may be composed of captured visual image data of each of the identified plastic chunks. wherein the small portion may be composed of a specific combination of organic and inorganic elements or molecules. The plurality of different sensor systems may be selected from the group consisting of near infrared ("NIR"), mid-wave infrared ("MWIR"), and X-ray fluorescence ("XRF") systems. The mixture of different plastic pieces is selected from the group consisting of
在此提及「組態」裝置或「組態以」執行某些功能的裝置。應該理解,這可以包括選擇預界定的邏輯方塊並在邏輯上關聯它們,使得它們提供特定的邏輯功能,包括監控或控制功能。它還可以包括對改造控制裝置之基於電腦軟體的邏輯進行編程,對離散硬體組件進行佈線,或上述任何或所有的組合。 Reference is made herein to a "configured" device or a device "configured to" perform certain functions. It should be understood that this may include selecting predefined logic blocks and logically associating them so that they provide specific logic functions, including monitoring or control functions. It may also include programming computer software-based logic to modify control devices, wiring discrete hardware components, or any or all of the above.
在本文的描述中,提供了許多具體細節,例如編程實體、軟體模組、使用者選擇、網路交易、資料庫查詢、資料庫結構、硬體模組、硬體電路、硬體晶片、控制器等,以提供對本發明的實施例的透徹理解。然而,相關技術領域中具有通常知識者將理解到本發明可以在沒有一或多個具體細節的情況下或者用其他方法、組件、材料等來實踐。在其他情況下,可能未詳細顯示或敘述已知的結構、材料或操作,以避免模糊本發明的態樣。 In the description of this article, many specific details are provided, such as programming entities, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, controllers, etc., to provide a thorough understanding of the embodiments of the present invention. However, a person with ordinary knowledge in the relevant technical field will understand that the present invention can be practiced without one or more specific details or with other methods, components, materials, etc. In other cases, known structures, materials, or operations may not be shown or described in detail to avoid obscuring the state of the present invention.
所屬技術領域中具有通常知識者應當理解,分類系統100的組件的各種設定和參數(包括類神經網路參數)可以基於被分門別類的材料類型、所需的分門別類結果、使用的設備類型、先前分類的經驗結果、可用資料和其他因素隨著時間進行客制、最佳化和重新組態。 It will be understood by those skilled in the art that the various settings and parameters of the components of the classification system 100 (including the neural network parameters) can be customized, optimized, and reconfigured over time based on the type of material being classified, the desired classification results, the type of equipment used, the empirical results of previous classifications, available data, and other factors.
遍及本說明書所提到的「一實施例」、「實施例」或類似用語意味連同實施例說明的特別特徵、結構或特性被包括在本發明之至少一實施例中。因此,在整個說明書中出現的用語「在一個實施例中」、「在一實施例中」、「實施例」、「某些實施例」、「各種實施例」和類似的語言可以但不一定都指代相同的實施例。此外,本發明所敘述之特徵、結構、態樣及/或特性可以以任何合適的方式組合於一或多個實施例中。相應地,即使最初請求保護的特徵在某些組合中起作用,在某些情況下,請求保護的組合中的一或多個特徵可以從組合中刪除,並且請求保護的組合可以針對子組合或子組合的變化。 References to "one embodiment", "embodiment" or similar terms throughout this specification mean that the particular features, structures or characteristics described in conjunction with the embodiment are included in at least one embodiment of the present invention. Therefore, the terms "in one embodiment", "in an embodiment", "embodiment", "certain embodiments", "various embodiments" and similar language appearing throughout the specification may, but do not necessarily, refer to the same embodiment. In addition, the features, structures, aspects and/or characteristics described in the present invention may be combined in one or more embodiments in any suitable manner. Accordingly, even if the features originally claimed work in certain combinations, in some cases, one or more features in the claimed combination may be deleted from the combination, and the claimed combination may be directed to subcombinations or variations of subcombinations.
本文已針對具體實施例敘述了益處、優點和問題的解決方案。然而,可能導致任何益處、優點或解決方案發生或變得更明顯的益處、優點、問題的解決方案以及任何元素都可不被解釋為任何或所有申請專利範圍的關鍵、必需或基本特徵和元素。此外,除非明確敘述為必要的或關鍵的,否則本文所述的任何組件都不是實施本發明所必需的。 Benefits, advantages, and solutions to problems have been described herein with respect to specific embodiments. However, benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more apparent may not be construed as key, necessary, or essential features and elements of any or all of the claims. Furthermore, unless expressly described as necessary or critical, no component described herein is necessary to practice the invention.
儘管本說明書包含許多細節,但這些不應被解釋為對本發明的範圍或可請求保護的內容的限制,而是對特定於本發明的特定實施方式之特徵的敘述。本文的標題可能不旨在限製本發明、本發明的實施例或在標題下揭露的其他事項。 Although this specification contains many details, these should not be construed as limitations on the scope of the invention or what may be protected, but rather as descriptions of features specific to particular embodiments of the invention. The headings herein may not be intended to limit the invention, embodiments of the invention, or other matters disclosed under the headings.
在本文中,用語「或」可以意在包括在內,其中「A 或B」包括A或B並且還包括A和B兩者。如本文中所使用,用語「及/或」當在實體列表的上下文中使用時,是指單獨或組合存在的實體。因此,例如,用語「A、B、C及/或D」分別包括A、B、C與D,但也包括A、B、C與D的任何及所有組合和子組合。 As used herein, the term "or" may be intended to be inclusive, where "A or B" includes A or B and also includes both A and B. As used herein, the term "and/or" when used in the context of a list of entities refers to the entities present individually or in combination. Thus, for example, the term "A, B, C, and/or D" includes A, B, C, and D, respectively, but also includes any and all combinations and subcombinations of A, B, C, and D.
本文使用的術語僅出於敘述特定實施例的目的,並不旨在限製本發明。如在本文所使用的,除非上下文另有明確說明,否則單數形式「一」、「一個」和「該」旨在也包括複數形式。 The terms used herein are for the purpose of describing specific embodiments only and are not intended to limit the present invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
以下申請專利範圍中的所有構件或步驟加上功能元件的相應結構、材料、動作和均等物可以旨在包括用於與如具體請求保護之其他請求保護的元件組合來執行功能的任何結構、材料或動作。 All components or steps in the scope of the patent application below plus the corresponding structures, materials, actions and equivalents of the functional elements may be intended to include any structure, material or action used to perform a function in combination with other claimed elements as specifically claimed.
如本文所使用,諸如「控制器」、「處理器」、「記憶體」、「類神經網路」、「介面」、「分類器」、「裝置」、「推送機制」「推動器裝置」、「成像感測器」、「箱」、「容器」、「系統」、「電路系統」均指所屬技術領域中具有通常知識者能夠識別和理解的非通用裝置元件,並且在本文中不用作用於引用35 U.S.C. 112(f)。 As used herein, terms such as "controller", "processor", "memory", "neural network", "interface", "classifier", "device", "push mechanism", "push device", "imaging sensor", "box", "container", "system", and "circuit system" refer to non-common device components that can be recognized and understood by a person of ordinary skill in the art, and are not used herein to refer to 35 U.S.C. 112(f).
如本文中關於所識別的特性或情況所使用的,「實質上」是指足夠小以致不會顯著減損所識別的特性或情況的偏差程度。在某些情況下,允許的準確偏差程度可能取決於具體情況。 As used herein with respect to an identified characteristic or condition, "substantially" means a degree of deviation that is sufficiently small that the identified characteristic or condition is not significantly impaired. In some cases, the exact degree of deviation permitted may depend on the specific circumstances.
如在此所使用者,為了方便起見,複數個物件、結構 元素、成分元素、例示性小部分、及/或材料可以呈現於一共用表中。然而,此等表應該被解釋為雖然此表之各成員係獨立地被識別為一分離且獨特之成員。因此,此列表中的任何單個成員均不應僅基於其在共同組中的呈現而被解釋為與同一列表中的任何其他成員事實上的均等物,而沒有相反的指示。 As used herein, for convenience, multiple objects, structural elements, compositional elements, exemplary moieties, and/or materials may be presented in a common list. However, such lists should be interpreted as though each member of such list is independently identified as a separate and unique member. Therefore, no single member of such list should be interpreted as a de facto equivalent of any other member of the same list solely based on its presentation in a common group, without indication to the contrary.
除非以其它方式定義,否則本文使用的所有技術與科學用語(諸如元素週期表中聚合物或化學元素的首字母縮寫)具有與本發明發明標的所屬領域之具有通常知識者通常理解的相同的含義。除非引用了特定段落,否則本文提及的所有出版物、專利申請、專利和其他參考文獻均以引用方式併入本文中。在發生衝突的情況下,以本說明書(包括定義)為準。此外,材料、方法和實例(例如,列出的小部分、塑料)僅是說明性的而不是限制性的。 Unless otherwise defined, all technical and scientific terms used herein (such as acronyms of polymers or chemical elements in the periodic table) have the same meaning as commonly understood by those of ordinary skill in the art to which the subject matter of the invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated herein by reference unless a specific passage is cited. In the event of a conflict, the present specification (including definitions) shall prevail. In addition, materials, methods, and examples (e.g., listed small parts, plastics) are illustrative only and not limiting.
對於本文中未敘述的範圍而言,有關於具體材料、處理動作及電路的許多細節是習知的並且可以在計算、電子及軟體技術領域中的教科書和其它來源中找到。 To the extent not described herein, many details regarding specific materials, processing actions, and circuits are known and can be found in textbooks and other sources in the fields of computing, electronics, and software technology.
除非另有說明,在說明書和申請專利範圍中使用的所有表示成分的量、反應條件等的數字都應理解為在所有情況下都被用語「約」修飾。因此,除非有相反的說明,否則本說明書和所附申請專利範圍中闡述的數值參數是近似值,其可以根據本發明的發明標的尋求獲得的期望特性而變化。 Unless otherwise indicated, all numbers used in the specification and claims indicating the amounts of ingredients, reaction conditions, etc. should be understood to be modified in all cases by the term "about". Therefore, unless otherwise indicated, the numerical parameters set forth in this specification and the attached claims are approximate values, which may vary depending on the desired properties sought to be obtained by the subject matter of the invention.
401:材料塊 401: Material block
403:傳送系統 403:Transmission system
410:相機 410: Camera
411:XRF系統 411:XRF system
412:NIR系統 412:NIR system
413:MWIR系統 413:MWIR system
Claims (17)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163146892P | 2021-02-08 | 2021-02-08 | |
US63/146,892 | 2021-02-08 | ||
US202163173301P | 2021-04-09 | 2021-04-09 | |
US63/173,301 | 2021-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202301192A TW202301192A (en) | 2023-01-01 |
TWI839679B true TWI839679B (en) | 2024-04-21 |
Family
ID=82741868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111104602A TWI839679B (en) | 2021-02-08 | 2022-02-08 | Sorting of plastics |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP4288219A1 (en) |
JP (2) | JP2024508684A (en) |
KR (2) | KR20230159399A (en) |
MX (2) | MX2023009270A (en) |
TW (1) | TWI839679B (en) |
WO (2) | WO2022170262A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230062938A1 (en) * | 2021-08-25 | 2023-03-02 | X Development Llc | Sensor fusion approach for plastics identification |
CN115616204A (en) * | 2022-12-21 | 2023-01-17 | 金发科技股份有限公司 | Method and system for identifying polyethylene terephthalate reclaimed materials |
CN115835448B (en) * | 2022-12-28 | 2024-03-19 | 无锡车联天下信息技术有限公司 | Method and device for adjusting light, endoscope equipment and medium |
KR102635727B1 (en) * | 2023-05-02 | 2024-02-08 | 권순주 | Apparatus, system, and method for recyclable material classification based on artificial intelligence |
DE102023111835A1 (en) | 2023-05-05 | 2024-11-07 | Sensor-Instruments Entwicklungs- Und Vertriebs-Gmbh | Method and device for detecting a type of plastic material |
CN116523911B (en) * | 2023-07-03 | 2023-09-12 | 湖南融城环保科技有限公司 | Building rubbish recycled aggregate production monitored control system |
TWI856844B (en) * | 2023-10-13 | 2024-09-21 | 台灣檢驗科技股份有限公司 | Methods for testing whether items contain recycled plastic materials |
KR102732204B1 (en) * | 2024-02-28 | 2024-11-20 | (주)우림아이씨티 | Apparatus and method for controlling recycling waste sort |
CN118583735B (en) * | 2024-08-06 | 2024-10-01 | 四川省欧邦动物药业有限公司 | A continuous detection device and method for powder particle size |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040235970A1 (en) * | 2003-03-13 | 2004-11-25 | Smith Peter Anthony | Recycling and reduction of plastics and non-plastics material |
US20180243800A1 (en) * | 2016-07-18 | 2018-08-30 | UHV Technologies, Inc. | Material sorting using a vision system |
CN111659635A (en) * | 2020-06-16 | 2020-09-15 | 北京铮实环保工程有限公司 | Remaining garbage identification method and device based on visual technology and deep learning |
TWI707812B (en) * | 2019-11-09 | 2020-10-21 | 長庚大學 | Smart resource recycling bin |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0322043D0 (en) * | 2003-09-20 | 2003-10-22 | Qinetiq Ltd | Apparatus for,and method of,classifying objects in waste stream |
US9983136B2 (en) | 2013-05-27 | 2018-05-29 | Indian Institute Of Science | Method and an apparatus for obtaining sample specific signatures |
US10024799B2 (en) | 2014-12-27 | 2018-07-17 | Indian Institute Of Science | Chemical signature resolved detection of concealed objects |
US10403006B2 (en) | 2016-08-26 | 2019-09-03 | General Electric Company | Guided filter for multiple level energy computed tomography (CT) |
GB2572183A (en) * | 2018-03-21 | 2019-09-25 | Sutton Philip | Recycling method and taggant for a recyclable product |
JP6679188B1 (en) | 2018-10-19 | 2020-04-15 | 株式会社御池鐵工所 | Waste sorting device and waste sorting method |
-
2022
- 2022-02-08 WO PCT/US2022/015665 patent/WO2022170262A1/en active Application Filing
- 2022-02-08 KR KR1020237030491A patent/KR20230159399A/en unknown
- 2022-02-08 EP EP22750584.9A patent/EP4288219A1/en active Pending
- 2022-02-08 KR KR1020237030490A patent/KR102711284B1/en active IP Right Grant
- 2022-02-08 JP JP2023547801A patent/JP2024508684A/en active Pending
- 2022-02-08 TW TW111104602A patent/TWI839679B/en active
- 2022-02-08 MX MX2023009270A patent/MX2023009270A/en unknown
- 2022-02-08 MX MX2023009269A patent/MX2023009269A/en unknown
- 2022-02-08 JP JP2023547806A patent/JP2024510084A/en active Pending
- 2022-02-08 WO PCT/US2022/015693 patent/WO2022170273A1/en active Application Filing
- 2022-02-08 EP EP22750592.2A patent/EP4288220A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040235970A1 (en) * | 2003-03-13 | 2004-11-25 | Smith Peter Anthony | Recycling and reduction of plastics and non-plastics material |
US20180243800A1 (en) * | 2016-07-18 | 2018-08-30 | UHV Technologies, Inc. | Material sorting using a vision system |
TWI707812B (en) * | 2019-11-09 | 2020-10-21 | 長庚大學 | Smart resource recycling bin |
CN111659635A (en) * | 2020-06-16 | 2020-09-15 | 北京铮实环保工程有限公司 | Remaining garbage identification method and device based on visual technology and deep learning |
Also Published As
Publication number | Publication date |
---|---|
EP4288219A1 (en) | 2023-12-13 |
MX2023009269A (en) | 2024-01-08 |
WO2022170262A1 (en) | 2022-08-11 |
KR20230159398A (en) | 2023-11-21 |
EP4288220A4 (en) | 2024-12-25 |
WO2022170273A1 (en) | 2022-08-11 |
JP2024508684A (en) | 2024-02-28 |
TW202301192A (en) | 2023-01-01 |
KR102711284B1 (en) | 2024-09-27 |
EP4288220A1 (en) | 2023-12-13 |
KR20230159399A (en) | 2023-11-21 |
MX2023009270A (en) | 2024-01-08 |
JP2024510084A (en) | 2024-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11969764B2 (en) | Sorting of plastics | |
TWI839679B (en) | Sorting of plastics | |
US11975365B2 (en) | Computer program product for classifying materials | |
US20210346916A1 (en) | Material handling using machine learning system | |
US20240109103A1 (en) | Sorting of dark colored and black plastics | |
US12194506B2 (en) | Sorting of contaminants | |
US12017255B2 (en) | Sorting based on chemical composition | |
US12109593B2 (en) | Classification and sorting with single-board computers | |
US20240342758A1 (en) | Sorting based on chemical composition | |
US20230173543A1 (en) | Mobile sorter | |
WO2023137423A1 (en) | Scrap data analysis | |
US20240246116A1 (en) | Sorting of zorba | |
CN117241897A (en) | Sorting of plastics | |
WO2023003669A9 (en) | Material classification system | |
KR20240090253A (en) | Multi-level screening | |
US20250058359A1 (en) | Classifying of materials with contaminants | |
US20240246117A1 (en) | Sorting of aluminum alloys | |
WO2022251373A1 (en) | Sorting of contaminants | |
JP2024512994A (en) | Sorting based on chemical composition | |
WO2023003670A1 (en) | Material handling system | |
CN116917055A (en) | Sorting based on chemical compositions | |
TW202332517A (en) | Sorting based on chemical composition |