TWI836590B - Optical body, master disk, and manufacturing method of optical body - Google Patents
Optical body, master disk, and manufacturing method of optical body Download PDFInfo
- Publication number
- TWI836590B TWI836590B TW111133514A TW111133514A TWI836590B TW I836590 B TWI836590 B TW I836590B TW 111133514 A TW111133514 A TW 111133514A TW 111133514 A TW111133514 A TW 111133514A TW I836590 B TWI836590 B TW I836590B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical body
- concave
- shape
- aforementioned
- convex
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0257—Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
本發明提供一種可更加提升抗反射特性,並且容易製作之新穎且經改良的光學體、母盤、及光學體之製造方法。為解決前述課題,依據本發明的其一觀點,提供一種光學體,係具有凹凸構造之光學體,該凹凸構造係將具凸狀或凹狀之構造體以可見光波長以下之平均周期排列而成,構造體於與光學體厚度方向垂直之任一面方向上具有非對稱之形狀。依據前述觀點,可更加提升抗反射特性,且容易製作。The present invention provides a novel and improved optical body, a master disk, and a manufacturing method of the optical body that can further improve anti-reflective properties and are easy to manufacture. In order to solve the above problems, according to one aspect of the present invention, an optical body is provided, which is an optical body having a concave and convex structure in which convex or concave structures are arranged with an average period below the wavelength of visible light. , the structure has an asymmetric shape in any plane direction perpendicular to the thickness direction of the optical body. Based on the above point of view, the anti-reflective properties can be further improved and can be easily produced.
Description
本發明有關於光學體、母盤、及光學體之製造方法。The present invention relates to an optical body, a master disk, and a manufacturing method of the optical body.
一般而言,電視等顯示裝置、及相機鏡頭等光學元件中為了減少表面反射,並增加透射光,而於光之入射面施行有反射消除處理。如此之反射消除處理係例如有人提出了一種於光之入射面形成表面形成有凹凸構造之光學體的方法。此處,形成於光學體表面之凹凸構造形成多數之凸部及凹部,凸部間之排列節距及凹部間之排列節距係可見光波長以下。Generally speaking, in order to reduce surface reflection and increase transmitted light in display devices such as televisions and optical components such as camera lenses, reflection elimination processing is performed on the light incident surface. Such reflection elimination processing is, for example, proposed as a method of forming an optical body with a concave and convex structure on the light incident surface. Here, the uneven structure formed on the surface of the optical body forms a plurality of convex parts and concave parts, and the arrangement pitch between the convex parts and the arrangement pitch between the concave parts is below the wavelength of visible light.
如此之光學體表面因對入射光之折射率變化變得和緩,故不會產生成為反射原因之急遽的折射率變化。因此,藉於光之入射面表面形成如此之凹凸構造,可抑制寬之波長帶域的入射光反射。In this way, the refractive index change of the surface of the optical body to incident light becomes gentle, so there is no sudden refractive index change that causes reflection. Therefore, by forming such a concave and convex structure on the surface of the light incident surface, reflection of incident light in a wide wavelength band can be suppressed.
專利文獻1~3揭示了關於如此之光學體的技術。專利文獻1所揭示之技術為防止轉印材於鑄模之填充不良、剝離阻力造成之轉印品的凸部缺損、及經轉印之微細凹凸構造的凸部圖案崩壞,於光學體表面隨機地配置凸部之密集處。
專利文獻2所揭示之技術為抑制繞射光之產生,自正多邊形狀之排列圖案偏移凹凸之排列圖案。專利文獻3所揭示之技術為輕易地控制凹凸之排列節距等,藉由濺鍍法隨機地形成凹凸。專利文獻4所揭示之技術則以預定之排列圖案排列具對稱形狀的凹凸。 先前技術文獻 專利文獻 The technology disclosed in Patent Document 2 is to suppress the generation of diffraction light by shifting the arrangement pattern of concave and convex from the arrangement pattern of regular polygons. The technology disclosed in Patent Document 3 is to easily control the arrangement pitch of concave and convex, etc., and to randomly form concave and convex by sputtering. The technology disclosed in Patent Document 4 is to arrange concave and convex with symmetrical shapes in a predetermined arrangement pattern. Prior Art Documents Patent Documents
專利文獻1:日本專利特開2014-066976號公報 專利文獻2:日本專利特開2015-038579號公報 專利文獻3:日本專利特開2015-060983號公報 專利文獻4:日本專利特開2009-258751號公報 Patent document 1: Japanese Patent Publication No. 2014-066976 Patent document 2: Japanese Patent Publication No. 2015-038579 Patent document 3: Japanese Patent Publication No. 2015-060983 Patent document 4: Japanese Patent Publication No. 2009-258751
發明概要
發明欲解決之課題
然而,專利文獻1~4所揭示之技術中對於光學體之抗反射特性依舊不充分。再者,提高光學體之抗反射特性的方法,有人提出了一種如專利文獻4所揭示之互相疊合構成凹凸構造之凸部的方法。依據該方法,因可提升凹凸構造之密度,故可期待提升光學體之抗反射特性。但,於以往之凹凸構造使用該方法時,為實現所期之抗反射特性,需大幅地疊合凸部彼此。因此,有母盤之凹凸構造的轉印性惡化之其他問題。
用以解決課題之手段
Summary of the invention
Problems to be solved by the invention
However, the techniques disclosed in
換言之,光學體係使用表面形成有凹凸構造之母盤作為轉印模具所製作。形成於母盤表面之凹凸構造具有形成於光學體表面之凹凸構造的互補形狀。該方法係於基材上形成未硬化樹脂層,並將母盤之凹凸構造轉印至該未硬化樹脂層。之後,硬化未硬化樹脂層。接著,自經硬化之未硬化樹脂層,即硬化樹脂層剝離母盤。母盤之凹凸構造被轉印至硬化樹脂層。藉由以上步驟製作光學體。此處,於大幅地疊合凸部彼此時,凹部將成為非常微細之形狀。換言之,凹部之底面積變得非常小。因此,形成於母盤上之凸部成為非常微細之形狀。於是,非常不易將母盤之凹凸構造正確地轉印至未硬化樹脂層。換言之,母盤之凹凸構造的轉印性惡化。並且,轉印性惡化時,因母盤之凹凸構造未能正確地反映至光學體,故光學體之抗反射特性可能會惡化。In other words, the optical body is manufactured using a master disk having a concave-convex structure formed on the surface as a transfer mold. The concave-convex structure formed on the surface of the master disk has a complementary shape to the concave-convex structure formed on the surface of the optical body. The method is to form an uncured resin layer on a substrate and transfer the concave-convex structure of the master disk to the uncured resin layer. Thereafter, the uncured resin layer is hardened. Next, the master disk is peeled off from the hardened uncured resin layer, i.e., the hardened resin layer. The concave-convex structure of the master disk is transferred to the hardened resin layer. The optical body is manufactured by the above steps. Here, when the convex portions are largely overlapped with each other, the concave portion will become a very fine shape. In other words, the bottom area of the concave portion becomes very small. Therefore, the convex parts formed on the master disc become very fine shapes. Therefore, it is very difficult to correctly transfer the concave-convex structure of the master disc to the uncured resin layer. In other words, the transferability of the concave-convex structure of the master disc deteriorates. Moreover, when the transferability deteriorates, the concave-convex structure of the master disc cannot be correctly reflected on the optical body, so the anti-reflection characteristics of the optical body may deteriorate.
因此,本發明有鑑於前述問題而作成,本發明之目的係提供可更加提升抗反射特性,且容易製作之新穎且經改良的光學體、母盤、及光學體之製造方法。 用以解決課題之手段 Therefore, the present invention is made in view of the above-mentioned problems. The purpose of the present invention is to provide a novel and improved optical body, a master plate, and a method for manufacturing an optical body that can further enhance the anti-reflection properties and is easy to manufacture. Means for solving the problem
為解決前述課題,依據本發明的其一觀點,即可提供一種光學體,係具有凹凸構造之光學體,該凹凸構造係將具凸狀或凹狀之構造體以可見光波長以下之平均周期排列而成,構造體於與光學體厚度方向垂直之任一面方向上具有非對稱之形狀。In order to solve the above problems, according to one aspect of the present invention, an optical body is provided, which is an optical body having a concave and convex structure in which convex or concave structures are arranged with an average period below the wavelength of visible light. Thus, the structure has an asymmetric shape in any plane direction perpendicular to the thickness direction of the optical body.
此處,構造體之俯視形狀亦可於一面方向上具有非對稱之形狀。Here, the top view shape of the structure may have an asymmetric shape in one surface direction.
又,一直線係用以沿著構造體之排列方向將外接於構造體之四角形作二等分,藉由前述直線將構造體之俯視形狀分割成2個區域時,各別之面積亦可相異。Furthermore, a straight line is used to divide a quadrilateral circumscribed to the structure into two equal parts along the arrangement direction of the structure. When the top view shape of the structure is divided into two regions by the aforementioned straight line, the respective areas may also be different.
又,2個區域中,小區域之面積除以大區域之面積後所得的面積比亦可為0.97以下。Furthermore, of the two regions, the area ratio obtained by dividing the area of the smaller region by the area of the larger region may be 0.97 or less.
又,面積比亦可為0.95以下。Moreover, the area ratio may be 0.95 or less.
又,面積比亦可為0.95以下、0.33以上。Moreover, the area ratio may be 0.95 or less and 0.33 or more.
又,構造體之垂直截面形狀亦可於一面方向上具有非對稱之形狀。In addition, the vertical cross-sectional shape of the structure may have an asymmetric shape in one direction.
又,構造體之垂直截面形狀的頂點位置亦可相對構造體軌跡方向之中心點,於軌跡方向上位移。Furthermore, the vertex position of the vertical cross-sectional shape of the structure may also be displaced in the orbital direction relative to the center point of the structure in the orbital direction.
又,頂點位置之位移量除以構造體之點節距後的位移比亦可為0.03以上。In addition, the displacement ratio obtained by dividing the displacement amount of the vertex position by the point pitch of the structure may be 0.03 or more.
又,位移比亦可為0.03以上、0.5以下。Moreover, the displacement ratio may be 0.03 or more and 0.5 or less.
又,構造體之一面方向上的排列節距亦可與凹凸構造之其他面方向上的排列節距相異。Furthermore, the arrangement pitch in one surface direction of the structure may be different from the arrangement pitch in the other surface direction of the concave-convex structure.
又,構造體亦可具有凸狀。Moreover, the structure may have a convex shape.
又,構造體亦可具有凹狀。Moreover, the structure may have a concave shape.
又,構造體亦可藉由硬化性樹脂之硬化物來構成。In addition, the structure may be composed of a cured product of curable resin.
又,鄰接之構造體彼此亦可相接。Furthermore, adjacent structures may be connected to each other.
依據本發明之其他觀點,係提供一種表面形成有前述記載之凹凸構造之互補形狀的母盤。According to another aspect of the present invention, there is provided a master disk having a complementary shape with the aforementioned concave and convex structures formed on its surface.
此處,母盤亦可為板狀、圓筒狀、或圓柱狀。Here, the mother disk may also be plate-shaped, cylindrical, or cylindrical.
依據本發明之其他觀點,提供一種光學體之製造方法,其係使用前述母盤作為轉印模具並於基材上形成凹凸構造。According to another aspect of the present invention, a method for manufacturing an optical body is provided, which uses the above-mentioned master as a transfer mold and forms a concave-convex structure on a substrate.
依據前述觀點,構造體於與光學體厚度方向垂直之任一面方向上具有非對稱之形狀。因此,即使大幅地疊合構造體彼此,仍可實現高之抗反射特性。因此,因母盤凹凸構造之轉印性高,光學體的製作亦變得容易。 發明效果 Based on the aforementioned viewpoint, the structure has an asymmetric shape in any plane direction perpendicular to the thickness direction of the optical body. Therefore, high anti-reflection properties can be achieved even if the structures are greatly superimposed on each other. Therefore, since the transferability of the concave and convex structure of the master disk is high, the production of the optical body becomes easy. Invention effect
如以上說明,依據前述觀點將可更加提升抗反射特性,且容易製作。As explained above, based on the above point of view, the anti-reflective properties can be further improved and can be easily produced.
用以實施發明之形態 以下一面參照附加圖式,一面詳細地說明本發明之較佳實施形態。再者,本說明書及圖式中藉由對實質上具有相同機能構造的構造要素標上相同之符號以省略重複說明。 Form used to implement the invention Preferred embodiments of the present invention will be described in detail below with reference to the attached drawings. In addition, in this specification and the drawings, structural elements that have substantially the same functional structure are assigned the same reference numerals to omit repeated description.
<1.光學體之構造>
接著,依據圖1~圖3說明光學體10之構造。光學體10具有基材11、形成於基材11之一邊表面的凹凸構造12。再者,基材11與凹凸構造12亦可為一體成型。例如,藉使基材11為熱可塑性樹脂薄膜,可使基材11與凹凸構造12為一體成型。詳細內容稍待後述。
<1. Structure of optical body>
Next, the structure of the
凹凸構造12具有於光學體10之膜厚方向上為凸之多數的凸部13(構造體),與於光學體10之膜厚方向上為凹之多數的凹部14(構造體)。於光學體10上周期地配置凸部13及凹部14。例如,圖1之例中,凸部13及凹部14配置成正六方格狀(即,對稱之千鳥格狀)。The concave-
換言之,凹凸構造12係互相平行地排列有由多數之凸部13及凹部14所構成的軌跡(行)。再者,並未特別限制將哪個方向上排列之凸部13及凹部14定義成軌跡,但例如,光學體10為長之光學體(或切斷長之光學體後所得之光學體)時,亦可將長之光學體長度方向上排列的凸部13及凹部14定義為軌跡。圖1之例中,依據該方法定義軌跡。具體而言,圖1之例中,軌跡係朝箭頭B方向(即,左右方向)延伸,於上下方向排列。又,配置於鄰接之軌跡間的凸部13(或凹部14)互相於軌跡之長度方向(即,軌跡方向)偏移凸部13(或凹部14)之僅一半長度。In other words, the concave-
當然,亦可以其他之排列圖案配置凸部13及凹部14。例如,亦可以其他之正多邊格狀(例如矩形格狀) 配置凸部13及凹部14。又,亦可以歪斜之多邊格狀配置凸部13及凹部14。又,亦可隨機地配置凸部13及凹部14。Of course, the
又,凸部13於與光學體10之厚度方向垂直之任一面方向上具有非對稱的形狀。圖1之例中,凸部13於箭頭B方向上具有非對稱之形狀。換言之,凸部13具有使對稱之形狀朝箭頭B方向歪斜的形狀。以下,詳細地說明凸部13之形狀。Furthermore, the
如圖3所示,本實施形態中,凸部13之俯視形狀於箭頭B方向上呈非對稱。此處,凸部13之俯視形狀係藉由將凸部13投影至與光學體10之厚度方向垂直之平面後所得的形狀(即,圖1或圖3所示之形狀)。As shown in FIG3 , in this embodiment, the top view shape of the
接著,畫出外接於凸部13之俯視形狀的四角形X。此處,四角形X係內含凸部13之俯視形狀的四角形中最小之四角形之意。然後,以與箭頭B垂直之線段X1二等分該四角形X。此處,線段X1係一用以沿著凸部13之排列方向將四角形X作二等分的線段。並且,將線段X1之中點A定義為凸部13之中心點(即,凸部13之軌跡方向的中心點)。凸部13之俯視形狀藉由該線段X1區分成2個區域X11、X12。此外,「凸部13之俯視形狀於箭頭B方向上呈非對稱」係該等區域X11、X12對線段X1呈非對稱,換言之,區域X11、X12之面積相異之意。因此,凸部13之俯視形狀成為對線段X1對稱之形狀(例如正圓)朝箭頭B方向上歪斜的形狀。雖未特別限制區域X11與區域X12之面積比,但以0.97以下為佳,以0.95以下較佳,以0.95以下0.33以上更佳。面積比為0.97以下時可增加後述之底面積。又,凸部13之俯視形狀為物理性之非對稱性的界限,即三角形形狀時(參照圖26),面積比為0.33。因此,將下限值之較佳範圍設為0.33。此處,區域X11與區域X12之面積比係區域X11及區域X12中,小之面積除以大之面積後所得。此時,將特別地提升光學體10之抗反射特性。再者,凸部13之俯視形狀為正圓時,區域X11、X12成為對線段X1對稱之形狀。再者,各凸部13之面積比亦可相異。此時,求出幾個凸部13之面積比後將該等算術平均即可。Next, draw a quadrangle X circumscribed to the top view shape of the
凸部13之俯視形狀彼此可互相分離、接觸(即,鄰接之凸部13彼此互相相接),亦可部分互相疊合。圖1之例中,凸部13之俯視形狀彼此相接觸。由提高光學體10之抗反射特性之觀點來看,以凸部13之俯視形狀彼此相接觸、或部分互相疊合為佳。但,凸部13之俯視形狀彼此大幅地疊合時,因凹部14之底面積變小,有母盤100之轉印性惡化的可能性。因此,以不使母盤100之轉印性惡化的程度疊合凸部13之俯視形狀彼此即可。又,俯視形狀之觀察方法可使用例如,掃描型電子顯微鏡(SEM)、或截面透射型電子顯微鏡(截面TEM)等,不易觀察俯視時之構造體的邊界時,亦可觀察於相對於構造體高度為5%左右之高度的面進行截面加工而相當於底面之形狀。The top view shapes of the
此外,如圖1及圖2所示,本實施形態中,凸部13之CC截面形狀(即,垂直截面形狀)於箭頭B方向上呈非對稱。此處,CC截面係通過點A且與箭頭B方向及光學體10之厚度方向平行的截面之意。1 and 2 , in this embodiment, the CC cross-sectional shape (i.e., vertical cross-sectional shape) of the
此外,於CC截面上配置凸部13之頂點13a。並且,頂點13a通過點A,且配置於自與光學體10之厚度方向平行之直線L1偏移之(位移之)位置。換言之,凸部13之垂直截面形狀之頂點13a的位置,相對於凸部13之軌跡方向的中心點A於軌跡方向上位移。具體而言,通過頂點13a且與光學體10之厚度方向平行的直線L2於箭頭B方向上僅距離直線L1距離T1(頂點位置之位移量)。因此,「凸部13之垂直截面形狀於箭頭B方向上係非對稱」係頂點13a配置於箭頭B方向上自直線L1偏移的位置之意。因此,凸部13之垂直截面形狀呈使於直線L1上對稱之形狀朝箭頭B方向上歪斜的形狀。因此,可謂凸部13朝箭頭B方向傾斜。雖並未特別限制距離T1之長度,但以俯視形狀之半徑r的2%以上為佳。此處,俯視形狀之半徑r係自CC截面與凸部13之外緣部分的交點至中心點的距離之意。又,距離L1(nm)除以構造體之點節距(nm)的值,即位移比(%)以0.03以上為佳,以0.03以上、0.5以下較佳,以0.03以上、0.1以下更佳。再者,隨機配置凸部13及凹部14時,位移比係距離L1除以凹凸構造12之平均周期的值。又,距離L1於各構造體12均相異時,算出幾個構造體12之距離L1,並將該等之算術平均值作為距離L1即可。In addition, the apex 13a of the
再者,如圖1所示之例中,凸部13之俯視形狀及垂直截面形狀兩者於箭頭B方向上呈非對稱,但亦可僅任一者之形狀於箭頭B方向上呈非對稱。又,凸部13於箭頭B方向以外之面方向上呈對稱或非對稱均可,但以對稱較佳。因可提升母盤100之轉印性。Furthermore, as shown in the example of FIG. 1 , the top view shape and the vertical cross-sectional shape of the
另一方面,凹部14配置於凸部13彼此之間。換言之,凹部14由凸部13之外周圍所形成。因此,凹部14之形狀必然具有與凸部13相同的特徵。換言之,凹部14之俯視形狀及垂直截面形狀於箭頭B方向上呈非對稱。定義凹部14之俯視形狀及垂直截面形狀與凸部13之俯視形狀及垂直截面形狀相同。再者,凹部14之俯視形狀成為凹部14開口面之形狀,凹部14之俯視形狀的重心對應凸部13之頂點13a。On the other hand, the
本實施形態中,因凸部13及凹部14成為於箭頭B方向上非對稱之形狀,故如後述之實施例所示,即使未疊合凸部13彼此、或未大幅地疊合,仍可實現高之抗反射特性。因此,本實施形態中,即使凸部13彼此疊合之部分不多,仍可實現高之抗反射特性。換言之,本實施形態中即使如專利文獻4所示凸部13彼此疊合之部分不多,仍可得到高抗反射特性。此外,本實施形態中母盤100之剝離性提升。換言之,本實施形態中,因凸部13於箭頭B方向上成非對稱之形狀,故藉於箭頭B方向上自光學體10剝離母盤100,可輕易地自光學體10剝離母盤100。In this embodiment, since the
凸部13及凹部14之形狀只要滿足上述要件的話並未特別限制。凸部13及凹部14之形狀可為例如砲彈型、錐體狀、柱狀、針狀。The shapes of the
又,凸部13及凹部14之平均周期(構造體之平均周期)係可見光波長以下(例如,830nm以下),以100nm以上350nm以下為佳,以120nm以上280nm以下較佳,更佳者是130~270nm。因此,凹凸構造12成為所謂的蛾眼構造。此處,平均周期小於100nm時,因有可能不易形成凹凸構造12故不佳。又,平均周期大於350nm時因可能產生可見光之繞射現象故不佳。Furthermore, the average period of the
此處,凸部13及凹部14之平均周期係例如,互相相鄰之凸部13間及凹部14間之距離的算術平均值。再者,凹凸構造12可藉由例如,掃描型電子顯微鏡(SEM)、或截面透射型電子顯微鏡(截面TEM)等觀察。凸部13之平均周期可藉由例如以下之方法測量。換言之,選取多數個相鄰之凸部13的組合。並且,測量凸部13頂點間之距離。此外,將測量值之算術平均值作為凸部13的平均周期即可。又,凹部14之平均周期係藉由例如以下之方法測量。換言之,選取多數個相鄰之凹部14的組合。並且,測量凹部14重心間之距離。此外,藉由算術平均測量值算出凹部14之平均周期即可。Here, the average period of the
再者,於光學體10上周期地排列凸部13及凹部14時,凸部13及凹部14之平均周期(即,平均節距)區分成例如,點節距L12及軌跡節距L13。點節距L12係排列於軌跡之長度方向上的凸部13(或凹部14)間之平均周期。軌跡節距L13係排列於軌跡之排列方向(圖1中上下方向)上的凸部13(或凹部14)間之平均周期。本實施形態中點節距L12及軌跡節距L13均係可見光波長以下。點節距L12及軌跡節距L13可相同亦可相異。凸部13及凹部14之平均周期係點節距L12與軌跡節距L13之算術平均值。Furthermore, when the
又,並未特別限制凸部13之高度(即,凹部14之深度),以100nm以上300nm以下為佳,以130nm以上300nm以下較佳,較佳者是150nm以上230nm以下。In addition, the height of the protrusion 13 (i.e., the depth of the recess 14) is not particularly limited, but is preferably between 100 nm and 300 nm, more preferably between 130 nm and 300 nm, and most preferably between 150 nm and 230 nm.
藉將凹凸構造12之平均周期及高度設成前述範圍內之值,可更加提升光學體10之抗反射特性。具體而言,可將凹凸構造12之分光反射率(波長350~800nm之分光正反射率)的下限值設為0.01~0.1%左右。又,上限值可設為0.5%以下,以0.4%以下為佳,以0.3%以下較佳,以0.2%以下更佳。又,如後述藉由轉印法形成凹凸構造12時,轉印後可輕易地自母盤100剝離光學體10。再者,凸部13之高度亦可於各凸部13均相異。By setting the average period and height of the concave-
凹凸構造12係由例如硬化性樹脂之硬化物所構成。硬化性樹脂之硬化物以具有透明性為佳。硬化性樹脂包含聚合性化合物與硬化起始劑。聚合性化合物係藉由硬化起始劑硬化之樹脂。聚合性化合物可舉環氧聚合性化合物、及丙烯酸聚合性化合物等為例。環氧聚合性化合物係分子內具1個或2個以上之環氧基的單體、寡聚物、或預聚物。環氧聚合性化合物可舉例如:各種雙酚型環氧樹脂(雙酚A型、F型等)、酚醛清漆型環氧樹脂、橡膠及胺基甲酸酯等各種改質環氧樹脂、萘型環氧樹脂、聯苯型環氧樹脂、酚酚醛清漆型環氧樹脂、茋型環氧樹脂、三酚甲烷型環氧樹脂、二環戊二烯型環氧樹脂、三苯甲烷型環氧樹脂、及該等之預聚物等。The
丙烯酸聚合性化合物係分子內具有1個或2個以上之丙烯酸基的單體、寡聚物、或預聚物。此處,單體更分類成分子內具1個丙烯酸基之單官能單體、分子內具2個丙烯酸基之二官能單體、分子內具3個以上丙烯酸基之多官能單體。Acrylic polymerizable compounds are monomers, oligomers, or prepolymers having one or more acrylic groups in the molecule. Here, monomers are further classified into monofunctional monomers having one acrylic group in the molecule, bifunctional monomers having two acrylic groups in the molecule, and multifunctional monomers having three or more acrylic groups in the molecule.
「單官能單體」可舉例如:羧酸類(丙烯酸)、羥基類(2-羥基乙基丙烯酸酯、2-羥基丙基丙烯酸酯、4-羥基丁基丙烯酸酯)、烷基或脂環類之單體(異丁基丙烯酸酯、t-丁基丙烯酸酯、異辛基丙烯酸酯、月桂基丙烯酸酯、十八烷基丙烯酸酯、異莰基丙烯酸酯、環己基丙烯酸酯)、其他機能性單體(2-甲氧基乙基丙烯酸酯、甲氧基乙二醇丙烯酸酯、2-乙氧基乙基丙烯酸酯、四氫呋喃甲基丙烯酸酯、苄基丙烯酸酯、乙基卡必醇丙烯酸酯、苯氧基乙基丙烯酸酯、N,N-二甲基胺基乙基丙烯酸酯、N,N-二甲基胺基丙基丙烯醯胺、N,N-二甲基丙烯醯胺、丙烯醯基啉、N-異丙基丙烯醯胺、N,N-二乙基丙烯醯胺、N-乙烯吡咯啶酮、2-(全氟辛基)乙基丙烯酸酯、3-全氟己基-2-羥基丙基丙烯酸酯、3-全氟辛基-2-羥基丙基-丙烯酸酯、2-(全氟癸基)乙基-丙烯酸酯、2-(全氟-3-甲基丁基)乙基丙烯酸酯)、2,4,6-三溴酚丙烯酸酯、2,4,6-三溴酚甲基丙烯酸酯、2-(2,4,6-三溴苯氧基)乙基丙烯酸酯)、2-乙基己基丙烯酸酯等。Examples of "monofunctional monomers" include: carboxylic acid (acrylic acid), hydroxyl type (2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate), alkyl group or alicyclic type Monomers (isobutylacrylate, t-butylacrylate, isooctyl acrylate, lauryl acrylate, octadecyl acrylate, isobornyl acrylate, cyclohexyl acrylate), other functional properties Monomers (2-methoxyethyl acrylate, methoxyethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofuran methacrylate, benzyl acrylate, ethyl carbitol acrylate , phenoxyethylacrylate, N,N-dimethylaminoethylacrylate, N,N-dimethylaminopropylacrylamide, N,N-dimethylacrylamide, propylene base Phinoline, N-isopropylacrylamide, N,N-diethylacrylamide, N-vinylpyrrolidone, 2-(perfluorooctyl)ethyl acrylate, 3-perfluorohexyl-2- Hydroxypropyl acrylate, 3-Perfluorooctyl-2-hydroxypropyl-acrylate, 2-(Perfluorodecyl)ethyl-acrylate, 2-(Perfluoro-3-methylbutyl)ethyl acrylate), 2,4,6-tribromophenol acrylate, 2,4,6-tribromophenol methacrylate, 2-(2,4,6-tribromophenoxy)ethyl acrylate ), 2-ethylhexyl acrylate, etc.
「二官能單體」可舉三(丙二醇)二丙烯酸酯、三羥甲基丙烷-二烯丙基醚、胺基甲酸酯丙烯酸酯等為例。Examples of the "bifunctional monomer" include tri(propylene glycol) diacrylate, trimethylolpropane-diallyl ether, urethane acrylate, and the like.
「多官能單體」可舉三羥甲基丙烷三丙烯酸酯、二新戊四醇五及六丙烯酸酯、二三羥甲基丙烷四丙烯酸酯等為例。Examples of the “multifunctional monomer” include trihydroxymethylpropane triacrylate, dipentatriol pentaacrylate and dipentatriol hexaacrylate, and ditrihydroxymethylpropane tetraacrylate.
前述列舉之丙烯酸聚合性化合物以外之例,可舉例如:丙烯酸基啉、甘油丙烯酸酯、聚醚系丙烯酸酯、N-乙烯甲醯胺、N-乙烯己內酯、乙氧基二乙二醇丙烯酸酯、甲氧基三乙二醇丙烯酸酯、聚乙二醇丙烯酸酯、EO改質三羥甲基丙烷三丙烯酸酯、EO改質雙酚A二丙烯酸酯、脂肪族胺基甲酸酯寡聚物、聚酯寡聚物等。由光學體10之透明性的觀點來看,聚合性化合物以丙烯酸聚合性化合物為佳。Examples other than the acrylic polymerizable compounds listed above include: acrylic acid-based In some embodiments, the polymerizable compound may be acrylate, polyol, glycerol acrylate, polyether acrylate, N-vinyl formamide, N-vinyl caprolactone, ethoxy diethylene glycol acrylate, methoxy triethylene glycol acrylate, polyethylene glycol acrylate, EO-modified trihydroxymethyl propane triacrylate, EO-modified bisphenol A diacrylate, aliphatic urethane oligomer, polyester oligomer, etc. From the viewpoint of transparency of the
硬化起始劑係使硬化性樹脂硬化之材料。硬化起始劑可舉熱硬化起始劑、光硬化起始劑等為例。硬化起始劑亦可為藉由熱、光以外之任一能量線(例如電子束)等硬化者。硬化起始劑為熱硬化起始劑時硬化性樹脂係熱硬化性樹脂,硬化起始劑為光硬化起始劑時硬化性樹脂係光硬化性樹脂。The hardening initiator is a material that hardens curable resin. Examples of the hardening initiator include thermal hardening initiators, photohardening initiators, and the like. The hardening initiator may be hardened by any energy ray other than heat or light (eg, electron beam). When the curing initiator is a thermosetting initiator, the curable resin is a thermosetting resin. When the curing initiator is a photocuring initiator, the curing resin is a photocurable resin.
此處,由光學體10之透明性的觀點來看,硬化起始劑以紫外線硬化起始劑為佳。因此,硬化性樹脂以紫外線硬化性丙烯酸樹脂為佳。紫外線硬化起始劑係光硬化起始劑的一種。紫外線硬化起始劑可舉2,2-二甲氧基-1,2-二苯基乙烷-1-酮、1-羥基-環己基苯酮、2-羥基-2-甲基-1-苯基丙烷-1-酮等為例。Here, from the viewpoint of the transparency of the
又,構成凹凸構造12之樹脂亦可為賦予有親水性、撥水性、防霧等機能性的樹脂。Furthermore, the resin constituting the concavo-
又,亦可視光學體10之用途於凹凸構造12中添加添加劑。如此之添加劑可舉無機填料、有機填料、均染劑、表面調整劑、消泡劑等為例。再者,無機填料之種類可舉SiO
2、TiO
2、ZrO
2、SnO
2、Al
2O
3等金屬氧化物微粒子為例。
In addition, additives may be added to the concavo-
並未特別限制基材11之種類,但使用光學體10作為抗反射薄膜時,以透明且不易斷裂之薄膜為佳。基材11可舉PET(聚對苯二甲酸乙二酯)薄膜或TAC(三乙醯纖維素)薄膜等為例。使用光學體10作為抗反射薄膜時,以透明性優異之材料構成基材11為佳。又,基材11之厚度只要可視光學體10之用途,即光學體10所求之處理性適當地調整即可。基材11亦可由矽系之材料構成。又,並未特別限定基材11之形狀為薄膜形狀,亦可使用板狀、曲面狀、透鏡狀等各種形狀者。又,基材11之材料係無機系材料,亦可使用例如,玻璃材料或Al
2O
3系之材料。基材11與凹凸構造12可以相異之材料構成,亦可以相同之材料構成。以相異之材料構成基材11與凹凸構造12時,亦可於該等之間形成調整折射率用之折射率匹配層等。基材11之厚度亦可為例如50~125μm。基材11可為平板狀,亦可為其他形狀(例如凹狀、凸狀)。又,基材11及凹凸構造12中之至少一者亦可著色。
The type of the
<2.凹凸構造之變形例>
(2-1.第1變形例)
接著,說明凹凸構造之各種變形例。圖4顯示凹凸構造12之第1變形例。第1變形例中,凸部13之俯視形狀相較於圖1所示之俯視形狀於上下方向上稍微扁平。第1變形例中亦可期待與圖1之凹凸構造12相同之效果。
<2. Variations of the concavo-convex structure>
(2-1. First variation)
Next, various variations of the concavo-convex structure are described. FIG. 4 shows the first variation of the concavo-
(2-2.第2變形例)
圖5顯示凹凸構造12之第2變形例。第2變形例中,凸部13及凹部14之排列圖案係自正六方格圖案偏移的圖案。具體而言,第2變形例中,軌跡節距L3較圖1所示之軌跡節距L3略為狹小。第2變形例中亦可期待與圖1之凹凸構造12相同之效果。
再者,為得如第2變形例之凹凸構造12,亦可適當地變更軌跡節距及點節距。例如,將軌跡節距設為100~180nm、點節距設為180~270nm即可。
(2-2. Second modification)
FIG. 5 shows a second modification of the concave and
(2-3.第3變形例)
圖6顯示凹凸構造12之第3變形例。圖6中上下方向係軌跡方向(相當於箭頭B方向)。第3變形例中凸部13成為於與軌跡方向相異之方向(此處係右上方向)上非對稱的形狀。換言之,凸部13之俯視形狀成為於右上方向上非對稱的形狀。例如,定義與圖3相同之區域X11、X12時,右上側之區域X11較左下側區域X12大。又,頂點13a較中心點A朝右上方向偏移。第3變形例中亦可期待與圖1之凹凸構造12相同之效果。再者,為得如圖6所示之凹凸構造12,於後述之曝光裝置200中,在視場透鏡223之光徑方向之前側設置非對稱形狀的孔徑即可。孔徑之俯視形狀與凸部13之俯視形狀略為一致。藉由配置如此之孔徑,可使作為藉由視場透鏡223傅立葉變換後之像所聚光的雷射光成為非對稱之形狀。
(2-3. Third modification)
FIG. 6 shows a third modification example of the concave and
(2-4.第4變形例)
第4變形例中凹凸構造12具有圖1所示之凹凸構造12的互補形狀。換言之,第4變形例中圖1之凸部13與凹部14對調,圖1之凹部14與凸部13對換。圖7顯示第4變形例之凹凸構造12的CC截面圖。第4變形例中亦可期待與圖1之凹凸構造12相同的效果。此時,凹部14之俯視形狀及垂直截面形狀於箭頭B方向上成為非對稱。凹部14之俯視形狀及垂直截面形狀定義成與圖1所示之凸部13的俯視形狀及垂直截面形狀相同。再者,凹部14之俯視形狀成為凹部14開口面之形狀,凹部14之俯視形狀的重心對應於圖1所示之凸部13的頂點13a。
(2-4. The fourth variant)
In the fourth variant, the concave-
<3.母盤之構造>
凹凸構造12使用例如圖8所示之母盤100製作。於是,接著,說明母盤100之構造。母盤100係例如奈米壓模法所使用之母盤,成為圓筒狀。母盤100可為圓柱狀或其他形狀(例如平板狀)。但,母盤100為圓柱或圓筒狀時,藉由輥對輥方式可無縫地將母盤100之凹凸構造(即,母盤凹凸構造)120轉印至樹脂基材等。藉此,可以高產率製作轉印有母盤100之母盤凹凸構造120的光學體10。由如此之觀點來看,母盤100形狀以圓筒狀或圓柱狀為佳。
<3. Structure of the master disk>
The concave-
母盤100具有母盤基材110與形成於母盤基材110周邊之母盤凹凸構造120。母盤基材110係例如玻璃體,具體而言,由石英玻璃所形成。但,母盤基材110只要為SiO
2純度高者即可,並未特別限定,亦可以熔融石英玻璃或合成石英玻璃等所形成。母盤基材110可為於金屬母材上積層有前述材料者或金屬母材。母盤基材110之形狀係圓筒狀,亦可為圓柱狀、其他形狀。但,如上述,母盤基材110以圓筒狀或圓柱狀為佳。母盤凹凸構造120具有凹凸構造12之互補形狀。
The
<4.母盤之製造方法>
接著,說明母盤100之製造方法。首先,於母盤基材110上形成(成膜)基材光阻層。此處,並未特別限制構成基材光阻層之光阻材,可為有機光阻材及無機光阻材之任一者。有機光阻材可舉酚醛清漆系光阻、或化學放大型光阻等為例。又,無機光阻材可舉包含鎢(W)或鉬(Mo)等1種或2種以上之過渡金屬的金屬氧化物等為例。但,為進行熱反應光刻法,以包含金屬氧化物之熱反應型光阻形成基材光阻層為佳。
<4.Manufacturing method of master disk>
Next, a method of manufacturing the
使用有機光阻材時,亦可藉由使用旋轉塗布、狹縫塗布、浸塗塗布、噴霧塗布、或網板印刷等,於母盤基材110上形成基材光阻層。又,於基材光阻層使用無機光阻材時,亦可藉由使用濺鍍法形成基材光阻層。When an organic photoresist is used, the substrate photoresist layer can be formed on the
接著,藉由曝光裝置200(參照圖9)曝光基材光阻層之一部分,於基材光阻層形成潛像。具體而言,曝光裝置200調變雷射光200A,並將雷射光200A照射至基材光阻層。藉此,因一部分照射到雷射光200A之基材光阻層改質,故可於基材光阻層形成對應母盤凹凸構造120之潛像。以可見光波長以下之平均周期於基材光阻層形成潛像。Next, a portion of the base photoresist layer is exposed using the exposure device 200 (see FIG. 9 ) to form a latent image on the base photoresist layer. Specifically, the
接著,藉於形成有潛像之基材光阻層上滴下顯影液,於基材光阻層顯影。藉此,於基材光阻層形成凹凸構造。接著,將基材光阻層作為光罩蝕刻母盤基材110及基材光阻層,而於母盤基材110上形成母盤凹凸構造120。再者,雖並未特別限制蝕刻之方法,但以具垂直異向性之乾式蝕刻為佳,以例如,反應性離子蝕刻(Reactive Ion Etching:RIE)為佳。藉由以上步驟製作母盤100。再者,亦可使用將鋁陽極氧化後所得之陽極氧化多孔氧化鋁作為母盤。陽極氧化多孔氧化鋁係例如國際公開第2006/059686號公報所揭示。又,亦可藉由使用有非對稱形狀之標線光罩的步進機製作母盤100。Next, a developer is dripped onto the substrate photoresist layer on which the latent image is formed, and the substrate photoresist layer is developed. Thus, a concave-convex structure is formed on the substrate photoresist layer. Next, the substrate photoresist layer is used as a mask to etch the
此處,詳細內容雖稍待後述,但本實施形態中藉由調整雷射光200A之照射態樣來形成母盤凹凸構造120。藉此,可將母盤凹凸構造120之形狀做成凹凸構造12之互補形狀。換言之,母盤凹凸構造120之形狀於母盤100之任一面方向(此處係母盤100之圓周方向)上成為非對稱之形狀。Although the details will be described later, in this embodiment, the master disc concavo-
<5.曝光裝置之構造>
接著,依據圖9說明曝光裝置200之構造。曝光裝置200係曝光基材光阻層之裝置。曝光裝置200具有雷射光源201、第1鏡203、光二極體(Photodiode:PD)205、偏向光學系統、控制機構230、第2鏡213、移動光學台220、轉軸馬達225、轉台227。又,母盤基材110係載置於轉台227上而可旋轉。
<5. Structure of exposure device>
Next, the structure of the
雷射光源201係可發射雷射光200A之光緣,例如,固體雷射或半導體雷射等。並未特別限定雷射光源201發射之雷射光200A的波長,亦可為例如,400nm~500nm之藍色光帶域的波長。又,雷射光200A之點徑(照射至光阻層之點的直徑)只要較母盤凹凸構造120凹部之開口面直徑小即可,以例如200nm左右為佳。藉由控制機構230控制自雷射光源201所發出之雷射光200A。The
自雷射光源201射出之雷射光200A呈平行光束前進於第1鏡203反射引導至偏向光學系統。The laser light 200A emitted from the
第1鏡203以分光鏡構成,具有反射偏光成分之一者,並透射其他之偏光成分的機能。透射第1鏡203之偏光成分於光二極體205受光轉換成光電。又,藉由光二極體205光電轉換之受光信號則輸入至雷射光源201,雷射光源201依據經輸入之受光信號進行雷射光200A之相位調變。The
又,偏向光學系統具有聚光透鏡207、光電偏轉元件(Electro Optic Deflector:EOD)209、及準直儀透鏡211。Furthermore, the deflection optical system includes a
偏向光學系統中,雷射光200A藉由聚光透鏡207聚光至光電偏轉元件209。光電偏轉元件209係可控制雷射光200A之照射位置的元件。曝光裝置200亦可藉由光電偏轉元件209改變被引導至移動光學台220上之雷射光200A的照射位置 (即Wobble機構)。雷射光200A藉由光電偏轉元件209調整照射位置後,藉由準直儀透鏡211再度被平行光束化。自偏向光學系統射出之雷射光200A利用第2鏡213反射被水平且平行地引導至移動光學台220上。In the deflection optical system, the laser light 200A is focused by the focusing
移動光學台220具有光束擴展器(Beam expader:BEX)221與視場透鏡223。被引導至移動光學台220之雷射光200A藉由光束擴展器221整形成預期之光束形狀後,透過視場透鏡223照射於形成於母盤基材110上之基材光阻層。又,移動光學台220於母盤基材110每1旋轉時僅移朝箭頭R方向(輸送節距方向)移動1輸送節距(軌跡節距)。於轉台227上設置母盤基材110。轉軸馬達225藉使轉台227旋轉,使母盤基材110旋轉。藉此,於基材光阻層上掃描雷射光200A。此處,沿著雷射光200A之掃描方向形成基材光阻層的潛像。因此,凹凸構造12之軌跡方向(即,箭頭B方向)對應於雷射光200A之掃描方向。The mobile
又,控制機構230具有格式器231與驅動器233,控制雷射光200A之照射。格式器231生成控制雷射光200A之照射的調變信號,驅動器233依據格式器231生成之調變信號控制雷射光源201。藉此,控制對母盤基材110之雷射光200A照射。In addition, the
格式器231依據描繪於基材光阻層之任意圖案所繪出之輸入影像,生成用以於基材光阻層照射雷射光200A的控制信號。具體而言,首先,格式器231取得繪有描繪於基材光阻層之任意圖案的輸入影像。輸入影像相當於在軸方向切開基材光阻層之外周圍攤平成一平面後的基材光阻層之外周展開圖的影像。接著,格式器231將輸入影像分割成預定大小之小區域(例如,分割成格子狀),並判斷各小區域是否含有描繪圖案。然後,格式器231生成控制信號,控制於經判斷含有描繪圖案之各小區域照射雷射光200A。該控制信號(即,曝光信號)以與轉軸馬達225之旋轉同步為佳,亦可不同步。又,控制信號與轉軸馬達225之旋轉的同步亦可於母盤基材110每1旋轉時調整。此外,驅動器233依據格式器231生成之控制信號來控制雷射光源201的輸出。藉此,控制對基材光阻層之雷射光200A的照射。再者,曝光裝置200亦可進行如焦點伺服裝置、雷射光200A之照射點的位置修正等眾所皆知的曝光控制處理。焦點伺服裝置可使用雷射光200A之波長亦可參照使用其他波長。The
又,自雷射光源201照射之雷射光200A亦可經多數系統之光學系統分支後再照射至基材光阻層。此時,於基材光阻層形成多數之照射點。此時,於自一光學系統射出之雷射光200A到達利用其他光學系統所形成的潛像時,結束曝光即可。In addition, the laser light 200A irradiated from the
<6.雷射光之照射態樣的例>
本實施形態中,利用調整雷射光之照射態樣,於母盤基材110上形成母盤凹凸構造120。雷射照射態樣之例可舉雷射光之脈衝形狀為例。因此,說明雷射光之脈衝形狀。
<6. Example of laser light irradiation pattern>
In this embodiment, the master concavo-
圖10顯示脈衝形狀之習知例。圖10之橫軸顯示時刻、縱軸顯示雷射光之輸出位準。圖10之例中,曝光裝置200藉由交互地於母盤基材110照射高位準(=Iw)之雷射光與低位準(=Ib)之雷射光,於母盤基材110上形成母盤凹凸構造120。因此,雷射光之脈衝形狀被區分為高輸出脈衝P1與低輸出脈衝P2。基材光阻層於照射到高位準之雷射光時形成潛像,但潛像之形狀亦受低位準之雷射光影響。該習知例中,高輸出脈衝P1之輸出位準係Iw,低輸出脈衝P2之輸出位準係Ib。又,高輸出脈衝P1之輸出時間及低輸出脈衝P2之輸出時間均係t1。該習知例所形成之母盤凹凸構造120於全部之面方向均具有對稱之形狀。因此,使用母盤100所形成之凹凸構造12的俯視形狀係例如正圓。又,頂點13a配置於直線L1(參照圖2)上。Figure 10 shows a conventional example of pulse shape. The horizontal axis of Figure 10 shows the time, and the vertical axis shows the output level of the laser light. In the example of FIG. 10 , the
圖11顯示本實施形態之脈衝形狀的一例。該例中低輸出脈衝P2之輸出位準Ib1較圖10之輸出位準Ib高。本發明人發現藉使低輸出脈衝P2之輸出位準Ib1較圖10之輸出位準Ib高,可使母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。換言之,母盤凹凸構造120具有與圖1及圖2所示之凹凸構造12之凹凸互補的互補形狀。又,雷射光200A之掃描方向與箭頭B方向為反方向。以下圖12~圖14之例中亦相同。該例中因低輸出脈衝P2之輸出位準變動,故基材光阻層溫度之時間變化改變。因此,可知母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。FIG11 shows an example of the pulse shape of the present embodiment. In this example, the output level Ib1 of the low output pulse P2 is higher than the output level Ib of FIG10 . The inventors of the present invention have found that by making the output level Ib1 of the low output pulse P2 higher than the output level Ib of FIG10 , the shape of the master disc concave-
又,縮小輸出位準Ib1與輸出位準Ib之輸出差時,區域X11與區域X12之面積比變大。又,直線L2與直線L1之距離T1(即,凸部13之頂點13a至凸部13之中心點A的箭頭B方向之距離。參照圖2)變大。再者,輸出位準Ib1與輸出位準Ib之輸出差以為輸出位準Ib之30%以上為佳。此因可將區域X11與區域X12之面積比設成上述之較佳範圍內的值。又,輸出位準Iw與輸出位準Ib之比以Iw:Ib=3:1中Ib為小之值為佳。此因可使凹凸構造12為於箭頭B方向上非對稱之形狀。Furthermore, when the output difference between the output level Ib1 and the output level Ib is reduced, the area ratio of the area X11 and the area X12 becomes larger. In addition, the distance T1 between the straight line L2 and the straight line L1 (that is, the distance in the direction of arrow B from the
再者,圖11之例中高輸出脈衝P1及低輸出脈衝P2的1周期分之輸出時間與圖10之例一樣。因此,藉由圖11之例所形成的母盤凹凸構造120之平均周期,與藉由圖10之習知例所形成的母盤凹凸構造120之平均周期大致一致。依據高輸出脈衝P1及低輸出脈衝P2之1周期分的輸出時間,凹凸構造12之平均周期(具體而言,點節距L2)變動。因此,隨著光學體10所要求之抗反射特性等任意地調整高輸出脈衝P1及低輸出脈衝P2之1周期分的輸出時間即可。以下圖12~圖14之例中亦相同。Furthermore, the output time of the high output pulse P1 and the low output pulse P2 per one cycle minute in the example of FIG. 11 is the same as that in the example of FIG. 10 . Therefore, the average period of the master disc concave-
圖12係顯示本實施形態之脈衝形狀的一例。該例中,低輸出脈衝P2之輸出位準Ib1較圖10之輸出位準Ib高。此外,高輸出脈衝P1之輸出時間為較t1長之t2。另一方面,低輸出脈衝P2之輸出時間t3亦較t2短。該例中,低輸出脈衝P2之輸出時間t3為2*t1-t2。本發明人發現藉由使高輸出脈衝P1之輸出時間t2較低輸出脈衝之輸出時間t3長,可使母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。換言之,母盤凹凸構造120具有圖1及圖2所示之凹凸構造12的互補形狀。該例中,因高輸出脈衝P1之輸出時間變動,故基材光阻層溫度之時間變化改變。因此,可知母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。再者,該例中,低輸出脈衝P2之輸出位準Ib1較圖10之輸出位準Ib高。此外,高輸出脈衝P1之輸出時間為較t1長之t2。因此,非對稱之程度較圖11之例大。因此,例如,形成圖4所示之形狀的凸部13。FIG12 shows an example of the pulse shape of the present embodiment. In this example, the output level Ib1 of the low output pulse P2 is higher than the output level Ib of FIG10 . In addition, the output time of the high output pulse P1 is t2 which is longer than t1. On the other hand, the output time t3 of the low output pulse P2 is also shorter than t2. In this example, the output time t3 of the low output pulse P2 is 2*t1-t2. The inventors have found that by making the output time t2 of the high output pulse P1 longer than the output time t3 of the low output pulse, the shape of the master disc concave-
又,高輸出脈衝P1之輸出時間t2越長,區域X11與區域X12之面積比越大。又,直線L2與直線L1之距離T1越大。輸出時間t2與輸出時間t3之關係(t3/(t2+t3))以40%以上90%以下為佳。此因可使凹凸構造12為於箭頭B方向上非對稱之形狀。Furthermore, the longer the output time t2 of the high output pulse P1 is, the greater the area ratio of the region X11 to the region X12 is. Furthermore, the greater the distance T1 between the straight line L2 and the straight line L1 is. The relationship between the output time t2 and the output time t3 (t3/(t2+t3)) is preferably 40% or more and 90% or less. This allows the concavo-
圖13顯示本實施形態之脈衝形狀的一例。該例中,高輸出脈衝P1之輸出位準隨著時間經過直線地下降。本發明人發現藉由使高輸出脈衝P1之輸出位準隨著時間經過直線地下降,可使母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。換言之,母盤凹凸構造120具有圖1及圖2所示之凹凸構造12的互補形狀。該例中,基材光阻層溫度之時間變化亦改變。因此,可知母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。FIG13 shows an example of the pulse shape of the present embodiment. In this example, the output level of the high output pulse P1 decreases linearly over time. The inventors have discovered that by causing the output level of the high output pulse P1 to decrease linearly over time, the shape of the master disc concave-
又,高輸出脈衝P1之輸出位準的傾斜越小(即,每單位時間之輸出位準的減少量變大),區域X11與區域X12之面積比越大。又,直線L2與直線L1之距離T1變大。再者,高輸出脈衝P1之輸出位準的傾斜以相對於Iw為97%以下為佳。此因可使凹凸構造12於箭頭B方向上為非對稱之形狀。又,高輸出脈衝P1之輸出位準的傾斜以相對於Iw為50%以上更佳。此因可使區域X11與區域X12之面積比為上述之較佳範圍內的值。In addition, the smaller the inclination of the output level of the high-output pulse P1 is (ie, the decrease in the output level per unit time becomes larger), the larger the area ratio between the region X11 and the region X12 is. Furthermore, the distance T1 between the straight line L2 and the straight line L1 becomes larger. Furthermore, the inclination of the output level of the high-output pulse P1 is preferably 97% or less with respect to Iw. Therefore, the concave-
圖14顯示本實施形態之脈衝形狀的一例。該例中,高輸出脈衝P1之輸出位準隨著時間經過階段性地下降。本發明人發現藉使高輸出脈衝P1之輸出位準隨著時間經過階段性地下降,可使母盤凹凸構造120之形狀於雷射光200A的掃描方向上為非對稱。換言之,母盤凹凸構造120具有圖1及圖2所示之凹凸構造12的互補形狀。該例中,基材光阻層溫度之時間變化亦改變。因此,可知母盤凹凸構造120之形狀於雷射光200A之掃描方向上為非對稱。FIG. 14 shows an example of the pulse shape of this embodiment. In this example, the output level of the high output pulse P1 decreases step by step as time passes. The inventor found that by decreasing the output level of the high-output pulse P1 step by step over time, the shape of the master concave-
又,高輸出脈衝P1之最大值與最小值的差越大,區域X11與區域X12之面積比越大。又,直線L2與直線L1之距離T1變大。再者,高輸出脈衝P1之最大值與最小值的差以相對於Iw為97%以下為佳。此因可使凹凸構造12於箭頭B方向上為非對稱之形狀。又,高輸出脈衝P1之最大值與最小值的差以相對於Iw為50%以上更佳。此因可使區域X11與區域X12之面積比為上述之較佳範圍內的值。Furthermore, the greater the difference between the maximum value and the minimum value of the high output pulse P1, the greater the area ratio of the region X11 to the region X12. Furthermore, the distance T1 between the straight line L2 and the straight line L1 becomes larger. Furthermore, the difference between the maximum value and the minimum value of the high output pulse P1 is preferably 97% or less relative to Iw. This allows the concave-
又,使高輸出脈衝P1之輸出位準下降的段數,於圖14之例中為1段。當然,使高輸出脈衝P1之輸出位準下降的段數亦可為其他段數。例如,藉由增加段數,可期待可使凸部13之形狀為圓滑之容易轉印之形狀的效果。In the example of FIG14 , the number of stages for decreasing the output level of the high output pulse P1 is 1 stage. Of course, the number of stages for decreasing the output level of the high output pulse P1 may be other stages. For example, by increasing the number of stages, it is expected that the shape of the
再者,圖13及圖14之例中,雖使用隨著時間脈衝輸出下降者,但亦可使用輸出上升之脈衝。此時,雖可得與圖13及圖14之例相同的效果,但非對稱之方向幾乎相反。Furthermore, in the examples of Figures 13 and 14, although a pulse whose output decreases with time is used, a pulse whose output increases can also be used. In this case, although the same effect as in the examples of Figures 13 and 14 can be obtained, the direction of asymmetry is almost opposite.
再者,雷射光200A之其他照射態樣,可舉雷射光200A於基材光阻層上形成之雷射點的形狀為例。藉使雷射點之形狀於與雷射光200A之掃描方向相異之方向上為非對稱的形狀,可使母盤凹凸構造120之形狀為於與雷射光200A之掃描方向相異的方向上非對稱之形狀。此時,可形成例如圖6所示之凹凸構造12。Furthermore, other irradiation modes of the laser light 200A can be exemplified by the shape of the laser spots formed by the laser light 200A on the photoresist layer of the base material. If the shape of the laser spot is asymmetric in the direction different from the scanning direction of the laser light 200A, the shape of the master concave and
又,可視基材光阻層之材質、雷射光200A之波長等適當地調整高輸出脈衝P1及低輸出脈衝P2具體之輸出位準。換言之,調整高輸出脈衝P1及低輸出脈衝P2之輸出位準即可於母盤基材110上形成本實施形態之母盤凹凸構造120。In addition, the specific output levels of the high-output pulse P1 and the low-output pulse P2 can be appropriately adjusted depending on the material of the photoresist layer of the base material, the wavelength of the laser light 200A, etc. In other words, the master concave and
又,使用熱反應型光阻作為基材光阻層時,因依據照射之脈衝的功率位準改變溫度分布,故可製作非對稱之形狀。又,使用光反應型光阻作為基材光阻層時,因依據光量改變光阻之反應點形狀,故可製作非對稱之形狀。In addition, when using a heat-reactive photoresist as the base photoresist layer, the temperature distribution changes according to the power level of the irradiated pulse, so an asymmetric shape can be produced. In addition, when using a light-reactive photoresist as the base photoresist layer, the shape of the photoresist's reaction point changes according to the amount of light, so an asymmetric shape can be produced.
<7.使用母盤之光學體的製造方法>
接著,參照圖14,說明使用母盤100之光學體10之製造方法的一例。光學體10可藉由使用有母盤100之輥對輥方式之轉印裝置300製造。圖14所示之轉印裝置300中使用光硬化性樹脂製作光學體10。
<7. Manufacturing method of optical body using master disk>
Next, an example of a method of manufacturing the
轉印裝置300具有母盤100、基材供給輥301、捲取輥302、導輥303、304、軋輥305、剝離輥306、塗布裝置307、光源309。The
基材供給輥301係將長之基材11捲取成輥狀之輥,捲取輥302係捲取光學體10之輥。又,導輥303、304係搬運基材11之輥。軋輥305係使積層有未硬化樹脂層310之基材11,即被轉印薄膜3a密著於母盤100之輥。剝離輥306係將形成有凹凸構造12之基材11,即光學體10自母盤100剝離之輥。The base
塗布裝置307具有塗布器等塗布設備,於基材11塗布未硬化之光硬化性樹脂組成物,形成未硬化樹脂層310。塗布裝置307亦可為例如,凹版塗布器、線棒塗布器、或模具塗布器等。又,光源309係發出可硬化光硬化性樹脂組成物之波長之光的光源,可為例如紫外線燈等。The
轉印裝置300中,首先,自基材供給輥301透過導輥303連續地送出基材11。再者,送出之途中亦可將基材供給輥301變更成其他批之基材供給輥301。藉由塗布裝置307對經送出之基材11塗布未硬化之光硬化性樹脂組成物,於基材11積層未硬化樹脂層310。藉此,製作被轉印薄膜3a。被轉印薄膜3a藉由軋輥305與母盤100密著。光源309藉由對密著於母盤100之未硬化樹脂層310照射光,硬化未硬化樹脂層310。藉此,形成於母盤100外周圍之母盤凹凸構造120轉印至未硬化樹脂層310。換言之,基材11上形成具母盤凹凸構造120之互補形狀的凹凸構造12。接著,形成有凹凸構造12之基材11,即光學體10藉由剝離輥306自母盤100剝離。然後,光學體10透過導輥304被捲取輥302捲取。再者,母盤100可縱置亦可橫置,亦可另外設置修正母盤100旋轉時之角度、偏心之機構。亦可例如,於夾持機構設置偏心傾斜機構。In the
如此,轉印裝置300中以輥對輥搬運被轉印薄膜3a,且將母盤100之周邊形狀轉印至被轉印薄膜3a。藉此,製作光學體10。In this way, the
再者,於以熱可塑性樹脂製作光學體10時,不需要塗布裝置307及光源309。又,將基材11作成熱可塑性樹脂薄膜,並於母盤100之上游側配置加熱裝置。藉由該加熱裝置加熱基材11使其柔軟,之後,將基材11壓附至母盤100。藉此,母盤100周圍所形成之母盤凹凸構造120被轉印至基材11。再者,亦可將基材11作為熱可塑性樹脂以外之樹脂所構成的薄膜,積層基材11與熱可塑性樹脂薄膜。此時,以加熱裝置加熱積層薄膜後,壓附至母盤100。因此,轉印裝置300可連續地製作轉印有母盤100上形成之母盤凹凸構造120的轉印物,即光學體10。Furthermore, when the
又,亦可製作轉印有母盤100之母盤凹凸構造120的轉印用薄膜,並將該轉印用薄膜作為轉印模具使用來製作光學體10。又,亦可藉由電鑄或熱轉印等複製母盤100,將該複製品作為轉印模具使用。此外,不需限制母盤100形狀為輥狀,亦可為平面狀之母盤,除了使用光阻照射雷射光200A之方法以外,可選擇使用有光罩之半導體曝光、電子束描繪、機械加工、陽極氧化等各種加工方法。Alternatively, a transfer film to which the master concave and
又,自母盤100剝離光學體10時,以於凸部13為非對稱之方向(圖1之例中為箭頭B方向)上剝離為佳。此因凸部13之傾斜方向與光學體10之剝離方向一致,可較輕易地自母盤100剝離光學體10。又,可更確實地將母盤100之母盤凹凸構造120轉印至光學體10。當然,本實施形態中因凹部14之底面積亦充分地大,故亦可於其他方向上剝離光學體10。此時,亦可輕易地自母盤100剝離光學體10。又,可更確實地將母盤100之母盤凹凸構造120轉印至光學體10。
[實施例]
Furthermore, when peeling the
<1.實施例1>
(1-1.光學體之製作)
實施例1中,藉由以下步驟製作母盤100。準備由熱氧化矽所構成之平板狀的母盤基材110。接著,藉於母盤基材110上旋轉塗布正型之光阻材,於母盤基材110上形成基材光阻層。此處,光阻材使用包含鎢(W)之金屬氧化物光阻。
<1. Example 1>
(1-1. Fabrication of optical body)
In Example 1, a
之後,使用曝光裝置200於基材光阻層形成正六方格狀之潛像。此處,將雷射光200A之波長設為405nm,將視場透鏡223之NA設為0.85。又,將雷射光200A之脈衝形狀設為圖11所示者。又,將高輸出脈衝P1之輸出位準Iw設為9.5MW/cm
2(基材光阻層之每單位面積的輸出位準),將低輸出脈衝P2之輸出位準Ib1設為1.6MW/cm
2。又,將高輸出脈衝P1及低輸出脈衝P2之輸出時間t1設為20ns。
After that, a regular hexagonal latent image is formed on the substrate photoresist layer using the
接著,藉於基材光阻層上滴下顯影液去除潛像。換言之,進行顯影處理。然後,使用基材光阻層作為光罩進行乾式蝕刻。藉此,於母盤基材110上形成母盤凹凸構造120。蝕刻氣體使用CHF3。之後,於母盤凹凸構造120上塗布氟系之脫模處理劑。Then, the latent image is removed by dropping developer solution on the photoresist layer of the base material. In other words, development processing is performed. Then, dry etching is performed using the base photoresist layer as a photomask. Thereby, the master concave and
接著,使用母盤100作為轉印模具製作光學體10。具體而言,準備聚對苯二甲酸乙二酯薄膜作為基材11,並於該基材11上形成由丙烯酸樹脂丙烯酸酯所構成之未硬化樹脂層。然後,將母盤100之母盤凹凸構造120轉印至未硬化樹脂層。接著,藉由對未硬化樹脂層照射1000mJ/cm
2之紫外線,使未硬化樹脂層硬化。之後,朝箭頭B方向(即,軌跡方向)自母盤100剝離光學體10。藉由以上步驟製作光學體10。
Next, the
(1-2.特性評價)
以SEM及TEM確認光學體10之表面構造。於圖20顯示SEM照片。由圖20清楚得知可確認光學體10之表面形成有凹凸構造12。又,幾未確認凹凸構造12之缺陷。因此,可確認母盤100之轉印性良好。該理由係如後述,底面比率大,且凸部13於箭頭B方向上具有非對稱之形狀。又,點節距係250nm,軌跡節距係200nm。
(1-2. Characteristic evaluation)
The surface structure of the
又,凸部13於箭頭B方向上呈非對稱之形狀。具體而言,區域X11與區域X12之面積比係0.95。又,凸部13之高度係180nm。又,凸部13彼此雖鄰接,但幾未疊合。Furthermore, the
接著,利用模擬計算光學體10之分光反射光譜。模擬之方法係使用RCWA法。又,將非對稱之面積比設為0.95。又,模擬中使用之參數係如下述。
構造體配置:六方格
偏光:無偏光
折射率:1.52
格子間隔(點節距):250nm
構造體高度(凸部之高度):180nm
Next, simulation is used to calculate the spectral reflection spectrum of the
於圖16顯示該結果。圖16之橫軸顯示入射光之波長,縱軸顯示光學體10之分光反射率。結果,可確認相對於400~650nm波長之分光反射率係0.1~0.45%左右。又,相對於550nm波長之分光反射率係0.15%。因此,可確認光學體10對於寬之波長帶域具有高抗反射特性。The results are shown in Figure 16. The horizontal axis of FIG. 16 shows the wavelength of the incident light, and the vertical axis shows the spectral reflectance of the
又,使用市售之資料解析軟體(Wolfram社 Mathematica,以下相同)測量底面比率。底面比率係相對於基材11表面(即,形成有凹凸構造12之表面)之總面積的全凹部14底面積之比率。結果,底面比率係如8.0%之較大的值。In addition, the base ratio was measured using commercially available data analysis software (Wolfram Co., Ltd. Mathematica, the same below). The bottom surface ratio is a ratio of the bottom area of all recessed
如此,實施例1中即使凸部13彼此並未疊合 (即,底面比率較大),仍可得高之抗反射特性。本發明人認為因凸部13於箭頭B方向上具有非對稱之形狀,故可得如此之抗反射特性。In this way, in
<2.實施例2>
(2-1.光學體之製作)
除了如以下地變更製作光學體10時之條件以外,藉由進行與實施例1相同之處理製作光學體10。具體而言,將雷射光200A之脈衝形狀做成如圖12所示者。又,將高輸出脈衝P1之輸出位準Iw設為9.5MW/cm
2,將低輸出脈衝P2之輸出位準Ib1設為1.6MW/cm
2。又,將高輸出脈衝P1之輸出時間t2設為24ns,將低輸出脈衝P2之輸出時間t3設為2*t1-t2=16ns。
<2. Example 2> (2-1. Production of optical body) The
(2-2.特性評價)
以SEM及TEM確認光學體10之表面構造。結果,可確認於光學體10之表面形成有凹凸構造12。又,幾未確認凹凸構造12之缺陷。因此,可確認母盤100之轉印性良好。又,點節距係250nm,軌跡節距係200nm。
(2-2. Characteristic evaluation)
The surface structure of the
又,凸部13於箭頭B方向上呈非對稱之形狀。具體而言,區域X11與區域X12之面積比係0.83,距離T1係20nm。又,凸部13之高度係180nm。又,凸部13彼此雖互相鄰接,但幾未疊合。In addition, the
接著,藉由與實施例1相同之方法計算光學體10之分光反射光譜。於圖17顯示結果。結果,可確認相對於400~650nm波長之分光反射率係0.01~0.3%左右。又,相對於550nm波長之分光反射率係0.02%。Next, the spectral reflection spectrum of the
又,使用市售之資料解析軟體測量底面比率後,底面比率係9.7%之大於實施例1之值。In addition, after measuring the bottom surface ratio using commercially available data analysis software, the bottom surface ratio is 9.7%, which is greater than the value of Example 1.
因此,可確認光學體10相對於寬之波長帶域具有高抗反射特性。又,底面比率雖較實施例1高,仍可得高之抗反射特性。該理由可知因實施例2之面積比為於較佳範圍內之值。Therefore, it can be confirmed that the
<3.比較例1> (3-1.光學體之製作) 除了如以下地變更製作光學體時之條件以外,藉由進行與實施例1相同之處理,製作光學體。具體而言,將雷射光200A之脈衝形狀設為如圖10所示者。又,將高輸出脈衝P1之輸出位準Iw設為9.5MW/cm 2,將低輸出脈衝P2之輸出位準Ib設為1.1MW/cm 2(0.35mW)。又,將高輸出脈衝P1及低輸出脈衝P2之輸出時間t1設為20ns。 <3. Comparative Example 1> (3-1. Fabrication of optical body) An optical body was fabricated by performing the same process as in Example 1 except that the conditions for fabricating the optical body were changed as follows. Specifically, the pulse shape of the laser light 200A was set as shown in FIG. 10. Furthermore, the output level Iw of the high output pulse P1 was set to 9.5 MW/cm 2 , and the output level Ib of the low output pulse P2 was set to 1.1 MW/cm 2 (0.35 mW). Furthermore, the output time t1 of the high output pulse P1 and the low output pulse P2 was set to 20 ns.
(3-2.特性評價)
以SEM及TEM確認光學體之表面構造。於圖22顯示SEM照片。由圖22可知,於光學體表面可確認形成有凹凸構造(凸部500、凹部600)。又,幾未確認凹凸構造之缺陷。因此,可確認母盤之轉印性良好。又,點節距係250nm。
(3-2. Characteristic evaluation)
Use SEM and TEM to confirm the surface structure of the optical body. The SEM photo is shown in Figure 22. As can be seen from FIG. 22 , it is confirmed that the concave and convex structures (
又,凸部500於全部之面方向上係對稱。具體而言,凸部500之俯視形狀係真圓(即,面積比幾為1.0),距離T1幾為零。又,凸部之高度係180nm。又,凸部500彼此雖鄰接,但幾未疊合。Furthermore, the
接著,藉由與實施例1相同之方法計算光學體的分光反射光譜。於圖18顯示結果。結果,可確認相對於400~650nm波長之分光反射率係0.1~0.55%左右。此外,450~550nm波長帶域中分光反射率變得特別高。又,相對於550nm波長之分光反射率係0.29%。Next, the spectral reflection spectrum of the optical body is calculated using the same method as in Example 1. The results are shown in Figure 18. As a result, it was confirmed that the spectral reflectance relative to the wavelength of 400 to 650 nm is approximately 0.1 to 0.55%. In addition, the spectral reflectance becomes particularly high in the 450~550nm wavelength band. In addition, the spectral reflectance with respect to the wavelength of 550 nm is 0.29%.
又,使用市售之資料解析軟體測量底面比率後,底面比率係10%。In addition, after measuring the bottom surface ratio using commercially available data analysis software, the bottom surface ratio was 10%.
因此,光學體之分光反射率相對於實施例1全體變高。此外,450~550nm波長帶域中分光反射率變得特別高。比較例1中因底面比率大,可知於凹部14之底面產生入射光之反射。又,實際測量中,因凹凸構造之缺陷等,分光反射率變得較圖18所示之值高(參照圖23)。Therefore, the spectral reflectivity of the optical body is higher than that of the
<4.比較例2> (4-1.光學體之製作) 除了將高輸出脈衝P1之輸出位準Iw設為11.0MW/cm 2以外,藉由進行與比較例1相同之處理製作光學體。 <4. Comparative Example 2> (4-1. Fabrication of optical body) An optical body was fabricated by performing the same process as in Comparative Example 1 except that the output level Iw of the high output pulse P1 was set to 11.0 MW/cm 2 .
(4-2.特性評價) 以SEM及TEM確認光學體之表面構造。結果,可確認於光學體之表面形成有凹凸構造。但,凸部彼此大幅地疊合,到處可見凹凸構造之缺陷。又,點節距係250nm。 (4-2. Characteristic evaluation) The surface structure of the optical body was confirmed by SEM and TEM. As a result, it was confirmed that a concave-convex structure was formed on the surface of the optical body. However, the convex parts overlapped each other to a large extent, and defects of the concave-convex structure were seen everywhere. In addition, the dot pitch was 250nm.
又,凸部於全部之面方向上係對稱。具體而言,凸部之俯視形狀係真圓(即,面積比幾為1.0),距離T1幾為零。又,凸部之高度係180nm。接著,藉由與實施例1相同之方法計算光學體之分光反射光譜。於圖19顯示結果。結果,可確認相對於400~650nm波長之分光反射率係0.01~0.3%左右。又,相對於550nm波長之分光反射率係0.02%。但,該分光反射率到底僅係模擬的結果。如上述,比較例2中到處可見凹凸構造之缺陷。因此,可預料實際之分光反射率變得較圖19高。Furthermore, the convex portion is symmetrical in all surface directions. Specifically, the top view shape of the convex portion is a true circle (i.e., the area ratio is approximately 1.0), and the distance T1 is approximately zero. Furthermore, the height of the convex portion is 180 nm. Next, the spectral reflection spectrum of the optical body is calculated by the same method as in Example 1. The results are shown in FIG19 . As a result, it can be confirmed that the spectral reflectivity relative to the wavelength of 400~650nm is approximately 0.01~0.3%. Furthermore, the spectral reflectivity relative to the wavelength of 550nm is 0.02%. However, the spectral reflectivity is ultimately only a result of simulation. As mentioned above, defects of the concave-convex structure can be seen everywhere in Comparative Example 2. Therefore, it can be expected that the actual spectral reflectivity becomes higher than that of FIG19 .
又,使用市售之資料解析軟體測量底面比率後,底面比率係5.5%之非常小之值。比較例2中因凸部彼此大幅地疊合,故底面比率變小。因此,模擬中分光反射率係良好之值。但,實際觀察凹凸構造後,因到處可見凹凸構造之缺陷,故可預料實際之分光反射率變得較圖19高。換言之,如專利文獻4般大幅地疊合凸部13彼此時,可預料因凹凸構造之缺陷造成分光反射率下降。Furthermore, after measuring the base ratio using commercially available data analysis software, the base ratio is a very small value of 5.5%. In Comparative Example 2, since the convex portions greatly overlap each other, the bottom surface ratio becomes smaller. Therefore, the spectral reflectance in the simulation is a good value. However, after actually observing the uneven structure, it can be expected that the actual spectral reflectance will be higher than that in Figure 19 because defects in the uneven structure can be seen everywhere. In other words, when the
<5.實施例3>
(5-1.光學體之製作)
除了一面隨機地將高輸出脈衝P1之輸出時間t2變更成22~25ns間一面進行曝光以外,藉由進行與實施例2相同之處理製作光學體10。
<5.Example 3>
(5-1. Production of optical body)
The
(5-2.特性評價)
以SEM及TEM確認光學體10之表面構造。於圖21顯示SEM照片。結果,可確認於光學體10之表面形成有凹凸構造12。又,幾未確認凹凸構造12之缺陷。因此,可確認母盤100之轉印性良好。又,實施例4中隨機地配置凹凸。於是,挑選多數鄰接之凸部13的組合,算出該等節距之算術平均值作為平均周期。結果,平均周期係250nm。
(5-2. Characteristic evaluation)
The surface structure of the
又,凸部13於箭頭B方向(圖21之上下方向)上呈非對稱之形狀。具體而言,區域X11與區域X12之面積比係0.83,距離T1係25nm。又,凸部13之高度係180nm。又,凸部13彼此幾未疊合。In addition, the
接著,實際測量光學體10之分光反射光譜。測量係使用日本分光社V-550。於圖23顯示結果。圖23中為了比較,亦記載了實施例1、比較例1之實測資料。結果,可確認相對於實施例3之350~800nm波長的分光反射率係0.08~0.2%左右。又,相對於550nm波長之分光反射率係0.09%。因此,可確認光學體10具有相對於寬之波長帶域高之抗反射特性。又,可確認實施例1之分光反射率亦大致為0.2%以下,實施例3中可得較實施例1高之抗反射特性。該理由可視為隨機地配置凸部13之故。Next, the spectral reflection spectrum of the
又,使用市售之資料解析軟體測量底面比率後,底面比率係10%。In addition, after measuring the bottom surface ratio using commercially available data analysis software, the bottom surface ratio was 10%.
<6.實施例4>
(6-1.光學體之製作)
製作轉印有實施例1所製作之母盤100之母盤凹凸構造120的轉印用薄膜。並且,除了使用該轉印用薄膜取代母盤100使用以外,藉由進行與實施例1相同之處理製作光學體10。
<6.Example 4>
(6-1. Production of optical body)
A transfer film on which the master concave and
(6-2.特性評價)
以SEM及TEM確認光學體10之表面構造。結果,可確認於光學體10之表面形成有凹凸構造12。凹凸構造12之CC截面係圖7所示之形狀。又,幾未確認凹凸構造12之缺陷。因此,可確認母盤100之轉印性良好。又,點節距係250nm,軌跡節距係200nm。
(6-2. Characteristic evaluation)
The surface structure of the
又,凹部14於箭頭B方向上呈非對稱之形狀。具體而言,區域X11與區域X12之面積比係0.9,距離T1係15nm。又,凹部14之深度係180nm。又,凹部14彼此幾未疊合。In addition, the
接著,藉由與實施例1相同之方法計算光學體10的分光反射光譜。於圖24顯示結果。結果,可確認相對於400~650nm波長之分光反射率係0.05~0.3%左右。又,相對於550nm波長之分光反射率係0.10%。因此,可確認光學體10具有相對於寬之波長帶域高之抗反射特性。Next, the spectral reflection spectrum of the
又,使用市售之資料解析軟體測量俯視之底面比率後,底面比率係9.8%。再者,此處所稱之底面於取代母盤使用之轉印用薄膜的底面時所得的光學體10中成為凸部13之上面(上端面)。The bottom surface ratio measured by commercially available data analysis software was 9.8%. The bottom surface referred to here is the top surface (upper end surface) of the
<7.實施例5>
(7-1.光學體之製作)
除了如以下地變更製作光學體10時之條件以外,藉由進行與實施例1相同之處理製作光學體10。具體而言,於母盤凹凸構造120上塗布無機材料系之脫模處理劑。
<7. Example 5>
(7-1. Preparation of optical body)
Except that the conditions for preparing the
(7-2.特性評價)
以SEM及TEM確認光學體10之表面構造。結果,可確認於光學體10之表面形成有凹凸構造12。又,幾未確認凹凸構造12之缺陷。因此,可確認母盤100之轉印性良好。又,點節距係250nm,軌跡節距係200nm。
(7-2. Characteristic evaluation)
The surface structure of the
又,凸部13於箭頭B方向上呈非對稱之形狀。具體而言,區域X11與區域X12之面積比係0.97。又,凸部13之高度係180nm,距離T1係8nm。又,凸部13彼此雖鄰接,但幾未疊合。面積比與實施例1不同可視為因脫模處理劑之塗布狀態改變之故。In addition, the
接著,藉由與實施例1相同之方法計算光學體10的分光反射光譜。於圖25顯示結果。結果,可確認相對於400~650nm波長之分光反射率係0.15~0.5%左右。又,相對於550nm波長之分光反射率係0.17%。Next, the spectral reflection spectrum of the
又,使用市售之資料解析軟體測量底面比率後,底面比率係8.0%之與實施例1之誤差範圍內相同的值。於表1顯示統整結果。再者,表1中,實施例1、2、4、5、比較例1、2之550nm反射率之值係模擬值,實施例3之550nm反射率之值係實測值。又,表1中亦顯示位移比。因此,可確認實施例之光學體10相對於寬之波長帶域具有高抗反射特性。In addition, after measuring the base ratio using commercially available data analysis software, the base ratio was 8.0%, the same value within the error range of Example 1. The integration results are shown in Table 1. Furthermore, in Table 1, the 550 nm reflectance values of Examples 1, 2, 4, 5, and Comparative Examples 1 and 2 are simulated values, and the 550 nm reflectance values of Example 3 are actual measured values. In addition, Table 1 also shows the displacement ratio. Therefore, it can be confirmed that the
[表1] [Table 1]
以上,一面參照附加圖式,一面詳細地說明本發明之較佳實施形態,但本發明並未受該例所限定。只要為本發明所屬技術領域中具通常知識者,於專利請求之範圍所記載之技術思想的範疇內所能思及之各種變更例或修正例係為明確,且應知曉該等亦屬本發明之技術範圍。The preferred embodiments of the present invention are described in detail above with reference to the attached drawings, but the present invention is not limited to the embodiments. As long as a person with ordinary knowledge in the technical field to which the present invention belongs can think of various changes or modifications within the scope of the technical concept described in the scope of the patent claim, it should be understood that these also belong to the technical scope of the present invention.
3a:被轉印薄膜
10:光學體
11:基材
12:凹凸構造
13,500:凸部
13a:頂點
14,600:凹部
100:母盤
110:母盤基材
120:母盤凹凸構造
200:曝光裝置
200A:雷射光
201:雷射光源
203:第1鏡
205:光二極體
207:聚光透鏡
209:光電偏轉元件
211:準直儀透鏡
213:第2鏡
220:移動光學台
221:光束擴展器
223:視場透鏡
225:轉軸馬達
227:轉台
230:控制機構
231:格式器
233:驅動器
300:轉印裝置
301:基材供給輥
302:捲取輥
303,304:導輥
305:軋輥
306:剝離輥
307:塗布裝置
309:光源
310:未硬化樹脂層
A:中點(中心點)
B,R:箭頭
CC:截面
Ib:低位準之雷射光
Iw:高位準之雷射光
Ib1,Ib2:輸出位準
L1,L2:直線
L12:點節距
L13:軌跡節距
P1:高輸出脈衝
P2:低輸出脈衝
r:半徑
t1,t2,t3:輸出時間
T1:距離
X:四角形
X1:線段
X11,X12:區域
3a: Transfer film
10: Optical body
11: Substrate
12: Concavoconvex structure
13,500:
圖1係顯示本發明之實施形態之光學體之外觀例的平面圖。
圖2係圖1實施形態之光學體的CC截面圖。
圖3係用以說明凸部之面積比之計算方法的說明圖。
圖4係顯示凹凸構造之變形例的平面圖。
圖5係顯示凹凸構造之變形例的平面圖。
圖6係顯示凹凸構造之變形例的顯微鏡照片。
圖7係顯示凹凸構造之變形例的側截面圖。
圖8係顯示本實施形態之母盤之外觀例的立體圖。
圖9係顯示曝光裝置之構造例的方塊圖。
圖10係顯示雷射光之脈衝形狀之習知例的時序圖。
圖11係顯示本實施形態之脈衝形狀之一例的時序圖。
圖12係顯示本實施形態之脈衝形狀之一例的時序圖。
圖13係顯示本實施形態之脈衝形狀之一例的時序圖。
圖14係顯示本實施形態之脈衝形狀之一例的時序圖。
圖15係顯示以輥對輥製造光學體之轉印裝置之一例的模式圖。
圖16係顯示實施例1之光學體之反射光譜的圖表。
圖17係顯示實施例2之光學體之反射光譜的圖表。
圖18係顯示比較例1之光學體之反射光譜的圖表。
圖19比較例2之光學體之反射光譜的圖表。
圖20係顯示實施例1之光學體之外觀的顯微鏡照片。
圖21係顯示實施例3之光學體之外觀的顯微鏡照片。
圖22係顯示比較例1之光學體之外觀的顯微鏡照片。
圖23係顯示實施例1、3及比較例1之光學體之反射光譜的圖表。
圖24係顯示實施例4之光學體之反射光譜的圖表。
圖25係顯示實施例5之光學體之反射光譜的圖表。
圖26係用以說明凸部之俯視形狀之面積比之下限值的模式圖。
FIG. 1 is a plan view showing an example of the appearance of an optical body of an embodiment of the present invention.
FIG. 2 is a CC cross-sectional view of the optical body of the embodiment of FIG. 1.
FIG. 3 is an explanatory view for explaining a method of calculating the area ratio of a convex portion.
FIG. 4 is a plan view showing a modified example of a concave-convex structure.
FIG. 5 is a plan view showing a modified example of a concave-convex structure.
FIG. 6 is a microscope photograph showing a modified example of a concave-convex structure.
FIG. 7 is a side cross-sectional view showing a modified example of a concave-convex structure.
FIG. 8 is a stereoscopic view showing an example of the appearance of a master disk of the present embodiment.
FIG. 9 is a block diagram showing an example of the structure of an exposure device.
FIG. 10 is a timing diagram showing a known example of the pulse shape of laser light.
FIG. 11 is a timing diagram showing an example of the pulse shape of the present embodiment.
FIG. 12 is a timing diagram showing an example of the pulse shape of the present embodiment.
FIG. 13 is a timing diagram showing an example of the pulse shape of the present embodiment.
FIG. 14 is a timing diagram showing an example of the pulse shape of the present embodiment.
FIG. 15 is a schematic diagram showing an example of a transfer device for manufacturing an optical body by roll-to-roll method.
FIG. 16 is a graph showing the reflection spectrum of the optical body of
10:光學體 10: Optical body
13:凸部 13: convex part
13a:頂點 13a: vertex
14:凹部 14: concave part
A:中點(中心點) A: Midpoint (center point)
B:箭頭 B:arrow
CC:截面 CC: Cross-section
L12:點節距 L12: point pitch
L13:軌跡節距 L13: Track pitch
Claims (18)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224316 | 2015-11-16 | ||
JP2015-224316 | 2015-11-16 | ||
JP2016-221302 | 2016-11-14 | ||
JP2016221302A JP6903418B2 (en) | 2015-11-16 | 2016-11-14 | Optical body, master, and manufacturing method of optical body |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202300958A TW202300958A (en) | 2023-01-01 |
TWI836590B true TWI836590B (en) | 2024-03-21 |
Family
ID=58718869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111133514A TWI836590B (en) | 2015-11-16 | 2016-11-16 | Optical body, master disk, and manufacturing method of optical body |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240045109A1 (en) |
CN (1) | CN113777677B (en) |
HU (1) | HUE060361T2 (en) |
PL (1) | PL3761070T3 (en) |
TW (1) | TWI836590B (en) |
WO (1) | WO2017086296A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109389569B (en) * | 2018-10-26 | 2021-06-04 | 大象智能科技(南京)有限公司 | Monitoring video real-time defogging method based on improved DehazeNet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102472836A (en) * | 2009-07-28 | 2012-05-23 | 夏普株式会社 | Optical film, method for producing same, and method for controlling optical characteristics of same |
TW201321740A (en) * | 2011-09-26 | 2013-06-01 | Mitsubishi Rayon Co | Inspection device and inspection method for member having fine uneven structure on surface, method for manufacturing member having anodized alumina layer on surface and method for manufacturing optical film |
TW201411199A (en) * | 2012-08-06 | 2014-03-16 | Hamamatsu Photonics Kk | Optical element, and method for producing same |
JP2016201371A (en) * | 2011-08-08 | 2016-12-01 | クォークスター・エルエルシー | Lighting device comprising a plurality of light emitting elements |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368384B2 (en) | 2004-12-03 | 2009-11-18 | シャープ株式会社 | Antireflection material, optical element, display device, stamper manufacturing method, and antireflection material manufacturing method using stamper |
JP4612842B2 (en) * | 2005-01-19 | 2011-01-12 | キヤノン株式会社 | Optical scanning device |
JP2008158204A (en) * | 2006-12-22 | 2008-07-10 | Dainippon Printing Co Ltd | Antireflection film, molding die and manufacturing methods therefor, and optical member having the antireflection film |
US8810910B2 (en) * | 2008-02-27 | 2014-08-19 | Sony Corporation | Antireflection optical device and method of manufacturing master |
JP5063812B2 (en) * | 2009-04-24 | 2012-10-31 | シャープ株式会社 | Display device and method of manufacturing antireflection film |
JP2011059264A (en) * | 2009-09-08 | 2011-03-24 | Olympus Corp | Optical element |
JP5549707B2 (en) * | 2012-06-25 | 2014-07-16 | 大日本印刷株式会社 | Antireflection article, image display device, method for manufacturing antireflection article, mold for manufacturing antireflection article, and method for manufacturing mold for manufacturing antireflection article |
US9442222B2 (en) * | 2012-07-31 | 2016-09-13 | Dai Nippon Printing Co., Ltd. | Antireflective article, image display device, and production mold for antireflective article |
JP2014066976A (en) | 2012-09-27 | 2014-04-17 | Asahi Kasei E-Materials Corp | Fine concavo-convex molded body, fine concavo-convex pattern forming mold, and manufacturing method therefor |
JP5488667B2 (en) * | 2012-09-28 | 2014-05-14 | 大日本印刷株式会社 | Anti-reflective article |
JP2015038579A (en) | 2013-08-19 | 2015-02-26 | ソニー株式会社 | Optical element, optical system, imaging device, optical apparatus, and master and method for manufacturing the same |
JP6277643B2 (en) | 2013-09-19 | 2018-02-14 | 凸版印刷株式会社 | Manufacturing method of mold for nanoimprint |
-
2016
- 2016-11-15 HU HUE20191990A patent/HUE060361T2/en unknown
- 2016-11-15 CN CN202110873519.0A patent/CN113777677B/en active Active
- 2016-11-15 WO PCT/JP2016/083775 patent/WO2017086296A1/en active Application Filing
- 2016-11-15 PL PL20191990.9T patent/PL3761070T3/en unknown
- 2016-11-16 TW TW111133514A patent/TWI836590B/en active
-
2023
- 2023-09-29 US US18/375,123 patent/US20240045109A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102472836A (en) * | 2009-07-28 | 2012-05-23 | 夏普株式会社 | Optical film, method for producing same, and method for controlling optical characteristics of same |
JP2016201371A (en) * | 2011-08-08 | 2016-12-01 | クォークスター・エルエルシー | Lighting device comprising a plurality of light emitting elements |
TW201321740A (en) * | 2011-09-26 | 2013-06-01 | Mitsubishi Rayon Co | Inspection device and inspection method for member having fine uneven structure on surface, method for manufacturing member having anodized alumina layer on surface and method for manufacturing optical film |
TW201411199A (en) * | 2012-08-06 | 2014-03-16 | Hamamatsu Photonics Kk | Optical element, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
WO2017086296A1 (en) | 2017-05-26 |
PL3761070T3 (en) | 2022-11-21 |
TW202300958A (en) | 2023-01-01 |
US20240045109A1 (en) | 2024-02-08 |
HUE060361T2 (en) | 2023-02-28 |
CN113777677A (en) | 2021-12-10 |
CN113777677B (en) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6804830B2 (en) | Diffusion plate | |
JP6059695B2 (en) | Manufacturing method of optical body | |
TWI780033B (en) | Optical body, master disk, and manufacturing method of optical body | |
CN107430219A (en) | Diffuser plate | |
WO2016051785A1 (en) | Diffusing plate and diffusing-plate design method | |
JP2019071275A (en) | Optical body, method for manufacturing optical body, light-emitting device, and image display device | |
US10732341B2 (en) | Optical body, method for manufacturing optical body, and light-emitting apparatus | |
US20240045109A1 (en) | Optical body, master, and method for manufacturing optical body | |
Zhu et al. | Free-Form Micro-Lens Array Fabrication via Laser Micro-Lens Array Lithography. | |
TWI876373B (en) | Method for manufacturing resin laminated optical body | |
JP7088650B2 (en) | Optical body and light emitting device | |
CN115598747A (en) | Ultrathin multi-focal-length lens and manufacturing method thereof | |
JP2001296649A (en) | Distributed density mask, method for manufacturing the same, and method for forming surface shape | |
JP6385977B2 (en) | Optical body and display device | |
JP6871705B2 (en) | Optical body, manufacturing method of optical body, and light emitting device |